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Transition Between TS Fuzzy Models and the
Associated Convex Hulls by TS Fuzzy Model

Transformation
Péter Baranyi

Abstract—One of the primary objectives underlying the exten-
sive 20-year development of the TS Fuzzy model transformation
(originally known as TP model transformation) is to establish
a framework capable of generating alternative Fuzzy rules for
a given TS Fuzzy model, thereby manipulating the associated
convex hull to enhance further design outcomes. The existing
methods integrated into the TS Fuzzy model transformation offer
limited capabilities in deriving only a few types of loose and
tight convex hulls. In this article, we propose a radically new
approach that enables the derivation of an infinite number of
alternative Fuzzy rules and, hence, convex hulls in a systematic
and tractable manner. The article encompasses the following key
novelties. Firstly, we develop a Fuzzy rule interpolation method,
based on the pseudo TS Fuzzy model transformation and the
antecedent Fuzzy set rescheduling technique, that leads to a
smooth transition between the Fuzzy rules and the corresponding
convex hulls. Then, we extend the proposed concept with the
antecedent Fuzzy set refinement and reinforcement technique to
tackle large-scale problems characterized by a high number of
inputs and Fuzzy rules. The paper also includes demonstrative
examples to illustrate the theoretical key steps, and concludes
with an examination of a real complex engineering problem to
showcase the effectiveness and straightforward execution of the
proposed convex hull manipulation approach.

I. INTRODUCTION

The development of the TS Fuzzy model transformation,
originally known as TP model transformation, commenced
approximately two decades ago. The present article is based on
the key publications [1]–[7] that have contributed significantly
to the developments of the field. Initially, the primary objective
of the initial variant of TP model transformation was to
numerically reconstruct a TS Fuzzy model representation of a
given function or quasi Linear Parameter Varying state-space
dynamic model [2]. This approach offered several significant
advantages, including the determination of the minimum num-
ber of required antecedent Fuzzy sets by dimensions, thereby
minimizing the number of Fuzzy rules [6], [8]–[10]. Addi-
tionally, it provided the opportunity for further reduction by
defining a trade-off between approximation accuracy and the
number of Fuzzy rules through the ranking of their importance
based on the L2 norm. These features are a result of the
core step of the TP model transformation, which relies on
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the Higher Order Singular Value Decomposition (HOSVD)
where the singular values are associated with the Fuzzy rules.
Subsequently, the TP model transformation was expanded to
transform a set of functions into a set of TS Fuzzy models
with a shared or partially shared antecedent Fuzzy set system
[3], [7]. Furthermore, the Pseudo TP model transformation was
introduced to derive the TS Fuzzy model representation with
a given or partially given antecedent Fuzzy set system, and
if an exact representation is not feasible, to identify the best
approximation based on the L2 norm [3], [7].

The subsequent advancements of the TP model transforma-
tion primarily focused on ensuring advantageous characteris-
tics of the resulting Ruspini-partitioned antecedent Fuzzy sets.
This emphasis stemmed from the understanding that the char-
acteristics of the antecedent Fuzzy sets determine the nature
of the convex hull defined by the consequents. It was soon
discovered that the TP model transformation could generate
various alternatives of TS Fuzzy models with distinct charac-
teristics [1], [6], [11]–[13]. Consequently, design methods that
rely on the consequents can be significantly influenced by the
TP model transformation. One notable example is the Parallel
Distributed Compensation (PDC) framework introduced by
Tanaka [14] for control design. Within this framework, the
consequents of the controller are derived from the consequents
of the TS Fuzzy models, typically through the feasibility
of Linear Matrix Inequalities. A comprehensive analysis of
the impact of tight or loose convex hulls - derived by TP
model transformation - in PDC design has been documented
in [7], [15]–[17]. Number of publications have utilized the TP
model transformation to derive alternative TS Fuzzy models
to be substituted into the new design techniques to achieve
improved solutions. Please be referred to some recent ones
mostly published in IEEE Transaction on Fuzzy Systems and
in Asian Journal of Control [18]–[79].

Recognizing the significance of convex hull manipulation,
the TP model transformation has been extended through tech-
niques such as Sum Normalization (SN), Non-Negativeness
(NN), Normalised (NO), Close to Normalised (CNO), Inverse
Normalised (INO), Relaxed NO and INO (IRNO), and the
minimum simplex volume technique [6], [8], [11], [12]. These
extensions enable the derivation of different antecedents and
loose / tight convex hulls of the consequents.

A. The novel contribution of the article
The article first restructures the TS Fuzzy model trans-

formation based on a novel concepts of TP and TS Fuzzy
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grid structures, which serve as the fundamental framework for
further derivations. Then, the article proposes the key approach
to systematically derive an infinite array of antecedent systems,
enabling precise control over the shape and type of the
resulting convex hull. This stands in contrast to previous
methodologies that only offer a limited range of tight or
loose convex hulls (such as SNNN, NO, CNO, INO, IRNO
types). The underlying concept revolves around establishing
a smooth transition between different TS Fuzzy models and
their corresponding convex hulls. About the challenges be-
hind the goal of the article: one potential approach would
be to interpolate the consequents, or employing any convex
hull determination method, to obtain the convex hull, and
subsequently derive the corresponding antecedent Fuzzy sets.
However, this approach necessitates the inverse of the Higher
Order Singular Value Decomposition (HOSVD), or any similar
tensor decomposition, in a manner that the matrices associated
with the antecedents should be derived to the interpolated
core tensor. Unfortunately, such an inverse operation or tensor
decomposition does not exist within tensor algebra and poses
a formidable challenge in general. Moreover, ensuring the ap-
propriate number of antecedent Fuzzy sets and their Ruspini-
partition characteristics based on the derived matrices further
complicates the inverse tensor decomposition. This raises the
hypothesis that a viable solution to derive the antecedents to
the given convex hull may not exist at all in general.

