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Abstract

The present dissertation, entitled Mathematical Models in Epidemiology, is composed by two chap-

ters. In the first one, we start by taking the Kermack-McKendrick continuous-time model and derive

a discrete-time version. We follow with the study of the continuous-time model and an expression for

the susceptible proportion is derived. We repeat the process for the discrete-time model, including some

examples and some comparisons with the previous model. Important definitions (e.g basic reproduction

number) are given. The next step is the study of the initial phase and of the final size in the case of

discrete-time models. We start by obtaining the Euler-Lotka equation and we recognize the importance

of the basic reproduction number R0 in the existence of positive solutions. We give the compartmental

formulation for two specific models in both time settings.

In the second chapter, the objective is to show how to integrate separable static heterogeneity into

compartmental models. We start by reducing the Kermack-McKendrick model to a compartmental model

by considering a specific form for the expected contribution to the force of infection: A(τ) = UeτΣV .

We give two alternative ways of formulating compartmental models: the integrated form and the standard

form. We finally consider a heterogeneous population where individuals are characterized by a certain

trait. We reformulate the Kermack-McKendrick model. We consider the expected contribution to the

force of infection of the form A(τ, ω, η) = a(ω)b(τ)c(η), where a(ω) is the susceptibility of individuals

with trait ω and c(η) is the infectiousness of individuals with trait η. We acknowledge that it suffices to

redefine a function to integrate heterogeneity into the integrated form. Next, we integrate heterogeneity

into the standard form by considering the relative trait-specific susceptibility and b(τ) = UeτΣV . Some

examples are given.

We leave here the following sentence, taken from the book [Müller and Kuttler, 2015]:

“All in all, epidemiology is complex, but encloses mathematically interesting problems and

very useful applications.”

Keywords: epidemiology, mathematical modelling, continuous-time models, discrete-time models, het-

erogeneity
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Resumo

Esta dissertação, cujo título é Mathematical Models in Epidemiology (com tradução para Modelos

Matemáticos em Epidemiologia), é composta por dois capítulos: comparação entre modelos de tempo

discreto e modelos de tempo contínuo, e inserção de heterogeneidade separável e estática em alguns

casos especiais. Além disso, contém um anexo composto maioritariamente por teoremas e resultados

auxiliares de Análise e Álgebra Linear (destacam-se o Teorema de Fubini, o Teorema da convergência

dominada de Lebesgue e o critério de Weierstrass — na área da Análise — e resultados sobre a matriz

exponencial — na área da Álgebra Linear). É também aqui que se encontram provas alternativas para

resultados enunciados e demonstrados no texto principal e alguns exemplos são dados. Termina-se o

anexo com uma breve descrição da transformada de Laplace — definição, condições suficientes para

existência desta transformada e algumas propriedades (linearidade, primeira translação e multiplicação

por variável).

Notamos que os modelos matemáticos não são precisos e que a modelação de doenças infeciosas

poderá ter que incluir vacinação e/ou quarentena, ou ter que levar em conta a imprevisibilidade do com-

portamento humano e a sua complexidade. Além disso, não podemos esperar que os indivíduos de uma

população (de uma certa espécie) sejam todos iguais: por exemplo, alguns indivíduos podem ser (par-

cialmente ou totalmente) imunes a uma certa doença infeciosa enquanto outros não são. É o caso da

população humana, que é claramente heterogénea.

As doenças infeciosas existem no mundo há milhares e milhares de anos, antes da existência da

humanidade. A ideia de que existiam criaturas vivas invisíveis e que estas eram prováveis responsáveis

pela doença remonta à literatura médica mais antiga, como se pode ver, por exemplo, nos escritos de

Aristóteles (384 AC – 322 AC).

Acredita-se que Daniel Bernoulli (1700 – 1782) foi o pioneiro da aplicação da matemática ao estudo

das doenças infeciosas quando, em 1760, usou um método matemático para avaliar a eficácia das téc-

nicas de variolização contra a varíola. No século seguinte, importantes contribuições a partir de uma

perspetiva estatística foram dadas por William Farr (1807 – 1883) e John Brownlee (1868 – 1927).

William Hamer (1862 – 1936) e Ronald Ross (1857 – 1932) foram os primeiros cientistas a formular

declarações matemáticas sobre a transmissão de doenças infeciosas. Em 1906, Hamer propôs que a

evolução de uma epidemia dependia da taxa de contacto entre indivíduos suscetíveis e indivíduos infe-

ciosos (mass action principle — o princípio da ação das massas). O trabalho de Hamer e Ross inspirou

o trabalho de muitos outros, entre eles Anderson Gray McKendrick (1876 – 1943) e William Ogilvy

Kermack (1898 – 1970) que, em 1927, estabeleceram a famosa threshold theory — teoria do limite (ver

[Kermack and McKendrick, 1927]): um surto epidémico não pode ocorrer a partir da inserção de alguns

indivíduos infeciosos numa população totalmente suscetível a não ser que a densidade de indivíduos

suscetíveis esteja acima de um certo valor.

O princípio da ação de massas e a teoria do limite formam a fundação da epidemiologia teórica

moderna.

Kermack e McKendrick são considerados por muitos como os pioneiros de modelos epidemiológicos

e o seu modelo de 1927 é até hoje um protótipo para quase todos estes modelos. Embora simples, pode

ser generalizado de modo a incluir estrutura (idade, espaço) e/ou estocacidade.

No primeiro capítulo, começamos por tomar o modelo (de tempo) contínuo de Kermack-McKendrick

e mostramos como obter uma versão de tempo discreto. Prosseguimos com o estudo do modelo de tempo

contínuo e, em particular, derivamos uma expressão para a proporção de suscetíveis. Repetimos o pro-

cesso para o modelo de tempo discreto, incluindo agora alguns exemplos, e fazemos algumas compara-
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ções com o modelo anterior. Durante o estudo, definições importantes (por exemplo, número básico de

reprodução) são dadas. No modelo contínuo, alguns resultados que se tornarão bastante úteis no próximo

capítulo são já enunciados e provados. Em particular, prova-se que a força cumulativa de infeção w sat-

isfaz uma equação de renovação que envolve o númeroΨ de indivíduos não-suscetíveis na população. O

próximo passo é estudar a fase inicial e o tamanho final no caso de modelos discretos. Aqui, começamos

por obter a equação de Euler-Lotka e pela procura de soluções positivas. Reconhecemos a importância

do número básico de reproduçãoR0 na existência de soluções positivas. Terminamos este capítulo com a

formulação compartimental para os modelos SIR e SEIR, começando no cenário contínuo e prosseguindo

com o cenário discreto. Em particular, calculamos a contribuição esperada para a força de infeção, no

caso contínuo, e a contribuição esperada para a força cumulativa de infeção, no caso discreto. Além

disso, determinamos o número básico de reprodução para cada um dos dois modelos, tanto no cenário

contínuo como no discreto, e vemos que, em cada cenário, o número básico de reprodução é o mesmo

para o modelo SIR e para o modelo SEIR (o que é natural, já que o compartimento E, de indivíduos

expostos (infetados que ainda não transmitem a doença), não contribui para a força de infeção.

No segundo e último capítulo desta dissertação, o objetivo é mostrar como integrar heterogeneidade

separável e estática emmodelos epidémicos compartimentais. Aqui, começamos por considerar o modelo

(contínuo) de Kermack-McKendrick e depois reduzimo-lo a ummodelo compartimental, bastando apenas

considerar uma forma específica para a contribuição esperada para a força de infeção: A(τ) = UeτΣV .

Apresentamos duas formas alternativas de formular modelos compartimentais: a forma integrada e a

forma padrão. Mostramos a relação entre a equação de renovação que descreve a força cumulativa de

infeção w e a forma integrada. Ao longo deste estudo, vários exemplos são dados. Calculamos o número

básico de reprodução e o tempo de geração e derivamos a equação de Euler-Lotka. Em seguida, final-

mente, consideramos uma população hospedeira heterogénea, onde indivíduos são caracterizados por

uma determinada característica. Reformulamos o modelo (contínuo) de Kermack-McKendrick e obte-

mos uma equação diferencial (parcial) para descrever a proporção de indivíduos com uma determinada

característica que ainda é suscetível e ainda uma equação de renovação para descrever a força de infeção.

Notamos que a contribuição esperada para a força de infeção é agora uma função de três variáveis: o

tempo desde infeção τ do indivíduo infetado e as características ω do indivíduo em risco de ser infe-

tado e η do indivíduo infetado. Consideramos a contribuição esperada para a força de infeção da forma

A(τ, ω, η) = a(ω)b(τ)c(η), onde a(ω) é a suscetibilidade de indivíduos com característica ω e c(η) é a

infecciosidade de indivíduos com caraterística η. Afirmamos que basta redefinir uma função, definida

no primeiro capítulo, para integrar heterogeneidade na forma integrada. Para isso, provamos que a força

cumulativa de infeção é dada pelo produto da suscetibilidade a(ω) por uma função de tempow(t). Vemos

que w satisfaz a equação de renovação obtida para a força de infeção cumulativa do modelo sem hetero-

geneidade quando redefinimos a função Ψ. Depois queremos integrar heterogeneidade na forma padrão

e vemos que aqui o processo já não é tão simples. Para isso, consideramos a suscetibilidade relativa,

específica da característica (ao escolher uma característica ω̄ que normaliza esta função, i.e., a(ω̄) = 1).

Aqui, assumimos b(τ) = UeτΣV , i.e., da forma especial tomada pela contribuição esperada para a força

de infeção no início do capítulo. Terminamos o capítulo e esta dissertação com alguns exemplos (um

exemplo especial é o da distribuição Gamma).

Deixamos aqui a seguinte frase, tirada do livro [Müller and Kuttler, 2015]:

“All in all, epidemiology is complex, but encloses mathematically interesting problems and

very useful applications.”
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com tradução para

“Em suma, a epidemiologia é complexa, mas inclui problemas matematicamente interes-

santes e aplicações muito úteis.”

Palavras-chave: epidemiologia, modelação matemática, modelos de tempo contínuo, modelos de tempo

discreto, heterogeneidade
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Introduction

The present dissertation was written for the purpose of obtaining the Master’s degree in Mathematics

from the Faculty of Sciences of the University of Lisbon (FCUL). In addition, due to the writer’s promi-

nent interest in mathematical models, in particular applied to Biology, and with the aim to broaden her

knowledge in the area of infectious diseases, the theme chosen was

Mathematical Models in Epidemiology.

What is Epidemiology?

Let us now introduce the concept of epidemiology. Here we follow [Müller and Kuttler, 2015].

The term epidemiology extends to two possible descriptions:

1. environmental or behavioural factors that increase the risk for the development of certain diseases

(e.g. excessive exposure to ultraviolet radiation — present in the sunlight — can cause skin cancer

while a regular consumption of alcohol can lead to cardiovascular disease);

2. the dynamics of infectious diseases (examples of infectious diseases are malaria, cholera, tubercu-

losis and, as we’ve experienced more recently, coronavirus).

For this thesis, our interest lies in the second description: the dynamics of infectious diseases.

Infectious diseases

Infectious diseases have been around for ages and ages, even longer than humankind. It is only natural

that humans start to question the origins of the disease and how it transmits.

Historical Background

For more details, see [Anderson and May, 1991].

The idea that invisible living creatures might be the culprits for the disease dates back to the earliest

medical literature, e.g. in the writings of Aristotle (384 BC – 322 BC). However, the emergence of

“germ theory” is more prominent in the 16th century, when a honourable physician of Verona by the

name of Frascastorius (c. 1478 – 1553) published an article in which he distinctly exhibits the belief that

invisible living organisms have the ability to generate disease and transmit it by direct or indirect contact

from person to person. A century later, Antonie van Leeuwenhoek (1632 – 1723) proved the existence

of micro-organisms when simple magnifying lenses were developed and the microscopes created. In

1840, the scientist Jakob Henle (1809 – 1885) stated the germ theory of disease as it is known today and,

moreover, stipulated a series of required procedures which would have to be executed in order to prove

1



this theory. At the end of the 19th century and beginning of the 20th century, three exceptional scientists,

Louis Pasteur (1822 – 1895), Joseph Lister (1827 – 1912) and Robert Koch (1843 – 1910) elaborated

credible methods for accomplishing these procedures.

Henle, Pasteur and Koch — and their discoveries — extremely influenced biomedical sciences and

epidemiological study, bringing amore rigorous approach to it. The work of many epidemiologists should

also be noted as another influence for this new path. We mention here the fathers of epidemiology, John

Snow (1813 – 1858) and Peter Panum (1820 – 1885), responsible for a exhaustive study of population

patterns of disease.

There was an incredible progress in epidemiology and, with the improvement made in the fields of

immunology and of cellular and molecular biology, came the tools to help in the quantification of patterns

of infection within human populations.

In the table I.1 (taken from [Sampath et al., 2021]), a timeline of (a selected number of) pandemics

is given. For each pandemic, we can see when it occurred, the area where it emerged, the pathogen and

the vector of the disease1, and the mortality.

Table I.1: A timeline of Infectious Diseases.

Timeline Pandemic
Area of

emergence
Pathogen Vector Death toll

430 BC – 426 BC Athenian Plague Ethiopia Unknown Unknown Unknown

165 – 180 Antonine Plague Iraq Variola virus Humans 5 million

541 – 543 Justinian Plague Egypt Yersinia pestis
Rodents’

associated fleas
30–50 million

1347 – 1351 Black Death Central Asia Yersinia pestis
Rodents’

associated fleas
200 million

1817 – Present
The Seven Cholera

Pandemics
India Vibrio cholerae

Contaminated

water
40 million

1918 – 1919 Spanish Flu USA
Influenza A

(H1N1)
Avian 50 million

1957 – 1958 Asian Flu China
Influenza A

(H2N2)
Avian >1 million

1968 Hong Kong Flu China
Influenza A

(H3N2)
Avian 1–4 million

1981 – Present HIV/AIDS Central Africa HIV — 36 million

2002 – 2003

Severe acute

respiratory syndrome

coronavirus

China

Severe acute

respiratory syndrome

coronavirus

Bats and

palm civets
774

2009 – 2010 Swine Flu Mexico
Influenza A

(H1N1)
Pigs 148000–249000

2014 – 2016 Ebola Central Africa Ebola virus Unknown 11000

2019 – Present COVID-19 China SARS-Cov-2
Unknown,

maybe bats or pangolins?
>4 million

1A pathogen or infectious agent is any organism or agent that can produce disease. A disease vector

is a living organism that can transmit pathogens between humans or from animals to humans.
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Mathematical Epidemiology

For this brief introduction to Mathematical Epidemiology, we follow [Müller and Kuttler, 2015].

It should be noted that mathematical models are not precise and the modelling of infectious diseases

might have to include vaccination, quarantine or have into account the unpredictability of human be-

haviour and its complexity. E.g. a small proportion of the global population is against vaccination, others

refuse to isolate in the presence of a respiratory infectious disease, some people prefer to stay home while

others like to go to concerts. Furthermore, one cannot expect the individuals of a (certain species) pop-

ulation to be equal: e.g. some individuals might be (partially or totally) immune to a certain infectious

disease while others are not. The human population, for example, is clearly heterogeneous!

We leave here a quote taken from this book:

“All in all, epidemiology is complex, but encloses mathematically interesting problems and

very useful applications.”

Historical Background

For more details on the historical background, see [Anderson and May, 1991]. Some details of the

Kermack-McKendrick model here mentioned can be seen in [Müller and Kuttler, 2015].

It is believed that Daniel Bernoulli (1700 – 1782) was the pioneer of the application of mathematics

to the study of infectious diseases when, in 1760, he used a mathematical method to evaluate the effec-

tiveness of the techniques of variolation against smallpox. A century later, in 1840, the physicianWilliam

Farr (1807 – 1883) fitted a normal curve to smoothed quarterly data on deaths from smallpox in England

andWales over the period 1837 – 1839. John Brownlee (1868 – 1927), in 1906, published a paper entitled

Statistical studies in immunity; the theory of an epidemic in which he developed the descriptive approach

given by Farr. William Hamer (1862 – 1936) and Ronald Ross (1857 – 1932) contributed with works

in two particular problems: measles epidemics and the relationship between the numbers of mosquitoes

and the incidence of malaria. These two scientists were the first to formulate mathematical statements

about the transmission of infectious diseases. In 1906, Hamer proposed that the evolution of an epidemic

depended on the rate of contact between susceptible and infectious individuals (mass action principle).

The work of Hamer and Ross inspired the work of many others, as is the case of two famous names in

mathematical epidemiology: the physician and epidemiologyAnderson Gray McKendrick (1876 – 1943)

and the biochemist William Ogilvy Kermack (1898 – 1970). McKendrick and Kermack, in 1927, stated

the famous threshold theory (see [Kermack and McKendrick, 1927]): an epidemic outbreak cannot oc-

cur by the insertion of a few infectious individuals in an all susceptible population unless the density of

susceptible individuals is above a certain critical value. The work of Herbert Soper (1865 – 1930) who,

in 1929, deduced the fundamental mechanisms responsible for the periodicity of epidemics, was also

inspired by the work of Hamer and Ross.

The mass action principle and the threshold theory form the foundation of modern theoretical epi-

demiology.

Moreover, Kermack and McKendrick are in fact considered by many as the pioneers of epidemiolog-

ical models and their model ([Kermack and McKendrick, 1927]) is until this day a prototype of almost

every epidemiological model. Generalized versions of this model include structure (age, space) and/or

stochasticity.
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It should be noted that, in 1927, when the original model was conceived, some questions had yet to be

answered: How can an epidemic outbreak of an infectious disease vanish while susceptible individuals

are still present? Is it because the infectious agent gets weaker by fighting against the immune system of

each infected individual until it stops infecting or is it due to a low number of susceptibles?

Fig. I.1. William Ogilvy Kermack (left) and Anderson Gray McKendrick (right).

The dissertation

The present dissertation, entitled Mathematical Models in Epidemiology, has two main points of

interest: discrete-time models in comparison with continuous-time models and the insertion of separable

static heterogeneity in some very special cases.

We start the thesis with the first point and there we mainly follow [Diekmann et al., 2021]. For the

second point, the reference mainly used is [Diekmann and Inaba, 2023]. To complement some aspects of

the first topic, particularly in the study of continuous-time models, we choose [Breda et al., 2012]. The

appendix is mainly composed of some auxiliary theorems and results of Analysis and of Linear Algebra

(references: [Sarrico, 2015], [Pestana da Costa, 2001], [Varga, R.S., 2000] and [Spiegel, M.R., 1965]).

It is also in the appendix that one can find alternative proofs for results enunciated and proven in the main

text and some examples are given.

Structure

The main part of this thesis is composed by two chapters. In both chapters, it is assumed that the

disease generates permanent immunity and the host population is demographically closed as was done

by Kermack and McKendrick in 1927 ([Kermack and McKendrick, 1927]).

In the first chapter, entitled The discrete Kermack-McKendrick model versus the continuous

version, the objective is to compare the continuous Kermack-McKendrick model with a derived discrete

version and, furthermore, to motivate discrete-time models.

In section 1.1, we give the assumptions that will stay valid throughout this essay. From such assump-

tions, we derive a continuous-time model and then we show how to obtain a discrete-time version of such

model. We follow with section 1.2, where we study both the continuous and the discrete models. When

studying the discrete-time models, we include some examples and we give some comparisons with the
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previous model. We show the relation between the density/proportion of susceptibles and the cumula-

tive force of infection. Here, important definitions (e.g. basic number of reproduction) are given. We

enunciate and prove some results in the continuous model that will be very useful in the next chapter. In

particular, we obtain a renewal equation for the cumulative force of infection w that involves the num-

ber Ψ of no longer susceptible individuals. Next, in section 1.3, we define the Euler-Lotka equation for

the discrete case and we show the relation between the basic reproduction number R0 and the stability

of a special equilibrium. We finish the chapter with section 1.4, where we study the famous compart-

mental models: SIR and SEIR. We start with the continuous-time setting and then we proceed to the

discrete-time setting. In particular, we calculate the expected contribution to the force of infection, in the

continuous case, and the expected contribution to the cumulative force of infection, in the discrete case.

Furthermore, we determine the basic number of reproduction for each one of the two models, both in the

continuous-time setting and in the discrete-time setting.

In the second chapter, entitledCompartmental epidemicmodels with separable static heterogene-

ity, it is shown how to integrate separable static heterogeneity into compartmental epidemic models, i.e.,

we wish to construct a compartmental epidemic model where host individuals are characterized by some

trait that does not depend on time and the host population can be separated into groups according to the

trait that each individual presents.

We start with section 2.1 where we consider a special form for the expected contribution to the force

of infection by an individual with age of infection τ : A(τ) = UeτΣV . Here, it is shown how to arrive

to two different forms: the integrated form and the standard form. We demonstrate the relation between

the renewal equation that describes the cumulative force of infection w and the integrated form. The

basic reproduction number R0, the generation time T and the Euler-Lotka equation are calculated for

this special case. We follow with section 2.2 where we finally integrate heterogeneity into the model.

We consider a heterogeneous host population where individuals are characterized by a certain trait. A

reformulation of the Kermack-McKendrick model is given and we obtain a (partial) differential equation

to describe the fraction of the individuals with a certain trait that is still susceptible and also a renewal

equation to describe the force of infection. We note that the expected contribution to the force of infection

is now a function of three variables: the time-since-infection τ and the trait η of the infected individual,

and the trait ω of the individual at risk of being infected. We continue the study of heterogeneity for

a special case: A(τ, ω, η) = a(ω)b(τ)c(η), where a(ω) is the susceptibility of individuals with trait ω

and c(η) is the infectiousness of individuals with trait η. We claim that to integrate heterogeneity into

the integrated form, it suffices to redefine a function: we prove that the cumulative force of infection is

given by the product of the susceptibility a(ω) and a function of time w(t), and we see that w satisfies

the renewal equation obtained for the cumulative force of infection of the homogeneous model when

we redefine Ψ. Then we want to integrate heterogeneity into the standard form and we will see that the

process here is not as simple. For that, we consider the relative trait-specific susceptibility and we assume

b(τ) = UeτΣV , i.e., of the special form taken by the expected contribution for the force of infection at

the beginning of the chapter.
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Chapter 1

The discrete Kermack-McKendrick model

versus the continuous version

In this chapter, we will mainly follow [Diekmann et al., 2021] where it is shown that, at times, a

discrete-time modelling framework is more powerful than a continuous-time one. The motivation for

discrete-time models is simple: although the numbers of individuals varies at a continuous time, col-

lection of data is often done at regular intervals, i.e., on a discrete-time basis. Furthermore, “numerical

implementation is straightforward” in such models. For the continuous-time models, [Breda et al., 2012]

is a nice tool to complement the study.

In section 1.1, we give the assumptions that will stay valid throughout this essay. From such assump-

tions, we derive a continuous-time model and then we show how to obtain a discrete-time version of

such model. We follow with section 1.2, where we study both the continuous and the discrete models

and a comparison is given. We show the relation between the density/proportion of susceptibles and the

cumulative force of infection. For that [Diekmann and Inaba, 2023] is shortly used. Next, in section 1.3,

we define the Euler-Lotka equation for the discrete case and we show the relation between the basic re-

production number R0 and the stability of a special equilibrium. We finish the chapter with section 1.4,

where we study the famous compartmental models: SIR and SEIR.

Important quantities in this chapter are the number of susceptibles at time t, denoted by S(t), and its

proportion, denoted by s(t).

1.1 Introducing the discrete-time version

Here, we start with a continuous-time model and show how to go from there to a discrete-time model.

We make the following assumptions:

It is considered the spread of an infectious disease in a host population when

• the disease generates permanent immunity (each individual is infected exactly once or not

at all);

• the host population is demographically closed (demographic changes — births, deaths, mi-

grations, …— happen at a much slower time scale than transmission of the disease and are

thus ignored).

LetΛ be the force of infection, i.e., the probability per unit of time at which a susceptible becomes
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infected. The number of new cases per unit of time, called incidence, is given by ΛS.

With the considered assumptions, the density of susceptibles S only varies due to transmission of

infection, i.e., the (continuous-time) equation for the density S is given by

dS

dt
(t) = −Λ(t)S(t)· (1.1)

Remark 1. With these assumptions, it makes perfect sense that the product Λ(t)S(t) is bounded and

therefore
∣∣dS
dt

∣∣ is bounded as well.
Integrating (1.1) over the time window ]t, t+ 1], one obtains the relation

S(t+ 1) = e−Λ̂(t)S(t) (1.2)

where the integral

Λ̂(t) :=

∫ t+1

t
Λ(τ) dτ (1.3)

is called the cumulative force of infection over ]t, t+ 1]. The equation (1.2) gives a discrete-time model

under the same assumptions made for the continuous-time model given by (1.1). Notice that the factor

e−Λ̂(t) corresponds to the probability for a susceptible to escape from infection in time window ]t, t+1].

Remark 2. Equation (1.2) should not be replaced by its linearized form

S(t+ 1) =
(
1− Λ̂(t)

)
S(t), (1.4)

even if this difference equation is a good approximation of (1.2), for small values of Λ̂(t). For sufficiently

large values of Λ̂(t), this approximation might fail and, furthermore, it can lead to negative values of S,

which is clearly absurd. This happens since (1.4) does not take into account the permanent immunity that

follows from the first infection:

• the number of new infected individuals over the time window ]t, t+ 1] is, in this case, Λ̂(t)S(t);

• if Λ̂(t∗) > 1, the number of new infected individuals over the time window ]t∗, t∗ + 1] is greater

than the number of susceptibles at time t∗;

• so there must be a positive contribution to the number of susceptibles in the timewindow ]t∗, t∗+1];

• assuming that the population is demographically closed, then this positive contribution must be due

to reinfection.

However, equation (1.2) takes this into account, as we will now demonstrate. To follow with this demon-

stration, we take a simple example and we show that the probability that a susceptible escapes from

becoming infected is indeed given by an exponential. To start, let p be the probability that a susceptible

becomes infected when the host population is formed by one single infectious individual and the remain-

ing individuals are susceptibles. Then 1−p is the probability that a susceptible escapes infection. Now, if

there are I infectious individuals and these make contacts with susceptibles independently of each other,

then any susceptible escapes from becoming infected with probability (1− p)I . Thus the probability of

a susceptible to be infected is given by 1− (1− p)I = 1− eI ln(1−p) and not by pI as one might expect.

1.2 The General Kermack-McKendrick Model: Continuous VS Discrete

In this section, we will give some important definitions and we will state and prove some results

involving the number/proportion of susceptibles. A comparison between the general continuous-time

Kermack-McKendrick model and the general discrete-time version is given.
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In what follows,N denotes the population size (constant due to the previous assumptions). Further-

more, it is clear by the given models that the quantity S(t) is a monotone nonincreasing function, bounded

from above by the total host population N . In particular, “in the infinite past, all host individuals were

susceptible” and the limit S(−∞) := lim
t→−∞

S(t) exists and is equal to N .

The proportion of susceptibles at time t, denoted by s(t), is thus defined by

s(t) :=
S(t)

N
,

and it is clear that s(−∞) := lim
t→−∞

s(t) = 1.

