Handbook of Smart Materials, Technologies, and Devices pp 1439–1466Cite as

- 1. Home
- 2. <u>Handbook of Smart Materials, Technologies, and Devices</u>
- 3. Reference work entry

Progresses on Green and Smart Materials for Multifaceted Applications

- S. O. Oyedepo,
- Joseph O. Dirisu,
- N. E. Udoye &
- O. S. I. Fayomi
- Reference work entry
- First Online: 10 November 2022
- 69 Accesses

Abstract

Sustainable development is widely known as a critical issue for the future growth and well-being of our society. Technological advancement has provided smart material development opportunities for multifunctional applications in energy, construction, infrastructure, electronics, and building. Green materials are proficient, safe, economically viable, and reliable because of their eco-friendliness and renewable prowess. This chapter looks into the progress of natural and resource-efficient materials for smart manufacturing processes that could be used for intelligent application and address contemporary materials' challenges.

Keywords

Sustainable development

- Smart materials
- Technological advancement
- Manufacturing processes
- Material development

This is a preview of subscription content, access via your institution.

References

 Abi-Akar R, Jones G, Tang Y (2017) Opportunities for sustainable materials management and zero waste in detroit

Google Scholar

 Adams R, Jeanrenaud S, Bessant J, Denyer D, Overy P (2016) Sustainabilityoriented innovation: a systematic review. Int J Manag Rev 18:180–205

CrossRef Google Scholar

 Addington DM, Schodek DL (2005) Smart materials and new technologies: for the architecture and design professions. Routledge

Google Scholar

 Addington M, Schodek D (2012) Smart materials and technologies in architecture. Routledge

CrossRef Google Scholar

 Ahmed K, Shiblee MNI, Khosla A, Nagahara L, Thundat T, Furukawa H (2020)
 Recent progresses in 4D printing of gel materials. J Electrochem Soc 167(3):037563

CrossRef Google Scholar

 Akhras G (2000) Smart materials and smart systems for the future. Can Military J 1(3):25–31

Google Scholar

 Alzahrani A, Petri I, Rezgui Y, Ghoroghi A (2020) Developing smart energy communities around fishery ports: toward zero-carbon fishery ports. Energies 13(11):2779

CrossRef Google Scholar

Applications of Smart Materials. Date Accessed October, 21, 2020

Google Scholar

 Ashima R, Haleem A, Bahl S, Javaid M, Mahla SK, Singh S (2021) Automation and manufacturing of smart materials in additive manufacturing technologies using internet of things towards the adoption of industry 4.0. Mater Today: Proc 45:5081–5088

Google Scholar

 Bajpai A, Baigent A, Raghav S, Brádaigh CÓ, Koutsos V, Radacsi N (2020) 4D printing: materials, technologies, and future applications in the biomedical field. Sustainability 12(24):10628

CrossRef Google Scholar

 Basheer AA (2020) Advances in the smart materials applications in the aerospace industries. Aircr Eng Aerosp Technol 92(7):1027–1035

CrossRef Google Scholar

Batra AK, Alomari A (2017) Power harvesting via smart materials. SPIE Press, pp. 1–15

CrossRef Google Scholar

• Bhardwaj AK, Garg A, Ram S, Gajpal Y, Zheng C (2020) Research trends in green product for environment: a bibliometric perspective. Int J Environ Res Public Health 17(8469):1–21

Google Scholar

• Boström M, Andersson E, Berg M, Gustafsson K, Gustavsson E, Hysing E et al (2018) Conditions for transformative learning for sustainable development: a theoretical review and approach. Sustainability 10(12):4479

CrossRef Google Scholar

 Bourtsalas A (2019) In: Themelis NJ (ed) Recovery of materials and energy from urban wastes: a volume in the encyclopedia of sustainability science and technology. Springer, New York

Google Scholar

 Cruz DM, Mostafavi E, Vernet-Crua A, Barabadi H, Shah V, Cholula-Díaz JL et al (2020) Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. J Phys: Mater 3(3):034005

Google Scholar

 Čukušić M, Jadrić M, Mijač T (2019) Identifying challenges and priorities for developing smart city initiatives and applications. Croat Oper Res Rev 10(1):117–129

CrossRef Google Scholar

 Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17(5):875–889

CrossRef Google Scholar

 Dangelico RM (2016) Green product innovation: where we are and where we are going. Bus Strategy Environ 25:560–576

CrossRef Google Scholar

 Di Rito G, Chiarelli MR, Luciano B (2020) Dynamic modelling and experimental characterization of a self-powered structural health-monitoring system with M.F.C. piezoelectric patches. Sensors 20(4):950

CrossRef Google Scholar

 Dineva P, Gross D, Müller R, Rangelov T (2014) Piezoelectric materials. In: Dynamic fracture of piezoelectric materials (pp. 7–32). Springer, Cham