Therefore the present article proposes the opposite way
that leads to a very simple implementation and focuses on
the linear interpolation of the antecedents and derives the
consequents accordingly. This approach does not lead to
the linear interpolation of the consequents, however leads to
the monotonic smooth transition between the convex hulls.
The proposed approach incorporates the pseudo TP model
transformation in a form that aligns with the TS Fuzzy
model grid structures. The paper shows that the interpolation
of the antecedents may result in a jarring transition of the
consequents in many cases. Therefore the paper proposes the
rescheduling of the antecedents that guarantees the smooth
transition of the consequents, hence, the convex hull. The
proposed methodology enables the overall transition to be
controlled by a parameter, similar to the linear interpolation.

The present paper also introduces an extension of the convex
hull transition methodology to address large-scale problems
characterized by a high number of inputs and antecedent
Fuzzy sets. In such scenarios, the core step of the TS Fuzzy
model transformation, that is based on the HOSVD, entails a
significant computational load that severely restricts the appli-
cability of the proposed methodology to complex problems.
To overcome this limitation, the study revisits the antecedent
Fuzzy set refining technique, termed as enrich technique in the
previous work [7]. The paper proves that this technique fails
to preserve the Ruspini-partition and may not result in Fuzzy
sets in general. To address this issue, the paper proposes a
method to reinforce the conditions of the Ruspini-partition of
the antecedent Fuzzy sets. The integration of these methods on
the bases of the TS Fuzzy grid structures leads to a convex hull
manipulation methodology that does not require the execution
of the HOSVD on large-sized tensors, but rather simplifies the

computation by dimensions.
The paper provides two demonstrative examples to elucidate

the convex hull transition and highlight the inadequacy of the
refining technique in the absence of the reinforcement method.
Additionally, the study presents a real-world complex engi-
neering problem to showcase the efficacy and straightforward
applicability of the proposed methodology. This example also
underscores the fact that antecedent Fuzzy set interpolation
may not result in a smooth transition, but in a jarring transition,
without the proposed antecedent Fuzzy set rescheduling.

B. The structure of the paper

Section II of the paper introduces the notation employed
throughout the paper. The primary contribution of the study is
presented in Sections III, IV and V. Section III proposes the
concept of the TP and TS Fuzzy grid structure to facilitate the
development of the convex hull manipulation method. Section
IV outlines the convex hull transition methodology and pro-
vides two demonstrative examples to illustrate the theoretical
key points. Section V proposes an extension of the convex hull
manipulation methodology to address large-scale problems.
Finally, Section VI presents a real-world engineering problem
to showcase the straightforward applicability and effectiveness
of the proposed methodology. Section VII concludes the paper.

II. NOTATION

• i, j, k, l,m, n, g . . . are indices with the upper bounds
I, J,K,L,M,N,G . . . e.g. i = 1, 2, . . . , I and in =
1, 2, . . . , In and so on;

• a ∈ R, a ∈ RN , A ∈ RI×J , A ∈ RIN

denote, scalars,
vectors, matrices and tensors, respectively, where notation
RIN

is equivalent with RI1×I2×...×IN .
• 1 denotes a vector whose all elements are 1;
• rank(A) denotes the rank of matrix A;
• I denotes the identity matrix.
• {A}(n) denotes the n-mode layout of A, see [80].
• rankn(A) denotes the n-mode rank of A that is

rankn(A) = rank({A}(n));
• [·]index addresses elements, e.g. [A]i1,i2,...iN = ai1,i2,...iN

of A;
• λ ∈ [0, 1] is the interpolation and transition parameter;
• ω ⊂ R defines an interval as ω = [ωmin, ωmax];
• Ω ⊂ RN is a hyper space as Ω = ω1 × ω2 × . . .× ωN ;
• A ∈ co{∀n : Bn} denotes that A is within the convex

hull defined by the vertices Bn.
The f(p) in the paper denotes a bounded continuosus tensor

function f(p) ∈ RJM

, where p ∈ Ω ⊂ RN , Ω = ω1 × ω2 ×
· · · × ωN .

The formula

A = B
N
⊠

n=1
Cn, (1)

denotes the tensor product of the core tensor B ∈ RIN×JM

and matrices Cn ∈ RGn×In , that equals A ∈ RGN×JM

. The
tensor product is defined in the works of Lathauwer [80] and
in the books [6], [7] about the TP model transformation. In
the literature of the TP model transformation the notation ⊠

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3348160

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

is used instead of × introduced in the works of Lathauwer, to
underline that the core tensor may have vector, matrix or even
tensor elements.

The more compact tensor algebra-based equivalent variant
of the sum operator-based transfer function of the TS Fuzzy
model is employed in the TS Fuzzy model transformation
related literature. Thus, formula

f(p) = A
N

⊠
n=1

wn(pn), (2)

with

wn(pn) =
[
wn,1(pn) wn,1(pn) . . . wn,In(pn)

]
. (3)

is equivalent to

f(p) =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

N∏
n=1

wn,in(pn)ai1,i2,...,iN . (4)

for further details with examples please study [1], [3]–[7], [14].

