
AN IMPROVED TRAINING METHOD FOR 

WAVELET NEURAL NETWORKS FOR SOLVING 

ORDINARY AND PARTIAL DIFFERENTIAL 

EQUATIONS 

 

 

 

 

 

  

 

 

TAN LEE SEN 

 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

 

 

2022  



 

AN IMPROVED TRAINING METHOD FOR 

WAVELET NEURAL NETWORKS FOR SOLVING 

ORDINARY AND PARTIAL DIFFERENTIAL 

EQUATIONS 

 

 

 

 

 
by 

 

 

 

 

TAN LEE SEN 

 

 

 

 
Thesis submitted in fulfilment of the requirements  

for the degree of  

Doctor of Philosophy 

 

 

 

 

October 2022 

 

 



ii 

ACKNOWLEDGEMENT 

I would like to express my sincere gratitude to Prof. Dr. Zarita binti Zainuddin, my 

main supervisor, for her excellent supervision, continuous support, and constant 

encouragement and motivation. Every piece of her advice in all aspects have helped 

me from the beginning to the completion of this thesis. I would also like to extend my 

gratitude to Associate Professor Dr. Ong Pauline, my field supervisor, for her valuable 

and constructive suggestions that have improved the quality of my research work. 

Also, I would like to acknowledge Dr. Mohd Shareduwan bin Mohd Kasihmuddin, my 

current supervisor, for providing continuous help. 

Also, I would like to take this opportunity thank the staff and administration 

members of the School of Mathematical Sciences and related postgraduate 

departments of Universiti Sains Malaysia for providing help during my study. 

Furthermore, I would like to extend my heartfelt thanks to Universiti Sains Malaysia 

for supporting this research under the Research University Grant 

1001/PMATHS/8011041 and Bridging Research Grant 304/PMATHS/6316079. Not 

to forget, I am very grateful to my parents and siblings, for their support and care 

throughout my study. Finally, I would like to thank my postgraduate friend, Ummi 

Nurmasyitah binti Hassan and all of those who have encouraged me during the 

execution of the research. 



iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT ......................................................................................... ii 

TABLE OF CONTENTS .......................................................................................... iii 

LIST OF TABLES ................................................................................................... vii 

LIST OF FIGURES .................................................................................................. ix 

LIST OF SYMBOLS ............................................................................................... xii 

LIST OF ABBREVIATIONS ................................................................................ xiv 

LIST OF APPENDICES ........................................................................................ xvi 

ABSTRAK .............................................................................................................. xvii 

ABSTRACT ............................................................................................................. xix 

 INTRODUCTION .......................................................................... 1 

1.1 Introduction ...................................................................................................... 1 

1.2 Motivations of Study ........................................................................................ 3 

1.3 Problem Statements .......................................................................................... 5 

1.4 Research Objectives ......................................................................................... 6 

1.5 Methodology .................................................................................................... 7 

1.6 Scope of Thesis ................................................................................................ 7 

1.7 Thesis Organization .......................................................................................... 8 

 LITERATURE REVIEW ............................................................ 10 

2.1 Introduction .................................................................................................... 10 

2.2 Artificial Neural Networks ............................................................................. 10 

2.2.1 Architecture of an ANN ................................................................. 10 

2.2.2 Training Algorithms ....................................................................... 12 

2.2.2(a) Deterministic Algorithms .............................................. 13 

2.2.2(b) Stochastic Algorithms .................................................... 15 