The General Continuous-Time Kermack-McKendrick Model

We note that the “current force of infection is generated by individuals who were themselves in-

fected some time ago”. Kermack and McKendrick (see [Kermack and McKendrick, 1927]) translate this

observation into the constitutive equation

Λ(t) =

∫ ∞

0
A(τ)Λ(t− τ)S(t− τ) dτ (1.5)

where A(τ) is the expected contribution to the force of infection by an individual that was itself infected

τ units of time ago while the product Λ(t− τ)S(t− τ) is the incidence at time t− τ .

t− τ t

Individual infected here

The infected individual, with
age of infection τ , is expected to
contribute with A(τ) units for
the force of infection

Incidence: ΛS

τ

Fig. 1.1. An explanatory scheme for equation (1.5).

It is assumed that A:[0,+∞[ −→ [0,+∞[ is positive in some interval of [0,+∞[ and integrable

in [0,+∞[, i.e., ∫ ∞

0
A(τ) dτ < +∞·

We now give an important definition: the basic reproduction number. This number is of great impor-

tance for studying the evolution of an infectious disease.

Definition 1 (Basic reproduction number). The basic reproduction number is the expected number of

cases directly generated by one case in a population where all individuals are susceptible to infection

and is given by

R0 := N

∫ ∞

0
A(τ) dτ · (1.6)

Remark 3. In a totally susceptible population, the expected contribution to the force of infection after

the insertion of one infectious individual is equal to
∫∞
0 A(τ) dτ (we can see this integral as the sum

of contributions to the force of infection of the infectious individual from the moment it was infected

until now). Since we assume the population to have size N , then the number of new cases is equal to

N
∫∞
0 A(τ) dτ . This explains formula (1.6).
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Before we continue, we note the following: with our assumptions, it is natural that the disease leaves

the population at some point in time (either because every individual got infected or because infected

individuals didn’t infect others before loosing infectiousness — for example, if all individuals were put

in quarantine until recovery). In other words, it is expected that the force of infection Λ reaches the value

zero at some point in time. Hence we give the following result:

Proposition 1. The force of infection defined by (1.5) satisfies:

lim
t→+∞

Λ(t) = 0,

provided that the limit exists.

Proof. Since t7→S(t) is a monotone nonincreasing and bounded function, then the limit

S(∞) := lim
t→+∞

S(t)

exists. Now, let n ∈ N. By the mean value theorem (theorem 10 in the appendix), there is tn ∈]n, n+1[

such that
dS

dt
(tn) =

S(n+ 1)− S(n)

(n+ 1)− n
= S(n+ 1)− S(n)·

Passing to the limit as n → +∞, one has

lim
n→+∞

dS

dt
(tn) = S(∞)− S(∞) = 0·

On the other hand, it is clear that tn → +∞ when n → +∞. Since the limits S(∞) and

Λ(∞) := lim
t→+∞

Λ(t)

exist, then, using equation (1.1), one has the existence of the limit

lim
t→+∞

dS

dt
(t) = − lim

t→+∞
Λ(t)S(t)

and this limit is equal to −Λ(∞)S(∞).

Now, since {tn}n∈N is a sequence such that tn → +∞ and the limit lim
t→+∞

dS
dt (t) exists, then

−Λ(∞)S(∞) = lim
t→+∞

dS

dt
(t) = lim

n→+∞

dS

dt
(tn) = 0·

It follows that

Λ(∞) = 0 ∨ S(∞) = 0·

On the other hand, Lebesgue’s dominated convergence theorem (see example 11 in the appendix) guar-

antees that the sequence {Λ(k)}k∈N converges to

lim
k→+∞

Λ(k) = Λ(∞)S(∞)

∫ ∞

0
A(τ) dτ = Λ(∞)S(∞)

R0

N
·

It follows that

Λ(∞) = 0 ∨ S(∞) =
N

R0
> 0·

Thus it has to be

lim
t→+∞

Λ(t) = 0·
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We intend to finish this part with a recurrence relation for the proportion of susceptibles s. We start

by obtaining an alternative form for the cumulative force of infection Λ̂.

Proposition 2. The cumulative force of infection over ]t, t + 1], defined by (1.3), can be given by the

alternative formula

Λ̂(t) =

∫ ∞

0
A(τ) [S(t− τ)− S(t+ 1− τ)] dτ · (1.7)

Proof. We start by plugging (1.1) into equation (1.5), obtaining

Λ(t) = −
∫ ∞

0
A(τ)

dS

dt
(t− τ) dτ ·

and, by integration in ]t, t+ 1],∫ t+1

t
Λ(ν) dν = −

∫ t+1

t

∫ ∞

0
A(τ)

dS

dν
(ν − τ) dτ dν·

By Fubini’s theorem (see example 12 in appendix), we can switch the order of integration, hence:

Λ̂(t) :=

∫ t+1

t
Λ(ν) dν

=

∫ ∞

0
A(τ)

(
−
∫ t+1

t

dS

dν
(ν − τ) dν

)
dτ

=

∫ ∞

0
A(τ) [S(t− τ)− S(t+ 1− τ)] dτ ·

The next step is to obtain the solution of (1.1) that satisfies S(−∞) = N .

Proposition 3. The solution of (1.1) that satisfies S(−∞) = N is given by

S(t) = exp

{
−
∫ t

−∞
Λ(ν) dν

}
N · (1.8)

Proof. An integrating factor of equation (1.1) is exp

{
t∫

−t0

Λ(ν) dν

}
(for some real number t0). Thus

equation (1.1) is equivalent to:

d

dt

(
exp

{∫ t

−t0

Λ(ν) dν

}
S(t)

)
= 0·

Integrating in ]− t0, t[ (for t > −t0) and multiplying by exp

{
−

t∫
−t0

Λ(ν) dν

}
, it follows that

S(t) = exp

{
−
∫ t

−t0

Λ(ν) dν

}
S(−t0), i.e.,

∫ t

−t0

Λ(ν) dν = − ln

(
S(t)

S(−t0)

)
·

Now, since lim
t0→+∞

S(−t0) = N and t 7→ S(t) is a bounded function, then the limit of the integral when

t0 → +∞ must exist and be finite. By taking the limit (of the first expression) when t0 → +∞, we

obtain (1.8).
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In particular, since s(t) is the proportion of susceptibles at time t, then the previous solution can also

be given as a proportion:

s(t) = exp

{
−
∫ t

−∞
Λ(ν) dν

}
· (1.9)

Furthermore, the existence of
∫ t
−∞ Λ(ν) dν means that the force of infection Λ can be assumed to be

negligible in the infinite past. As was done in [Diekmann and Inaba, 2023], one introduces the cumulative

force of infection:

Cumulative force of infection

w(t) :=

∫ t

−∞
Λ(ν) dν· (1.10)

The objective now is to find a renewal equation for the cumulative force of infection w.

We start by using (1.7) to obtain an alternative formula for w:

Lemma 1. The cumulative force of infection w, defined in (1.10) can be given by:

w(t) =

∫ ∞

0
[1− s(t− τ)]NA(τ) dτ · (1.11)

Proof. We have

w(t) :=

∫ t

−∞
Λ(ν) dν

= lim
M→+∞

−1∑
k=−M

∫ t+k+1

t+k
Λ(ν) dν

= lim
M→+∞

−1∑
k=−M

Λ̂(t+ k)

= lim
M→+∞

−1∑
k=−M

∫ ∞

0
A(τ) [S(t+ k − τ)− S(t+ k + 1− τ)] dτ [by equation (1.7)]

= lim
M→+∞

∫ ∞

0
A(τ)

−1∑
k=−M

[S(t+ k − τ)− S(t+ k + 1− τ)]︸ ︷︷ ︸
=S(t−M−τ)−S(t−τ)

dτ

= lim
M→+∞

∫ ∞

0
A(τ) [S(t−M − τ)− S(t− τ)] dτ

=

∫ ∞

0
A(τ) [S(−∞)− S(t− τ)] dτ [by example 13 (in the appendix)]

=

∫ ∞

0
[1− s(t− τ)]NA(τ) dτ

and thus we have the required result.

Next, we rewrite the proportion s, given by (1.9), in terms of w:

Lemma 2. The proportion of susceptibles at time t satisfies

s(t) = e−w(t) (1.12)
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and, furthermore, one can characterize w by

w(t) = − ln (s(t)) ·

Proof. Immediate by plugging definition (1.10) into equation (1.9).

Finally, we are ready for the intended result:

Proposition 4. The cumulative force of infection w satisfies the following equation:

w(t) =

∫ ∞

0
A(τ)Ψ(w(t− τ)) dτ (1.13)

where

Ψ(w) := N
(
1− e−w

)
(1.14)

is exactly the number of individuals in the population that are no longer susceptible.

Proof. Immediate by plugging (1.12) into (1.11) and using definition (1.14).

To follow this proposition, we give recurrence relation for the proportion s(t):

Proposition 5. The proportion of susceptibles at time t can be given by:

s(t) = exp

{
−
∫ ∞

0
[1− s(t− τ)]NA(τ) dτ

}
· (1.15)

Proof. The formula follows by plugging (1.11) into (1.12).

We end this part with a proposition that will turn useful in the next chapter:

Proposition 6. Equation (1.13), with Ψ defined by (1.14), has a nonzero constant solution w̄ if and only

if R0 6= 1.

Proof. Let Ψ be defined by (1.14). We start by noting that w̄ is a constant solution of equation (1.13) if

and only if

w̄ =

∫ ∞

0
A(τ)Ψ(w̄) dτ, i.e., w̄ = R0(1− e−w̄)·

Let g(x) := x+R0e
−x, so that the problem is transformed into finding the nonzero roots of g(x) = R0.

We have g′(x) = 1 − R0e
−x. We would like to remind the reader that R0 is a positive quantity (see

definition (1.6)).

The monotonicity of g can be seen below:

Table 1.1: Monotonicity table for g(x) = x+R0e
−x.

x −∞ lnR0 +∞
g ↘ 1 + lnR0 ↗
g′ − 0 +

Now, ifR0 = 1, one sees that g decreases in ]−∞, 0[, takes the value g(0) = 1 = R0 and then increases

in ]0,+∞[. So, in this case, there are no nonzero roots.

Suppose now that R0 6= 1. It is easy to see that 1 + lnR0 < R0: if h(x) = x− lnx, then h(1) = 1 and

h′(x) = 1− 1
x = x−1

x , so that
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• h′ < 0 in ]0, 1[ and h strictly decreases in ]0, 1[;

• h′ > 0 in ]1,+∞[ and h strictly increases in ]1,+∞[.

In both cases, h(x) > h(1) = 1 for x ∈ R+ \ {1} and thus 1 + lnR0 < R0. Therefore g attains the

minimum value 1 + lnR0 < R0 and, by continuity of g, one concludes that g has two distinct roots, and

thus at least one nonzero root.

In conclusion, equation (1.13) has a nonzero constant solution if and only if R0 6= 1.

1

g(x) = x+ e−x

x

1/2

g(x) = x+ 1
2e

−x

x

Fig. 1.2. Graph of g(x) = x+R0e
−x when R0 = 1 (left) and when R0 =

1
2 < 1 (right).

The General Discrete-Time Kermack-McKendrick Model

Now let us return to the discrete-time model (1.2) and compare results. One key difference is the use

of series instead of integrals as in the continuous-time case. An important ingredient will be the collection

{Ak}k∈N of nonnegative numbers, which we assume to be summable, i.e., such that
∞∑
k=1

Ak < ∞.

The discrete-time counterpart of (1.7) reads

Λ̂(t) =

∞∑
k=1

Ak [S(t− k)− S(t+ 1− k)] (1.16)

where Ak is the expected contribution to the cumulative force of infection over ]t, t+1] by an individual

who itself became infected in the time window ]t− k, t− k + 1], k time steps earlier2.

Similarly to the continuous-time case, we define the basic reproduction number when time is seen as

a discrete variable:

Definition 2 (Basic reproduction number).

R0 := N

∞∑
k=1

Ak· (1.17)

Now we will reformulate some of the previous equations in the sense of discrete-time models.

The next equation is the discrete-time version of (1.8).

Proposition 7. The number of susceptibles at time t is given by:

S(t) = exp

{
−

∞∑
k=1

Λ̂(t− k)

}
N · (1.18)

2Here A0 = 0 since an individual who was infected in the time window ]t, t+ 1] does not contribute
to the cumulative force of infection over ]t, t+ 1].
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Proof. First, we iterate (1.2):

S(t+ 1) = e−Λ̂(t)S(t) = e−Λ̂(t) e−Λ̂(t−1)S(t− 1)︸ ︷︷ ︸
=S(t)

=

(
n∏

m=0

e−Λ̂(t−m)

)
S(t− n), n ∈ N0

or

S(t+ 1) = exp

{
−

n∑
m=0

Λ̂(t−m)

}
S(t− n), n ∈ N0·

Now, one needs to justify that the exponent in the second member converges. We start by noting that one

wants to take n large enough so that S(t−n) = N and thus it makes sense that S(t+1) > 0 (otherwise

S(t) = 0 for all t ∈ R, since S̃ = 0 is an equilibrium3 of (1.2)). We rewrite the previous equation as

S(t− n)

S(t+ 1)
= exp

{
n∑

m=0

Λ̂(t−m)

}

Given that the first member converges when n → +∞, then the second must converge and, furthermore,

the nonnegative series
∞∑

m=0
Λ̂(t − m) must be convergent. Thus, passing to the limit as n → +∞ and

using S(−∞) = N , one obtains

N

S(t+ 1)
= exp

{ ∞∑
m=0

Λ̂(t−m)

}
·

It follows that

S(t+ 1) = exp

{
−

∞∑
m=0

Λ̂(t−m)

}
N

and thus, with k = m+ 1,

S(t) = exp

{
−

∞∑
k=1

Λ̂(t− k)

}
N ·

This lemma will guarantee the convergence of very useful series in this essay4.

Lemma 3. Let t 7→ Λ̂(t) be defined by (1.16). Suppose that {Aj}j∈N is a summable collection of

nonnegative terms and that t 7→ S(t) is a nonnegative and nonincreasing function, bounded above by

N > 0, with S(−∞) := lim
t→−∞

S(t) = N . Then, for fixed t,

m∑
k=1

Λ̂(t− k) =
∞∑
j=1

Aj [S(t−m− j)− S(t− j)] ∀m ∈ N· (1.19)

Furthermore, the sequence
{
Λ̂(t− k)

}
k∈N

is summable and its sum is given by

∞∑
k=1

Λ̂(t− k) =

∞∑
j=1

Aj [N − S(t− j)] · (1.20)

3x̃ is an equilibrium of x(t+ 1) = f(t, x(t)) if f(t, x̃) = x̃ for all t ∈ R.
4Avery simple proof of the convergence of this series was done while proving proposition 7. Lemma

3 gives an alternative but more complex proof and here we will obtain some useful equations.
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Proof. Let t be fixed. To prove equation (1.19), one only needs to use (1.16) and switch the order of

summation: form ∈ N,
m∑
k=1

Λ̂(t− k) =

m∑
k=1

∞∑
j=1

Aj [S(t− k − j)− S(t− k + 1− j)]

=

∞∑
j=1

Aj

m∑
k=1

[S(t− k − j)− S(t− k − j + 1)]︸ ︷︷ ︸
=S(t−m−j)−S(t−j)

=
∞∑
j=1

Aj [S(t−m− j)− S(t− j)] ·

Let fj(m) := Aj [S(t−m− j)− S(t− j)] for all m, j ∈ N. Since t 7→ S(t) is a nonnegative and

nonincreasing function and Aj ≥ 0 for all j ∈ N, then |fj(m)|≤NAj for all m, j ∈ N. Furthermore,

since {Aj}j∈N is summable by hypothesis, then

∞∑
j=1

NAj = N

∞∑
j=1

Aj < +∞·

Then, by the Weierstrass criterion (theorem 14 in the appendix),
∞∑
j=1

fj converges uniformly in N. Now,

uniform convergence implies that

lim
m→+∞

∞∑
j=1

fj(m) =
∞∑
j=1

fj

(
lim

m→+∞
m

)
i.e.,

∞∑
k=1

Λ̂(t− k) := lim
m→+∞

m∑
k=1

Λ̂(t− k)

= lim
m→+∞

∞∑
j=1

Aj [S(t−m− j)− S(t− j)]

=
∞∑
j=1

Aj [S(−∞)− S(t− j)]

=

∞∑
j=1

Aj [N − S(t− j)] [since S(−∞) = N ].

Given that t 7→ S(t) is a nonnegative function, then N − S(t − j) ≤ N for every j ∈ N, and, since
Aj ≥ 0 for all j ∈ N, it follows that

∞∑
k=1

Λ̂(t− k) =

∞∑
j=1

Aj [N − S(t− j)] ≤
∞∑
j=1

AjN = N

∞∑
j=1

Aj < +∞,

since {Aj}j∈N is summable. We conclude that
{
Λ̂(t− k)

}
k∈N

is summable.
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Remark 4. One would like to use the previous proof to remark that, for fixed t,

∞∑
k=1

Λ̂(t− k) ≤ R0·

We use proposition 7 to obtain a recurrence relation for the proportion of susceptibles at time t. First,

we define

Ãk := AkN

and we note that (1.17) gives

R0 =

∞∑
k=1

Ãk· (1.21)

The equation in the next proposition is the discrete-time version of (1.15).

Proposition 8. The proportion of susceptibles at time t is given by

s(t) = exp

{
−

∞∑
k=1

Ãk [1− s(t− k)]

}
· (1.22)

Proof. Using equation (1.20) from lemma 3, one gets

∞∑
k=1

Λ̂(t− k) =

∞∑
j=1

Aj [N − S(t− j)] ·

Using (1.18), one concludes that the number of susceptibles at time t can be given by

S(t) = exp

{
−

∞∑
k=1

Ak [N − S(t− k)]

}
N (1.23)

and its proportion by

s(t) = exp

{
−

∞∑
k=1

Ãk [1− s(t− k)]

}
·

Before we continue, we would like to give an example where the formula (1.22) is used. Here, we

choose a collection {Ãk}k∈N with an infinite trail of zeros and we find s(0) given certain conditions in

the previous n-th terms, where n ∈ N is such that Ãn > 0 and Ãk = 0 for k ∈ {n+ 1, n+ 2, . . .}. We

will see two cases: one where R0 < 1 and the other where R0 > 1.

Example 1. Let a > 0 and define5

Ãk :=

a if k ∈ {1, 2}

0 otherwise

5The contribution to the force of infection is not expected to be of such form. However, here the only

desire is to compare the (quickness of) evolution of (the proportion of) susceptibles when R0 < 1 and

when R0 > 1 and so a very simple expression for {Ãk}k∈N is chosen.
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so that R0 = 2a. Now, equation (1.22) gives, with t = 0,

s(0) = exp

{
−

∞∑
k=1

Ãk [1− s(−k)]

}
= ea[s(−1)+s(−2)−2]·

Therefore it suffices to know the value of s(−1)+s(−2), keeping in mind that this value must be chosen

from [0, 2] (since 0 ≤ s(t) ≤ 1). For example, let s(−1) + s(−2) = 1. Then

s(0) = e−a·

If a = 1
4 , then R0 =

1
2 < 1 and

s(0) =
1
4
√
e
≈ 0.779

i.e., at time t = 0, about 77.9% of the population is susceptible. Now, if a = 1, then R0 = 2 > 1 and

s(0) =
1

e
≈ 0.368

i.e., at time t = 0, about 36.8% of the population is susceptible.

Comparing the cases in the previous example, one can see that the number of susceptibles decreases

faster when R0 > 1 then when R0 < 1, as we expected.

Remark 5. We note that, in the previous example, when a = 1
4 (and R0 < 1), the function t 7→ s(t)

cannot be monotone nonincreasing, otherwise s(−2)≥s(−1)≥s(0) and it follows that

1 = s(−1) + s(−2) ≥ 2s(0) ≈ 1.558·

Hence, in that case, s does not satisfy the assumptions that were made in section 1.1. Furthermore, this

example pushes the following question: when R0 < 1, what solutions satisfy the assumptions that were

made initially?

The following theorem answers this question:

Theorem 1. When R0 ≤ 1, the equilibrium s ≡ 1 is the (unique) monotone nonincreasing positive

solution of equation (1.22).

Proof. Let R0 ≤ 1 and suppose t 7→ s(t) is a monotone nonincreasing positive solution of (1.22). It

follows that

s(t− k) ≥ s(t) k ∈ N

and thus, by the nonnegativity of {Ãk}k∈N,
∞∑
k=1

Ãk [1− s(t− k)] ≤ [1− s(t)]

∞∑
k=1

Ãk = R0 [1− s(t)] ·

Hence, since s is a solution of (1.22),

s(t) ≥ e−R0[1−s(t)]·

Let g(x) := x+ e−R0x. Here, we note that

g(1− s(t)) = 1− s(t) + e−R0[1−s(t)]
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and thus

s(t) ≥ e−R0[1−s(t)] ⇐⇒ g(1− s(t)) ≤ 1·

So we start by looking for the values of x that satisfy g(x) ≤ 1. We have g′(x) = 1 − R0e
−R0x. We

would like to remind the reader that R0 is a positive quantity (see definition (1.6)).

The monotonicity of g can be seen below:

Table 1.2: Monotonicity table for g(x) = x+ e−R0x.

x −∞ lnR0
R0

+∞
g ↘ 1+lnR0

R0
↗

g′ − 0 +

If R0 = 1, then g(0) = 1, g is strictly decreasing in ] −∞, 0[ and strictly increasing in ]0,+∞[. Thus

x = 0 is the only solution of the inequality g(x) ≤ 1.

If R0 < 1, then lnR0
R0

< 0 and g
(
lnR0
R0

)
= 1+lnR0

R0
< 1 (we have seen in the proof of proposition 6 that

1 + lnR0 < R0 whenever R0 6= 1). Since g(0) = 1 and g is strictly increasing in ]0,+∞[, we conclude

that x = 0 is the only nonnegative solution of the inequality g(x) ≤ 1.

Now, we are looking for s(t) ∈ [0, 1] such that g(1 − s(t)) ≤ 1. Notice that 1 − s(t) ∈ [0, 1]. We

conclude that s ≡ 1 is the only monotone nonincreasing positive solution of equation (1.22).

1

g(x) = x+ e−x

x

1

g(x) = x+ e−
x
2

x

Fig. 1.3. Graph of g(x) = x+ e−R0x when R0 = 1 (left) and when R0 =
1
2 < 1 (right).

Corollary 1. If the disease generates permanent immunity and the host population is demographically

closed, then equation (1.2) has the unique solution S≡N whenever R0 ≤ 1.

The next proposition gives a recurrence relation to the proportion of susceptibles:

Proposition 9. The proportion of susceptibles satisfies:

s(t+ 1) = s(t) exp

{
−

∞∑
k=1

Ãk [s(t− k)− s(t− k + 1)]

}
· (1.24)

Proof. The result follows immediately by plugging (1.22) into the second side of equation (1.24).
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Remark 6. We note that, for each k ∈ N, the difference s(t− k)− s(t− k+1) is exactly the proportion

of new cases over the time window ]t− k, t− k + 1].

The main advantage of the equation (1.24) is that “one can provide an initial condition, say, at time 0,

by prescribing s(0) and the (nonnegative) incidences . . . , s(−3)−s(−2), s(−2)−s(−1), s(−1)−s(0)”.

Furthermore, if Ãk = 0 when k > K (for a certain K ∈ N), then it suffices to prescribe s(0) and

s(−K)− s(−K + 1), . . . , s(−1)− s(0), so only a finite number of prescriptions.

In conclusion, one can obtain a discrete-time Kermack-McKendrick epidemic model, with a count-

ably infinite parameter6 {Ak}k∈N, by considering either equation (1.22) or equation (1.24).

To end this section, we give an example to illustrate the use of equation (1.24)

Example 2. Define

Ãk :=

ln 2 if k ∈ {1, 2}

0 otherwise
·

Then, for each t, formula (1.24) gives

s(t+ 1) =
s(t)

2[s(t−1)−s(t)]+[s(t−2)−s(t−1)]
·

Therefore, if one wishes to find the value of s(k) for each k ∈ N, it suffices to prescribe s(0) and the

incidences s(−2)− s(−1) and s(−1)− s(0). Suppose

s(0) =
1

4
, s(−2)− s(−1) =

1

4
, s(−1)− s(0) =

1

4
·

Finally one can obtain s(1), s(2), · · · using formula (1.24):

s(1) =
1

4× 2
1
2

=

√
2

8
≈ 0.177

s(2) =

√
2

8× 2
1
2
−

√
2
8

=
2

√
2

8

8
≈ 0.141

...

One notes that, in this case,

R0 = 2 ln 2 > 1·

1.3 The Initial Phase and the Final Size

Firstly, we would like to define the term demographic stochasticity:

Definition 3 (Demographic stochasticity). The size of a population is subject to random variations, since

the birth and death of any individual is a discrete and probabilistic event. Such random variations are

described by demographic stochasticity.

6One notes that, in practice, an individual does not remain infectious for an infinite period of time.

Therefore it makes sense that the collection {Ak}k∈N is in fact a finite parameter with an infinite trail of

zeros.
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In a host population where an infectious disease was just introduced, the demographic stochasticity is

captured with the use of branching processes. However, once the number of infected individuals is large

enough, a deterministic description can be used. Nevertheless, this large number may “still constitute

only a rather small fraction of a very large host population”. In this last situation, we may take x(t) as

the proportion of individuals that are not susceptible at time t and consider it small enough that it makes

sense to replace ex by 1+ x (its 1st degree Taylor polynomial). Then, if we write s(t) = 1− x(t), where

s(t) is the proportion of individuals that have escaped infection up to time t, equation (1.22) gives

1− x(t) = e
−

∞∑
k=1

Ãkx(t−k)
(1.25)

and, since x(t) is assumed to be small enough, then
∞∑
k=1

Ãkx(t− k)may be assumed to be small enough,

because {Ãk}k∈N is summable and each x(t−k) is even smaller than x(t). The second member of (1.25)

can be replaced by 1−
∞∑
k=1

Ãkx(t− k) and one gets the relation

x(t) =

∞∑
k=1

Ãkx(t− k)· (1.26)

Before we continue, we give two important remarks about the numbers {Ak}k∈N, and thus about the
numbers {Ãk}k∈N:

Remark 7. It is quite obvious that, in the presence of an infectious disease, there is j ∈ N such that

Aj > 0, and thus Ãj > 0, otherwise the total contribution to the force of infection would be 0 and

therefore we would not be in presence of an infectious disease.

Remark 8. It makes sense that Ak = 0, and thus Ãk = 0, for large k ∈ N, given that an individual who
itself was infected in ]t− k, t− k + 1] (interval in the “infinite past”) does not contribute to the force of

infection over ]t, t+ 1] (interval in the “present”).

The objective now is to show that positive solutions of the equation (1.26) grow when R0 > 1 but

decrease when R0 < 1. We start by looking for solutions of the form

x(t) = λt (1.27)

where λ > 0. Plugging (1.27) into (1.26), one gets

λt =

∞∑
k=1

Ãkλ
t−k = λt

∞∑
k=1

Ãkλ
−k

or

1 =

∞∑
k=1

Ãkλ
−k· (1.28)

Therefore x defined by (1.27) is a solution of (1.26) if and only if λ is a real positive solution of the

characteristic equation (1.28), known as the Euler-Lotka equation. The following theorem gives a top

bound for the number of positive real solutions of the Euler-Lotka equation (1.28):

Theorem 2. The Euler-Lotka equation (1.28) has at most one positive real solution.