Google Scholar

• Elias MJ (2009) Food in the United States, 1890–1945. ABC-CLIO

Google Scholar

• Esther L, Piselli A, Faucheu J, Delafosse D, Del Curto B (2014) Smart materials: development of new sensory experiences through stimuli responsive materials. In: 5th S.T.S. Italia conference a matter of design: making society through science and technology (pp 367–382). S.T.S. Italia

Google Scholar

 Fairman R, Åkerfeldt KS (2005) Peptides as novel smart materials. Curr Opin Struct Biol 15(4):453–463

CrossRef Google Scholar

• Farag SG (2019) Application of smart structural systems for smart sustainable cities. In: 2019 4th M.E.C. International Conference on Big Data and Smart City (ICBDSC) (pp 1–5)

Google Scholar

 Fraser AG, Butchart EG, Szymański P, Caiani EG, Crosby S, Kearney P, Van de Werf F (2018) The need for transparency of clinical evidence for medical devices in Europe. Lancet 392(10146):521–530

CrossRef Google Scholar

 Gandhi MV, Thompson BD (1992) Smart materials and structures. Springer Science & Business Media

Google Scholar

 Goldan T, Nistor MC (2019) Reducing self-heating coal stockpile for prevention of environmental hazard. Int Multidiscip Sci GeoConference: SGEM 19(1.3):513–519

Google Scholar

• Haleem A, Javaid M, Singh RP, Suman R (2021) Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Ind Eng Polymer Res

Google Scholar

Haruna VN, Abdulrahman AS, Zubairu PT, Isezuo LO, Abdulrahman MA,
 Onuoha DC (2014) Prospects and challenges of composites in a developing country. ARPN J Eng Appl Sci 9(7):1069–1075

Google Scholar

• Hu CY, Yoon TR (2018) Recent updates for biomaterials used in total hip arthroplasty. Biomaterials Res 22(1):1–12

CrossRef Google Scholar

 Karslioğlu A, Balaban E, Onur Mİ (2021) Insulation properties of bricks with waste rubber and plastic: a review. J Nat 1:20–27

Google Scholar

 Kochovski P, Stankovski V (2018) Supporting smart construction with dependable edge computing infrastructures and applications. Autom Constr 85:182–192

CrossRef Google Scholar

 Konarzewska B (2017a) Smart materials in architecture: useful tools with practical applications or fascinating inventions for experimental design. In: I.O.P. Conf series: materials science and engineering, 245, 052098

Google Scholar

• Konarzewska B (2017b) Smart materials in architecture: useful tools with practical applications or fascinating inventions for experimental design. In: I.O.P. Conf series: materials science and engineering (Vol. 245, p. 052098)

Google Scholar

 Krishna JG, Thirumal JR (2015) Application of smart materials in smart structures. Int J Innov Res Sci Eng Technol 4(7)

Google Scholar

 Kuhlman T, Farrington J (2010) What is sustainability? Sustainability 2(11):3436–3448

CrossRef Google Scholar

 Li VC (2019) High-performance and multifunctional cement-based composite material. Engineering 5:250–260

CrossRef Google Scholar

• Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29):4714–4730

CrossRef Google Scholar

• Li X, Shang J, Wang Z (2017) Intelligent materials: a review of applications in 4D printing. Assem Autom

Google Scholar

 Mahmoudian M, Sharifikheirabadi P (2019) Uses of new/smart materials in the green building with sustainability concerns. Int Trans J Eng Manag Appl Sci Technol:1–9

Google Scholar

 Mattern F, Staake T, Weiss M (2010) I.C.T. for green: how computers can help us to conserve energy. In: Proceedings of the 1st international conference on energy-efficient computing and networking (pp 1–10)

Google Scholar

 Mayeen A, Kalarikkal N (2018) Development of ceramic-controlled piezoelectric devices for biomedical. Fundamental Biomaterials: Ceram 47

Google Scholar

• Mensah J, Casadevall SR (2019) Sustainable development: meaning, history, principles, pillars, and implications for human action: literature review. Cogent Soc Sci 5(1):1653531

Google Scholar

Mohamed ASY (2017) Smart materials innovative technologies in architecture;
 towards innovative design paradigm. Energy Procedia 115:139–154

CrossRef Google Scholar

 Momeni F (2018) 4D Printing as a new paradigm for advanced manufacturing (Doctoral dissertation)

Google Scholar

 Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL et al (2021) Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci 119:100707

CrossRef Google Scholar

 Müller P, Schmid M (2019) Intelligent packaging in the food sector: a brief overview. Foods 8(1):16

CrossRef Google Scholar

 Nguyen PQ, Courchesne NMD, Duraj-Thatte A, Praveschotinunt P, Joshi NS (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30(19):1704847

CrossRef Google Scholar

 Oliveira J, Correia V, Castro H, Martins P, Lanceros-Mendez S (2018) Polymerbased smart materials by printing technologies: improving application and integration. Addit Manuf 21:269–283

Google Scholar

 Pereira Á, Vence X (2012) Key business factors for eco-innovation: an overview of recent firm-level empirical studies. Cuad Gest 12:73–103