III. TP AND TS FUZZY GRID STRUCTURE OF FUNCTIONS

The current section introduces the HOSVD-based TP and
TS Fuzzy grid structures to facilitate further discussions, with
a focus on the TS Fuzzy model transformation. Furthermore,
this section proposes a conceptual differentiation between the
TP and TS Fuzzy model transformation, which deviates from
the synonymous use of these terms in the related literature.

Definition 3.1: Hyper Rectangular Grid Tensor D
The N + 1 dimensional hyper rectangular equidistant grid

tensor (grid tensor in brief) is defined by D ∈ RGN×N ,
where Gn denotes the number of grids on dimension n,
in hyperspace Ω ⊂ RN and constructed by grid vectors
dn =

[
dn,1 dn,2 . . . dn,Gn

]
∈ RGn defined for each ωn,

which contain a set of equidistantly located grid dn,g ∈ ωn

in increasing order, where dn,1 = ωmin
n and dn,G = ωmax

n .
D contains the coordinates of the N dimensional grid as
[D]g1,g2,...gN =

[
d1,g1 d2,g2 . . . dN,gN

]
.

Remark 3.1: The proposed methods in the paper and the
concepts of the TP model transformation in general are not
limited to equidistant grid. If there is a priori information about
the function’s oscillation and rate of change, and they signif-
icantly differ in different regions, then could be reasonable
to set the density of the grid accordingly via defining non-
equidistant grid at specific dimensions or regions. But for the
sake of further discussion the paper uses equidistant grid.

Definition 3.2: Discretised Tensor FD of function f(p)

The Discretised Tensor FD ∈ RGN×JM

is constructed via
the sampling of function f(p) at each grid defined by the grid
tensor D as [FD]g1,g2,...gN = f([D]g1,g2,...gN ). Superscript
”D” of FD denotes that the discretisation is based on D.

The paper assigns the notation on a higher conceptual level.
The discretised tensor FD is always understood in the paper
as a result of the discretisation of f(p) over the elements of
the grid tensor D that fits the hyper space Ω of p according
to Definition 3.1.

Method 3.1: HOSVD based TP Grid Strucutre of func-
tion f(p)

The HOSVD based TP grid structure (TP grid structure in
brief) of function f(p) over grid D is derived by the HOSVD
[80] of the discretised tensor FD:

FD = H
N

⊠
n=1

Un, (5)

where all the zero singular values are discarded, and H ∈
RIN×JM

and Un ∈ RGn×In , where ∀n : In = rankn(FD) ≤
Gn. Note that only the first N dimension of FD is decom-
posed by HOSVD. If non-zero singular values are discarded
too, such as ∃n : In < rankn(FD) then Equ. (5) becomes an
approximation:

FD ≈ H
N
⊠

n=1
Un, (6)

where the error is bounded by the sum of the discarded
singular values [80].

Remark 3.2: Assume that f(p) is given in the form of

f(p) = A
N
⊠

n=1
wn(pn). (7)

One can reduce the size of the core tensor via executing
HOSVD where all the zero singular values are truncated as:

A = H
N

⊠
n=1

Un, (8)

then
f(p) = H

N

⊠
n=1

vn(pn), (9)

where
vn(pn) = wn(pn)Un. (10)

Lemma 3.1: Based on Remark 3.2 ∀n,Gn : rankn(FD) ≤
rankn(H). This means that the rankn(FD) will never be
larger than the rankn(H) irrespective of Gn → ∞. This
practically means that Gn is selected to be large enough to
get all the rank, but not necessarily should be extra large.
Paper [81] shows how to define the minimum density of the
discretisation grid in the TP model transformation, once we
know the maximum number of the weighting functions as, for
instance, determined in Equ. (7).

Method 3.2: TS Fuzzy model Grid Structure of function
f(p)

The TS Fuzzy model Grid Structure of f(p) over grid D,
that is also termed as Convex TP Grid Structure, is derived
from the TP grid structure given in Equ. (5):

FD = S
N
⊠

n=1
Wn. (11)

where each element of the discretised tensor is within the
convex hull defined by vertices stored in S as [FD]g1,g2,...gN ∈
co{∀i1, i2, . . . iN : [S]i1,i2,...iN }, for all g1, g2, . . . gN that is
guaranteed by

∀n, g, i : [Wn]g,i ∈ [0, 1] ⊂ R and ∀n : Wn1 = 1. (12)

Matrices Wn are transformed from orthonorm matrices Un of
Equ. (5) by transformations such as SNNN, NO, CNO, NO,
INO, RNO or IRNO transformations that guarantee (beside
Equ. (12)) various further different proper characteristics of
the convex hull defined by the vertices [S]i1,i2,...iN , see later
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and in publications [1], [6], [11]–[13]. The core tensor S is
finally determined by

S = FD N
⊠

n=1
(Wn)

+
. (13)

Remark 3.3: Note that while the size of Un is Gn × In
the size of Wn may increase by 1 column at some n to
guarantee Equ. (12). However, for the sake of simplicity the
paper considers the size of Wn as Gn × In.

Lemma 3.2: If both Wα and Wβ hold Equ. (12) then
Wλ = λWα + (1− λ)Wβ also holds Equ. (12).