Proof. Let f : Df ⊆ R+ → R be defined by f(λ) :=
∞∑
k=1

Ãkλ
−k, where Df is the maximal subset

where the series converges.
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Notice that λ is a solution of (1.28) if and only if f(λ) = 1. Now, f is a strictly monotonically decreasing

function, since, for all λ, µ ∈ Df ,

µ < λ =⇒ µ−k > λ−k ∀k ∈ N =⇒ f(µ) > f(λ),

where the last implication is due to the fact that, with our assumptions, Ãk ≥ 0 forall k ∈ N with at least

one j ∈ N such that Ãj > 0.

Since f is a monotonically strictly decreasing function, the equation f(λ) = 1 has at most one solution.

Therefore we conclude that the Euler-Lotka equation (1.28) has at most one positive real solution.

The previous theorem guarantees uniqueness of positive real solution (if existent) for the Euler-Lotka

equation (1.28). The next theorem guarantees existence of a positive real solution wheneverR0 ≥ 1 and,

given certain conditions in the parameters Ãk (k ∈ N), when R0 < 1.

Theorem 3. If R0 ≥ 1, the Euler-Lotka equation given by (1.28) has an unique positive real solution,

situated in [1,+∞[. In the case R0 < 1, (1.28) has an unique positive real solution, situated in ]0, 1[, if

{k ∈ N : Ãk 6= 0} is a finite set.

Proof. Let f : Df ⊆ R+ → R be defined by f(λ) :=
∞∑
k=1

Ãkλ
−k as in the proof of the previous theorem.

Again, notice that λ is a solution of (1.28) if and only if f(λ) = 1, and that f is a monotone decreasing

function. Furthermore, the domainDf contains the interval [1,+∞[ (by comparison with the convergent

series (1.21)) and

f(1) =

∞∑
k=1

Ãk = R0

(clearly ρ̃ = 1 is a solution of (1.28) if R0 = 1) and

lim
λ→+∞

f(λ) = f

(
lim

λ→+∞
λ

)
=

∞∑
k=1

Ãk

(
lim

λ→+∞
λ

)−k

= 0,

where the first equality follows from continuity of f on [1,+∞[ (f is defined by an uniformly convergent

series on [1,+∞[: apply the Weierstrass criterion — theorem 14 (in the appendix) — to the sequence of

functions fk(λ) := Ãkλ
−k defined on [1,+∞[). Furthermore, by the intermediate value theorem (theo-

rem 11 in the appendix), if there is µ ∈ [1,+∞[ such that 1 < f(µ) < +∞, then there is ρ̃ > µ such

that f(ρ̃) = 1. In particular, if R0 > 1, then there is ρ̃ > 1 such that f(ρ̃) = 1.

Now suppose that R0 < 1 and that {k ∈ N : Ãk 6= 0} is a finite set, say {k1, · · · , kn}, where
k1, · · · , kn ∈ N, then

f(λ) =

n∑
j=1

Ãkjλ
−kj

which is clearly continuous in R+ and

lim
λ→0+

f(λ) = lim
λ→0+

∞∑
k=1

Ãkλ
−k = lim

λ→0+

n∑
j=1

Ãkjλ
−kj =

n∑
j=1

Ãkj lim
λ→0+

λ−kj = +∞,

thus there is ρ̃ ∈]0, 1[ such that f(ρ̃) = 1.

The uniqueness part now follows from theorem 2.

We now give a remark about the collection {Ãk}k∈N that will allow us to answer to the following

question: what if {k ∈ N : Ãk 6= 0} is not a finite set? We keep the notation used in the proof (of
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theorem 3).

Remark 9. If {k ∈ N : Ãk 6= 0} is not a finite set, then one can consider the subsequence {Ãkj}j∈N of

all the positive numbers of {Ãk}k∈N and thus, in this case,

f(λ) =

∞∑
j=1

Ãkjλ
−kj ·

By comparison with the convergent series
∞∑
j=1

Ãkj =: R0, one has that the series above converges on

[1,+∞[. However, this series might not converge on ]0, 1[.

Take for example Ãk with power-like behaviour for k > K (for someK ∈ N), i.e., Ãk = kε for some ε

whenever k > K. Now,

i)
∞∑
k=1

Ak < +∞ =⇒
∞∑
k=1

Ãk < +∞ =⇒
∞∑

k=K

kε < +∞ =⇒ ε < −1;

ii) with ν = −ε > 1, then

f(λ) =

K∑
k=1

Ãkλ
−k +

∑
k>K

k−νλ−k

that converges if and only if the
∑

k>K k−νλ−k converges;

iii) the ratio test ∣∣∣∣∣(k + 1)−νλ−(k+1)

k−νλ−k

∣∣∣∣∣ =
(

k

k + 1

)ν 1

λ
−−−−→
k→+∞

1

λ

guarantees that the last series converges if λ > 1 and diverges if λ < 1;

iv) if λ = 1, the series converges by hypothesis.

We can thus conclude, for Ãk with power-like behaviour for k > K, our function f(λ) converges if and

only if λ ≥ 1 (and f is at infinity when λ < 1). This means that f jumps from infinity to f(1) = R0 at

λ = 1. Furthermore, if R0 < 1, we conclude that f jumps from infinity to a value less than one and f is

not continuous, so one does not have existence of ρ̃ ∈ R+ such that f(ρ̃) = 1.

We conclude that, when {k ∈ N : Ãk 6= 0} is not a finite set, f might not be continuous and so it is

possible that f(λ) = 1 has no root.

Before we continue, an example where R0 < 1 and {k ∈ N : Ãk 6= 0} is not finite, but there is in

fact a solution of f(λ) = 1, seems appropriate.

Example 3. Define

Ãk :=

3−k if k is even

2−k if k is odd
·

Then {k ∈ N : Ãk 6= 0} = N, which is clearly not a finite set. On the other hand,

R0 :=
∞∑
k=1

Ãk

=

∞∑
m=1

3−(2m) +

∞∑
m=1

2−(2m−1)
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=
∞∑

m=1

(
1

9

)m

+ 2
∞∑

m=1

(
1

4

)m

=
1

9− 1
+

2

4− 1
[two geometric series with ratio 0 < r < 1]

=
19

24

and thus R0 < 1. Now,

f(λ) =

∞∑
k=1

Ãkλ
−k

=

∞∑
m=1

(3λ)−(2m) +

∞∑
m=1

(2λ)−(2m−1)

=
∞∑

m=1

(
1

9λ2

)m

+ 2λ
∞∑

m=1

(
1

4λ2

)m

and thus f is a sum of two geometric series. The first serie converges if and only if 1
9λ2 < 1 while the

second converges if and only if 1
4λ2 < 1. Since both series have a positive ratio, then f converges if and

only if both series converge and thus if and only if λ > 1
2 . In that case,

f(λ) =
1

9λ2 − 1
+

2λ

4λ2 − 1
·

f is clearly continuous in
]
1
2 ,+∞

[
and one has

lim
λ→ 1

2

+
f(λ) = +∞ and f(1) = R0 < 1·

By the intermediate value theorem (theorem 11 in the appendix), there is ρ̃ ∈
]
1
2 , 1
[
such that f(ρ̃) = 1.

By means of a calculator, one sees that the equation

1

9λ2 − 1
+

2λ

4λ2 − 1
= 1

has two real solutions: λ1 ≈ 0.386 and λ2 ≈ 0.883. Given that f is defined only in
]
1
2 ,+∞

[
, one

concludes that the (unique) root of f(λ) = 1 has value ρ̃ ≈ 0.883.

In what follows, we will assume {k ∈ N : Ãk 6= 0} is a finite set (see remark 8). Then the root ρ̃ of

the Euler-Lotka equation (1.28) always exists and it satisfies

sign(ρ̃− 1) = sign(R0 − 1), where sign ν =

−1 if ν < 0

1 if ν > 0
·

Theorem 4. The equilibrium s(t) ≡ 1 of (1.22) is unstable when R0 > 1 and asymptotically stable

when R0 < 1.

Proof. We know, from general linear theory, that positive solutions x(t) = x0ρ̃
t of (1.26) grow geometri-

cally with rate ρ̃when ρ̃ > 1 but decline with rate ρ̃when ρ̃ < 1. General nonlinear theory guarantees that

the equilibrium (steady solution) x(t) ≡ 0 of (1.25) is unstable for ρ̃ > 1 (andR0 > 1) but asymptotically

stable for ρ̃ < 1 (and R0 < 1). The result follows.

Now, since s(t) is a bounded (s(t) ∈ [0, 1] ∀t ∈ R) and monotone nonincreasing function, then
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it has a limit for t → ∞. Let s(∞) denote this limit. Passing (1.22) to the limit and using (1.21), one

obtains:

s(∞) = e−R0(1−s(∞))· (1.29)

Let us study further the case when R0 > 1. For that, the study of the number of fixed points7 of a

given function is a good tool:

Theorem 5. Let g : R → R be a differentiable and monotonically increasing function. Furthermore,

assume g is strictly concave (i.e., g′ is strictly monotonically decreasing) and satisfies

g(0) = 0, g(1) < 1·

Then g has no fixed points in ]0, 1[ if g′(0) ≤ 1 and g has an unique fixed point in ]0, 1[ if g′(0) > 1.

Proof. We start by assuming that g′(0) ≤ 1. Since g′ is strictly monotonically decreasing, then g′(x) < 1

if x ∈]0, 1]. Now, given that g(0) = 0, then g(x) < x if x ∈]0, 1] and thus g has no fixed points in ]0, 1[.
Conversely, suppose g′(0) > 1. We start by noting that, since g is continuous and g(1) < 1, then there is

b ∈]0, 1] (sufficiently large) such that g(b) < b.

Now,

lim
x→0

g(x)

x
= lim

x→0

g(x)− g(0)

x− 0
= g′(0) > 1

and, by definition of limit, there is a ∈]0, 1[ (sufficiently small) such that
g(a)
a > 1, i.e., g(a) > a.

We can assume that a < b. Furthermore, since g(a) > a and g(b) < b, the intermediate value theorem

(theorem 11 in the appendix) applied to the function x 7→ g(x)−x over the interval [a, b] guarantees that

there is z ∈]a, b[ such that g(z) = z, i.e., g has a fixed point z in ]a, b[.

To prove uniqueness of fixed point in ]0, 1[, suppose to the contrary that g has more than one fixed point

in ]0, 1[.

It is obvious that g cannot have a semi-line [a, b] (a < b) of fixed points, since that would imply g(x) = x

whenever x ∈ [a, b], fromwhere g′ = 1 in ]a, b[ and g is not strictly concave, contradicting our hypothesis.

Now, let z1 and z2 be two consecutive fixed points in ]0, 1[, with z1 < z2. By the mean value theorem

(theorem 10 in the appendix), there is c ∈]z1, z2[ such that

g′(c) =
g(z2)− g(z1)

z2 − z1
=

z2 − z1
z2 − z1

= 1·

The mean value theorem also guarantees the existence of z0 ∈]0, z1[ such that

g′(z0) =
g(z1)− g(0)

z1 − 0
=

z1 − 0

z1 − 0
= 1·

Hence g′(z0) = 1 = g′(c) and, since g′ is strictly decreasing, one must have z0 = c, an absurd because

z0 < z1 < c. We conclude that there is at most one fixed point of g in ]0, 1[.

g has an unique fixed point in ]0, 1[.

We are finally ready to give the final result of this section:

Proposition 10. Equation (1.29) has an unique solution s(∞) in ]0, 1[ when R0 > 1.

Proof. Let x(∞) := 1− s(∞). Then (1.29) can be rewritten as

1− e−R0x(∞) = x(∞) (1.30)

7z is said to be a fixed point of a function g if g(z) = z.
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and the problem is now to find the fixed points of g(x) := 1 − e−R0x. Given that g is a differentiable,

monotonically increasing and strictly concave function satisfying

g′(0) = R0 > 1 g(0) = 0 g(1) = 1− e−R0 < 1,

then, by theorem 5, g has an unique fixed point in ]0, 1[.

Therefore we conclude that equation (1.29) has an unique solution s(∞) in ]0, 1[ when R0 > 1.

We end this section with the graph of the final size 1− s(∞) as a function of the basic reproduction

number R0 (adapted from [Diekmann et al., 2021]):

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

R0

1
−
s(
∞
)

Fig. 1.4. Graph of the final size 1 − s(∞) as a function of the basic reproduction number R0 (orange),

defined for R0 > 1, and solution s(∞) = 1 (blue), defined for R0 > 0.

We explain how the graph 1.4 was obtained in the following remark:

Remark 10. When R0 ≤ 1, corollary 1 guarantees that s ≡ 1 is the only solution and thus s(∞) = 1,

and 1− s(∞) = 0. Suppose now that R0 > 1. Now s(∞) ≡ 1 is a solution, but we will see that it is not

unique. After some algebraic manipulations, equation (1.30) can be transformed into

R0 = − ln (1− x(∞))

x(∞)
(1.31)

where x(∞) := 1 − s(∞) is assumed to be positive. Therefore R0 can be seen as a function of x(∞)

(with domain ]0, 1[). Let

g(x) := − ln(1− x)

x
,

with domain ]0, 1[. Now,

lim
x→0+

g(x) = − lim
x→0

ln(1− x)− ln(1− 0)

x− 0
= − d

dx
(ln(1− x))

∣∣∣∣
x=0

= − −1

1− x

∣∣∣∣
x=0

= 1

and

lim
x→1−

g(x) = − lim
x→1−

ln(1− x)

x
= +∞·
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Furthermore,

g′(x) =
x

1−x + ln(1− x)

x2
=

x
1−x − ln

(
1

1−x

)
x2

> 0,

since

ln

(
1

1− x

)
<

1

1− x
− 1 =

x

1− x

(we have already seen that 1 + ln y < y whenever y ∈]0,+∞[\{1}). Therefore g is a strictly increasing
function.

The graph of the function given by (1.31) is thus given by:

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

11

12

13

x(∞)

R0

Fig. 1.5. Graph of R0 as a function of x(∞), given by (1.31).

As we can see from this graph, the function x(∞) 7→ R0(x(∞)) given by (1.31) is bijective and thus

invertible. The inverse is shown in the graph below:

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

0
R0

x(∞)

Fig. 1.6. Graph of x(∞) as a function of R0, given by (1.30).

The sketch of figure 1.4 is now immediate.

1.4 Compartmental Formulation for Some Very Special Cases

The next step is to study some important epidemiological models: the compartmental SIR and SEIR

models. The objective here is to unravel the “pattern of how to construct discrete-time models” in the

setting of compartmental models.
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As usual,

• S denotes the compartment of susceptible individuals;

• E denotes the compartment of exposed (infected but not yet infectious) individuals;

• I denotes the compartment of infectious individuals;

• R denotes the compartment of recovered/removed individuals.

The notation used for the number of individuals in a certain compartment is the same as for the

respective compartment.

We introduce the continuous-time setting and then we move to the study of the discrete-time setting.

In each setting, the first model to be studied is the SIR model since this one is simpler than the SEIR

model and therefore its study is a good introduction to the study of compartmental models.

The SIR compartmental model: continuous-time setting

We make the following assumptions:

i. upon infection, individuals are transferred from the compartment S of susceptible individuals to

the compartment I of infectious individuals (at a certain rate);

ii. Infectious individuals are “removed” (i.e., lose infectiousness) to compartment R of removed in-

dividuals at a rate α > 0;

iii. the force of infection equals Λ := βI , i.e., β > 0 is the per capita contribution to the force of

infection;

iv. immunity is permanent (and resurrection impossible).

S I R
βI α

Fig. 1.7. SIR compartmental model (in the continuous-time setting) with force of infection βI and where
the length of the infectious period is exponentially distributed with parameterα. Here, the host population
is assumed to be demographically closed and, in particular, births and deaths (not due to the disease) are

ignored.

These assumptions lead to the system of recurrence relations:

dS

dt
= −βIS

dI

dt
= βIS − αI

dR

dt
= αI

· (1.32)

Remark 11. Adding all equations of (1.32), we see that

d

dt
(S + I +R) (t) =

dS

dt
(t) +

dI

dt
(t) +

dR

dt
(t) = 0 (∀t ∈ R)

and, in particular, the population size remains constant over time:

S(t) + I(t) +R(t) = N (∀t ∈ R)

where N is the population size.
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Now we calculate the expected contribution A(τ) to the force of infection by an individual with age

of infection τ :

Proposition 11. The expected contribution to the force of infection by an individual with age of infection

τ is given by

A(τ) = βe−ατ · (1.33)

Proof. Let PI(τ) denote the probability to be in the infectious state at time τ after infection. In other

words, PI(τ) is the proportion of individuals in the population that stay infectious at time τ after infection.

Furthermore β is the per capita contribution to the force of infection. Therefore one individual is expected

to contribute with

A(τ) = βPI(τ)

units to the force of infection at time τ after infection. Now, it is clear that PI(0) = 1. On the other hand,

since α is the rate at which individuals leave the infectious state, then PI satisfies the Cauchy problem

dPI

dτ
= −αPI , PI(0) = 1·

Easily we obtain

PI(τ) = e−ατ ·

In conclusion, the expected per capita contribution to the force of infection is given by (1.33).

Next, we determine the value R0.

Proposition 12. The basic reproduction number for the SIR compartmental model (1.32) is given by

R0 =
βN

α
·

Proof. By plugging (1.33) into definition (1.6), we obtain

R0 = N

∫ ∞

0
βe−ατ dτ =

βN

α
·

The SEIR compartmental model: continuous-time setting

Here, some changes in the assumptions are needed: upon infection, an individual moves from the

compartment S of susceptible individuals to the compartment E of exposed (i.e. infected but not yet

infectious) individuals. Individuals leave the compartment E and go to the compartment I of infectious

individuals at a rate γ > 0.

S E I R
βI γ α

Fig. 1.8. SEIR compartmental model (in the continuous-time setting) with force of infection βI and

where the lengths of the latent and infectious periods are exponentially distributed with parameters γ and

α, respectively. Here, the host population is assumed to be demographically closed and, in particular,

births and deaths (not due to the disease) are ignored.
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Now the system is 

dS

dt
= −βIS

dE

dt
= βIS − γE

dI

dt
= γE − αI

dR

dt
= αI

· (1.34)

Remark 12. Once again, by adding all equations of (1.34), we note that

S(t) + E(t) + I(t) +R(t) = N (∀t ∈ R) ·

Now we calculate the expected contribution A(τ) to the force of infection by an individual with age

of infection τ :

Proposition 13. The expected contribution to the force of infection by an individual with age of infection

τ is given by

A(τ) =


βατe−ατ if γ = α

β
γ

γ − α
(e−ατ − e−γτ ) otherwise

· (1.35)

Proof. Let PE(τ) and PI(τ) denote, respectively, the probability to be in the latent state and the prob-

ability to be in the infectious state, at time τ after infection. In other words, PE(τ) is the proportion of

individuals in the population that are infected but not yet infectious at time τ after infection while PI(τ) is

the proportion of individuals in the population that are infectious at time τ after infection. Furthermore β

is the per capita contribution to the force of infection. Therefore one individual is expected to contribute

with

A(τ) = βPI(τ)

units to the force of infection at time τ after infection. One notes that this expression was also used in

the study of the SIR model. Now, in this case, PE(0) = 1 and PI(0) = 0. On the other hand, since γ is

the rate at which individuals leave the exposed state and move to the infectious state, and α is the rate at

which individuals leave the infectious state, then (PE , PI) satisfies the Cauchy problem
dPE

dτ
= −γPE , PE(0) = 1

dPI

dτ
= γPE − αPI , PI(0) = 0

·

Easily we obtain

PE(τ) = e−γτ ·

Plugging this expression into the other equation and multiplying by eατ , we obtain

d

dτ
(eατPI(τ)) = γe(α−γ)τ ·

It follows that

PI(τ) = e−ατ

∫ τ

0
γe(α−γ)ν dν =


ατe−ατ if γ = α

γ

γ − α
(e−ατ − e−γτ ) otherwise

·
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In conclusion, the expected per capita contribution to the force of infection is given by (1.35).

Next, we determine the value R0.

Proposition 14. The basic reproduction number for the SEIR compartmental model (1.34) is given by

R0 =
βN

α
·

Proof. We separate the proof in cases:

Case 1 Suppose γ = α. By plugging (1.35) into (1.6), we obtain

R0 = N

∫ ∞

0
βατe−ατ dτ = βN

[
������−τe−ατ

∣∣∞
0

+

∫ ∞

0
e−ατ dτ

]
=

βN

α
·

Case 2 Suppose now that γ 6= α. By plugging (1.35) into (1.6), we obtain

R0 = N

∫ ∞

0
β

γ

γ − α

(
e−ατ − e−γτ

)
dτ =

βγN

γ − α

(
1

α
− 1

γ

)
=

βN

α
·

We conclude that R0 is given by

R0 =
βN

α
·

Remark 13. The SIR and SEIR models given by (1.32) and (1.34), respectively, have the same R0. If

one thinks about this, it does not come as a surprise:

• if c is the average number of contacts of an infectious individual (generating the disease) and tI is

the average infectious period, then one infectious individual (in compartment I) in an all susceptible

population is expected to infect c individuals per unit of time it is infectious, i.e., ctI individuals in

total;

• given that β is the per capita contribution to the force of infection and N the total size of the

population, the infectious individual is expected to have c = βN contacts that generate the disease;

• the average infectious period is equal to tI = 1
α .

In conclusion, R0 is not influenced by a latent compartment. In fact, by the definition of basic reproduc-

tion number, there are no individuals in compartment E when one does the calculation for R0.

The SIR compartmental model: discrete-time setting

We make the following assumptions:

i. upon infection, an individual is transferred from the compartment S of susceptible individuals to

the compartment I of infectious individuals (with a certain probability);

ii. in each time step, this infectious individual stays in compartment I with probability 1 − α while

being “removed” (i.e., losing infectiousness) to compartmentR of removed individuals with prob-

ability α > 0;

iii. the cumulative force of infection equals Λ̂ := βI , i.e., β > 0 is the per capita contribution to

the force of infection, and thus e−Λ̂(t) gives the fraction of those susceptible at time t that escape

infection until after time t+ 1 (1− e−Λ̂(t) will thus give the fraction of those susceptible at time t

that become infected until time t+ 1);

iv. immunity is permanent (and resurrection impossible).
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Remark 14. An individual will stay removed in all the next time steps once removed at a certain time

step. Therefore there is a contribution of +R(t) to the number R(t+ 1).

S I R
1− e−βI α

Fig. 1.9. SIR compartmental model (in the discrete-time setting) with cumulative force of infection βI
and where the length of the infectious period is geometrically distributed with parameter α. Here, the
host population is assumed to be demographically closed and, in particular, births and deaths (not due to

the disease) are ignored.

These assumptions lead to the system of recurrence relations:
S(t+ 1) = e−βI(t)S(t)

I(t+ 1) =
(
1− e−βI(t)

)
S(t) + (1− α)I(t)

R(t+ 1) = αI(t) +R(t)

· (1.36)

Remark 15. Adding all equations of (1.36), we see that

S(t+ 1) + I(t+ 1) +R(t+ 1) = S(t) + I(t) +R(t) (∀t ∈ R)

and, in particular, the population size remains constant over time:

S(t) + I(t) +R(t) = N (∀t ∈ R)

where N is the population size.

We calculate the length of the infectious period:

Proposition 15. The length of the infectious period is geometrically distributed with parameter α, i.e.,

it is expected to be equal to 1
α .

Proof. Let TI denote the time (as a random variable) at which the infectious individual stops infecting.

The probability that TI = k (for k ∈ N0) is given by

P(TI = k) = (1− α)k−1α,

since the probability distribution is geometric with parameter α: one can think of having k− 1 fails (i.e.,

individual is still infectious) and 1 success (the individual stops infecting); the probability of a fail is

equal to 1− α while the probability of a success is equal to α. The average infectious period is

E(TI) =
∞∑
k=0

kP(TI = k) =
∞∑
k=1

k(1− α)k−1α =
α

[1− (1− α)]2
=

1

α
,

since this series is simply the derivative of a geometric series.
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Now we calculate the expected contribution Ak to the cumulative force of infection by an individual

who itself became infected k time steps earlier:

Proposition 16. The expected contribution to the cumulative force of infection over ]t, t+ 1] of an indi-

vidual who itself became infected in the time window ]t− k, t− k + 1], k time steps earlier, is8

Ak = β(1− α)k−1, k ∈ N· (1.37)

Proof. We present merely a sketch for the proof.

First, notice that the expected contribution to the cumulative force of infection over ]t, t+ 1] of an indi-

vidual who itself became infected in the time window ]t−1, t] (1 time step earlier) is exactly equal to the

per capita contribution to the force of infection, therefore

A1 = β·

Now, since 1− α can be interpreted as the proportion of individuals that remain infectious (at each time

step), then

A2 = β(1− α)

gives the expected contribution to the cumulative force of infection over ]t, t + 1] of an individual who

itself became infected in the time window ]t− 2, t− 1] (2 time steps earlier).

Repeating this logic, (1− α)2 is the proportion of individuals that remain infectious (after 2 time steps)

and thus

A3 = β(1− α)2

gives the expected contribution to the cumulative force of infection over ]t, t + 1] of an individual who

itself became infected in the time window ]t− 3, t− 2] (3 time steps earlier).

In conclusion, the expected contribution to the cumulative force of infection over ]t, t+1] of an individual

who itself became infected in the time window ]t−k, t−k+1], k time steps earlier, is given by (1.37).

To continue our study, we show that {Ak}k∈N given by (1.37) is a summable collection and, further-

more, we determine the value R0.

Proposition 17. The basic reproduction number for the SIR compartmental model (1.36) is given by

R0 =
βN

α
·

Proof. By definition (1.17),

R0 = N
∞∑
k=1

β(1− α)k−1 =
βN

1− (1− α)
=

βN

α

since this series is a geometric one with common ratio 1− α ∈ [0, 1[.

Now it is shown that, choosing (1.37), then there is an equivalence between system (1.36) and the

recurrence relation (1.23), given an appropriate definition for the quantity I(t).