2.2.2(c) Hybrid Algorithms ......................................................... 17 



iv 

2.3 Solving DEs Using ANNs .............................................................................. 17 

2.3.1 Existing ANNs Approach for Solving DEs.................................... 19 

2.3.2 Existing Training Algorithms of ANNs for Solving DEs .............. 27 

2.4 Summary ........................................................................................................ 31 

 WAVELET NEURAL NETWORKS AND IMPROVED 

BUTTERFLY OPTIMIZATION ALGORITHM ................................................. 33 

3.1 Introduction .................................................................................................... 33 

3.2 Wavelet Neural Networks .............................................................................. 33 

3.2.1 Advantages and Applications of WNNs ........................................ 37 

3.2.2 Training Methods of WNNs ........................................................... 38 

3.3 The Standard Butterfly Optimization Algorithm ........................................... 40 

3.3.1 Overview ........................................................................................ 40 

3.3.2 Framework of BOA ........................................................................ 42 

3.3.3 Applications of BOA ...................................................................... 44 

3.3.4 Variants of BOA............................................................................. 44 

3.3.5 Limitations of BOA ........................................................................ 47 

3.4 Improved Butterfly Optimization Algorithm ................................................. 48 

3.4.1 Motivation ...................................................................................... 48 

3.4.2 The proposed IBOA ....................................................................... 49 

3.5 Solving DEs using WNNs with IBOA ........................................................... 56 

3.6 Summary ........................................................................................................ 58 

 SOLVING ORDINARY DIFFERENTIAL EQUATIONS 

USING WAVELET NEURAL NETWORKS ....................................................... 60 

4.1 Introduction .................................................................................................... 60 

4.2 Wavelet Neural Networks Architecture ......................................................... 61 

4.3 Mathematical Formulations for Solving ODEs .............................................. 62 

4.4 Numerical Simulations ................................................................................... 65 

4.4.1 Experiment Setup ........................................................................... 67 



v 

4.4.2 Performance Evaluation ................................................................. 73 

4.5 Results and Discussion ................................................................................... 74 

4.5.1 Example 4.1 .................................................................................... 74 

4.5.2 Example 4.2 .................................................................................... 77 

4.5.3 Example 4.3 .................................................................................... 80 

4.5.4 Example 4.4 .................................................................................... 83 

4.5.5 Example 4.5 .................................................................................... 85 

4.5.6 Results and Comparison of Three Different Wavelet 

Activation Functions ...................................................................... 88 

4.6 Statistical Analysis ......................................................................................... 90 

4.7 Summary ........................................................................................................ 96 

 SOLVING ELLIPTIC PARTIAL DIFFERENTIAL 

EQUATIONS USING WAVELET NEURAL NETWORKS .............................. 99 

5.1 Introduction .................................................................................................... 99 

5.2 Wavelet Neural Networks Architecture ......................................................... 99 

5.3 Mathematical Formulations for Solving PDEs ............................................ 101 

5.4 Numerical Simulations ................................................................................. 103 

5.4.1 Experiment Setup ......................................................................... 105 

5.5 Results and Discussion ................................................................................. 106 

5.5.1 Example 5.1 .................................................................................. 106 

5.5.2 Example 5.2 .................................................................................. 109 

5.5.3 Example 5.3 .................................................................................. 110 

5.5.4 Example 5.4 .................................................................................. 112 

5.6 Statistical Analysis ....................................................................................... 113 

5.7 Summary ...................................................................................................... 120 

 SOLVING PARTIAL DIFFERENTIAL EQUATIONS USING 

DEEP WAVELET NEURAL NETWORKS ....................................................... 122 

6.1 Introduction .................................................................................................. 122 



vi 

6.2 Literature Review ......................................................................................... 122 

6.3 Deep Wavelet Neural Networks Architecture .............................................. 125 

6.4 Mathematical Formulations for Solving PDEs ............................................ 127 

6.5 Numerical Simulations ................................................................................. 130 

6.6 Statistical Test .............................................................................................. 131 

6.7 Summary ...................................................................................................... 134 

 CONCLUSIONS AND FUTURE WORKS ............................. 135 

7.1 Summary and Contributions ......................................................................... 135 

7.2 Future Works ................................................................................................ 139 

REFERENCES ....................................................................................................... 141 

APPENDICES 

LIST OF PUBLICATIONS 

 



vii 

LIST OF TABLES 

Page 

Table 2.1 Timeline of the ANNs with the hybrid training methods .................. 30 

Table 4.1 Parameter setting for IBOA, BOA (Arora and Singh, 2019), PSO 

and MBP ............................................................................................ 68 