CrossRef Google Scholar

 Rayna T, Striukova L (2021) Assessing the effect of 3D printing technologies on entrepreneurship: an exploratory study. Technol Forecast Soc Chang 164:120483

CrossRef Google Scholar

 Rosace G, Guido E, Colleoni C, Brucale M, Piperopoulos E, Milone C, Plutino MR (2017) Halochromic resorufin-GPTMS hybrid sol-gel: chemical-physical properties and use as pH sensor fabric coating. Sensors Actuators B Chem 241:85–95

CrossRef Google Scholar

 Roy S, Mishra H, Mohapatro BG (2016) Creating sustainable environment using smart materials in smart structures. Indian J Sci Technol 9(30)

Google Scholar

 Rudrapati R (2020) Graphene: fabrication methods, properties, and applications in modern industries. In: Graphene production and application. IntechOpen, Rijeka, pp 9–22

Google Scholar

 Safiuddin M, Jumaat MZ, Salam MA, Islam MS, Hashim R (2010) Utilization of solid wastes in construction materials. Int J Phys Sci 5(13):1952–1963

Google Scholar

• Salvarli MS, Salvarli H (2020) For sustainable development: future trends in renewable energy and enabling technologies. In: Renewable energy-resources, challenges and applications. IntechOpen

Google Scholar

 Sima V, Gheorghe IG, Subić J, Nancu D (2020) Influences of the industry 4.0 revolution on the human capital development and consumer behavior: a systematic review. Sustainability 12(10):4035

CrossRef Google Scholar

 Stępień GJ (2020) Internet of things (I.O.T.): smart kitchen appliences for the U.S. market (Doctoral dissertation)

Google Scholar

 Tariq A, Badir YF, Tariq W, Bhutta US (2017) Drivers and consequences of green product and process innovation: a systematic review, conceptual framework, and future outlook. Technol Soc 51:8–23

CrossRef Google Scholar

 The World Bank (2018) What a waste: an updated look into the future of solid waste management. World Bank

Google Scholar

 Wiklund J, Karakoç A, Palko T, Yiğitler H, Ruttik K, Jäntti R, Paltakari J (2021) A review on printed electronics: fabrication methods, inks, substrates, applications and environmental impacts. J Manuf Mater Process 5(3):89

Google Scholar

Wood J (2008) The top ten advances in materials science. Mater Today 11(1–2):40–45

CrossRef Google Scholar

 Yüksek I, Karadayi TT (2017) Energy-efficient building design in the context of building life cycle. Energy Efficient Build:93–123

Google Scholar

 Zakirullin R, Odenbakh I (2020) Chromogenic materials in optical filters for smart windows. In: Novel optical materials and applications (pp JTu4C-19). Optical Society of America

Google Scholar

Zhang Y, Beggs PJ, McGushin A, Bambrick H, Trueck S, Hanigan IC et al (2020)
The 2020 special report of the M.J.A.–lancet countdown on health and climate
change: lessons learnt from Australia's "black summer". Med J Aust
213(11):490–492

CrossRef Google Scholar

 Zhu FB, Zhang CL, Qian J, Chen WQ (2016) Mechanics of dielectric elastomers: materials, structures, and devices. J Zhejiang Univ-Sci A 17(1):1–21

Google Scholar

 Zverev VI, Pyatakov AP, Shtil AA, Tishin AM (2018) Novel applications of magnetic materials and technologies for medicine. J Magn Magn Mater 459:182–186

CrossRef Google Scholar

Download references

Author information

Authors and Affiliations

1. Mechanical Engineering Department, Covenant University, Ota, Ogun State, Nigeria

S. O. Oyedepo, Joseph O. Dirisu & N. E. Udoye

2. Department of Mechanical and Biomedical Engineering, Bells University of Technology, Ota, Ogun State, Nigeria

O. S. I. Fayomi

Corresponding authors

Correspondence to <u>S. O. Oyedepo</u> or <u>O. S. I. Fayomi</u>.

Editor information

Editors and Affiliations

1. Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA

Chaudhery Mustansar Hussain

2. School of Science, University of Padova, Padova, Italy

Paolo Di Sia

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this entry

Cite this entry

Oyedepo, S.O., Dirisu, J.O., Udoye, N.E., Fayomi, O.S.I. (2022). Progresses on Green and Smart Materials for Multifaceted Applications. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-84205-5_41

Download citation

- .RIS
- .ENW
- .BIB
- DOIhttps://doi.org/10.1007/978-3-030-84205-5_41
- Published10 November 2022
- Publisher NameSpringer, Cham
- Print ISBN978-3-030-84204-8
- Online ISBN978-3-030-84205-5
- eBook Packages<u>EngineeringReference Module Computer Science and Engineering</u>

Publish with us

Policies and ethics

Access via your institution

Buying options

Chapter

EUR 29.95

Price includes VAT (Nigeria)

- Available as PDF
- Read on any device
- Instant download
- Own it forever Buy Chapter

eBook

EUR 855.99

Hardcover Book

165.73.223.225 Not affiliated

© 2023 Springer Nature