Definition 3.3: Identity Fuzzy set system i(p)
Let us introduce the Identity Fuzzy set system denoted by

i(p) and defined by grid vector d ∈ RG. Vector i(p) =[
i1(p) i2(p) . . . iG(p)

]
∈ RG contains piece-wise linear

triangular shaped functions such as

i(p) = λ[I]g + (1− λ)[I]g+1; λ =
dg+1 − p

dg+1 − dg
, (14)

where dg ≤ p ≤ dg+1.

Definition 3.4: Piece-wise linear Fuzzy set system w(p)
The piece-wise linear Fuzzy set system w(p) ∈ RI -

denoted by a bar on top - is defined by a matrix W and
grid vector d as

w(p) = i(p)W. (15)

Lemma 3.3: Since Equ. (12) the Fuzzy sets in w(p) hold
∀p : w(p)1 = 1 and ∀p, i : [w(p)]i ∈ [0, 1], that property is
termed as Ruspinin-partition of the Fuzzy sets. Further, if both
wα(p) and wβ(p) defined over the same grid define Ruspini
partition then wλ(p) = λwα(p) + (1− λ)wβ(p) also defines
Ruspini-partition.

The wn(pn) is always understood in the paper as it is
wn(pn) = i(pn)Wn where Wn is from the TS Fuzzy grid
structure of f(p) with grid tensor D and i(pn) is also defined
by the same grid.

Method 3.3: Multi-linear piece-wise approximation f(p)
of f(p) based on D

Assume function f(p) and grid tensor D then

f(p) ≈ f(p) = FD N
⊠

n=1
in(pn). (16)

Method 3.4: Multi-linear HOSVD based TS Fuzzy model
Approximation

Based on Equ. (11) and (16) the multi-linear TS Fuzzy
model approximation of f(p) via grid D is determined as

f(p) ≈ f(p) =

(
S

N

⊠
n=1

Wn

)
N

⊠
n
i(pn) = S

N

⊠
n=1

wn(pn),

(17)
with ∀n : wn(pn) = i(p)Wn, where S and W are defined
by the TS Fuzzy grid structure of f(p), see Equ. (11). Equ.
(17) is equivalent with the transfer function Equ. (4) of the
typical TS Fuzzy model, but in the form of tensor operations.
The functions wn,i(pn(t)) of wn(pn) are the membership
functions of the antecedent Fuzzy sets and [S]i1,i2,...iN are
the consequent structures, e.g. consequent or vertex system
matrices in case of Linear Parameter Varying state-space

dynamic models. For further details and examples please study
[1], [3]–[7], [14].

Lemma 3.4: ∀p : f(p) ∈ co{∀i1, i2, . . . iN : [S]i1,i2,...iN }
see Lemma 3.3.

Method 3.5: TS Fuzzy model transformation
The paper denotes by a hat on top the approximation of

f(p) with very high accuracy as f̂(p), where

f(p)∼=
ϵ
f̂(p). (18)

If the approximation error ϵ is very small in numerical sense
- or is acceptable in the application at hand - then f̂(p) is
considered to be numerically equivalent to f(p). When ∀n :
Gn → ∞ and ϵ → 0 in

wn(pn)
∼=
ϵ
ŵn(pn) = wn(pn), (19)

then Equ. (17) resulted by Method 3.4 turns to be a numerical
reconstruction as

f(p)∼=
ϵ
f̂(p) = S

N

⊠
n=1

wn(pn) = f(p) = S
N

⊠
n=1

wn(pn).

(20)
The convergence of ϵ in the numerical reconstruction by TP or
TS Fuzzy model transformation based on the increasing grid
density is investigated in [6], [81]. For further details about
the approximation properties of the TP model transformation
be kindly referred to key publication [82], [83].

Remark 3.4: Note that if f(p) have

f(p) = S
N

⊠
n=1

wn(pn) (21)

representation then ∀n,Gn : rankn(FD) ≤ In with Gn →
∞, see Lemma 3.1. If f(p) have no

f(p) = S
N

⊠
n=1

wn(pn) (22)

representation [82], [83] then ∃n : rankn(FD) → ∞ with
Gn → ∞.

IV. TRANSITION BETWEEN TS FUZZY MODELS

This section proposes the method for the transition of the
convex hulls based on the TS Fuzzy grid structures. The key of
the method is the interpolation between Wn of the TS Fuzzy
grid structures. Since it may not lead to smooth transition in
general, as demonstrated later, then the proper rescheduling of
the columns of Wn is propsed.

Definition 4.1: Alternative TS Fuzzy models and grid
structures

The K alternative TS Fuzzy grid structures and TS Fuzzy
models are

FD = Sk
N
⊠

n=1
Wk

n; and f(p) = Sk
N

⊠
n=1

wk
n(pn), (23)

where Sk, Wk
n and antecedent Fuzzy sets wk

n(pn) may differ,
but the input-output mappings of the alternative TS Fuzzy
models are equivalent.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3348160

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

A. Transition between alternative TS Fuzzy models

Assume a given function f(p) and its two alternative TS
Fuzzy model grid structures over D derived by Method 3.2:

FD = A
N
⊠

n=1
Wα

n = B
N
⊠

n=1
Wβ

n, (24)

where, for instance, vertices [A]i1,i2,...iN define a loose convex
hull, where Wα

n are derived by SNNN transformation, while
the vertices [B]i1,i2,...iN define a tight convex hull, where Wα

n

are derived by CNO or IRNO transformation.
Method 4.1: Transition between the convex hulls defined

by the TS Fuzzy models
• Transition between the TS Fuzzy grid structures

The transition between tensors A and B is based on the
interpolation between the matrices for all n as