Table 4.2 The values of dilation and translation of WNNs for ODE examples

 ............................................................................................................ 70 

Table 4.3 Comparison of AE values at training points obtained by WNNs 

methods, PSNNs, CNNs and Heun methods (Haweel and 

Abdelhameed, 2015) for Example 4.1 ............................................... 74 

Table 4.4 Comparison of AE values at testing points for Example 4.1 ............. 77 

Table 4.5 Comparison of AE values at training points obtained by WNNs 

methods and other ANNs method (Raja et al., 2018a) for Example 

4.2 ....................................................................................................... 78 

Table 4.6 Comparison of AE values at testing points for Example 4.2 ............. 79 

Table 4.7 Comparison of AE values at training points obtained by WNNs 

methods and RBFNs method (Rizaner and Rizaner, 2018) for 

Example 4.3........................................................................................ 80 

Table 4.8 Comparison of AE values at testing points for Example 4.3 ............. 82 

Table 4.9 Comparison of AE values at training points obtained by WNNs 

methods and other ANNs method (Sabir et al., 2020c) for Example 

4.4 ....................................................................................................... 83 

Table 4.10 Comparison of AE values at testing points for Example 4.4 ............. 85 

Table 4.11 Comparison of AE values at training points for Example 4.5 ........... 86 

Table 4.12 Comparison of AE values at testing points for Example 4.5 ............. 88 

Table 4.13 Comparison of GW, MH and MR in terms of the MAE for 

Examples 4.1–4.5 ............................................................................... 88 



viii 

Table 4.14 Percentage of convergence rate in terms of the MAE for WNNs 

models ................................................................................................ 90 

Table 4.15 Statistical MAE results of different WNNs models ........................... 92 

Table 4.16 Percentage of accuracy improvements for the WNNIBOA model 

in comparison to the other WNNs models in terms of the MIN 

MAE ................................................................................................... 94 

Table 5.1 Comparison of AE values at testing points obtained by WNNs 

methods, BENNs (Sun et al., 2019) and CHNNs methods (Mall 

and Chakraverty, 2017) for Example 5.1 ......................................... 109 

Table 5.2 Comparison of AE values at testing points for Example 5.2 ........... 110 

Table 5.3 Comparison of AE values at some training points obtained by 

WNNs methods and a numerical method (Shiralashetti et al., 2016) 

for Example 5.3 ................................................................................ 111 

Table 5.4 Comparison of AE values at testing points for Example 5.3 ........... 111 

Table 5.5 Comparison of AE values at testing points for Example 5.4 ........... 112 

Table 5.6 Statistical MAE results of different WNNs models ......................... 113 

Table 5.7 Percentage of accuracy improvements for the WNNIBOA model 

in comparison with the other WNNs models in terms of the MIN 

MAE ................................................................................................. 114 

Table 6.1 Comparison of AE values at testing points for Example 5.1 ........... 131 

Table 6.2 Comparison of AE values at testing points for Example 5.2 ........... 131 

Table 6.3 Comparative statistical MAE results of deep WNNs and single 

WNNIBOA ...................................................................................... 132 

 



ix 

LIST OF FIGURES 

Page 

Figure 2.1 Architecture of an ANN with input x and output u. This 

architecture has one input layer with one input node, one hidden 

layer with N hidden nodes and one output layer. These nodes are 

linked by weight values vn and wn, for n = 1, …, N. The activation 

functions n and bias term b1n are only used in the hidden nodes. .... 11 

Figure 2.2 Training algorithms of ANNs ............................................................ 13 

Figure 2.3 ANNs approaches for solving DEs .................................................... 20 

Figure 3.1 Diagrams of (a–c) GW, (d–f) MH and (g–i) MR along with their 

first and second derivatives ................................................................ 36 

Figure 3.2 Plot of variation in the (a) switch probability p and (b) sensory 

modality C with respect to iterations ................................................. 51 

Figure 3.3 Flowchart of IBOA ............................................................................ 54 