8Here, one allows 00 = 1 for the sake of A1 = β when α = 1.
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Theorem 6. Let the collection {Ak}k∈N be given by (1.37). Then the system (1.36) and the recurrence

relation (1.23) are equivalent, provided that

I(t) :=
∞∑
k=1

(1− α)k−1 [S(t− k)− S(t− k + 1)] · (1.38)

Proof. We start by explaining (1.38). With (1.37), it follows that, for each k ∈ N, (1 − α)k−1 is the

proportion of individuals that remain infectious after k time steps, while S(t− k)− S(t− k + 1) gives

the number of new infectious individuals over the time window ]t− k, t− k + 1]. Therefore

(1− α)k−1 [S(t− k)− S(t− k + 1)]

gives the number of individuals which remain infectious after k time steps and thus it makes perfect sense

to define I(t) as the sum of all these terms (for k ∈ N), i.e., by (1.38).
Next we show that system (1.36) can be reduced to equation (1.23). Iterating (infinitely)9 the 1st equation

of (1.36),

S(t+ 1) = e−βI(t)S(t)

= e−βI(t)e−βI(t−1)S(t− 1)

= · · ·

=

 ∞∏
j=0

e−βI(t−j)

S(−∞)

= exp

−β

∞∑
j=0

I(t− j)

N ·

(1.39)

Using the 1st equation of (1.36), we can rewrite the 2nd equation as

I(t+ 1) = S(t)− S(t+ 1) + (1− α)I(t),

so that, by summation,

∞∑
j=0

I(t− j) =

∞∑
j=0

[S(t− 1− j)− S(t− j) + (1− α)I(t− 1− j)]

=
∞∑
j=0

[S(t− 1− j)− S(t− j)]︸ ︷︷ ︸
=S(−∞)−S(t)

+(1− α)
∞∑
j=0

I(t− 1− j)

= N − S(t) + (1− α)

∞∑
j=0

I(t− 1− j)

9Amore rigorous approach to obtain the final result is given by remark 29 (in the appendix).
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and, iteratively10, one obtains

∞∑
j=0

I(t− j) = N − S(t) + (1− α)

N − S(t− 1) + (1− α)
∞∑
j=0

I(t− j − 2)


= [N − S(t)] + (1− α) [N − S(t− 1)] + (1− α)2

∞∑
j=0

I(t− j − 2)

= · · ·

=

∞∑
m=0

(1− α)m [N − S(t−m)]

(1.40)

Plugging (1.40) into (1.39), one gets

S(t+ 1) = exp

{
−β

∞∑
m=0

(1− α)m [N − S(t−m)]

}
N

= exp

{
−

∞∑
k=1

β(1− α)k−1 [N − S(t− k + 1)]

}
N [with k = m+ 1]

= exp

{
−

∞∑
k=1

Ak [N − S(t+ 1− k)]

}
N [by definition (1.37)]

which is exactly equation (1.23) with t+ 1 instead of t.

Conversely, starting with equation (1.23) and defining I(t) by (1.38), we can arrive at system (1.36) as

we show next. Choosing Ak by (1.37),

∞∑
k=1

Ak [N − S(t+ 1− k)] =

∞∑
k=1

β(1− α)k−1 [N − S(t− k) + S(t− k)− S(t+ 1− k)]

= β

∞∑
k=1

(1− α)k−1 [S(t− k)− S(t+ 1− k)]︸ ︷︷ ︸
=I(t) [by (1.38)]

+

∞∑
k=1

Ak [N − S(t− k)]

= βI(t) +
∞∑
k=1

Ak [N − S(t− k)]

and thus (1.23) is equivalent to

S(t+ 1) = exp

{
−

(
βI(t) +

∞∑
k=1

Ak [N − S(t− k)]

)}
N

= e−βI(t) exp

{
−

∞∑
k=1

Ak [N − S(t− k)]

}
N︸ ︷︷ ︸

=S(t) [by (1.23)]

= e−βI(t)S(t),

10A more rigorous approach to obtain the final result is given by remark 30 (in the appendix) with

f(t) := N − S(t).
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which is exactly the 1st equation of system (1.36). On the other hand, (1.38) gives

I(t+ 1) =
∞∑
k=1

(1− α)k−1 [S(t+ 1− k)− S(t+ 1− k + 1)]

=
∞∑
j=0

(1− α)j [S(t− j)− S(t− j + 1)] [with j = k − 1]

= (1− α)0 [S(t− 0)− S(t− 0 + 1)] + (1− α)

∞∑
j=1

(1− α)j−1 [S(t− j)− S(t− j + 1)]︸ ︷︷ ︸
=I(t) [by (1.38)]

= S(t)− S(t+ 1) + (1− α)I(t)

=
(
1− e−βI(t)

)
S(t) + (1− α)I(t),

which is exactly the 2nd equation of (1.36). Finally, since

S(t+ 1) + I(t+ 1) +R(t+ 1) = S(t) + I(t) +R(t),

then

R(t+ 1) = (S(t) + I(t))− (S(t+ 1) + I(t+ 1))︸ ︷︷ ︸
=S(t)+(1−α)I(t)

+R(t)

= (���S(t) + I(t))− (���S(t) + (1− α)I(t)) +R(t)

= αI(t) +R(t)

and this is exactly the 3rd equation of (1.36). This concludes the proof.

The SEIR compartmental model: discrete-time setting

Here, some changes in the assumptions are needed: upon infection, an individual moves from the

compartment S of susceptible individuals to the compartment E of exposed (i.e. infected but not yet

infectious) individuals, and stays in E with probability 1 − γ while moving to the compartment I of

infectious individuals with probability γ > 0 (in each time step).

S E I R
1− e−βI γ α

Fig. 1.10. SEIR compartmental model (in the discrete-time setting) with cumulative force of infection

−βI and where the lengths of the latent and infectious periods are geometrically distributed with param-

eters γ and α, respectively. Here, the host population is assumed to be demographically closed and, in

particular, births and deaths (not due to the disease) are ignored.
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Now the system is 
S(t+ 1) = e−βI(t)S(t)

E(t+ 1) =
(
1− e−βI(t)

)
S(t) + (1− γ)E(t)

I(t+ 1) = γE(t) + (1− α)I(t)

R(t+ 1) = αI(t) +R(t)

· (1.41)

Remark 16. Once again, by adding all equations of (1.41), we note that

S(t) + E(t) + I(t) +R(t) = N (∀t ∈ R) ·

We calculate the lengths of the latent and infectious periods:

Proposition 18. The lengths of the latent and infectious periods are geometrically distributed with pa-

rameters γ andα, respectively. I.e., the average latent period is equal to 1
γ whereas the average infectious

period is equal to 1
α .

Proof. Let TE and TI denote the time (as a random variable) at which the infected individual starts

infecting and at which the infectious individual stops infecting, respectively. The probability that TE = k

(for k ∈ N0) is given by

P(TE = k) = (1− γ)k−1γ,

since the probability distribution is geometric with parameter γ: one can think of having k− 1 fails (i.e.,

individual is still not infectious) and 1 success (the individual starts infecting); the probability of a fail is

equal to 1− γ while the probability of a success is equal to γ. The average latent period is

E(TE) =
∞∑
k=0

kP(TE = k) =
∞∑
k=1

k(1− γ)k−1γ =
γ

[1− (1− γ)]2
=

1

γ
,

since this series is simply the derivative of a geometric series. Similarly, the probability that TI = k (for

k ∈ N0) is given by

P(TI = k) = (1− α)k−1α,

since the probability distribution is geometric with parameter α, and the average infectious period is

E(TI) =
∞∑
k=0

kP(TI = k) =
∞∑
k=1

k(1− α)k−1α =
α

[1− (1− α)]2
=

1

α
,

since this series is simply the derivative of a geometric series.

Now we calculate the expected contribution Ak to the cumulative force of infection by an individual

who itself became infected k time steps earlier:

Proposition 19. The expected contribution to the force of infection over ]t, t + 1] of an individual who

itself became infected in the time window ]t− k, t− k + 1], k time steps earlier, is given by11

Ak = β
k−1∑
j=1

γ(1− γ)j−1(1− α)k−1−j (1.42)

11Again, one allows 00 = 1 for the sake of A2 = βγ when γ = 1 or α = 1.
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or, in a more explicit form,12

Ak =


βα(k − 1)(1− α)k−2 if γ = α

β
γ

γ − α

[
(1− α)k−1 − (1− γ)k−1

]
otherwise

· (1.43)

Proof. We think in terms of a stochastic process, in which an individual can be in one of four states: S,

E, I and R. To find an expression for the collection {Ak}k∈N, one needs to “keep tabs” on an infected
(infectious or not) individual. Hence, we can choose our starting and ending points as the time when the

individual is infected and when it loses infection, respectively. It thus suffices to consider only 2 states:

E and I . Furthermore, we consider the reduced systemE(t+ 1) = (1− γ)E(t)

I(t+ 1) = γE(t) + (1− α)I(t)
· (1.44)

E I
γ α

Fig. 1.11. Diagram of the compartmental system (1.44).

The probability distribution of the state-at-infection13 can be represented by the vector

[
1

0

]
, where

the 1st index represents the stateE and the 2nd the state I . Furthermore, ifXt represents the compartment

where a fixed individual is at time t (as a random variable), then P(Xt+1 = C2|Xt = C1) denotes the

(conditional) probability of going from state (compartment) C1 to state (compartment) C2 in 1 time step

(note that these probabilities do not depend on the time t, but on the time steps between transition of

compartments) and

P(Xt+1 = E|Xt = E) = 1− γ P(Xt+1 = E|Xt = I) = 0

P(Xt+1 = I|Xt = E) = γ P(Xt+1 = I|Xt = I) = 1− α

by the hypothesis of the (1.41). The state transitions are described by the matrix

P :=

[
P(Xt+1 = E|Xt = E) P(Xt+1 = E|Xt = I)

P(Xt+1 = I|Xt = E) P(Xt+1 = I|Xt = I)

]
=

[
1− γ 0

γ 1− α

]
and infectiousness by the vector

b =
[
0 β

]
(individuals at “E” are not yet infectious, while individuals at “I” are infectious with per capita contri-

bution to the force of infection equal to β). Furhermore, by proposition 31 (in the appendix),

P(Xt+m = E|Xt = E) = (Pm)11 P(Xt+m = E|Xt = I) = (Pm)12

P(Xt+m = I|Xt = E) = (Pm)21 P(Xt+m = I|Xt = I) = (Pm)22

12Here, in the case γ = α, one ignores (1 − α)k−2 when k = 1 and thus A1 = 0. Furthermore, by

allowing 00 = 1, then A2 = β when α = 1.
13An individual who was just infected (state-at-infection) is in compartment E with probability 1.
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for any m ∈ N. Now, the expected contribution to the force of infection over ]t, t + 1] of an individual

who itself became infected in the time window ]t− k, t− k + 1], k time steps earlier, is

Ak = bP k−1

[
1

0

]
= β(P k−1)21·

A nice way to understand why we take m = k − 1 is to notice that Ak = βP(Xt = I|Xt−k+1 = E) (if

the individual was infected in the time window ]t− k, t− k + 1], then it is in compartment “E” at time

t− k + 1, i.e., Xt−k+1 = E; this individual contributes to the force of infection over ]t, t+ 1] if it is in

compartment “I” at time t, i.e., Xt = I). Now, since these probabilities depend only on the time steps

between transition, one has

P(Xt = I|Xt−k+1 = E) = P(Xt+k−1 = I|Xt = E) = (P k−1)21·

To end the proof, we need to determine P k−1. To simplify this calculation, we are going to (when

possible) diagonalizeP , i.e., find a diagonal matrixD and an invertible matrixQ such thatP = QDQ−1.

Now, the eigenvalues of P are 1− γ and 1−α. It is quite easy to see that, if 1− γ = 1−α, i.e., γ = α,

then the matrix P is not diagonalizable (the algebraic multiplicity is 2 while the geometric multiplicity

is 1). However, in the case γ 6= α, the two eigenvalues have algebraic and geometric multiplicities both

equal to 1 and hence P is diagonalizable.

Let us start by studying the case γ = α. In that case, P can be written as a sum of two commutative (and

quite nice) matrices:

P =

[
1− α 0

α 1− α

]
= (1− α)

[
1 0

0 1

]
︸ ︷︷ ︸
identity

+α

[
0 0

1 0

]
︸ ︷︷ ︸

nilpotent of index 2

·

and thus we can apply the binomial theorem. One gets, for α 6= 1:

P k−1 =

k−1∑
j=0

(
k − 1

j

)(
(1− α)

[
1 0

0 1

])k−1−j (
α

[
0 0

1 0

])j

︸ ︷︷ ︸
6=0 iff j∈{0,1}

= (1− α)k−1

[
1 0

0 1

]
+ (k − 1)(1− α)k−2α

[
0 0

1 0

]

= (1− α)k−2

[
1− α 0

α(k − 1) 1− α

]
so that

Ak = βα(k − 1)(1− α)k−2 ∀k ∈ N,

which is exactly (1.43), or (1.42) with γ = α. If α = 1, then

P =

[
0 0

1 0

]
, Pn =

[
0 0

0 0

]
(n ∈ N, n ≥ 2)

and thus Ak = 0 for all k ∈ N \ {2} and A2 = β. This is equivalent to (1.43) when γ = α = 1.

Now, suppose γ 6= α. Linear algebra theory guarantees that there are a diagonal matrixD and an invert-

ible matrix Q such that P = QDQ−1. Furthermore, the diagonal entries of D are the eigenvalues of P
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and the columns of Q are the eigenvectors (in respective order). Then we can take

D :=

[
1− γ 0

0 1− α

]
and Q :=

[
α− γ 0

γ 1

]
·

The inverse of Q is easily calculated:

Q−1 =
1

α− γ

[
1 0

−γ α− γ

]
·

Since P = QDQ−1, then

Pn = QDnQ−1 ∀n ∈ N0

and, moreover, the n-th power of a diagonal matrix is a diagonal matrix where the entry (j, j) is given

by dnjj if djj is the entry (j, j) of the original matrix. It follows that

Dn =

[
(1− γ)n 0

0 (1− α)n

]
∀n ∈ N0·

Some simple algebraic calculations give:

Pn = QDnQ−1 =
1

α− γ

[
(α− γ)(1− γ)n 0

γ [(1− γ)n − (1− α)n] (α− γ)(1− α)n

]
∀n ∈ N0·

Now, we can factorize the last factor of element (2, 1) as:

(1−γ)n−(1−α)n = [(1− γ)− (1− α)]

n−1∑
j=0

(1−γ)j(1−α)n−j−1 = (α−γ)

n−1∑
j=0

(1−γ)j(1−α)n−1−j

where the sum is equal to zero if n < 1 (i.e., if n = 0). Therefore

Pn =

 (1− γ)n 0

γ
n−1∑
j=0

(1− γ)j(1− α)n−1−j (1− α)n

 ∀n ∈ N0

and, in particular,

P k−1 =

 (1− γ)k−1 0

γ
k−2∑
j=0

(1− γ)j(1− α)k−2−j (1− α)k−1

 ∀k ∈ N·

Finally,

Ak = β(P k−1)21 = βγ
k−2∑
j=0

(1− γ)j(1− α)k−2−j = βγ
k−1∑
`=1

(1− γ)`−1(1− α)k−1−` ∀k ∈ N

where we let ` = j + 1 in the last equality. The previous formula is clearly equivalent to (1.42). Now,

one should note that, for α 6= 1,

Ak = βγ(1− α)k−2
k−1∑
j=1

(
1− γ

1− α

)j−1
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and

k−1∑
j=1

(
1− γ

1− α

)j−1

=
1−

(
1−γ
1−α

)k−1

1− 1−γ
1−α

=
1− α

(1− α)k−1

(1− α)k−1 − (1− γ)k−1

γ − α
,

because this sum is simply the sum of a geometric progression. Equation (1.43) now follows. For α = 1,

one has

A1 = 0, Ak = βγ(1− γ)k−2(k ∈ N, k ≥ 2),

which is equivalent to (1.43) with γ < α = 1.

Remark 17. The matrix P mentioned in the previous proof satisfies[
E(t+ 1)

I(t+ 1)

]
= P

[
E(t)

I(t)

]
(this is exactly a matricial form for the system (1.44), present in the previous proof).

To continue our study, we show that {Ak}k∈N given by (1.42) is a summable collection and, further-

more, we determine the value R0.

Proposition 20. The basic reproduction number for the SEIR compartmental model (1.41) is given by

R0 =
βN

α
·

Proof. We separate the proof in cases:

Case 1 Suppose γ = α. Then the series (1.17) for R0 is simplified to

R0 = N(β) =
βN

1

when α = 1 and

R0 =
βαN

1− α

∞∑
k=1

(k − 1)(1− α)k−1 = βαN

∞∑
k=1

(k − 1)(1− α)k−2 =
βαN

[1− (1− α)]2
=

βN

α

when α 6= 1 (note that the series above is simply the derivative of a geometric series).

Case 2 Suppose now that γ 6= α. Then the series (1.17) for R0 give

R0 =
βγN

γ − α

∞∑
k=1

[
(1− α)k−1 − (1− γ)k−1

]
=

βγN

γ − α

(
1

α
− 1

γ

)
=

βN

α
·

We conclude that R0 is given by

R0 =
βN

α
·
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Remark 18. The SIR and SEIR models given by (1.36) and (1.41), respectively, have the same R0. If

one thinks about this, it does not come as a surprise:

• if c is the average number of contacts of an infectious individual (generating the disease) and tI is

the average infectious period, then one infectious individual (in compartment I) in an all susceptible

population is expected to infect c individuals per unit of time it is infectious, i.e., ctI individuals in

total;

• given that β is the per capita contribution to the force of infection and N the total size of the

population, the infectious individual is expected to have c = βN contacts that generate the disease;

• by proposition 18, the average infectious period is equal to 1
α .

In conclusion, R0 is not influenced by a latent compartment. In fact, by the definition of basic reproduc-

tion number, there are no individuals in compartment E when one does the calculation for R0.

As was done for the SIR model, we now show that, with (1.42), the system (1.41) and the recurrence

relation (1.23) are equivalent, given appropriate definitions for the quantities E(t) and I(t).

Theorem 7. Let the collection {Ak}k∈N be given by (1.42). Then the system (1.41) and the recurrence

relation (1.23) are equivalent, provided that

E(t) :=
∞∑
k=1

(1− γ)k−1 [S(t− k)− S(t− k + 1)] (1.45)

and

I(t) :=

∞∑
k=1

[S(t− k)− S(t− k + 1)]

k−1∑
j=1

γ(1− γ)j−1(1− α)k−1−j

 · (1.46)

Proof. We start by explaining (1.45) and (1.46). With (1.42), it follows that, for each k ∈ N, the factor

θk :=

k−1∑
j=1

γ(1− γ)j−1(1− α)k−1−j

is the proportion of individuals that remain infectious (i.e., in compartment I) after k time steps. In

particular, after 1 time step, this proportion is zero (and indeed θ1 = 0), since any individual is either in

compartment S (it was not infected) or in compartment E (it was just infected). After 2 time steps, this

proportion is equal to the probability of an individual to move from compartment E to compartment I ,

from where θ2 = γ is the proportion of infected individuals that start transmitting the disease (at each

time step). Hence, for each k ∈ N, (1 − γ)k−1 is the proportion of individuals that remain infected but

not infectious (i.e., stays in compartment E), while S(t − k) − S(t − k + 1) gives the number of new

infected (but not infectious) individuals over the time window ]t− k, t− k + 1]. Therefore

(1− γ)k−1 [S(t− k)− S(t− k + 1)]

and

[S(t− k)− S(t− k + 1)]

k−1∑
j=1

γ(1− γ)j−1(1− α)k−1−j

give the number of individuals which remain infected and infectious after k time steps, respectively. Thus

it makes perfect sense to define E(t) and I(t) as the sum of all the (respective) terms (for k ∈ N), i.e.,
by (1.45) and (1.46), respectively.
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Next we show that system (1.41) can be reduced to equation (1.23). We can use equation (1.39), since

the 1st equation (for the number for the number of susceptibles) remains the same. Similarly to what was

done in the previous model, one obtains

∞∑
j=0

E(t− j) =

∞∑
m=0

(1− γ)m [N − S(t−m)] (1.47)

(now with E instead of I). Using the 3rd equation of (1.41), one obtains

∞∑
j=0

I(t− j) =
∞∑
j=0

[γE(t− 1− j) + (1− α)I(t− 1− j)]

= γ
∞∑
j=0

E(t− 1− j) + (1− α)
∞∑
j=0

I(t− 1− j)

= γ

∞∑
m=0

(1− γ)m [N − S(t− 1−m)] + (1− α)

∞∑
j=0

I(t− 1− j) [by (1.47)]

and, by remark 30 (in the appendix) with

f(t) := γ
∞∑

m=0

(1− γ)m [N − S(t− 1−m)] ,

it follows that

∞∑
j=0

I(t− j) =

∞∑
k=1

[N − S(t− k + 1)]

k−1∑
`=1

γ(1− γ)`−1(1− α)k−1−`· (1.48)

Plugging (1.48) into (1.39), one gets

S(t+ 1) = exp

−
∞∑
k=1

[N − S(t− k + 1)]β

k−1∑
`=1

γ(1− γ)`−1(1− α)k−1−`

︸ ︷︷ ︸
=Ak [by definition (1.42)]

N

= exp

{
−

∞∑
k=1

Ak [N − S(t+ 1− k)]

}
N

which is exactly equation (1.23) with t+ 1 instead of t.

Conversely, starting with equation (1.23) and defining E(t) and I(t) by (1.45) and (1.46), respectively,

we can arrive at system (1.41) as we show next. Choose Ak by (1.42). Then

∞∑
k=1

Ak [N − S(t+ 1− k)] =

∞∑
k=1

Ak [N − S(t− k) + S(t− k)− S(t+ 1− k)]

=

∞∑
k=1

[S(t− k)− S(t+ 1− k)]β

k−1∑
`=1

γ(1− γ)`−1(1− α)k−1−`

+

∞∑
k=1

Ak [N − S(t− k)]
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= β
∞∑
k=1

[S(t− k)− S(t+ 1− k)]
k−1∑
`=1

γ(1− γ)`−1(1− α)k−1−`

︸ ︷︷ ︸
=I(t) [by (1.46)]

+
∞∑
k=1

Ak [N − S(t− k)]

= βI(t) +

∞∑
k=1

Ak [N − S(t− k)]

and thus (1.23) is equivalent to

S(t+ 1) = exp

{
−

(
βI(t) +

∞∑
k=1

Ak [N − S(t− k)]

)}
N

= e−βI(t) exp

{
−

∞∑
k=1

Ak [N − S(t− k)]

}
N︸ ︷︷ ︸

=S(t) [by (1.23)]

= e−βI(t)S(t),

which is exactly the 1st equation of system (1.41). On the other hand, (1.45) gives

E(t+ 1) =

∞∑
k=1

(1− γ)k−1 [S(t+ 1− k)− S(t+ 1− k + 1)]

=

∞∑
j=0

(1− γ)j [S(t− j)− S(t− j + 1)] [with j = k − 1]

= (1− γ)0 [S(t− 0)− S(t− 0 + 1)] + (1− γ)

∞∑
j=1

(1− γ)j−1 [S(t− j)− S(t− j + 1)]︸ ︷︷ ︸
=E(t) [by (1.45)]

= S(t)− S(t+ 1) + (1− γ)E(t)

=
(
1− e−βI(t)

)
S(t) + (1− γ)E(t),

which is exactly the 2nd equation of (1.41). Now, (1.46) gives

I(t+ 1) =
∞∑
k=1

[S(t+ 1− k)− S(t+ 1− k + 1)]
k−1∑
j=1

γ(1− γ)j−1(1− α)k−1−j


=

∞∑
m=0

[S(t−m)− S(t−m+ 1)]

m∑
j=1

γ(1− γ)j−1(1− α)m−j

 [withm = k − 1]

=

�������������������������

[S(t− 0)− S(t− 0 + 1)]

0∑
j=1

γ(1− γ)j−1(1− α)0−j

︸ ︷︷ ︸
=0

+ γ

∞∑
m=1

[S(t−m)− S(t−m+ 1)] (1− γ)m−1

︸ ︷︷ ︸
=E(t) [by (1.45)]
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+ (1− α)

∞∑
m=1

[S(t−m)− S(t−m+ 1)]

m−1∑
j=1

γ(1− γ)j−1(1− α)m−1−j


︸ ︷︷ ︸

=I(t) [by (1.46)]

= γE(t) + (1− α)I(t),

and this is exactly the 3rd equation of (1.41). The last equation of (1.41) is obtained in the same manner

as in the case of the SIR model. This concludes the proof.
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Chapter 2

Compartmental epidemic models with

separable static heterogeneity

Next we follow [Diekmann and Inaba, 2023] where it is shown how to integrate separable static het-

erogeneity into compartmental epidemic models, i.e., we wish to construct a compartmental epidemic

model where host individuals are characterized by some trait that does not depend on time and the host

population can be separated into groups according to the trait that each individual presents.

As was done in the previous chapter, it is assumed that the disease generates permanent immunity

and the host population is demographically closed.

Now, the separability condition allows the following property: the trait of an individual does not

change with infection and it is constant along time.

We would like to note that compartmental models are a particular case of the general Kermack-

McKendrick model, as was seen in the previous chapter: one takes Λ(t) := βI(t) in (1.1), where β > 0

is the per capita contribution to the force of infection and I(t) denotes the number of infectious individuals

at time t (see section 1.4).

We start with section 2.1 where we consider a special form for the expected contribution A(τ) to the

force of infection by an individual with age of infection τ . Here, it is shown how to arrive to two different

forms: the integrated form and the standard form. The basic reproduction numberR0, the generation time

T and the Euler-Lotka equation are calculated for this special case. We follow with section 2.2 where we

finally integrate heterogeneity into the model. We consider a special case for the expected contribution

A(τ, ω, η) to the force of infection (now a function of three variables): A(τ, ω, η) = a(ω)b(τ)c(η). We

finish this chapter with section 2.3, a section dedicated to show specific examples of the reduction of

the general Kermack-McKendrick model to a compartmental model and of the insertion of heterogeneity

into compartmental epidemic models (a special example is that of the Gamma distribution).

Here the notation used is the same as in the previous chapter. Furthermore, as usual, given a matrix

M , we denote its (k, j)-th entry by Mkj . The transpose of M will be denoted by MT . Furthermore, for

n ∈ N, we consider the set
[n] := {1, . . . , n}·

LetMm×n be the set of real matrices of orderm× n and define

M+
m×n := {M ∈ Mm×n| Mkj ≥ 0 ∀(k, j) ∈ [m]× [n] ∧ ∃(k′, j′) ∈ [m]× [n] : Mk′j′ > 0}

and

OD+
m×n := {M ∈ Mm×n| Mkj ≥ 0 ∀(k, j) ∈ [m]× [n] with k 6= j}·
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2.1 Reduction of the general (continuous) Kermack-McKendrick model

to a compartmental model: a special case

In this section, we show (as was done in [Diekmann and Inaba, 2023]) how to reduce the general

(continuous) Kermack-McKendrick model to a compartmental model, as long as the expected contribu-

tion A(τ) to the force of infection is defined in a certain way. Here, some of the results obtained in the

first part of section 1.2 are used.

In this section, the following special case is considered:

The expected contribution to the force of infection: a special case

Let n ∈ N be the number of infected states in a certain population and suppose that the

expected contribution to the force of infection at time τ after infection is given by

A(τ) := UeτΣV , (2.1)

where τ ≥ 0 and

• Σ ∈ OD+
n×n is a matrix that generates the Markov chain dynamics14 of the infected states,

i.e., it describes the state transitions of the infected;

• U ∈ M+
1×n is a (row) vector such that its k-th component gives the contribution to the force

of infection by an individual in the k-th (infected) state;

• V ∈ M+
n×1 is a (column) vector representing the probability distribution of the state-at-

infection.

As was done in the previous chapter, one assumes that A : [0,+∞[−→ [0,+∞[ is positive in some

interval of [0,+∞[ and integrable in [0,+∞[, i.e.,

0 < U

(∫ ∞

0
eτΣ dτ

)
V < +∞· (2.3)

Now, by proposition 32 (in the appendix), the conditionΣ ∈ OD+
n×n guarantees that e

τΣ is a nonneg-

ative15 matrix with an all positive diagonal. This, along with the conditions U ∈ M+
1×n and V ∈ M+

n×1,

guarantees that the functionA(τ) is indeed nonnegative (although it does not guarantee that it is positive).