Wλ
n = (1− λ)Wα

n + λWβ
n, (25)

Sλ = FD N

⊠
n=1

(
Wλ

n

)+
, (26)

that leads to TP grid structure

FD = Sλ
N

⊠
n=1

Wλ
n (27)

if Wλ
n define the proper basis. E.g. if ∃n :

rank(wλ
n(pn)) < rankn(FD) then Equ. (27) does not

hold, hence, Equ. (27) becomes a rank reduced approxi-
mation of FD. Furthermore, in such cases, when at least
one singular value of any Wλ

n converges to zero, the
resulting Sλ may define a very large convex hull. This
leads to a jarring transition of the convex hulls, see the
example later in Section VI. Therefore, one has to check
if Equ. (27) is acceptable for the problem at hand.

• Smooth transition - Reschedule the antecedent Fuzzy
sets
When the rank of Wλ

n drops then one can swap the
columns of Wα

n or Wβ
n to find such a pairs of [Wα

n ]in
and [Wβ

n]in which avoid the rank drop of Wλ
n and leads

to a smooth transition of the convex hulls, see the example
later in Section VI.

• Numerical reconstruction of the transition
To achieve an acceptable level of accuracy in the numer-
ical reconstruction of the interpolated antecedent Fuzzy
sets and, consequently, the TS Fuzzy model for a given λ,
it is suggested to implement the proposed method using
a high-density grid.

• Define the antecedent Fuzzy sets
Finally, wλ

n(pn) is derived by wλ
n(pn) = i(pn)W

λ
n to

arrive at

f(p) ∼= Sλ
N
⊠

n=1
wλ

n(pn). (28)

Lemma 4.1: In Equ. (28) the Ruspini-partition is hold for
∀n : wλ

n(pn), see Lemma 3.3, that guarantees ∀p : f(p) ∈
{i1, i2, . . . iN : [Sλ]i1,i2,...iN }.

Fig. 1: Convex hulls defined by the vertices. The horizontal
axis is assigned to f1(p) while f2(p) is assigned to the vertical
axis. The left image belongs to Demonstrative example I.,
while the right one belongs to the Demonstrative example II.

Fig. 2: The IRNO (right) and the SNNN (left) type antecedent
Fuzzy membership functions wα(p) and wβ(p) for G = 50.

B. Demonstrative Example I: Smooth transition

To facilitate a simple two-dimensional visualization of the
convex hulls, consider the following vector function:

f(p) =
[
f1(p) f2(p)

]
=

[
sin(p) cos(p)

]
, (29)

where p ∈ [0, 2π]. This vector describes a circle as depicted
on Figure 1. Let us derive two alternative TS Fuzzy model
grid structures with G = 50 by Method 3.1 to arrive at
Equ. (24). Let Wα

n and Wβ
n be derived by IRNO and

SNNN transformations to define tight and loose convex hulls,
respectively. In the present simple case, it takes a simple matrix
form (since N = 1) as

FD = WαA = WβB, (30)

where FD ∈ RG×2, Wα,β ∈ RG×3 and A,B ∈ R3×2. The
resulting membership functions wα(p) and wβ(p) of

f(p) = wα(p)A = wβ(p)B (31)

are depicted on Figure 2, and the triangular convex hulls
defined by the vertices, namely by the row vectors of A and
B are depicted on the left image of Figure 1.

Let us define the interpolation by Equ. (25) and then
determine Sλ by Equ. (26) that leads to Equ. (27) and finally
to Equ. (28). Figure 3 depicts the transition of the antecedent
Fuzzy membership functions wλ(p) for λ = 0 → 1. The
left image of Figure 1 shows the transition between the loose
SNNN type convex hull and the tight IRNO type convex
hull defined by Sλ. Figure 4 shows the smooth transition of
the elements of Sλ from the tight convex hull to the loose
convex hull with λ = 0 → 1. Obviously, as demonstrated on
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Fig. 3: Transition of the antecedent Fuzzy membership func-
tions for λ = 0 → 1.

Fig. 4: Transition of the elements of Sλ for λ = 0 → 1.

Figure 4, the transition of the convex hull by the proposed
method is not equal to the linear interpolation of the vertices
Sλ ≈ (1− λ)A+ λB, except very extreme cases.

V. EXTENSION OF THE TRANSITION METHOD TO LARGE
SCALE PROBLEMS

The computation complexity of the HOSVD is exploding
easily with size of FD, since the number of elements of
FD is

∏N
n=1 In×

∏M
m=1 Jm. Therefore, this section proposes

a refinement and a reinforce method that can considerably
improve further the approximation accuracy of the TS Fuzzy
model transition without executing HOSVD, but break down
the computation by dimensions.

A. Refine the resolution

Method 5.1: Refining the antecedent Fuzzy sets of the
TS Fuzzy model

Assume that a TS Fuzzy model in Equ. (17) is derived
by Method 3.2 (or by the transition Method 4.1 for a given
λ) over D. The number of rows in Wn equals the number
of grid defined by Gn. The key of the algorithm below is
that one may determine the TP grid structure over a grid
with lower density first that is enough to define an acceptable
H. Then the antecedent Fuzzy sets are refined. Based on
Remark 3.4 once all the rank is found by H then instead of
applying considerably larger grid density where upon the TS
Fuzzy model transformation is executed, one may apply the
refining method proposed below to improve the resolution of
the antecedent Fuzzy sets. The same conclusion can be drawn
when the acceptable number of the antecedent sets are limited
by In - for some reason in the application- irrespective of the
rank of FD. In this case instead of defining a considerable
larger Gn than In one may define a smaller density grid

Gn > In and once In number of non-zero singular values
are found then the resolution of the antecedent Fuzzy sets can
be improved by the refining method to be introduced below.