Remark 19. It is important to note that one might have A(τ) < 0 for some τ ≥ 0 if one allows Σ to have

a negative off-diagonal entry16. In fact, if one chooses

U =
[
0 · · · 0 1︸︷︷︸

k−th position

0 · · · 0
]

and V =
[
0 · · · 0 1︸︷︷︸

j−th position

0 · · · 0
]T

14Consider a (finite or infinite) countable set S and let {Xm}m∈N be a sequence of random variables

with values in S . If

P(Xm+1 = ajm+1 |X1 = aj1 ∧ . . . ∧Xm = ajm) = P(Xm+1 = ajm+1 |Xm = ajm) (2.2)

for all m ∈ N, where aj1 , . . . , ajm ∈ S , then the sequence {Xm}∞m=1 is called a Markov chain. (2.2) is

known as the Markov property.
15Here, a matrix is said to be nonnegative if each of its entries is nonnegative.
16We would like to note that an off-diagonal entry Σkj (k 6=j) of Σ represents the transition of an

individual from the j-th infected state to the k-th infected state and thus it makes sense here to not allow

Σ to have negative off-diagonal entries.
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with k 6= j, then A(τ) =
(
eτΣ
)
kj

and thus, if Σ has a negative off-diagonal entry in the position (k, j),

then, for small τ > 0,

eτΣ ≈ In + τΣ and A(τ) =
(
eτΣ
)
kj

≈ 0 + τΣkj < 0,

which contradicts the nonnegativity of A(τ).

Before we continue, we would like to give an example by showing that the SEIR model has in fact

an expected contribution to the force of infection at time τ after infection of the special form (2.1).

Example 4 (The expected contribution to the force of infection of the SEIR model). Here one only needs

to consider the ODEs of the infected states:
dE

dt
= βIS − γE

dI

dt
= γE − αI

,

where β is the per capita contribution to the force of infection, γ is the rate at which individuals leave the

exposed compartment and α is the rate at which individuals leave the infectious compartment.

As was done in section 1.4, for the SEIR model, one represents the stateE with the 1st index and the state

I with the 2nd index. The state transition matrix of the infected states is given by

Σ :=

[
−γ 0

γ −α

]

while U =
[
0 β

]
(individuals at state E do not contribute to the force of infection while any individual

in state I has a contribution equal to β) and V =

[
1

0

]
(at state-of-infection, infected individuals are not

yet infectious). To calculate the exponential eτΣ, one considers two cases:

Case 1 γ = α

In this case,

Σ = −γ

[
1 0

0 1

]
︸ ︷︷ ︸
identity

+γ

[
0 0

1 0

]
︸ ︷︷ ︸

nilpotent of index 2

,

so that

eτΣ = exp

{
τ

(
−γ

[
1 0

0 1

]
+ γ

[
0 0

1 0

])}

= exp

{
−γτ

[
1 0

0 1

]}
exp

{
γτ

[
0 0

1 0

]}
[the matrices are commutative]

=

(
e−γτ

[
1 0

0 1

])([
1 0

0 1

]
+ γτ

[
0 0

1 0

])

=

[
e−γτ 0

γτe−γτ e−γτ

]
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and thus

A(τ) = UeτΣV =
[
0 β

] [ e−γτ 0

γτe−γτ e−γτ

][
1

0

]
= βγτe−γτ ·

One can see that

R0 = βN

∫ ∞

0
γτe−γτ dτ = βN

[
������−τe−γτ

∣∣∞
0

−
∫ ∞

0
−e−γτ dτ

]
=

βN

γ
·

Case 2 γ 6= α

In this case, one can diagonalize Σ, since this matrix has two distinct eigenvalues, −γ and −α,

with associated eigenvectors

[
α− γ

γ

]
and

[
0

1

]
, respectively. Therefore, one can consider

D :=

[
−γ 0

0 −α

]
and P :=

[
α− γ 0

γ 1

]
,

so that Σ = PDP−1 and

eτΣ = PeτDP−1

=

[
α− γ 0

γ 1

][
e−γτ 0

0 e−ατ

]
1

α− γ

[
1 0

−γ α− γ

]

=

 e−γτ 0
γ

α− γ
(e−γτ − e−ατ ) e−ατ

 ,

and, finally,

A(τ) = UeτΣV =
[
0 β

] e−γτ 0
γ

α− γ
(e−γτ − e−ατ ) e−ατ

[1
0

]
=

βγ

α− γ

(
e−γτ − e−ατ

)
·

One can see that

R0 =
βNγ

α− γ

(∫ ∞

0
e−γτ dτ −

∫ ∞

0
e−ατ dτ

)
=

βNγ

α− γ

(
1

γ
− 1

α

)
=

βNγ

α− γ

α− γ

γα
=

βN

α
·

One concludes that

A(τ) =


βγτe−γτ if γ = α

βγ

α− γ
(e−γτ − e−ατ ) otherwise

and, furthermore,

R0 =
βN

α
·

The objective in this section is to show that the renewal equation (1.13), equipped with definition

(1.14)17, reduces to anODE systemwhen (2.1) holds (with some appropriate assumptions on the transition

matrix Σ). Furthermore, it is also shown that, given an appropriate ODE and an appropriate definition of

the cumulative force of infection w, one easily obtains (1.13).

17The renewal equation (1.13) and the definition (1.14) are present, for the first time, in the first part

of section 1.2.
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The first step is to note the following:

Proposition 21. If the cumulative force of infection is defined by (1.13) and (2.1) holds, then

w(t) = UZ(t), (2.4)

where one defines the n-th vector valued function Z by

Z(t) :=

∫ ∞

0
eτΣVΨ(w(t− τ)) dτ · (2.5)

Proof. Immediate by plugging (2.1) into (1.13) and then using definition (2.5).

Remark 20. Although w(t) (if nonnegative) is bounded if equations (2.4) and (1.14) hold, the function

Z might not be so lucky as we will see in the next example.

Example 5. Let

Σ =

−1 1 0

0 −1 0

0 0 1

 , U =
[
6 0 0

]
, V =

1

6

50
1

 ·

Then Σ is a Jordan canonical form18, with two Jordan blocks:

Σ =

[
Σ1 02×1

01×2 Σ2

]
where

Σ1 :=

[
−1 1

0 −1

]
and Σ2 :=

[
1
]
·

From linear algebra theory, one knows that

eτΣ =

[
eτΣ1 02×1

01×2 eτΣ2

]
·

We start by noting that

eτΣ2 =
[
eτ
]
·

On the other hand, one notes that Σ1 can be written as a sum of two commutative matrices:

Σ1 =

[
−1 0

0 −1

]
+

[
0 1

0 0

]
·

It is clear that the first matrix is the symmetric of the identity matrix while the second is a nilpotent matrix

of index 2. Therefore

eτΣ1 = exp

{
τ

[
−1 0

0 −1

]}
exp

{
τ

[
0 1

0 0

]}
= e−τ

([
1 0

0 1

]
+

[
0 τ

0 0

])
=

[
e−τ τe−τ

0 e−τ

]
·

So

eτΣ =

e−τ τe−τ 0

0 e−τ 0

0 0 eτ


18Amore detailed explanation of the Jordan canonical form can be found in [Pestana da Costa, 2001].
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and

eτΣV =
1

6

5e−τ

0

eτ

 ·

One notes that τ 7→ A(τ) is a positive and integrable function in [0,+∞[:

A(τ) = UeτΣV = 5e−τ > 0 and

∫ ∞

0
A(τ) dτ = 5

∫ ∞

0
e−τ dτ = 5 < +∞·

Now, if N denotes the total number of individuals in the population (and N ∈ N), one has that

R0 := N

∫ ∞

0
A(τ) dτ = 5N > 1

and thus, by proposition 6, equation (1.13) has a nonzero root w̄ provided that Ψ is given by (1.14). One

can therefore assume that w(t) = w̄ is a nonzero root of (2.4), where Ψ is defined by (1.14).

Defining Z(t) by (2.5), one gets

Z(t) =

∫ ∞

0
eτΣVΨ(w̄) dτ = N(1− e−w̄)

∫ ∞

0
eτΣV dτ ·

The third component of Z is given by

Z3(t) = N(1− e−w̄)︸ ︷︷ ︸
6=0

∫ ∞

0

1

6
eτ dτ,

which clearly diverges.

For our main result, some conditions on the matrix Σ are needed. First, a definition (of Linear Alge-

bra) is given:

Definition 4. Let m ∈ N and consider M , a m × m square matrix. The spectrum of M is the set of

eigenvalues ofM and is denoted by

σ(M) := {λ ∈ C : Mv = λv for some v ∈ Cm×1 \ {0m×1}}·

The spectral radius of M is then defined as the maximum of the absolute values of its eigenvalues and

will be denoted by

ρ(M) := max
λ∈σ(M)

|λ|,

while the spectral abscissa of M is defined as the greatest real part of the matrix spectrum and will be

denoted by

κ(M) := max
λ∈σ(M)

<(λ)·

Finally, we are ready to give the main result. The following ODE system plays an important role in

this result:

Definition 5. The ODE system
dZ

dt
= ΣZ + VΨ(UZ), (2.6)
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whereZ = Z(t) is given by (2.5), is called the integrated form of the compartmental model corresponding

to Σ, U and V .

Theorem 8. Let Ψ be given by (1.14). Suppose that (2.1) holds and that Σ is such that κ(Σ) < 0. Then

the renewal equation (1.13), equipped with the conditions w(t) ≥ 0 for all t ∈ R and lim
t→−∞

w(t) = 0,

reduces to the ODE system (2.6). Conversely, if Z is a solution of (2.6) such that UZ(t) ≥ 0 for all

t ∈ R and lim
t→−∞

UZ(t) = 0, and one defines w by (2.4), then (1.13) holds.

Proof. We start by noting that, since κ(Σ) < 0, then proposition 33 (in the appendix) guarantees that

lim
t→+∞

etΣ = 0n×n. Furthermore, Σ is clearly invertible and one notes that

∫ ∞

0
eτΣ dτ =

(∫ ∞

0
eτΣΣ dτ

)
Σ−1 =

(
lim
τ→∞

eτΣ︸ ︷︷ ︸
=0n×n

− e0·Σ
)
Σ−1 = −Σ−1·

One should also remember that eτΣ is a nonnegative matrix whenever τ ≥ 0 (see proposition 32 in the

appendix).

Suppose that (1.13) holds and define Z by (2.5). Letting ν = t− τ in the integral in (2.5), one obtains

Z(t) = etΣ
∫ t

−∞
e−νΣVΨ(w(ν)) dν,

i.e.,

Z(t) = etΣ
(∫ t0

−∞
e−νΣVΨ(w(ν)) dν +

∫ t

t0

e−νΣVΨ(w(ν)) dν

)
,

for t0 ∈ R. Differentiation gives

dZ

dt
(t) = ΣZ(t) + etΣ

(
0 + e−tΣVΨ(w(t))

)
,

i.e.,
dZ

dt
= ΣZ + VΨ(w)· (2.7)

Now, by proposition 21, one has that (2.4) holds. Finally, by plugging (2.4) into (2.7), one gets the ODE

system (2.6), as desired.

Conversely, assume Z is a solution of (2.6) such that UZ(t) ≥ 0 for all t ∈ R and lim
t→−∞

UZ(t) = 0.

Define w by (2.4) and note that, since (1.14) and (2.1) hold, (1.13) is equivalent to

U

[
Z(t)−

∫ ∞

0
eτΣVΨ(UZ(t− τ)) dτ

]
= 0,

so, if one defines f as the n× 1 vector-valued function by

f(t) := Z(t)−
∫ ∞

0
eτΣVΨ(UZ(t− τ)) dτ,

then our objective is to prove that Uf(t) = 0 for all t ∈ R. One starts by noting that the integral is

convergent (it suffices to repeat the argument given in the justification that Z is bounded in each of its

entries, done for the reciprocal implication). Therefore, one can differentiate f(t). First, one can note

that f(t) can be rewritten as

f(t) = Z(t)− etΣ
∫ t

−∞
e−νΣVΨ(UZ(ν)) dν,
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and now, by differentiating:

df

dt
(t) =

dZ

dt
(t)− ΣetΣ

∫ t

−∞
e−νΣVΨ(UZ(ν)) dν − VΨ(UZ(t))

=
dZ

dt
(t) + Σ [f(t)− Z(t)]− VΨ(UZ(t))

=
dZ

dt
(t)− ΣZ(t)− VΨ(UZ(t))︸ ︷︷ ︸

=0

+Σf(t)

= Σf(t),

i.e., f(t) satisfies
df

dt
= Σf ·

By proposition 34, for each k ∈ {1, . . . , n}, the k-th entry of f is of the form

fk(t) = eλ`k
tpk(t) (2.8)

where λ`k ∈ σ(Σ) and pk is a polynomial in t.

Next, one uses the definition to prove that lim
t→−∞

Uf(t) = 0. We have

lim
t→−∞

Uf(t) = lim
t→−∞

[
UZ(t)−

∫ ∞

0
UeτΣVΨ(UZ(t− τ)) dτ

]
= − lim

t→−∞

∫ ∞

0
A(τ)Ψ(UZ(t− τ)) dτ,

since lim
t→−∞

UZ(t) = 0 by hypothesis. Consider the sequence of functions

ym(τ) := A(τ)Ψ(UZ(tm − τ)) ∀m ∈ N

where tm → −∞ when m → +∞. Now, since τ 7→ A(τ) and Ψ are continuous functions, then ym is

continuous (and thus measurable) for eachm ∈ N. On the other hand,

lim
m→+∞

ym(τ) = lim
m→+∞

A(τ)Ψ(UZ(tm − τ)) = NA(τ) lim
m→+∞

(
1− e−UZ(tm−τ)

)
= 0

where the last equality follows from the hypothesis lim
t→−∞

UZ(t) = 0 (since the limit exists, then every

sequence {xm}m∈N with xm → −∞ satisfies UZ(xm) → −∞). Now, since UZ(t) ≥ 0 for all t ∈ R,
then 0 ≤ Ψ ≤ N and

|ym(τ)| ≤ NA(τ),

i.e., the sequence is dominated by τ 7→ NA(τ) and this last one is integrable by assumption. Lebesgue’s

dominated convergence theorem (theorem 12 in the appendix) guarantees that

lim
m→+∞

∫ ∞

0
ym(τ) dτ =

∫ ∞

0
lim

m→+∞
ym(τ) dτ = 0·

This proves that

lim
t→−∞

Uf(t) = − lim
t→−∞

∫ ∞

0
A(τ)Ψ(UZ(t− τ)) dτ = 0·

52



Now, one notes that

Uf(t) =

n∑
k=1

Ukfk(t) =

n∑
k=1

Uke
λ`k

tpk(t)·

Suppose Σ hasm distinct eigenvalues µ1, . . . , µm. For each j ∈ {1, . . . ,m}, denote

Kj := {k ∈ {1, . . . , n} : λ`k = µj}·

Therefore

Uf(t) =
m∑
j=1

eµjt

∑
k∈Kj

Ukpk(t)

 ·

Since µ1, . . . , µn are distinct eigenvalues, then:

lim
t→−∞

Uf(t) = 0

if and only if, for each j ∈ {1, . . . ,m},

lim
t→−∞

eµjt

∑
k∈Kj

Ukpk(t)

 = 0·

Now, for each j ∈ {1, . . . ,m},

lim
t→−∞

∣∣∣∣∣∣eµjt

∑
k∈Kj

Ukpk(t)

∣∣∣∣∣∣ = lim
t→−∞

e<(µj)t

∣∣∣∣∣∣
∑
k∈Kj

Ukpk(t)

∣∣∣∣∣∣
and it is clear that

∑
k∈Kj

Ukpk(t) is a polynomial in t. Furthermore, <(µj) < 0, since µj ∈ σ(Σ) and

κ(Σ) < 0. Therefore

lim
t→−∞

∣∣∣∣∣∣eµjt

∑
k∈Kj

Ukpk(t)

∣∣∣∣∣∣ = +∞ (2.9)

if
∑

k∈Kj

Ukpk(t) 6= 0 for some t ∈ R. It follows that, for each j ∈ {1, . . . ,m},

∑
k∈Kj

Ukpk(t) = 0 ∀t ∈ R·

We conclude that Uf(t) = 0 for all t ∈ R and finally equation (1.13) now follows.

Nowwe give a lemmawith some results on equation (2.6). Some fundamental theorems on the theory

of ordinary differential equations are used (see, for example, [Pestana da Costa, 2001]).

Lemma 4. The set

Rn
+ := {(x1, . . . , xn) ∈ Rn : xk > 0 ∀k ∈ {1, . . . , n}}

is positively invariant for (2.6), i.e.,

Z(t0) = q ∈ Rn
+ =⇒ Z(t) ∈ Rn

+ ∀t ≥ t0·

Proof. We start by noting that Z ≡ 0n×1 is an equilibrium of (2.6). By uniqueness of solution, for each

t ∈ R, there is k ∈ {1, . . . , n} such that Zk(t) 6= 0 for every other solution Z. If n = 1, the conclusion
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is immediate. So we assume n ∈ N, n > 1.

Suppose Z(t0) = q with qj > 0 for all j ∈ {1, . . . , n}. Then, for each t ∈ R, there exists always some

k ∈ {1, . . . , n} such that Zk(t) 6= 0.

Let us assume, by way of contradiction, that Z1, . . . , Zm (for somem ∈ {1, . . . , n− 1}) are the first that
arrive at zero (and at the same time). Take

t1 := min{t > t0 : Z1(t1) = 0},

i.e., Zj(t1) = 0 if j ∈ {1, . . . ,m}

Zj(t1) > 0 if j ∈ {m+ 1, . . . , n}
·

It is obvious that, for k ∈ {1, . . . ,m}, Zk decreases in ]t1 − δ, t1] for some sufficiently small δ > 0.

Therefore,
dZk

dt
≤ 0 (k ∈ {1, . . . ,m})·

Now Z satisfies (2.6), so, for each k ∈ {1, . . . , n}, one has

dZk

dt
=

n∑
j=1

ΣkjZj + VkΨ

 n∑
j=1

UjZj


and, for k ∈ {1, . . . ,m}

dZk

dt
(t1) =

n∑
j=m+1

Σkj︸︷︷︸
≥0

Zj(t1)︸ ︷︷ ︸
>0

+ Vk︸︷︷︸
≥0

Ψ

 n∑
j=m+1

Uj︸︷︷︸
≥0

Zj(t1)︸ ︷︷ ︸
>0


︸ ︷︷ ︸

≥0

≥ 0·

We conclude that
dZk

dt
(t1) = 0 (k ∈ {1, . . . ,m}),

from where Σkj = 0 for all j ∈ {m+1, . . . , n} and either Vk = 0 or Uj = 0 for all j ∈ {m+1, . . . , n}
(k ∈ {1, . . . ,m}). It follows that

dZk

dt
=

m∑
j=1

ΣkjZj i.e.
d

dt

(
e−ΣkktZk(t)

)
= e−Σkkt

m∑
j=1
j 6=k

ΣkjZj(t)

for each k ∈ {1, . . . ,m}. Now, if, for some k ∈ {1, . . . ,m}, there is some j ∈ {1, . . . ,m} \ {k} such
that Σkj > 0, then it is clear that

d

dt

(
e−ΣkktZk(t)

)
(t) > 0 whenever t0 ≤ t < t1

and t 7→ e−ΣkktZk(t) increases in all [t0, t1[. In particular,

e−Σkkt0Zk(t0) < e−ΣkktZk(t) whenever t0 < t < t1

and, by continuity,

e−Σkkt0Zk(t0) ≤ e−Σkkt1Zk(t1) = 0,

which is absurd since Zk(t0) > 0 by hypothesis. Since Σ is nonnegative off-diagonal, we conclude that
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Σkj = 0 whenever k, j ∈ {1, . . . ,m} with k 6= j. Then

Zk(t) = eΣkktZk(t0) (k ∈ {1, . . . ,m})·

In particular, Zk(t1) = eΣkkt1Zk(t0) > 0 for k ∈ {1, . . . ,m}, a contradiction as desired.

Remark 21. Given that w(t) denotes the cumulative force of infection at time t, it makes perfect sense

to consider it approximates 0 in the infinite past (at the beginning of the infection), i.e.,

lim
t→−∞

w(t) = 0·

On the other hand, for each k ∈ {1, . . . , n}, one has that Uk denotes the contribution to the force of

infection of an individual in the k-th state, while Zk(t) denotes the number of individuals that were, at

some time t1≤t, in the k-th state:

• for each τ ≥ 0, Ψ(w(t − τ)) denotes the number of individuals that are no longer susceptible at

time t− τ (i.e., that were infected at some time t0≤t− τ ;

• for each τ ≥ 0 and j ∈ {1, . . . , n}, the (k, j) entry of eτΣ denotes the probability to go from the

j-th state to the k-th state at time τ after infection, so that
(
eτΣ
)
kj
Vj denotes the proportion of

individuals in the k-th state at time τ after infection, descendant from the j-th state, and

(
eτΣV

)
k
=

n∑
j=1

(
eτΣ
)
kj
Vj

denotes the (total) proportion of individuals in the k-th state at time τ after infection;

• hence, for each τ ≥ 0,
(
eτΣV

)
k
Ψ(w(t− τ)) gives the number of individuals that were in the k-th

(infected) state before/at time t with age of infection τ ;

• viewing the integral as a sum, one concludes that Zk(t) is counting the number of individuals that

were in the k-th (infected) state at some time t1≤t (and that were infected since the infinity past

until t).

t0 t0 + τt− τ t

Infected here

(
eτΣV

)
k

is the propor-
tion of individuals in
the k-th state that were
infected at time t0

Ψ(w(t − τ)) individuals
are no longer susceptible

(
eτΣV

)
k
Ψ(w(t − τ)) is the

number of individuals that
were in the k-th (infected)
state before/at time t with
age of infection τ

τ

τ

Fig. 2.1. Scheme explaining why Z defined by (2.5) counts the number of individuals that were infected

at some time t1≤t.

Hence UkZk(t) is the contribution to the cumulative force of infection at time t of the k-th state (for each

k ∈ {1, . . . , n}) and so

UZ(t) =

n∑
k=1

UkZk(t)

is the cumulative force of infection at time t, so that UZ(t) = w(t).
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Furthermore, if one defines the expected contribution to the force of infection at time τ after infection

by (2.1), one can easily calculate some basic indices for the Kermack-McKendrick model:

Proposition 22. Suppose that the expected contribution to the force of infection at time τ after infection

is given by (2.1) and that Σ is such that κ(Σ) < 0. Then:

1. the basic reproduction number is given by

R0 = −NUΣ−1V ; (2.10)

2. the Euler-Lotka equation is

1 = NU(λIn − Σ)−1V (2.11)

and the intrinsic growth rate ρ̃ is given by its real root;

3. the generation time T is given by

T = −UΣ−2V

UΣ−1V
· (2.12)

Proof. One starts by noting that Σ is invertible, since κ(Σ) < 0. It now follows easily that∫ ∞

0
eτΣ dτ =

(∫ ∞

0
eτΣΣ dτ

)
Σ−1 =

(
lim
τ→∞

eτΣ︸ ︷︷ ︸
=0n×n

− In
)
Σ−1 = −Σ−1

and ∫ ∞

0
A(τ) dτ = U

(∫ ∞

0
eτΣ dτ

)
V = −UΣ−1V ·

With definition (1.6), one now obtains (2.10). Before we continue with the proof, note that Σ ∈ OD+
n×n

and thus proposition 32 (in the appendix) guarantees that eτΣ is a nonnegative matrix with positive diag-

onal entries for every τ ≥ 0. The integral of this matrix is therefore a nonnegative matrix with positive

diagonal entries. It follows that Σ−1 is a nonpositive matrix with negative diagonal entries.

Now, using integration by parts,∫ ∞

0
τeτΣ dτ =

(∫ ∞

0
τeτΣΣ dτ

)
Σ−1 =

(
lim
τ→∞

τeτΣ︸ ︷︷ ︸
=0n×n

− 0× In −
∫ ∞

0
eτΣ dτ

)
Σ−1 = Σ−2,

so that ∫ ∞

0
τA(τ) dτ = U

(∫ ∞

0
τeτΣ dτ

)
V = UΣ−2V

and thus the generation time is

T :=

∫∞
0 τA(τ) dτ∫∞
0 A(τ) dτ

= −UΣ−2V

UΣ−1V
,

which corresponds to (2.12). Now, the Euler-Lotka equation is given by

1 = N

∫ ∞

0
e−λτA(τ) dτ,

i.e.,

1 = NU

(∫ ∞

0
e−τ(λIn−Σ) dτ

)
V ·

If λ ∈ σ(Σ), then 0 ∈ σ(λIn − Σ) and 1 ∈ σ
(
e−τ(λIn−Σ)

)
for each τ ≥ 0. In this case, the integral

diverges and thus λ cannot be a solution of the Euler-Lotka equation. We conclude that λ 6∈ σ(Σ) and

56



thus λIn − Σ is invertible. It is now easy to integrate:∫ ∞

0
e−τ(λIn−Σ) dτ =

(∫ ∞

0
e−τ(λIn−Σ) (λIn − Σ) dτ

)
(λIn − Σ)−1

=
(
In − lim

τ→∞
eτ(Σ−λIn)

)
(λIn − Σ)−1 ·

We will prove that κ(Σ − λIn) < 0. First, if κ(Σ − λIn) > 0, then proposition 33 (in the appendix)

guarantees that τ 7→eτ(Σ−λIn) diverges when τ → +∞. Now we will see that κ(Σ − λIn) = 0 implies

that λ ∈ σ(Σ) and thus λ could not be a solution of the Euler-Lotka equation. We start by noting that

µ ∈ σ(Σ− λIn) if and only if there is a nonzero vector v ∈ Cn×1 such that

(Σ− λIn)v = µv

or, equivalently,

Σv = (λ+ µ)v

i.e., λ+ µ ∈ σ(Σ). Then

k(Σ− λIn) = max
µ∈σ(Σ−λIn)

<(µ) = max
λ+µ∈σ(Σ)

<(λ+ µ)− λ = max
ϑ∈σ(Σ)

<(ϑ)− λ = κ(Σ)− λ·

Next, we prove that κ(Σ) is the greatest real eigenvalue of Σ:

1. letm := max{|Σkk| : k ∈ {1, . . . , n}}, so that Σ̃ = Σ +mIn is a nonnegative matrix;

2. by Perron-Frobenius theory (see [Varga, R.S., 2000, Chapter 2.3.]), one has that ρ(Σ̃) ∈ σ(Σ̃) and

thus ρ(Σ̃) is a real eigenvalue of Σ̃;

3. it follows that ρ(Σ̃) ∈ {<(µ̃) : µ̃ ∈ σ(Σ̃)} and, by definition of κ(·), ρ(Σ̃) ≤ κ(Σ̃);

4. on the other hand, also by definition of κ(·), there is µ̃ ∈ σ(Σ̃) such that <(µ̃) = κ(Σ̃) and thus

κ(Σ̃) = <(µ̃) ≤ |µ̃| ≤ ρ(Σ̃),

where the last inequality follows by definition of ρ(·);
5. we conclude that κ(Σ̃) = ρ(Σ̃) ∈ σ(Σ̃);

6. furthermore, with the same logic as for Σ− λIn (just letm = −λ), one has that

(a) µ ∈ σ(Σ̃) if and only if µ−m ∈ σ(Σ);

(b) κ(Σ̃) = κ(Σ) +m;

7. in particular, κ(Σ) = κ(Σ̃) −m ∈ σ(Σ), i.e., κ(Σ) is an eigenvalue of Σ and thus, by definition

of κ(·), κ(Σ) is the greatest real eigenvalue of Σ.
Therefore solutions of the Euler-Lotka equation satisfy κ(Σ− λIn) < 0 (if solutions exist). Proposition

33 (in the appendix) is applicable and now one can easily obtain (2.11).