• STEP 1: Additional grid
Define additional ′Gk number of grid for the k-th di-
mension by ′dk. Here superscript ’ denotes the variable
is defined for the increased grid resolution.

• STEP 2: Discretisation over the new grid
Discretise function f(p) over the new grid ′D created
from grid vectors ∀n, n ̸= k : dn and ′dk, that results
in ′FD that has the same size as FD except the k-th
dimension, where its size is ′Gk.

• STEP 3: Extract the refined ′Wn

Determine the new row vectors of ′Wk over the new grid
′dk in the k-th dimension based on the followings

′FD =

(
S

N

⊠
n=1,n̸=k

Wn

)
⊠
k

′Wk, (32)

where ′Wk is to be determined. Since

{′FD}(k) =′ Wk

{
S

N

⊠
n=1,n̸=k

Wn

}
(k)

, (33)

then

′Wk = {′FD}(k)
{
S

N

⊠
n=1,n̸=k

Wn

}+

(k)
. (34)

Finally the new grid is merged into dk and the assigned
rows of ′Wk ∈ R′GK×IK is merged to Wk (according
to the merging of the grids) that will have the size of
(Gk +′ Gk)× Ik.

• STEP 6: For all dimension
Repeat the above steps for all dimensions of p. Then,
finally the multi-linear TS Fuzzy model is

′f(p) = S
N

⊠
n=1

′Wn(pn) (35)

Remark 5.1: It should be noted that if the tensor product
is underdetermined, meaning that it has multiple solutions, as
expressed by

FD = S
N
⊠

n=1
Wk

n, (36)

then the refining process may yield antecedent Fuzzy sets that
are significantly different in shape from the ones to be refined.
This is a relatively common occurrence when N = 1 and the
initial grid is very sparse. However, it becomes an extreme and
particular case when N > 2 and the initial grid is not very
sparse. If the resulting shape of the antecedent Fuzzy sets are
deemed unacceptable for the given problem, the reinforcement
method proposed in the subsequent section solve this problem
as well and defines the appropriate antecedent Fuzzy sets.

Remark 5.2: The refining method will decrease the ap-
proximation error of f(p) with the increase of the resolution
of the antecedent Fuzzy sets, however, the error caused by
In < rankn(

′FD) will not be eliminated.
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B. Reinforce the Ruspini-partition

There is no guarantee that values of ′Wn hold Equ. (12).
Some smaller differences may occur, see the Subsection VI-C
of the examples in Section VI. Therefore the Ruspini-partition
of the antecedent Fuzzy sets is also not hold in such cases.
This is obvious since, for instance, the tight convex hull
defined over a sparse grid may not bound the values of the
function sampled over the new grid used during refinement,
see the Demonstrative example II in Section V-C below and
the example in Section VI. Therefore the vertices in S must
be adjusted by the next Method 5.2.

Method 5.2: Reinforce the Ruspini-partition on the an-
tecedent Fuzzy sets

This method adjusts the vertices in S via reinforcing the
Ruspini-partion on the antecedent Fuzzy sets ′wn(pn) without
executing HOSVD on a large discretised tensor of f(p).
Assume that we have the TS Fuzzy model representation and
the grid structure of f(p) derived over D by Method 3.4:

f(p) = S
N

⊠
n=1

wn(pn) and FD = S
N

⊠
n=1

Wn. (37)

Further assume that it is refined for new grid ′D as:

′f(p) = S
N

⊠
n=1

′wn(pn) and ′FD = S
N

⊠
n=1

′Wn. (38)

Then the reinforcing is based on the execution of SVD (with
discarding all the zero singular values) as

′Wn = UnDnV
+
n . (39)

As a next step the Un is transformed by any of the SNNN,
CNO, INO or IRNO etc. transformations to ′′Wn in order to
have tight or loose convex hull. Or simply, one can use the
same transformation that was used to derive Wn in Equ. (37).
Note that Un is orthonorm resulted by SVD that is required
by the transformations. Then, the adjusted core tensor is

′′S = ′FD N

⊠
n=1

(′′Wn)
+ (40)

that leads to

′f(p) = ′′S
N
⊠

n=1

′′wn(pn) and ′FD = ′′S
N
⊠

n=1

′′Wn, (41)

where ′′wn(pn) holds the Ruspini-partition. The superscipt ”
denotes that the variable is refined and reinforced.

In conclusion, if the result of the refining Method 5.1 is
not acceptable in regard of the Ruspini-partition, then one can
execute reinforcing Method 5.2 to derive two alternative TS
Fuzzy models for transition, hence, to arrive at Equ. (24) to
execute the transition in Method 4.1.

C. Demonstrative example II: Ruspini-partition is lost

Consider Equation (29). Let us use a very sparse grid
with G = 5 for discretization and define a tight convex
hull by IRNO transformation to derive the Multi-linear TS
Fuzzy model f(p) using Method 3.4. The resulting f(p) is
rectangular, and the convex hull is triangular, as depicted on
the right image of Figure 1. Next, let us define a very high-
density grid with G → ∞ and use refining Method 5.1 to

derive f(p) ∼= ′f(p). The right image of Figure 1 shows that
′f(p) is the numerically reconstructed circle defined by f(p).
Please compare to the left image. It can be observed that the
area denoted by ”X” is not covered by the convex hull of
the multi-linear TS Fuzzy model f(p) derived over the sparse
grid.