Now, it is obvious that

f(λ) := NU(λIn − Σ)−1V

is a continuous function in ]κ(Σ),+∞[ satisfying

lim
λ→κ(Σ)+

f(λ) = +∞ and lim
λ→+∞

f(λ) = 0:

• continuity of f follows from continuity of the function that maps any invertible matrix to its inverse:

– the function λ 7→ λIn − Σ is clearly continuous;

– the functionM ∈ Mn×n 7→ detM is continuous, since it is a polynomial in the coefficients

ofM , and, ifMkj denotes the (n−1)×(n−1)matrix obtained fromM by removing the k-th
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row and the j-th column, then the functionM 7→ adjM :=
[
(−1)k+j det(Mkj)

]
j,k=1,...,n

is

continuous (each entry is a polynomial);

– in the set of invertible matrices, one has that the determinant is always nonzero and thus the

map M 7→ M−1 := 1
detM adjM is continuous, since both the numerator and denominator

are continuous functions and the denominator is never zero (in fact, this map is a rational

function);

– it follows that λ 7→ (λIn−Σ)−1 is a composition of continuous functions, hence continuous;

• if one looks at the integral form of f , i.e.,

f(λ) = NU

(∫ ∞

0
e−τ(λIn−Σ) dτ

)
V ,

then continuity of f implies that

lim
λ→κ(Σ)+

f(λ) = NU

(∫ ∞

0
e−τ(κ(Σ)In−Σ) dτ

)
V = +∞

(one has that the integral is nonnegative and that it diverges for every λ ∈ σ(Σ)).

• Lebesgue’s dominated convergence theorem (theorem 12 in the appendix) guarantees that

lim
k→+∞

∫ ∞

0
fk(τ) dτ = 0

where the sequence (fk)k∈N is defined by fk : [0,+∞[→ R, τ 7→ Ue−τ(kIn−Σ)V (these functions

are clearly continuous, thus measurable, and one can easily see that they are bounded by the inte-

grable function τ 7→ A(τ); furthermore, one can rewrite these functions as fk(τ) = e−kτUeτΣV

and conclude easily that fk → 0 when k → +∞). Then

lim
k→+∞

f(k) = N lim
k→+∞

∫ ∞

0
fk(τ) dτ = 0

and, since f is a positive nonincreasing function (demonstrated ahead), the limit exists (see e.g.

[Sarrico, 2015]) and thus

lim
λ→+∞

f(λ) = 0·

The intermediate value theorem (theorem 11 in the appendix) guarantees that the Euler-Lotka equation

f(λ) = 1 has a real root ρ̃ in ]κ(Σ),+∞[. One can see that

f ′(λ) = −NU(λIn − Σ)−2V ·

It is obvious that Σ − λIn and Σ have the same off-diagonal entries, and so Σ − λIn ∈ OD+
n×n (since

Σ ∈ OD+
n×n). Proposition 32 (in the appendix) guarantees that eτ(Σ−λIn) ∈ OD+

n×n with a positive

diagonal. Then

(λIn − Σ)−1 =

∫ ∞

0
eτ(λIn−Σ) dτ

is a nonnegative matrix with a positive diagonal. Now, there is τ̃ ∈ [0,+∞[ such that A(τ̃) > 0. One

notes that

A(τ) = UeτΣV =

n∑
k=1

n∑
j=1

Uk

(
eτΣ
)
kj
Vj
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is a sum of nonnegative terms. Thus there ism, ` ∈ {1, . . . , n} such that

Um

(
eτ̃Σ
)
m`

V` > 0,

i.e.,

Um > 0,
(
eτ̃Σ
)
m`

> 0, V` > 0·

By continuity, there is an open subset O ⊆ [0,+∞[ containing τ̃ such that(
eτΣ
)
m`

> 0 if τ ∈ O·

It follows that (
(λIn − Σ)−1

)
m`

=

(∫ ∞

0
e−τ(λIn−Σ) dτ

)
m`

=

∫ ∞

0
e−λτ

(
eτΣ
)
m`

dτ

=

∫
O
e−λτ︸︷︷︸
>0

(
eτΣ
)
m`︸ ︷︷ ︸

>0

dτ

︸ ︷︷ ︸
>0

+

∫
[0,+∞[\O

e−λτ︸︷︷︸
>0

(
eτΣ
)
m`︸ ︷︷ ︸

≥0

dτ

︸ ︷︷ ︸
≥0

> 0

and thus(
(λIn − Σ)−2

)
m`

=
n∑

j=1

(
(λIn − Σ)−1

)
mj

(
(λIn − Σ)−1

)
j`

=

n∑
j=1
j 6=`

(
(λIn − Σ)−1

)
mj︸ ︷︷ ︸

≥0

(
(λIn − Σ)−1

)
j`︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

+
(
(λIn − Σ)−1

)
m`︸ ︷︷ ︸

>0

(
(λIn − Σ)−1

)
``︸ ︷︷ ︸

>0︸ ︷︷ ︸
>0

> 0·

Finally

f(λ) = NU(λIn − Σ)−1V

= N

(
Um

(
(λIn − Σ)−1

)
m`

V`︸ ︷︷ ︸
>0

+

n∑
k=1
k 6=m

n∑
j=1
j 6=`

Uk

(
(λIn − Σ)−1

)
kj
Vj︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

)
> 0

and

f ′(λ) = −NU(λIn − Σ)−2V

= −N

(
Um

(
(λIn − Σ)−2

)
m`

V`︸ ︷︷ ︸
>0

+
n∑

k=1
k 6=m

n∑
j=1
j 6=`

Uk

(
(λIn − Σ)−2

)
kj
Vj︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

)
< 0·

Therefore f (is a positive function and) is a strictly decreasing function. One concludes that the Euler-

Lotka equation has exactly one real root ρ̃ in ]κ(Σ),+∞[.
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2.1.1 An alternative way of formulating compartmental models

Here, the starting point is the differential equation (1.1), where the force of infection Λ satisfies the

renewal equation (1.5). One makes the same assumptions as in section 1.1 and assumes that the expected

contribution to the force of infection at time τ after infection is given by (2.1) and that κ(Σ) < 0 (all

eigenvalues of Σ have negative real part). One introduces the n× 1 vector-valued function

Y (t) :=

∫ ∞

0
eτΣV Λ(t− τ)S(t− τ) dτ (2.13)

to count the individuals that are infected at time t: for each t ∈ R,
• the quantity Λ(t)S(t) gives the number of new cases per unit of time at time t;

• for each τ ≥ 0 and j ∈ {1, . . . , n}, we saw in the previous section that
(
eτΣV

)
k
denotes the (total)

proportion of individuals in the k-th state at time τ after infection;

• hence, for each τ ≥ 0,
(
eτΣV

)
k
Λ(t− τ)S(t− τ) gives the number of individuals in the k-th state

at time t that were infected at time t− τ ;

• viewing the integral as a sum, one concludes that Yk(t) is counting the number of individuals that

are in the k-th (infected) state at time t (and that were infected since the infinity past until this time).

t− τ t

Incidence: ΛS

(
eτΣV

)
k

is the proportion of
individuals in the k-th state
that were infected at time t− τ

τ

Fig. 2.2. Scheme explaining why Y defined in (2.13) counts the number of individuals that are infected

at time t.

One will now prove that Y satisfies an ODE (as was done for Z in the first part of this section):

Proposition 23. The quantity Y (t) given by (2.13) is a bounded function and satisfies the ordinary dif-

ferential equation
dY

dt
= ΣY + (ΛS)V · (2.14)

Proof. Let k ∈ {1, . . . , n}. It is clear that Yk(t) ≥ 0 for all t ∈ R (note that Λ ≥ 0, S ≥ 0, V is a

vector with nonnegative entries and, by proposition 32 in the appendix, eτΣ is a matrix with nonnegative

entries). On the other hand, one knows from section 1.1 that t 7→ Λ(t)S(t) is a bounded function, i.e.,

Λ(t)S(t) = |Λ(t)S(t)| ≤ C ∀t ∈ R

for some scalar C > 0. It follows that

Yk(t) ≤ C

((∫ ∞

0
eΣτ dτ

)
V

)
k

= C
((

lim
τ→∞

eτΣ − e0·Σ
)
Σ−1V

)
k
= −C

(
Σ−1V

)
k

for every t ∈ R. Hence ‖Y (t)‖ ≤ C‖Σ−1V ‖ for all t ∈ R and thus Y is a bounded function.
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Letting ν = t− τ in the integral, one obtains

Y (t) = etΣ
∫ t

−∞
e−νΣV Λ(ν)S(ν) dν,

and now, by differentiating, it follows that Y satisfies the differential equation

dY

dt
(t) = Σ etΣ

∫ t

−∞
e−νΣV Λ(ν)S(ν) dν︸ ︷︷ ︸

=Y (t)

+��e
tΣ
�

��e−tΣV Λ(t)S(t)︸ ︷︷ ︸
scalar quantity

i.e., we obtain equation (2.14).

The following proposition shows a relation between the number (in fact a vector with numbers) of

infected individuals Y and the force of infection Λ:

Proposition 24. The quantity Y (t) given by (2.13) is such that Λ(t) = UY (t).

Proof. Immediate by plugging (2.1) into (1.5).

Definition 6. The ODE system 

dS

dt
= −ΛS

dY

dt
= ΣY + (ΛS)V

Λ = UY

(2.15)

is called the standard form of the compartmental model corresponding to Σ, U and V .

Next, we go back to the first part of this section and show that the vector-valued function Z is in fact

the integral of Y :

Proposition 25. The function Z, defined in (2.5), is the integral of Y , i.e.,

Z(t) =

∫ t

−∞
Y (ν) dν. (2.16)

Proof. Integrating the expression (2.13), that defines Y (t), in ]− t0, t[ (t > −t0), one has∫ t

−t0

Y (ν) dν =

∫ t

−t0

∫ ∞

0
eτΣV Λ(ν − τ)S(ν − τ) dτ dν

=

∫ ∞

0
eτΣV

(∫ t

−t0

−dS

dν
(ν − τ) dν

)
dτ

=

∫ ∞

0
eτΣV [S(−t0 − τ)− S(t− τ)] dτ

where in the second line, the change in the order of the integrals follows from Fubini’s theorem (theorem

13 in the appendix) applied to each coordinate 19 and one used equation (1.1). Assuming, for simplicity,

that t0 ∈ N (the case t0 ∈ R follows by the existence of the limit20), one can now apply Lebesgue’s

19One should use the fact that t 7→ Λ(t)S(t) is a bounded function and the existence of Σ−1 to prove

integrability (in the product space).
20Let f(t0) :=

∫ t
−t0

Y (ν) dν. It’s easy to see that the k − th coordinate of f is bounded above:

fk ≤ −N
(
Σ−1V

)
k
. Furthermore, each coordinate of f is nondecreasing: f ′

k(t0) = Yk(−t0) ≥ 0. Thus
the limit lim

t0→+∞
f(t0) exists (see e.g. [Sarrico, 2015]).
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dominated convergence theorem (theorem 12 in the appendix) to each coordinate and obtain∫ t

−∞
Y (ν) dν := lim

t0→+∞

∫ t

−t0

Y (ν) dν

= lim
t0→+∞

∫ ∞

0
eτΣV [S(−t0 − τ)− S(t− τ)] dτ

=

∫ ∞

0
eτΣV

[
lim

t0→+∞
S(−t0 − τ)− S(t− τ)

]
dτ

=

∫ ∞

0
eτΣV [N − S(t− τ)] dτ

=

∫ ∞

0
eτΣV N (1− s(t− τ)) dτ [by the definition of the proportion s]

=

∫ ∞

0
eτΣVΨ(w(t− τ)) dτ [using (1.12) and then (1.14)]

= Z(t) [by equation (2.5)].

We can now use (the proof of) proposition 25 to arrive at the integrated form (2.6): since

Z(t) =

∫ ∞

0
eτΣVΨ(w(t− τ)) dτ

and the change of variable ν = t− τ leads to

Z(t) = etΣ
∫ t

−∞
e−νΣVΨ(w(ν)) dν,

then one only needs to differentiate and use equation (2.4) to obtain the integrated form.

Remark 22. One should note that the integrated form (2.6) has dimensionnwhile the standard form (2.15)

has dimension n + 1. So, in terms of dimensions, the integrated form has the advantage. Furthermore,

one can extend immaculately the integrated form to the separable heterogeneous setting (while it is not

as easy for the standard form, as we will see in the next section).

Now, we follow with two basic examples to illustrate the integrated formalism: the SIR model and

the SEIR model.

Example 6 (SIR model). The standard form of the SIR model is given by
dS

dt
= −βIS

dI

dt
= βIS − αI

,

where β is the per capita contribution to the force of infection and α is the rate at which individuals leave

the infected compartment. Here, there is only one infected state I , so that n = 1 and Y (t) = I(t). The

force of infection is clearly Λ(t) = βI(t), the state transition matrix is Σ = −α and one has clearly

U = β and V = 1. The expected contribution to the force of infection is

A(τ) = UeτΣV = βe−ατ ·
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The integrated form is
dZ

dt
= −αZ +Ψ(βZ) (2.17)

where Z(t) =
∫ t
−∞ I(ν) dν. One can see that

w(t) =

∫ t

−∞
Λ(ν) dν = β

∫ t

−∞
I(ν) dν = βZ(t) = UZ(t)·

Example 7 (SEIR model). The standard form of the SEIR model is given by

dS

dt
= −βIS

dE

dt
= βIS − γE

dI

dt
= γE − αI

,

where β is the per capita contribution to the force of infection, γ is the rate at which individuals leave

the exposed compartment and α is the rate at which individuals leave the infectious compartment. Here,

there are two infected states E and I , so that n = 2 and Y (t) =

[
E(t)

I(t)

]
. The force of infection is

Λ(t) = βI(t), the state transition matrix is Σ =

[
−γ 0

γ −α

]
and one has clearly U =

[
0 β

]
and

V =

[
1

0

]
. The expected contribution to the force of infection is

A(τ) = UeτΣV =

βγe−γτ if γ = α
βγ

α− γ
(e−γτ − e−ατ ) if γ 6= α

(one can see the calculations in example 4, in the first part of this section). The integrated form is

dZ

dt
=

[
−γ 0

γ −α

]
Z +

[
1

0

]
Ψ
([

0 β
]
Z
)

(2.18)

i.e., 
dZ1

dt
= −γZ1 +Ψ(βZ2)

dZ2

dt
= γZ1 − αZ2

where

Z(t) =

[
Z1(t)

Z2(t)

]
=

[∫ t
−∞E(ν) dν∫ t
−∞ I(ν) dν

]
·

One can see that

w(t) =

∫ t

−∞
Λ(ν) dν = β

∫ t

−∞
I(ν) dν = βZ2(t) = UZ(t)·
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2.2 Taking heterogeneity into account

Here we consider a host population where individuals are characterized by a certain trait21, say ω ∈ Ω

withΩ a measurable space. With this formulation, one has that ω may be a discrete variable, a continuous

variable or a mixture of these two (i.e., ω may have both a discrete and a continuous component). Now

the expected contribution to the force of infection, A, has three arguments:

• ω: trait value of the individual that is at risk of becoming infected;

• η: trait value of the infected individual;

• τ : time-since-infection of the infected individual;

i.e., A = A(τ, ω, η) is the expected contribution to the force of infection on (susceptible) individuals of

trait ω by an individual of trait η that was itself infected τ units of time ago.

The objective is to study the implementation of heterogeneity whether the trait set Ω is discrete (e.g.,

a finite set) or continuous. For this generalization, one considers that the population composition is

described by:

• a probability measure22 Φ on Ω;

• for any t ∈ R, a bounded measurable function s(t, ·) such that a fraction s(t, ω) of the individuals
with trait ω is still susceptible at time t (i.e., s(t, ω) is the probability that an individual with trait

ω is susceptible at time t and s(−∞, ω) := lim
t→−∞

s(t, ω) = 1).

The differential equation that describes the number (or rather the proportion) of susceptibles is but

just a reformulation of ODE (1.1):

∂s

∂t
(t, ω) = −Λ(t, ω)s(t, ω) (2.19)

whereΛ(t, ω) is the force of infection on (susceptible) individuals of trait ω at time t. In the samemanner,

the renewal equation (1.5), that describes the force of infection, can be rewritten as

Λ(t, ω) = N

∫ ∞

0

∫
Ω
A(τ, ω, η)Λ(t− τ, η)s(t− τ, η)Φ(dη) dτ. (2.20)

A special case

Assume that there are nonnegative measurable functions (not identically 0) a, b and c such

that

A(τ, ω, η) := a(ω)b(τ)c(η)· (2.21)

Here, one has

• a(ω) is the susceptibility of individuals with trait ω;

• c(η) is the infectiousness of individuals with trait η.

Remark 23. One can assume that b is integrable in [0,∞[, and a and c are integrable in Ω with respect to

the measure Φ.

21An individual keeps the same trait throughout its life.
22ThemeasureΦ describes the probability distribution of the trait in the host population. In particular, if

Ω is a discrete space andΦ is a discrete measure, thenΦ({ω}) can be seen as the proportion of individuals
with trait ω ∈ Ω.
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One starts by obtaining a simpler formula for the cumulative force of infection, in this special case.

Proposition 26. The force of infection on susceptible individuals of traitω is a product of the susceptibility

a(ω) and a function of time. Furthermore, the cumulative force of infection on susceptible individuals of

trait ω is of the form ∫ t

−∞
Λ(ν, ω) dν = a(ω)w(t), (2.22)

for some function w of t.

Proof. With (2.21), the renewal equation (2.20) gives

Λ(t, ω) = N

∫ ∞

0

∫
Ω
a(ω)b(τ)c(η)Λ(t− τ, η)s(t− τ, η)Φ(dη) dτ,

i.e.,

Λ(t, ω) = a(ω) ·N
∫ ∞

0

∫
Ω
b(τ)c(η)Λ(t− τ, η)s(t− τ, η)Φ(dη) dτ︸ ︷︷ ︸

=:W (t), a function of time t

·

Hence

Λ(t, ω) = a(ω)W (t)

and (2.22) follows by taking w as the integral ofW , i.e.,

w(t) :=

∫ t

−∞
W (ν) dν·

Now, one gets a really nice expression for the solution of (2.19) that satisfies s(−∞, ω) = 1 for all

ω ∈ Ω:

Proposition 27. The solution of (2.19) that satisfies s(−∞, ω) = 1 for all ω ∈ Ω is given by:

s(t, ω) = e−a(ω)w(t)· (2.23)

Proof. From (2.19), it is clear that

s(t, ω) exp

{∫ t

t0

Λ(ν, ω) dν

}
= s(t0, ω)

for some real number t0. Now, by hypothesis,

s(−∞, ω) := lim
t→−∞

s(t, ω) = 1 ∀ω ∈ Ω,

and thus the second side of the obtained expression converges when t0 → −∞. We conclude that the

first side must converge when t0 → −∞. Hence one can take the limit when t0 → −∞ and obtain

s(t, ω) exp

{∫ t

−∞
Λ(ν, ω) dν

}
= s(−∞, ω),

i.e.,

s(t, ω) exp

{∫ t

−∞
Λ(ν, ω) dν

}
= 1·
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Therefore

s(t, ω) = exp

{
−
∫ t

−∞
Λ(ν, ω) dν

}
and, with (2.22), one obtains (2.23).

Finally, a proposition very similar to proposition 4 is given:

Proposition 28. The function w defined in proposition 26 satisfies:

w(t) =

∫ ∞

0
b(τ)Ψ(w(t− τ)) dτ (2.24)

with Ψ now defined by

Ψ(w) := N

∫
Ω
c(η)

(
1− e−a(η)w

)
Φ(dη)· (2.25)

Proof. Choosing t0 ∈ N, integratingW in ]− t0, t] (for t > −t0) and using (2.19), one obtains∫ t

−t0

W (ν) dν = N

∫ t

−t0

∫ ∞

0

∫
Ω
b(τ)c(η)

[
−∂s

∂ν
(ν − τ, η)

]
Φ(dη) dτ dν·

Now, Φ is a probability measure in Ω and so Φ(Ω) = 1. By example 15 (in the appendix),∫ t

−t0

W (ν) dν = N

∫ ∞

0

∫
Ω
b(τ)c(η)[s(−t0 − τ, η)− s(t− τ, η)] Φ(dη) dτ ·

By example 16 (in the appendix),

lim
k→+∞

∫ t

−k
W (ν) dν =

∫ ∞

0

∫
Ω
b(τ)c(η)[1− s(t− τ, η)] d(Φ(η), τ)·

By the existence of the limit23, we conclude that∫ t

−∞
W (ν) dν := lim

t0→+∞

∫ t

−t0

W (ν) dν = N

∫ ∞

0

∫
Ω
b(τ)c(η)[1− s(t− τ, η)] Φ(dη) dτ ·

Finally, by using (2.23), one has∫ t

−∞
W (ν) dν = N

∫ ∞

0
b(τ)

(∫
Ω
c(η)

[
1− ea(ω)w(t−τ)

]
Φ(dη)

)
dτ

and, with (2.25), one obtains (2.24).

Remark 24. Equations (1.13) and (2.24) are essentially the same.

Remark 25. When a and c are identically equal to 1 (homogeneous case), (2.25) reduces to (1.14).

Remark 26. When a is identically equal to 1, definition (2.25) gives

Ψ(w) = N(1− e−w)

∫
Ω
c(η)Φ(dη)

and thus one can work with the average value of c.

23Let f(t0) =
∫ t
−t0

W (ν) dν. Since b and c are nonnegative and integrable in their domains, then

is easy to see that f is bounded above. On the other hand, f ′
k(t0) = Wk(−t0) ≥ 0 and thus fk is a

nondecreasing function. We conclude that the limit lim
t0→+∞

f(t0) exists (see e.g. [Sarrico, 2015].
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Remark 27. When b(τ) = UeτΣV with the same assumptions as (2.1), then the study done in section

2.1 is valid for this case (just switch A(τ) by b(τ) and redefine Ψ). Therefore to integrate separable

heterogeneity into the integrated formulation of a compartmental model, it suffices to redefine the

function Ψ.

Next one sees that incorporation of heterogeneity into the standard form is not as simple as in the

integrated form. Here, it is assumed that b(τ) is of the form (2.1), i.e.,

Let n ∈ N be the number of infected states in a certain population and suppose

b(τ) := UeτΣV ,

where τ ≥ 0 and

• Σ ∈ OD+
n×n is a matrix that generates the Markov chain dynamics of the infected states,

i.e., it describes the state transitions of the infected;

• U ∈ M+
1×n is a (row) vector such that its k-th component gives the contribution to the force

of infection of an individual in the k-th (infected) state;

• V ∈ M+
n×1 is a (column) vector representing the probability distribution of the state-at-

infection.

The objective now is to take the standard form (2.15) and incorporate separable static heterogeneity

as described by

• the trait space Ω;

• the trait distribution Φ;

• the relative trait-specific susceptibility a;

• the trait-specific infectiousness c.

Here relative means that one chooses a representative ω̄ ∈ Ω such that a(ω̄) = 1, always possible if

one swaps the function a(ω) by
a(ω)

a(ω̄)

where ω̄ ∈ Ω is such that a(ω̄) 6= 0 (existent by hypothesis).

With this choice, one obtains the following result:

Proposition 29. Let ω ∈ Ω. The fraction of the individuals with trait ω that escaped infection until time

t is given by

s(t, ω) = s̄(t)a(ω), (2.26)

where s̄(t) := s(t, ω̄). Furthermore,

w(t) = − ln s̄(t)· (2.27)

Proof. By proposition 27, the fraction of the individuals with trait ω that are still susceptible until time t

is given by (2.23). In particular,

s(t, ω̄) = e−a(ω̄)w(t)

and, given that a(ω̄) = 1 by hypothesis, one obtains

s̄(t) = e−w(t)·

Equations (2.26) and (2.27) now follow.

67



Remark 28. The previous proposition shows that to determine s(t, ω) or w(t), it suffices to know s̄(t).

Corollary 2. The total proportion of susceptibles at time t is given by

stotal(t) =

∫
Ω
s̄(t)a(ω)Φ(dω)· (2.28)

Now, in analogy with (2.13), one introduces the trait-specific n× 1 vector-valued function

y(t, η) :=

∫ ∞

0
eτΣV Λ(t− τ, η)s(t− τ, η) dτ (2.29)

to count the number of infected individuals with trait η at time t, and then one defines the weighted

average

Y (t) := N

∫
Ω
c(η)y(t, η)Φ(dη)· (2.30)

As was done in the previous section, define the n× 1 vector-valued function Z by (2.5), where Ψ is

given by (2.25). Then Z is the integral of Y , i.e.:

Proposition 30. Let Y be defined by (2.30), where y is defined by (2.29). The function Z, defined in

(2.5), where Ψ is given by (2.25), is the integral of Y , i.e.,

Z(t) =

∫ t

−∞
Y (ν) dν·

Proof. The proof is very similar to the proof of proposition 25: one starts with the same integral, applies

Fubini’s theorem (theorem 13 in the appendix) to each coordinate two times and obtains, after integrating

in order to ν,∫ t

−t0

Y (ν) dν = N

∫
Ω
c(η)

[∫ ∞

0
eτΣV (s(−t0 − τ, η)− s(t− τ, η)) dτ

]
Φ(dη)·

Now, as was done there, one applies Lebesgue’s dominated convergence theorem (theorem 12 in the

appendix) to each coordinate and uses (2.23) to obtain∫ t

−∞
Y (ν) dν :=

∫ t

−t0

Y (ν) dν = N

∫
Ω
c(η)

[∫ ∞

0
eτΣV

(
1− e−a(η)w(t−τ)

)
dτ

]
Φ(dη)·

Applying Fubini’s theorem to each coordinate, using (2.25) and (2.5), one obtains the desired result.

We are finally prepared to formulate the standard form which takes into account the separable static

heterogeneity:

Theorem 9. The heterogeneous compartmental model system consisting of the integrated form (2.6),

with Ψ defined by (2.25), has the standard form representation

ds̄

dt
= −Λ̄s̄

dY

dt
= ΣY +

(
Λ̄Ψ′(− ln s̄)

)
V

Λ̄ = UY

(2.31)

where s̄(t) = s(t, ω̄) and Λ̄(t) = Λ(t, ω̄). Furthermore,

Ψ′(w) = N

∫
Ω
c(η)a(η)e−a(η)w Φ(dη)· (2.32)
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Proof. Using equation (2.19),

ds̄

dt
=

(
∂s

∂t
(t, ω)

)∣∣∣∣
ω=ω̄

= (−Λ(t, ω)s(t, ω))|ω=ω̄ = −Λ(t, ω̄)s(t, ω̄) = −Λ̄(t)s̄(t)·

Now,

A(τ, ω̄, η) = a(ω̄)︸︷︷︸
=1

b(τ)c(η) = UeτΣV c(η)

and, by applying Fubini’s theorem (theorem 13 in the appendix) to each coordinate,

Λ̄(t) = Λ(t, ω̄)

= U ·N
∫ ∞

0

∫
Ω
c(η)eτΣV Λ(t− τ, η)s(t− τ, η)Φ(dη) dτ

= U

[
N

∫
Ω
c(η)

(∫ ∞

0
eτΣV Λ(t− τ, η)s(t− τ, η) dτ︸ ︷︷ ︸

=y(t,η)

)
Φ(dη)

]

= U

[
N

∫
Ω
c(η)y(t, η)Φ(dη)

]
= UY (t)

where definitions (2.29) and (2.30) were used.

Finally, by proposition 30, one has that Z is the integral of Y and thus

Y =
dZ

dt
·

Now, since Z satisfies (2.6), one has

Y = ΣZ + VΨ(UZ)

and, differentiating,

dY

dt
= Σ

dZ

dt
+

(
U
dZ

dt
Ψ′(UZ)

)
V = ΣY +

(
UYΨ′(UZ)

)
V ·

It is already proven that Λ̄ = UY . On the other hand, by proposition 21 and by equation (2.27), one has

the following identity UZ = − ln s̄. It follows that

dY

dt
= ΣY +

(
Λ̄Ψ′(− ln s̄)

)
V ·

Equation (2.32) follows by differentiating equation (2.25).

2.3 Examples

The Gamma Distribution

TakeΩ =]0,∞[ and letΦ be the GammaDistribution with mean 1 and variance p−1 (for some p > 0),

i.e., the density of Φ is given by

φ :]0,∞[→]0,∞[, ω 7→ pp

Γ(p)
ωp−1e−pω

Assume that the trait corresponds directly to the relative susceptibility, i.e., a(ω) = ω. Then, by
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definition (2.25),

Ψ(w) = N

∫ ∞

0
c(η)

(
1− e−ηw

)
Φ(dη) = N

∫ ∞

0
c(η)

(
1− e−wη

)
φ(η) dη.

Choose c(η) = c1η + c2 for some c1, c2 ≥ 0 with c1 6= 0 or c2 6= 0. In this case, one will see that

Ψ is easily calculated with the use of the Laplace Transform (see the last part of the appendix for more

details) Φ̂ of φ. One has:

Ψ(w) = N

[∫ ∞

0
(c1η + c2)φ(η) dη −

∫ ∞

0
(c1η + c2)φ(η)e

−wη dη

]
·

Now, for λ ∈ C,∫ ∞

0
(c1η + c2)φ(η)e

−λη dη = L{(c1η + c2)φ(η)} (λ)

= c1L{ηφ(η)} (λ) + c2L{φ(η)} (λ)

= −c1
dΦ̂

dλ
(λ) + c2Φ̂(λ)

where L{f} (λ) denotes the Laplace Transform of f at λ ∈ C. One has

Φ̂(λ) := L
{

pp

Γ(p)
ηp−1e−pη

}
(λ)

=
pp

Γ(p)
L
{
ηp−1e−pη

}
(λ)

=
pp

Γ(p)
L
{
ηp−1

}
(λ+ p)

=
pp

���Γ(p)
���Γ(p)

(λ+ p)p

=

(
λ

p
+ 1

)−p

for λ ∈ C such that <(λ) > −p. Differentiating, one gets

dΦ̂

dλ
(λ) = −p

1

p

(
λ

p
+ 1

)−p−1

= −
(
λ

p
+ 1

)−p−1

·

It follows that ∫ ∞

0
(c1η + c2)φ(η)e

−λη dη = c1

(
λ

p
+ 1

)−p−1

+ c2

(
λ

p
+ 1

)−p

for λ ∈ C such that <(λ) > −p.

It is clear that <(0) > −p. Then∫ ∞

0
(c1η+ c2)φ(η) dη =

∫ ∞

0
(c1η+ c2)φ(η)e

−0·η dη = c1

(
0

p
+ 1

)−p−1

+ c2

(
0

p
+ 1

)−p

= c1+ c2·

Now, for w ≥ 0, one has <(w) = w > −p and so∫ ∞

0
(c1η + c2)φ(η)e

−wη dη = c1

(
w

p
+ 1

)−p−1

+ c2

(
w

p
+ 1

)−p

·
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Therefore

Ψ(w) = N

[
(c1 + c2)−

(
c1

(
w

p
+ 1

)−p−1

+ c2

(
w

p
+ 1

)−p
)]

,

i.e.,

Ψ(w) = N

[
c1

(
1−

(
w

p
+ 1

)−p−1
)

+ c2

(
1−

(
w

p
+ 1

)−p
)]

·

In particular, if the trait has no influence on infectiousness, i.e., with c ≡ 1 (c1 = 0, c2 = 1), we have

Ψ(w) = N

[
1−

(
w

p
+ 1

)−p
]
,

while if infectiousness too is correspondent to the trait, i.e., with c(η) = η (c1 = 1, c2 = 0), we have

Ψ(w) = N

[
1−

(
w

p
+ 1

)−p−1
]
·

Now we obtain easily an expression for the total proportion of susceptibles stotal in terms of s̄:

stotal =

∫ ∞

0
s̄ω Φ(dω) =

∫ ∞

0
φ(ω)e−(− ln s̄)ω dω = Φ̂(− ln s̄) =

(
− ln s̄

p
+ 1

)−p

where in the last equality we use the fact that p > 0 and s̄ < 1, and so <(− ln s̄) = − ln s̄ > 0 > −p.

Differentiating

dstotal
dt

=��−p

(
− ln s̄

p
+ 1

)−p−1(
�
�
�−1

p

1

s̄

ds̄

dt

)
=

1

s̄

ds̄

dt︸︷︷︸
=−Λ̂

(
− ln s̄

p
+ 1︸ ︷︷ ︸

=s
− 1

p
total

)−p−1

= −Λ̂s
1+ 1

p

total ·

We can thus obtain the standard form using stotal instead of s̄.

The next step is to differentiate the expression for Ψ:

Ψ′(w) = N

[
−c1(−p− 1)

1

p

(
w

p
+ 1

)−p−2

− c2(−p)
1

p

(
w

p
+ 1

)−p−1
]

= N

(
w

p
+ 1

)−p−1
[
c2 + c1

(
1 +

1

p

)(
w

p
+ 1

)−1
]

and

Ψ′(− ln s̄) = N

(
− ln s̄

p
+ 1

)−p−1
[
c2 + c1

(
1 +

1

p

)(
− ln s̄

p
+ 1

)−1
]
·

It is clear that

− ln s̄ = ps
− 1

p

total − p·

Now, by defining Υ(s) := Ψ′
(
ps

− 1
p − p

)
, one gets

Υ(s) = N
(
s
− 1

p

)−p−1
[
c2 + c1

(
1 +

1

p

)(
s
− 1

p

)−1
]
,

i.e.,

Υ(s) = Ns
1+ 1

p

[
c2 + c1

(
1 +

1

p

)
s

1
p

]
·
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In particular,

Υ(s) =


Ns

1+ 1
p if c ≡ 1

N

(
1 +

1

p

)
s
1+ 2

p if c(η) = η
·

One should note that Υ(stotal) = Ψ′(− ln s̄).

Therefore the standard form (2.31) is, in this particular case, given by

dstotal
dt

= −Λ̄s
1+ 1

p

total

dY

dt
= ΣY +

(
Λ̄Υ (stotal)

)
V

Λ̄ = UY

with stotal instead of s̄.

Other examples

Example 8 (SEIR model with asymptomatic infection and quarantine). Here we show the relation be-

tween the model ingredients U , Σ and V and the diagram that represents the model. It is shown the

relation between the compartmental model, the standard form (2.15) and the integrated form (2.6). We

will also calculate some basic indices for the model (see proposition 22): the basic reproduction number

R0, the generation time T and the Euler-Lotka equation.

In the following scheme, it is represented a SEIR model with asymptomatic infection and quarantine:

S

E1

E2

I1

I2

R

Q

Λ1

Λ2

γ1

γ2 θ

δ

α1

α2

Fig. 2.3. SEIR compartmental model with asymptomatic infection and quarantine. Upon infection, indi-

viduals are separated into two subgroups: asymptomatic (with index 1) and symptomatic (with index 2).
The force of infection responsible for infected individuals of type j is Λj (for j ∈ {1, 2}). Individuals
move from the j-th latent compartment Ej to the j-th infectious compartment Ij at a rate γj and move

from this to compartment R at a rate αj (j ∈ {1, 2}). Furthermore, symptomatic infectious individuals

(I2) go to quarantine (Q) at a rate θ. FromQ, individuals go to compartment R at a rate δ. Here, the host
population is assumed to be demographically closed and, in particular, births and deaths (not due to the

disease) are ignored.

We denote asymptomatic individuals by index 1 and symptomatic by index 2, and we assume they

occur with ratio p : 1− p, with p ∈]0, 1[ a parameter. I.e., if Λ is the force of infection, then the force of

infection responsible for asymptomatic infectious individuals is Λ1 = pΛ whereas the force of infection

responsible for symptomatic infectious individuals is Λ2 = (1 − p)Λ. The asymptomatic individuals

follow the “usual” model whereas the symptomatic individuals may be put in quarantine as the symptoms
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appear. Here, the compartment of quarantined individuals is denoted by Q. Furthermore, for j ∈ {1, 2},
• individuals move from Ej to Ij at a rate γj ;

• individuals move from Ij to R at a rate αj ;

• individuals move from I2 to Q at a rate θ;

• individuals move from Q to R at a rate δ.

We define the 4-vector Y by

Y =


E1

E2

I1

I2


to count the number of infected individuals that are not quarantined (for k ∈ {1, 2, 3, 4}, the k − th

infected state is the k-th component of Y ). We note that

S + E1 + E2 + I1 + I2 +Q+R

is constant along time. Furthermore, from the diagram, we see that
dQ

dt
= θI2 − δQ and thus one can

obtain an expression for Q if given an expression for I2. Therefore it is irrelevant to include Q in our

vector Y . Now, an individual who was just infected is not yet infectious and so the probability to enter

the compartment I1 or I2 is 0; for j ∈ {1, 2}, the probability to enter compartment Ej is given by
Λj

Λ .

Hence the vector V , that represents the probability distribution of the state-at-infection, can be defined

by

V =


p

1− p

0

0

 ·

The matrix Σ, that describes the state transitions of the infected, is defined by

Σ =


−γ1 0 0 0

0 −γ2 0 0

γ1 0 −α1 0

0 γ2 0 −(α2 + θ)

 ,

since each element Σk` (k 6=`) represent the transition rate from state ` to state k while −Σkk represent

the rate at which individuals leave state k.

Now, since individuals in compartments E1 and E2 are not yet infectious, then the vector U , that gives

the contribution to the force of infection by an individual, can be defined by

U =
[
0 0 β1 β2

]
,

where βj is the per capita contribution to the force of infection Λj (j ∈ {1, 2}).
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The standard form (2.15) leads to the system of equations

Λ = β1I1 + β2I2

dS

dt
= −(β1I1 + β2I2)S

dE1

dt
= −γ1E1 + p(β1I1 + β2I2)S

dE2

dt
= −γ2E2 + (1− p)(β1I1 + β2I2)S

dI1
dt

= γ1E1 − α1I1

dI2
dt

= γ2E2 − (α2 + θ)I2

which, with dQ
dt = θI2−δQ and dR

dt = α1I1+α2I2+δQ, is exactly the compartmental model schematized

in figure 2.3.

Now, by defining Z by (2.16), one obtains the integrated form (2.6). Indeed, one has

Z(t) =

∫ t

−∞
Y (ν) dν =


∫ t
−∞E1(ν) dν∫ t
−∞E2(ν) dν∫ t
−∞ I1(ν) dν∫ t
−∞ I2(ν) dν


and

UZ(t) =

∫ t

−∞
(β1I1(ν) + β2I2(ν)) dν =

∫ t

−∞
− 1

S

dS

dt
dt = lnS(−∞)− lnS(t) = ln

N

S(t)
;

then, since Ψ is the number of individuals that are no longer susceptible,

Ψ(UZ(t)) = N − S(t) =

∫ t

−∞

(
−dS

dν
(ν)

)
dν =

∫ t

−∞
(β1I1(ν) + β2I2(ν))S(ν) dν

and now one easily sees that

ΣZ(t) + VΨ(UZ(t)) =



∫ t
−∞

(
dE1

dν
(ν)

)
dν∫ t

−∞

(
dE2

dν
(ν)

)
dν∫ t

−∞

(
dI1
dν

(ν)

)
dν∫ t

−∞

(
dI2
dν

(ν)

)
dν


=


E1(t)−�����E1(−∞)

E2(t)−�����E2(−∞)

I1(t)−����I1(−∞)

I2(t)−����I2(−∞)

 = Y (t) =
dZ

dt
(t)·

We follow with the calculation of some basic indices. It is not difficult to calculate

Σ−1 =


− 1

γ1
0 0 0

0 − 1
γ2

0 0

− 1
α1

0 − 1
α1

0

0 − 1
α2+θ 0 − 1

α+θ


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and

Σ−2 =


1
γ2
1

0 0 0

0 1
γ2
2

0 0

1
α1

(
1
γ1

+ 1
α1

)
0 1

α2
1

0

0 1
α2+θ

(
1
γ2

+ 1
α2+θ

)
0 1

(α+θ)2

 ·

Definition (2.10) leads to

R0 = N

[
p
β1
α1

+ (1− p)
β2

α2 + θ

]
·

Furthermore, definition (2.12) leads to

T =
p β1

α1

(
1
γ1

+ 1
α1

)
+ (1− p) β2

α2+θ

(
1
γ2

+ 1
α2+θ

)
p β1

α1
+ (1− p) β2

α2+θ

·

Now, in this case, κ(Σ) = −min{γ1, γ2, α1, α2 + θ. For λ > κ(Σ), one has

(λI4 − Σ)−1 =



1

λ+ γ1
0 0 0

0
1

λ+ γ2
0 0

γ1
(λ+ γ1)(λ+ α1)

0
1

λ+ α1
0

0
γ2

(λ+ γ2)(λ+ (α2 + θ))
0

1

λ+ (α2 + θ)


and

U(λI4 − Σ)−1V = p
β1γ1

(λ+ γ1)(λ+ α1)
+ (1− p)

β2γ2
(λ+ γ2)(λ+ (α2 + θ))

,

so the Euler-Lotka equation (2.11) is given by

N

[
p

β1γ1
(λ+ γ1)(λ+ α1)

+ (1− p)
β2γ2

(λ+ γ2)(λ+ (α2 + θ))

]
= 1·

Example 9 (Immune system related heterogeneity). We distinguish between standard individuals, which

we label 1, and partially immune individuals, which we label 2. The relative susceptibility of type 2

individuals is given by the parameter a2 while the infectiousness is given by the parameter c2. With our

notation,

Ω = {1, 2}, a(ω) =

1 if ω = 1

a2 if ω = a2
, c(η) =

1 if η = 1

c2 if η = c2
·

Furthermore, since ω̄ is chosen such that a(ω̄) = 1, we can take ω̄ = 1.

Let N1 and N2 be the size of the subpopulation of individuals of type 1 and 2, respectively, so that

N = N1 + N2. Thus Φ has components N1 and N2, i.e., for an integrable function (relatively to the

measure Φ) f , ∫
Ω
f(ω) dΦ(ω) = f(1)

N1

N
+ f(2)

N2

N

and ∫
{j}

f(ω) dΦ(ω) = f(j)
Nj

N
(j ∈ Ω)·
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Equation (2.25) gives

Ψ(w) = N

[
c(1)

(
1− e−a(1)w

) N1

N
+ c(2)

(
1− e−a(2)w

) N2

N

]
= N1

(
1− e−w

)
+N2c2

(
1− e−a2w

)
and, differentiating,

Ψ′(w) = N1e
−w +N2a2c2e

−a2w,

which corresponds to equation (2.32). One can now assume we are in a population described by an SEIR

model with asymptomatic infection and quarantine, and use U , Σ and V , determined in the previous

example, to obtain the integrated form and the standard form.

Example 10 (Heterosexually transmitted disease and the impact of promiscuity). In our results, we have

considered A(τ) as a scalar function. In this example, we will see that it can be useful to consider A(τ)

as a matrix function.

We start by noting that here one should consider two subgroups of the population: males (denoted by

index 1) and females (denoted by index 2). First we consider these subpopulations to be homogeneous.

Later, we will introduce a trait representing promiscuity.

Let Λj be the force of infection of the subpopulation j (j ∈ {1, 2}). The expected contribution to the

force of infection can be defined by

A(τ) :=

[
0 A12(τ)

A21(τ) 0

]
,

where the (k, j)-th element Akj(τ) is the expected contribution to the force of infection Λk by an indi-

vidual of type j with age of infection τ . A female cannot infect a female and a male cannot infect a male.

Hence A(τ) is a matrix with 0 on the diagonal entries.

Let Sj denote the size of the susceptible population of type j (j ∈ {1, 2}). As usual, the size of the

susceptible population follows the model

dSj

dt
= −ΛjSj

where [
Λ1(t)

Λ2(t)

]
:=

∫ ∞

0
A(τ)

[
Λ1(t− τ)S1(t− τ)

Λ2(t− τ)S2(t− τ)

]
dτ,

i.e.,

Λ1(t) =

∫ ∞

0
A12(τ)Λ2(t− τ)S2(t− τ) dτ and Λ2(t) =

∫ ∞

0
A21(τ)Λ1(t− τ)S1(t− τ) dτ ·

The cumulative force of infection is now a vector and can be defined as

w(t) =

[
w1(t)

w2(t)

]
:=

[∫ t
−∞ Λ1(ν) dν∫ t
−∞ Λ2(ν) dν

]
·

We obtain the renewal equation

w(t) =

∫ ∞

0
A(τ)Ψ(w(t− τ)) dτ,
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with

Ψ(w) :=

[
N1 (1− e−w1)

N2 (1− e−w2)

]
where N1 denotes the total size of the male population and N2 denotes the total size of the female popu-

lation. I.e.,

w1(t) = N2

∫ ∞

0
A12(τ)

(
1− e−w2(t−τ)

)
dτ and w2(t) = N1

∫ ∞

0
A21(τ)

(
1− e−w1(t−τ)

)
dτ ·

As was done at the beginning of the chapter, we reduce the model to the compartmental case by consider-

ing A12(τ) and A21(τ) of the form (2.1). Since Akj is the expected contribution to the force of infection

by an individual of type j, we define

Akj(τ) = Ukje
τΣjVj (k, j ∈ {1, 2} : k 6=j)

where

• Σ ∈ OD+
nj×nj

is a matrix that describes the state transitions of the infected states of the subpopu-

lation of type j;

• Ukj ∈ M+
1×nj

is a (row) vector such that its `-th component gives the contribution to the force of

infection Λk by an individual of type j in the `-th (infected) state;

• Vj ∈ M+
nj×1 is a (column) vector representing the probability distribution of the state-at-infection

of the subpopulation of type j.

Now we can define vectors Z1 (of size n1 × 1) and Z2 (of size n2 × 1), using form (2.5):

Zj(t) =

∫ ∞

0
eτΣjVjΨj(wj(t− τ)) dτ (j ∈ {1, 2})·

It suffices to look to the renewal equation satisfied by the cumulative force of infection to conclude that

w1 = U12Z2, w2 = U21Z1·

Now, each vector Zj satisfies (2.7):

dZj

dt
= ΣjZj + VjΨj(wj)·

Therefore we obtain 
dZ1

dt
= Σ1Z1 + V1Ψ1(U12Z2)

dZ2

dt
= Σ2Z2 + V2Ψ2(U21Z1)

·

This is the integrated version of the following standard form:

dSj

dt
= −ΛjSj

dYj
dt

= ΣjYj + ΛjSjVj

Λ1 = U12Y2, Λ2 = U21Y1

(j ∈ {1, 2}),

obtained by defining the vectors Y1 and Y2 by (2.13), i.e.,

Yj(t) :=

∫ ∞

0
eτΣjVjΛj(t− τ)Sj(t− τ) dτ ·
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Finally, we introduce heterogeneity into the subpopulations. It should be noted that the functions defined

previously will be redefined. We let ω represent promiscuity and we assume males and females are

characterized with the same trait space Ω.

We leave the compartmental case and we assume

Akj(τ, ω, η) =

ak(ω)bj(τ)cj(η) if k 6=j

0 otherwise
(k, j ∈ {1, 2})·

Indeed, since Akj is the expected contribution to the force of infection Λk by an individual of type j,

it makes sense to consider the susceptibility ak of individuals of type k and the infectiousness cj of

individuals of type j (k 6=j) Furthermore, the function of time since infection depends on the individuals

of type j.

By proposition 26, ∫ t

−∞
Λk(ν, ω) dν = ak(ω)wk(t) (k ∈ {1, 2})·

By proposition 28, with w =

[
w1

w2

]
, one has

w(t) =

∫ ∞

0
b(τ)Ψ(w(t− τ)) dτ

where

b(τ) =

[
0 b2(τ)

b1(τ) 0

]
and Ψ is redefined as

Ψ(w) :=

[
N1

∫
Ω c1(η)

(
1− e−a1(η)w1

)
Φ1(dη)

N2

∫
Ω c2(η)

(
1− e−a2(η)w2

)
Φ2(dη)

]
,

whereΦj is the measure that describes the probability distribution of the trait in the subpopulation of type

j (j ∈ {1, 2}). Thus we obtainw1(t) = N2

∫∞
0 b2(τ)

∫
Ω c2(η)

(
1− e−a2(η)w2(t−τ)

)
Φ2(dη) dτ

w2(t) = N1

∫∞
0 b1(τ)

∫
Ω c1(η)

(
1− e−a1(η)w1(t−τ)

)
Φ1(dη) dτ

.

Returning to the compartmental case, we define

b1(τ) := U21e
τΣ1V1 and b2(τ) := U12e

τΣ2V2,

and we obtain the same integrated form, with a redifinition of Ψ.
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Conclusion

We have finally arrived at the finish line of this dissertation. Writing

Mathematical Models in Epidemiology

has been a long process but nevertheless it has allowed us to grow as mathematicians and has most cer-

tainly broaden our horizons in the topic of mathematics applied to epidemiology and infectious diseases.

The main objectives of this dissertation are:

1. to compare continuous-time models and discrete-time models;

2. to insert heterogeneity into compartmental models.

The motivation for discrete-time models is simple: although the numbers of individuals varies at

a continuous time, collection of data is often done at regular intervals, i.e., on a discrete-time basis.

Furthermore, “numerical implementation is straightforward” in such models. As was shown in chap-

ter 1 of this dissertation (and in [Diekmann et al., 2021]), the continuous-time Kermack-McKendrick

model (see [Kermack and McKendrick, 1927]) is easily transformed into a discrete-time version. The

proportion of susceptibles satisfies equation (1.15) in the continuous case and equation (1.22) in the

discrete case. These equations have the same form if one recalls the connection between integrals and

sums. In the discrete case, we went even further and we obtained equation (1.24). This equation has

the main advantage that an initial condition (at time 0), can be provided by prescribing s(0) and the in-

cidences . . . , s(−3) − s(−2), s(−2) − s(−1), s(−1) − s(0). Furthermore, one predicts the expected

contribution to the force of infection Ak (by an individual who itself was infected k steps earlier) to

be zero from a certain order ` ∈ N, since an individual does not remain infectious for an infinite pe-

riod of time. In that case, a finite number of prescriptions is sufficient: it suffices to prescribe s(0) and

s(−`+ 1)− s(−`), . . . , s(−1)− s(0).

In chapter 2, we saw how to reduce a continuous-timeKermack-McKendrickmodel to a compartmen-

tal model when the expected contribution to the force of infection by an individual with age of infection τ

is of the form (2.1). Two alternative processes were given and we obtained to possible forms for the com-

partmental model: the integrated form (2.6) and the standard form (2.15). Introducing heterogeneity into

the integrated form is straightforward: one only needs to redefine the function Ψ that counts the number

of individuals that are no longer susceptible. The insertion of heterogeneity into the standard form is not

as immediate and involves choosing a representative ω̄ of the trait space Ω such that the susceptibility

a(ω) satisfies a(ω̄) = 1; with this choice, we say that a(ω) is the relative trait-specific susceptibility.

Future work

We are of the opinion that writing this essay was a first step to study a larger class of epidemiological

(discrete or continuous)models with heterogeneity. In fact the two chapters describe and analyze tools and

concepts which can be useful in future work. In particular the impact of altering traits on the heterogeneity

can be a future topic of study.
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Appendix

Here we will present some theorems and propositions, that are very useful for the main essay. We also

present some alternative proofs for some of the results given in the main text. Furthermore, we illustrate

some of these results with examples.

The appendix is organized as follows: results/ examples are presented according to when they are

used (for the first time) in the main text, with the exception of the next four theorems which we have

chosen to present right away for their great usefulness in the area of Calculus.

We start by presenting two of the most prominent theorems of introductory Calculus, themean value

theorem and the intermediate value theorem, also known as Lagrange theorem and Bolzano’s theo-

rem, respectively.

Theorem 10 (Mean value theorem/ Lagrange theorem). Let f be continuous on the closed interval [a, b]

(a < b) and differentiable on the open interval ]a, b[. Then:

∃ c ∈]a, b[: f ′(c) =
f(b)− f(a)

b− a
·

Theorem 11 (Intermediate value theorem/ Bolzano’s theorem). Let a, b ∈ R with a < b and consider

a continuous function f : [a, b] → R. If (f(a) − u)(f(b) − u) < 0, then there is c ∈]a, b[ such that

f(c) = u.

Now we present another well known theorem from Calculus, the Lebesgue’s dominated conver-

gence theorem:

Theorem 12 (Lebesgue’s dominated convergence). Let {fn}n∈N be a sequence of measurable functions

on a measure space (X,A, µ). Suppose that the sequence converges pointwise to a function f and is

dominated by some integrable function g, i.e.,

|fn(x)| ≤ g(x)

for all n ∈ N and all x ∈ X . Then f is (Lebesgue) integrable and

lim
n→+∞

∫
X
fn(x) dx =

∫
X
f(x) dx·

The following theorem is a well known theorem in the area of Multivariable Calculus and is known

as Fubini’s theorem.

Theorem 13 (Fubini). LetX and Y be two σ-finite measure spaces, and let f be a measurable function

on X × Y such that ∫
X×Y

|f(x, y)| d(x, y) < +∞,
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where X × Y is given the product measure. Then:∫
X

[∫
Y
f dy

]
dx =

∫
X×Y

f d(x, y) =

∫
Y

[∫
X
f dx

]
dy

To chapter 1

To the first part of section 1.2

Here, we present some applications of the Lebesgue’s dominated convergence theorem and the Fu-

bini’s theorem, enunciated above.

The next example is an application of the Lebesgue’s dominated convergence theorem 12 and is useful

in the proof of proposition 1 (in the main text).