The refining Method does not modify S and, therefore, does
not alter the convex hull. However, the refining process will
also sample the section of the circle denoted by ”X”, and those
values will be included in the refined discretized tensor ′FD.
Consequently, both the refined ′FD and ′f(p) are not included
in co{∀i1, i2, . . . iN : [S]i1,i2,...iN } for all sampled grids. This
leads to membership functions ′w(p) that are not bounded by
[0, 1]. This is precisely why the reinforcement of the Ruspini-
partition is necessary typically in case of tight convex hulls.

VI. EXAMPLE OF A REAL ENGINEERING PROBLEM

In the literature related to TP model transformations, the
benchmark example of a very complex aeroelastic wing sec-
tion often appears [3], [5], [15]–[17], [79], [84], that is from a
real engineering control problem. For comparability, we also
use this example in this paper. Previous papers derive ony
SNNN, CNO, IRNO type convex hulls. The present example
shows how to derive infinite number of variants of the convex
hull. Note that to derive the TS Fuzzy model of the aeroelastic
wing section does not need the utilisation of the refining
method. However, in this example the refining method is
demonstrated as well, and one can compare the result to the
result of previous publications.

A. Model of the aeroelastic wing section

The model of the aeroelastic wing section is identi-
fied to design a state variable feedback-controller and an
observer-based output feedback controller. The challenge
in the control design, hence in finding the proper TS
Fuzzy model based representation lies in the strong non-
linearities and complexity of the model. The state-space
model of the 2D aeroelastic wing section has state vector
x(t) ∈ R4 as x(t) =

[
x1(t) x2(t) x3(t) x4(t)

]T
=[

h(t) α(t) ḣ(t) α̇(t)
]T

, where x1(t) is the plunging dis-
placement and x2(t) is the pitching displacement. The state-
space model has the form of[

ẋ(t)
y(t)

]
= S(p(t))

[
x(t)
u(t)

]
, (42)

where parameter vector has elements p(t) =
[
U(t) x2(t)

]
∈

R2. Here free stream velocity U(t) is an external parameter.
The entries of the system matrix are

S(p(t)) =

 0 0
0 0

1 0 0
0 1 0

S1(p(t)) S2(p(t))

 , (43)

S1(p(t)) =

[
−k1 −k2U

2(t)− p(kα(x2(t)))
−k3 −k4U

2(t)− q(kα(x2(t)))

]
, (44)

S2(p(t)) =

[
−c1(U(t)) −c2(U(t)) g3U

2(t)
−c3(U(t)) −c4(U(t)) g4U

2(t)

]
, (45)
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where

p(x2(t)) = Cpkα(x2(t)), q(x2(t)) = Cqkα(x2(t)) (46)

kα(x2(t)) = 2.82(1− 22.1x2(t) + 1315.5x2
2(t)+

+8580x3
2(t) + 17289.7x4

2(t)), (47)

c1(U(t)) = (Iαch + U(t)(Iαρbclα +mxαρcmα
))/d

c2(U(t)) = (zρU(t)(Iαb
2clα +mxαb

4cmα
)−mxαbcα)/d

c3(U(t)) = −m(xαbch + ρU(t)b2(xαclα + cmα
))/d

c4(U(t)) = m(cα − zρU(t)b3(xαclα + cmα
))/d. (48)

Here a = −0.673, b = 0.135, kh = 2844.4, ch = 27.43,
cα = 0.036, ρ = 1.225, clα = 6.28, clβ = 3.358, cmα =
(0.5+a)∗clα , m = 12.387, cmβ

= −0.635, xα = −0.3533−
a, Iα = 0.065, d = 0.5193, k1 = 356 k2 = 0.105, k3 =
−2928.1. k4 = −0.4906,Cp = −1.0294, Cq = 23.851, g3 =
−0.054911, z = (1/2− a) and g4 = 0.2335.

B. Starting with a sparse grid

In the present example we can start with a dense grid
directly as documented in the previous publications. However,
in order to demonstrate and compare the effectivenes of the
refining method let us execute Method 3.2 on S(p(t)) over
Ω =

[
14 25

]
×

[
−0.3 0.3

]
with a low density grid as

G1 = G2 = 6. Then we derive two alternative TS Fuzzy
grid structures of S(p(t)) as in Equ. (24). Here N = 2 and A
defines CNO type tight convex hull, while B defines SNNN
type loose convex hull. The antecedent Fuzzy sets wα

n(pn(t))
and wβ

n(pn(t)) are depicted and Figure 5. Note that this sparse
grid is enough to find all the ranks of the model.

Fig. 5: The SNNN and CNO type antecedent Fuzzy sets of
the wing section model, where the grid density is G = 6.

C. Refining the TS Fuzzy models

Since, the goal is to determine the transition of the TS Fuzzy
model for λ = 0 → 1 then we may refine the two alter-
native TS Fuzzy models instead of refining the interpolated
antecedent Fuzzy sets for all λ = 0 → 1.

Therefore, let us refine the grid on p1(t) first. Let the new
grid defined by ′G1 = 50 (G2 = 6). According to the refining
Method 5.1, first define FD

1 . Then determine

′Wα
1 = {FD

1 }(1)
(
{A}(1)

)+
, (49)

′Wβ
1 = {FD

1 }(1)
(
{B}(1)

)+
. (50)

For dimension p2(t) let ′G2 = 50. The discretised tensor FD
2

is defined over G1 = 6 and ′G2 = 50. Then
′Wα

2 = {FD
2 }(2)

(
{A}(2)

)+
(51)

′Wβ
2 = {FD

2 }(2)
(
{B}(2)

)+
. (52)

Finally we derived the TS Fuzzy models with resolution of
50 × 50, however no HOSVD was executed on such a large
tensor. In the present example the minimum and the maximum
values of ′Wα,β

n is slightly out of the bound [0, 1] as

min /max(∀n :′ Wα/β
n ) = −0.012494/1.0082. (53)

If it is not acceptable in the design application, one can execute
the reinforcement Method 5.2, see the next subsection.

D. Reinforce the SNNN and the CNO conditions

Because of Equ. (53) let us reinforce the Ruspini-partition.
According to Method 5.2 the reinforcemenet is done via
executing SVD (with discarding all the zero singular values)
on ′Wα

n and ′Wβ
n as,

′Wα/β
n = Uα/β

n Dα/β
n

(
Vα/β

n

)T

, (54)

Then the reinforced ′′Wα
n and ′′Wβ

n are resulted by executing
SNNN and CNO transformation on Uα

n and Uβ
n.

E. Transition between TS Fuzzy model alternatives

According to Method 4.1, let us define the linear interpola-
tion as

′′Wλ
n = (1− λ)′′Wα

n + λ′′Wβ
n. (55)

The resulting interpolated refined membership functions
wλ

n(pn) are depicted on Figure 6 for 10 equidistant grid of
λ. Then the core tensor is

Sλ = ′′FD N
⊠

n=1

(
′′W

λ
n

)+

, (56)

where ′′FD is discretised over grid ′G1 ×′ G2. In the present
case Equ. (56) does not lead to

′′FD = Sλ
N

⊠
n=1

′′W
λ
n (57)

for all λ, since the rank of ′′Wλ
1 decreases in a certain region

of λ. Namely, the third singular value of ′′Wλ
1 gradually

converges to zero around λ = 0.58, see the left image of
Figure 7. Figure 8 plots the elements of Sλ for λ = 0 → 1.
One can observe a jarring transition of the covex hull. Namely,
the values of the vertices, hence, the convex hull explodes
around λ = 0.58. If one need smooth transition for all λ then
the rescheduling of the antecedent Fuzzy sets leads to solution,
see next subsection.
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Fig. 6: The interpolated, refined and reinforced antecedent
Fuzzy sets for λ = 0 → 1, where G1 = G2 = 50.

Fig. 7: The singular values of ∀n :′′ Wλ
n are plotted on the

left side and the singular values of ∀n :′′′ Wλ
n resulted after

rescheduling are plotted on the right side for λ = 0 → 1.

F. Rescheduling the antecedent Fuzzy sets leads to smooth
transition

Let us reshedule the antecedent membership functions via
swapping the columns as

′′′Wα
1 =′′ Wα

1

0 0 1
1 0 0
0 1 0

 and ′′′Wα
2 =′′ Wα

2

[
0 1
1 0

]
.

(58)
If we repeat the interpolation from Euq. (55) then we arrive
at

S(p(t)) ∼= S(p(t)) = Sλ
N

⊠
n=1

′′′w
λ
n(pn). (59)

The interpolated antecedent Fuzzy sets are depicted on
Figure 9 (compare to Figure 6). After the rescheduling, none
of the singular values of ′′′Wλ

n get close to zero for any λ, see
the right image of Figure 7 and compare to the left image. As
a result we have a smooth transition of the convex hull, see
the transition of the values of Sλ for λ = 0 → 1 on Figure
10 and compare to Figure 8.

VII. CONCLUSION

The paper introduces a radically new methodology for
manipulating the Fuzzy rules and associated convex hulls of
TS Fuzzy models. The proposed solution involves determining
the linear interpolation of appropriately paired antecedent
Fuzzy sets, followed by the derivation of the corresponding
consequents. This approach enables a smooth transition be-
tween alternative TS Fuzzy models and their respective convex
hulls. The paper highlights the effectiveness of this solution
in systematically deriving an infinite number of various types
of convex hulls in a controlled manner, in contrast to previous
approaches that were limited to a few derivable convex hulls.

The paper also emphasizes the challenges associated with
the alternative approach of generating the convex hull first and
then deriving the Ruspini-partitioned antecedents. To develop

Fig. 8: Elements of Sλ for λ = 0 → 1.The elements are
grouped by different patterns for better visualisation

Fig. 9: The rescheduled, interpolated, refined and reinforced
antecedent Fuzzy sets for λ = 0 → 1.

such method requires intricate tensor algebraic operations that
are currently unavailable, and in many cases, a viable solution
does not exist.

Furthermore, the paper presents an extension of the pro-
posed methodology to address large-scale problems. It demon-
strates that the refining and reinforcing method proposed can
effectively handle the transition between complex alternative
TS Fuzzy models without the need for executing the Higher
Order Singular Value Decomposition on large-sized tensors.
The proposed method is thoroughly validated by numerical
and real complex engineering examples, covering all theoret-
ical aspects of the approach.
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