Example 11. The space X := [0,+∞[ is a measure space and, furthermore, fk : [0,+∞[→ R defined

by

fk(τ) := A(τ)Λ(k − τ)S(k − τ)

are measurable functions: A(τ) is integrable and, for k ∈ N, Λ(k−τ)S(k−τ) is continuous, hence they

are both measurable and thus their product is measurable. Furthermore, since t 7→ Λ(t)S(t) is a bounded

function and τ 7→ A(τ) is a nonnegative function, then there exists C > 0 such that |ΛS| ≤ C and

|fk(τ)| ≤ CA(τ),

so that fk is dominated by an integrable function: g(τ) := CA(τ) is integrable because τ 7→ A(τ) is

integrable. The sequence {fk}k∈N converges pointwise to the function

f(τ) := A(τ)Λ(∞)S(∞),

with the assumption that the limits

Λ(∞) := lim
t→+∞

Λ(t) and S(∞) := lim
t→+∞

S(t)

exist. By Lebesgue’s dominated convergence theorem 12, f is integrable and

lim
k→+∞

∫ ∞

0
fk(τ) dτ =

∫ ∞

0
f(τ) dτ = Λ(∞)S(∞)

∫ ∞

0
A(τ) dτ ·

For applications of the Fubini’s theorem, we have the following example that is useful for proving

proposition 2 (in the main text).

Example 12. The spaces X :=]t, t + 1] and Y := [0,+∞[ are σ-finite measure spaces: if µ is the

Lebesgue measure, then

µ(]t, t+ 1]) = (t+ 1)− t = 1 < +∞

and

[0,+∞[=
⋃

n∈N0

[n, n+ 1[

is a countable union of measurable sets with finite measure (µ([n, n+ 1[) = (n+ 1)− n = 1 < +∞).
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Furthermore, the function f :]t, t+ 1]× [0,+∞[→ R defined by

f(ν, τ) := A(τ)
dS

dν
(ν − τ)

is a measurable function, since it is a product of measurable functions: A(τ) is integrable24 and dS
dν (ν−τ)

is continuous, hence they are both measurable. Now, since τ 7→ A(τ) is a nonnegative integrable function

and
∣∣dS
dν

∣∣ is bounded, then ∫
X×Y

|f(ν, τ)| d(ν, τ) < +∞·

Fubini’s theorem 13 is applicable and thus∫ t+1

t

∫ ∞

0
A(τ)

dS

dν
(ν − τ) dτ dν =

∫ ∞

0

∫ t+1

t
A(τ)

dS

dν
(ν − τ) dν dτ ·

The following example is another application of the Lebesgue’s dominated converge theorem 12 and

is useful in the proof of lemma 1 (in the main text).

Example 13. The space X := [0,+∞[ is a measure space and, furthermore, fM : [0,+∞[→ R defined

by

fM (τ) := A(τ) [S(−M − τ)− S(t− τ)]

(for t fixed) are measurable functions: A(τ) is integrable and, for M ∈ N, S(−M − τ) is continuous,

hence they are both measurable and thus their product is measurable. Furthermore, since

|S(−M − τ)− S(t− τ)| ≤ N,

and τ 7→ A(τ) is a nonnegative function, then

|fM (τ)| ≤ NA(τ),

so that fM is dominated by an integrable function: g(τ) := NA(τ) is integrable because τ 7→ A(τ) is

integrable. The sequence {fM}M∈N converges pointwise to the function

f(τ) := A(τ) [N − S(t− τ)] ,

since S(−∞) = N . By Lebesgue’s dominated convergence theorem 12, f is integrable and

lim
M→+∞

∫ ∞

0
fM (τ) dτ =

∫ ∞

0
f(τ) dτ ·

24Since A(τ) is not dependent on ν, one gets∫
X×Y

A(τ) d(ν, τ) = µ(]t, t+ 1])︸ ︷︷ ︸
=1

∫ +∞

0
A(τ) dτ︸ ︷︷ ︸

<+∞ by hypothesis

< +∞·
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To the second part of section 1.2

The following theorem can be found in [Sarrico, 2015] and gives sufficient conditions for uniform

convergence of a given series of functions.

Theorem 14 (Weierstrass criterion). Suppose that {fn}n∈N is a sequence of complex-valued functions

defined on a nonempty set X ⊆ R and that there is a sequence {an}n∈N of nonnegative numbers such

that

a) |fn(x)| ≤ an, for every x∈X , whenever n≥n0 for some order n0 ∈ N;

b)
∞∑
n=1

an is convergent.

Then
∞∑
n=1

fn converges uniformly on X .

The previous theorem will be very useful to prove convergence of the series
∞∑
k=1

Λ̂(t − k), with the

function t 7→ Λ̂(t) given by (1.16) (see lemma 3 in the main text). To illustrate such convergence, we

follow with an example. One should note that, in this example, the function t 7→ S(t) is given. However,

the main objective of the series
∞∑
k=1

Λ̂(t−k) is to find a formula for the number S(t), as one can see from

proposition 7 in the main essay. Furthermore, if the function t 7→ S(t) is given, the collection {Aj}j∈N
might not be summable (note that this collection and the function S are related), and thus proposition

7 cannot be applied. The reason for this is simple: if an individual is infected, then the number of

susceptibles will decrease, not only because of this individual, but also because of all the individuals

it infects.

Example 14. Define the function t 7→ S(t) as

S(t) =
S0N

S0 + (N − S0)et
(A.1)

where N ∈ N and 0 < S0 < N . The function t 7→ S(t) is a solution of the famous logistic differential

equation25

dP

dt
= rP

(
1− P

N

)
,

where r = −1, provided with the initial condition P (0) = S0. This function is nonnegative and nonin-

creasing, and is bounded above byN , with lim
t→−∞

S(t) = N . The graph below exemplifies the behaviour

of such function (the parameters chosen were N = 500 and S0 = 200):

−6 −4 −2 2 4 6

100

200

300

400

500

t

S

Fig. A.1. Graph of the function t 7→ S(t) given by (A.1) with N = 500 and S0 = 200.

25Although it is usual to consider a positive growth rate r, here we consider r < 0 so that one can have
a bounded positive solution that decreases with time.
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Next, we show that
{
Λ̂(t− k)

}
k∈N

is summable (for fixed t). Using equation (1.20),

∞∑
k=1

Λ̂(t− k) =

∞∑
j=1

Aj

[
N − S0N

S0 + (N − S0)et−j

]

= N

∞∑
j=1

Aj

[
��S0 + (N − S0)e

t−j
]
−��S0

S0 + (N − S0)et−j

= N
∞∑
j=1

Aj
(N − S0)e

t−j

S0 + (N − S0)et−j

≤ N
∞∑
j=1

Aj

and, assuming {Aj}j∈N is summable, one concludes that {Λ̂(t− k)}k∈N is summable (for fixed t).

Before we end this example, we would like to show why one should not give an expression to S(t) and

then make assumptions on the collection {Aj}j∈N. Equation (1.18) in proposition 7 can be rewritten as
∞∑
k=1

Λ̂(t− k) = ln

(
N

S(t)

)
·

With S(t) given by (A.1), one obtains

N

∞∑
j=1

Aj
(N − S0)e

t−j

S0 + (N − S0)et−j
= ln

(
S0 + (N − S0)e

t

S0

)

i.e., withK := N−S0
S0

,

N

∞∑
j=1

Aj

e−t+j +K
=

ln
(
1 +Ket

)
K

·

Now, letting fj(t) :=
Aj

e−t+j+K
, one easily sees that |fj(t)| ≤ Aj

K and, by hypothesis,

∞∑
j=1

Aj

K
=

1

K

∞∑
j=1

Aj < +∞·

Therefore, by theorem 14 (in the appendix), one has uniform convergence of
∞∑
j=1

fj and, in particular,

passing the series to the limit as t → +∞, one obtains

lim
t→+∞

N

∞∑
j=1

Aj

e−t+j +K
= N

∞∑
j=1

Aj

e− limt→+∞ t+j +K
= N

∞∑
j=1

Aj

K
=

R0

K
·

However

lim
t→+∞

ln
(
1 +Ket

)
= +∞

from where R0 = +∞, i.e., in fact, the collection {Aj}j∈N is not summable.

We conclude that, with S(t) given by (A.1), one cannot find a summable collection {Aj}j∈N such that

equation (1.18), with t 7→ Λ̂(t) given by (1.16), is satisfied.

One might wonder the reason for this. Now, if S(t) is defined by (A.1), then S(t) converges to zero when

t → +∞. Speaking in terms of biology, in the (infinite) future, the population tends to a state where no
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more individuals are susceptible, i.e., all individuals were infected. So indeed it makes perfect sense that

the total contribution of an infected individual to the cumulative force of infection is large enough in such

a manner that all individuals in the population get infected.

To section 1.4

The next remark is an alternative proof of the expression (1.39) obtained for the susceptibles density.

Remark 29. If S(t+ 1) = e−βI(t)S(t) andM ∈ N0, then

M∏
j=0

S(t− j + 1) =

M∏
j=0

[
e−βI(t−j)S(t− j)

]
= exp

−β

M∑
j=0

I(t− j)


 M∏
j=0

S(t− j)


but, on the other hand, assumingM is large enough so that S(t−M) > 0,

M∏
j=0

S(t− j + 1) =
S(t+ 1)

S(t−M)

M+1∏
j=1

S(t− (j − 1))

 =
S(t+ 1)

S(t−M)

[
M∏
k=0

S(t− k)

]
,

where k = j − 1. Comparison gives

S(t+ 1) = exp

−β

M∑
j=0

I(t− j)

S(t−M)·

LettingM → ∞, we finally obtain (1.39).

The next remark is an alternative proof of the expression (1.40) obtained for the series with terms

given by the infectious density.

Remark 30. Suppose
∞∑
j=0

I(t− j)− (1− α)

∞∑
j=0

I(t− 1− j) = f(t)·

Let J(t) := (1− α)−t
∞∑
j=0

I(t− j). Then we can rewrite the previous recurrence relation as

J(t)− J(t− 1) =
f(t)

(1− α)t

and

∞∑
m=0

[J(t−m)− J(t−m− 1)] =
∞∑

m=0

f(t−m)

(1− α)t−m
= (1− α)−t

∞∑
m=0

(1− α)mf(t−m)·

On the other hand, givenM ∈ N0,

M∑
m=0

[J(t−m)− J(t−m− 1)] = [J(t)−�����J(t− 1)] +��· · ·+ [�����J(t−M)− J(t−M − 1)]

= J(t)− J(t−M − 1)
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and, lettingM → ∞,

∞∑
m=0

[J(t−m)− J(t−m− 1)] = J(t)− J(−∞) = J(t),

where the last equality comes from

J(−∞) := lim
t→−∞

J(t) = lim
t→−∞

(1− α)︸ ︷︷ ︸
∈]0,1[

−t
∞∑
j=0

I(t− j)

 = 0·

Comparison gives

J(t) = (1− α)−t
∞∑

m=0

(1− α)mf(t−m)

and we conclude
∞∑
j=0

I(t− j) =
∞∑

m=0

(1− α)mf(t−m)·

The next proposition deals with probability matrices and is useful for the proof of proposition 19 (in

the main text).

Proposition 31. Let n ∈ N and consider the set of states Ω = {1, . . . , n}. Let Xt denote the state at

time t and P the n × n probability matrix that describes the state transitions: the entry (i, j) of P is

Pij = P(Xt+1 = i|Xt = j). Then, for each m ∈ N,

P(Xt+m = i|Xt = j) = (Pm)ij · (A.2)

Proof. We prove (A.2) by induction on m. The basis step m = 1 follows from definition of P . Now, if

(A.2) is true for a certainm ∈ N, then

P(Xt+m+1 = i|Xt = j) =

n∑
k=1

P(Xt+m+1 = i|Xt+m = k ∧Xt = j)P(Xt+m = k|Xt = j)

=

n∑
k=1

P(Xt+m+1 = i|Xt+m = k)P(Xt+m = k|Xt = j)

=
n∑

k=1

Pik(P
m)kj

= (Pm+1)ij

where the first equality follows from the partition theorem, the second from the memoryless property of

any stochastic process, and the third by definition of P and by the hypothesis. We conclude that (A.2) is

true for allm ∈ N.
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To chapter 2

To section 2.1

The following proposition was based on [Varga, R.S., 2000, Chapter 8.2.].

Proposition 32. Let n ∈ N and let M ∈ OD+
n×n. Then eM ∈ OD+

n×n and, furthermore, it has an all

positive diagonal.

Proof. Let m = max{|Mkk| |k ∈ [n]}. Then M̃ = M + mIn is a real matrix where all entries are

nonnegative. In particular, every power of M̃ has only nonnegative entries and hence

eM̃ =

∞∑
k=0

1

k!
M̃k = In + M̃ +

1

2
M̃2 + · · ·

has only nonnegative entries. Since M̃ and −mIn commute, then

eM = eM̃−mIn = e−meM̃

and thus eM has only nonnegative entries. Furthermore, it is quite obvious that each entry of the diagonal

of eM̃ is positive (due to the 1s in the identity matrix) and thus eM has only positive entries in the diagonal.

Next, a proposition involving the spectral abscissa and the exponential matrix is given:

Proposition 33. Let n ∈ N and consider M , a n× n square matrix. If κ(M) < 0, then

lim
t→+∞

etM = 0n×n·

Proof. Let M be a n × n square matrix and λ1, . . . , λq its eigenvalues (not necessarily distinct). Now,

from Linear Algebra theory (see, for example, [Pestana da Costa, 2001]), we know thatM is similar to a

Jordan normal form, i.e., there is an invertible matrix P such thatM = PJP−1 and J is a block diagonal

matrix

J =


J1

. . .

Jq

 , (A.3)

where, for each k ∈ {1, . . . , q}, Jk is a square matrix of the form

Jk =


λk 1

. . .
. . .

. . . 1

λk

 (A.4)

(every entry on the main diagonal is equal to λk and every entry on the superdiagonal is equal to 1, while

the remaining entries are equal to 0). In particular, if Jk has order 1, then Jk =
[
λk

]
. It follows that

etM = PetJP−1 = P


etJ1

. . .

etJq

P−1
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and thus it suffices to study the form of each etJk (for each k ∈ {1, . . . , q}). For each k ∈ {1, . . . , q}, let

nk be the order of Jk and notice that
q∑

k=1

nk = n. One notes that, for each k ∈ {1, . . . , q},

Jk = λkInk
+Nk,

where Ink
is the identity matrix of order nk and Nk is the matrix with each entry on the superdiagonal

equal to 1 and every other entry equal to 0. One can see that, for each k ∈ {1, . . . , q}, Nk is a nilpotent

matrix with index nk, i.e.,

nk = min{m ∈ N : Nm
k = 0nk×nk},

and, ifm ∈ {1, . . . , nk − 1}, then Nm
k has nk −m entries equal to 1,

(1,m+ 1), . . . , (nk −m,nk),

and the remaining entries equal to 0.

Therefore, for each k ∈ {1, . . . , q},

etNk =

∞∑
m=0

tm

m!
Nm

k = Ink
+tNk+· · ·+ tnk−1

(nk − 1)!
Nnk−1

k =



1 t
t2

2
· · · tnk−2

(nk − 2)!

tnk−1

(nk − 1)!

0 1 t · · · tnk−3

(nk − 3)!

tnk−2

(nk − 2)!
...

...
...

. . .
...

...

0 0 0 · · · t
t2

2
0 0 0 · · · 1 t

0 0 0 · · · 0 1


and, finally, since λkInk

and Nk commute, then

etJk = et(λkInk
+Nk) = etλketNk =



etλk tetλk
t2

2
etλk · · · tnk−2

(nk − 2)!
etλk

tnk−1

(nk − 1)!
etλk

0 etλk tetλk · · · tnk−3

(nk − 3)!
etλk

tnk−2

(nk − 2)!
etλk

...
...

...
. . .

...
...

0 0 0 · · · tetλk
t2

2
etλk

0 0 0 · · · etλk tetλk

0 0 0 · · · 0 etλk


·

Now it suffices to note that, for p ≥ 0, if λ ∈ C is such that <(λ) < 0, then

lim
t→+∞

∣∣∣tpeλt∣∣∣ = lim
t→+∞

|t|pe<(λ)t = 0

and thus

lim
t→+∞

tpeλt = 0·

Given that κ(M) < 0, then<(λ) < 0 for each λ ∈ σ(M) and we conclude that, for each k ∈ {1, . . . , q},

lim
t→+∞

etJk = 0nk×nk
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and therefore

lim
t→+∞

etM = 0n×n·

The following proposition (see [Pestana da Costa, 2001]) will be useful for obtaining a explicit for-

mula for the solution of a linear system of ODEs:

Proposition 34. Let M be a n×n matrix and consider the linear system of ODEs

y′ = My, (A.5)

where y = y(t) is a n× 1 vector-valued function. Any solution of (A.5) is of the form

y(t) = Υ(t)C

where Υ is a fundamental matrix of (A.5) (i.e., the columns of Υ form a basis for the set of solutions of

(A.5)) and C is a n× 1 matrix. In particular, if λ1, . . . , λq are the (not necessarily distinct) eigenvalues

of M , then the k-th entry of y is of the form

yk(t) = eλ`k
tpk(t)

for some `k ∈ {1, . . . , q}, where pk is a polynomial in t (for each k ∈ {1, . . . , n}).

Proof. Any solution of (A.5) is of the form

y(t) = etMB

where B is a n× 1matrix. As was done in the proof of the previous theorem, one notes thatM is similar

to a Jordan normal form, i.e., there is an invertible matrix P such that M = PJP−1. Furthermore, the

columns of P are composed by eigenvectors and generalized eigenvectors of M (it suffices to note that

MP = JP and the main diagonal of J is composed by the eigenvalues of M ). Let J be of the form

(A.3), where, for each ` ∈ {1, . . . , q}, J` is a n`×n` square matrix of the form (A.4). It follows that

etM = PetJP−1 i.e. etMP = PetJ ,

from where one sees that Υ(t) = etJP is a fundamental matrix for (A.5). Hence

y(t) = PetJP−1B

and thus

y(t) = Υ(t)C

where C = P−1B. It follows that, for each k ∈ {1, . . . , n}, yk(t) = Υ∗
k(t)C, where Υ

∗
k denotes the k-th

row of Υ. On the other hand,

Υ∗
k(t) =

(
etJ
)∗
k
P

where
(
etJ
)∗
k
denotes the k-th row of etJ .

Suppose k =
`−1∑
j=1

nj + m` for some ` = `k ∈ {1, . . . , q} (with 1 = `1 ≤ . . . ≤ `n = q such that

`k+1 = `k or `k+1 = `k + 1) and some m` ∈ {1, . . . , n`} (note that k ∈ {1, . . . , n}). The k-th row of
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etJ is them` row in the n`×n submatrix[
0n`×c`−1

etJ` 0n`×(n−c`)

]
where c` =

∑̀
j=1

nj . On the other hand,

etJ` = eλ`t



1 t
t2

2
· · · tn`−2

(n` − 2)!

tn`−1

(n` − 1)!

0 1 t · · · tn`−3

(n` − 3)!

tn`−2

(n` − 2)!
...

...
...

. . .
...

...

0 0 0 · · · t
t2

2
0 0 0 · · · 1 t

0 0 0 · · · 0 1


and one notes that them`-th row of etJ` is

eλ`t

[
0 · · · 0︸ ︷︷ ︸

m`−1 columns

1 t · · · tn`−m`−1

(n` −m` − 1)!

tn`−m`

(n` −m`)!

]
·

Therefore(
etJ
)∗
k
= eλ`t

[
01×c`−1

0 · · · 0︸ ︷︷ ︸
m`−1 columns

1 t · · · tn`−m`−1

(n` −m` − 1)!

tn`−m`

(n` −m`)!
01×(n−c`)

]
,

i.e., (
etJ
)∗
k
(t) = eλ`t

[
01×(k−1) 1 t · · · tc`−k−1

(c` − k − 1)!

tc`−k

(c` − k)!
01×(n−c`)

]
where one used c`−1+m` = k and n`−m` = c`−k. Let Pj denote the j-th column of P and Cj denote

the j-th entry of C (j ∈ {1, . . . , n}). Then

yk(t) = eλ`t

[
01×(k−1) 1 t · · · tc`−k

(c` − k)!
01×(n−c`)

]
PC

and it is clear that

pk(t) :=

[
01×(k−1) 1 t · · · tc`−k

(c` − k)!
01×(n−c`)

]
PC

is a polynomial in t.

To section 2.2

The following examples are very useful for proving proposition 28.

We start with another application of the Fubini’s theorem 13.

Example 15. Let Ω be a measurable set with finite measure Φ.

X1 :=]− t0, t] and X2 := [0,+∞[×Ω are σ-finite measure spaces, since

µ(X1) = t− (−t0) < +∞
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where µ is the Lebesgue measure, and

X2 =

 ⋃
n∈N0

[n, n+ 1[

× Ω

is the Cartesian product of a countable union of measurable sets with finite measure and a measurable set

with measure 1. Furthermore,

(ν, (τ, η)) 7→ g(ν, (τ, η)) := b(τ)c(η)

[
−∂s

∂ν
(ν − τ, η)

]
is a measurable function on X1×X2 since it is a product of measurable functions. Now,

∣∣− ∂s
∂ν

∣∣ is a
bounded function, from where

K := sup
(ν,(τ,η))∈X×Y

∣∣∣∣∂s∂ν (ν − τ, η)

∣∣∣∣ < +∞

and ∫
X1×X2

|g(ν, (τ, η))| d(ν, (τ,Φ(η))) ≤ Kµ(X1)

(∫ ∞

0
b(τ) dτ

)(∫
Ω
c(η)Φ(dη)

)
< +∞,

since b and c are integrable in [0,∞[ and Ω, respectively. By Fubini’s theorem (theorem 13),∫ t

−t0

∫ ∞

0

∫
Ω
b(τ)c(η)

[
−∂s

∂ν
(ν − τ, η)

]
Φ(dη) dτ dν

=

∫ ∞

0

∫
Ω
b(τ)c(η)

∫ t

−t0

[
−∂s

∂ν
(ν − τ, η)

]
dν Φ(dη) dτ

=

∫ ∞

0

∫
Ω
b(τ)c(η) [s(−t0 − τ, η)− s(t− τ, η)] Φ(dη) dτ ·

The next example is another application of the Lebesgue’s dominated convergence theorem 12.

Example 16. Let Ω be a measurable set and Φ a finite measure on Ω. Then X := [0,+∞[×Ω is a

measure space (consider the product measure µ × Φ where µ is the Lebesgue measure). Now, consider

the sequence {gk(η, τ)}k∈N of measurable functions defined by

gk(η, τ) := b(τ)c(η)[s(−k − τ, η)− s(t− τ, η)],

where (η, τ) ∈ X . One has that

lim
k→+∞

gk(η, τ) = b(τ)c(η)[1− s(t− τ, η)]·

Furthermore the sequence is dominated by an integrable function:

|gk(η, τ)| = b(τ)c(η)|s(−k − τ, η)− s(t− τ, η)| ≤ 2b(τ)c(η)·

By Lebesgue’s dominated convergence theorem (theorem 12), one has

lim
k→+∞

∫
X
gk(η, τ) d(Φ(η), τ) =

∫
X

lim
k→+∞

gk(η, τ) d(Φ(η), τ)
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i.e.,

lim
k→+∞

∫ ∞

0

∫
Ω
b(τ)c(η)[s(−k − τ, η)− s(t− τ, η)] d(Φ(η), τ)

=

∫ ∞

0

∫
Ω
b(τ)c(η)[1− s(t− τ, η)] d(Φ(η), τ)·

To section 2.3

Here, it will be useful to introduce the notion of Laplace transform and a few of its properties. The

following definitions and results were taken from [Spiegel, M.R., 1965].

Definition 7 (Laplace Transform). Let f(t) be a function of t specified for t > 0. Then the Laplace

transform of f(t), denoted by L{f(t)}, is defined by

L{f(t)}(λ) :=
∫ ∞

0
e−λtf(t) dt·

Remark 31. The Laplace transform is said to exist if the integral above converges for some λ.

We thus should give some sufficient conditions for the existence of the Laplace transform. First, a

definition is necessary:

Definition 8 (Exponential order). A function f(t) is said to be of exponential order θ if there exists

constants θ,M > 0, t0 > 0 such that

|f(t)| ≤ Meθt ∀t > t0·

Proposition 35 (Sufficient conditions for existence of Laplace transforms). If f(t) is piecewise continu-

ous in every finite interval [0, t0] (t0 > 0) and of exponential order θ for t > t0, then its Laplace transform

exists for <(λ) > θ.

Proof. For every t0 > 0,∫ ∞

0
e−λtf(t) dt =

∫ t0

0
e−λtf(t) dt+

∫ ∞

t0

e−λtf(t) dt· (A.6)

Since f(t) is piecewise continuous in every finite interval [0, t0], the first integral on the right exists. On

the other hand, since f(t) is of exponential order θ for t > t0,∣∣∣∣∫ ∞

t0

e−λtf(t) dt

∣∣∣∣ ≤ ∫ ∞

t0

∣∣∣e−λt
∣∣∣ |f(t)| dt

≤
∫ ∞

0
e−<(λ)t

(
Meθt

)
dt

= M

∫ ∞

0
e(θ−<(λ)t dt

and thus the last integral of (A.6) converges whenever <(λ) > θ. Therefore the Laplace transform exists

for <(λ) > θ.
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Finally, we give some properties:

Proposition 36. Let δ, c1, c2 ∈ C and consider f(t) and g(t), functions of t specified for t > 0. We have

the following properties:

Linearity L{c1f(t) + c2g(t)} = c1L{f(t)}+ c2L{g(t)};

First translation L
{
eδtf(t)

}
(λ) = L{f(t)}(λ− δ);

Multiplication by t L{tf(t)} (λ) = − d
dλ (L{tf(t)}).

Proof. The linearity property follows by the linearity of the integral. For the first translation property,

one notes that

L
{
eδtf(t)

}
(λ) =

∫ ∞

0
e−λteδtf(t) dt =

∫ ∞

0
e−(λ−δ)tf(t) dtL{f(t)}(λ− δ)·

Now, differentiating the Laplace transform gives

d

dλ
(L{f(t)}(λ)) = d

dλ

∫ ∞

0
e−λtf(t) dt

=

∫ ∞

0
−te−λtf(t) dt

= −
∫ ∞

0
e−λt (tf(t)) dt

= −L{tf(t)} (λ)·

To end this study, we give the Laplace transform of a particular function.

Lemma 5. Let q > −1. The Laplace transform of f(t) = tq is given by

L{tq} (λ) = Γ(q + 1)

λq+1

for <(λ) > 0.

Proof. f is clearly of exponential order θ > 0 for every t > 0. One concludes that the Laplace transform

of f exists for <(λ) > 0.

We focus merely on the case λ ∈ R, so that we can present a simple proof. We assume λ = <(λ) > 0.

One has

L{tq} (λ) =
∫ ∞

0
e−λttq dt.

Let u = λt. Then

L{tq} (λ) =
∫ ∞

0
e−u

(u
λ

)q 1

λ
dt =

1

λq+1

∫ ∞

0
u(q+1)−1e−u du︸ ︷︷ ︸
=Γ(q+1)

=
Γ(q + 1)

λq+1

where Γ denotes the Gamma function defined by

Γ(z) =

∫ ∞

0
tz−1e−t dt for <(z) > 0·
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