Figure 3.4 Flowchart of WNNIBOA ................................................................... 55 

Figure 3.5 Flowchart of general steps of WNNs for solving DEs ....................... 57 

Figure 4.1 Architecture of a WNN with input x and output u. This architecture 

has one input layer with one input node, one hidden layer with N 

hidden nodes and one output layer. sn and d are the translation and 

dilation of the wavelet activation functions n, respectively, for n 

= 1, …, N. The hidden nodes and output node are linked by 

synaptic weights wn. ........................................................................... 61 

Figure 4.2 Plot of AE for WNNs solutions with different training methods for 

Example 4.1........................................................................................ 75 

Figure 4.3 Zoom-in of Figure 4.2 ........................................................................ 75 

Figure 4.4 Plot of AE for WNNs solutions with different training methods for 

Example 4.2........................................................................................ 79 

Figure 4.5 Zoom-in of Figure 4.4 ........................................................................ 79 



x 

Figure 4.6 Plot of AE for WNNs solutions with different training methods for 

Example 4.3........................................................................................ 81 

Figure 4.7 Zoom-in of Figure 4.6 ........................................................................ 81 

Figure 4.8 Plot of AE for WNNs solutions with different training methods for 

Example 4.4........................................................................................ 84 

Figure 4.9 Zoom-in of Figure 4.8 ........................................................................ 84 

Figure 4.10 Plot of AE for WNNs solutions with different training methods for 

Example 4.5........................................................................................ 87 

Figure 4.11 Zoom-in of Figure 4.10 ...................................................................... 87 

Figure 5.1 Architecture of a WNN with inputs x and y and output u. This 

architecture has one input layer with two input nodes, one hidden 

layer with N hidden nodes and one output layer. s and d are the 

translation and dilation of the wavelet activation functions n, 

respectively, for n = 1, …, N. The hidden nodes and output node 

are linked by synaptic weights wn. ................................................... 100 

Figure 5.2 Plot of the AE for (a) WNNMBP, (b) WNNPSO, (c) WNNBOA, 

and (d) WNNIBOA for Example 5.1 ............................................... 106 

Figure 5.3 Plot of the AE for CHNNs. Reprinted with permission from 

Springer Nature: Springer, Neural Processing Letters, Single layer 

Chebyshev neural network model for solving elliptic partial 

differential equations, Mall, S. and Chakraverty, S., 2017. ............. 107 

Figure 5.4 Plot of the AE for BeNNs. Reprinted with permission from 

Springer Nature: Springer, Neural Processing Letters, Solving 

partial differential equation based on Bernstein neural network and 

extreme learning machine algorithm, Sun et al., 2019. ................... 108 

Figure 5.5 Plot of the MAE against ten runs for different training methods for 

Example 5.1...................................................................................... 116 

Figure 5.6 Zoom-in of Figure 5.5 ...................................................................... 117 

Figure 5.7 Plot of the MAE against ten runs for different training methods for 

Example 5.2...................................................................................... 117 



xi 

Figure 5.8 Zoom-in of Figure 5.7 ...................................................................... 117 

Figure 5.9 Plot of the MAE against ten runs for different training methods for 

Example 5.3...................................................................................... 118 

Figure 5.10 Zoom-in of Figure 5.9 ...................................................................... 118 

Figure 5.11 Plot of the MAE against ten runs for different training methods for 

Example 5.4...................................................................................... 119 

Figure 5.12 Zoom-in of Figure 5.11 .................................................................... 119 

Figure 6.1 Architecture of a deep WNN with inputs x and y and output u. The 

activation functions m and translation parameters s11m and s12m 

are used in the mth hidden node of the first hidden layer, for m = 

1, …, M. The first hidden layer and second hidden layer are linked 

by translation parameters s2mn, for n = 1, …, N. n is the output of 

the second hidden layer which will be multiplied with synaptic 

weights wn. ........................................................................................ 125 

   



xii 

LIST OF SYMBOLS 

A given initial values of ODEs 

a power exponent 

B given boundary values of ODEs 

b,c training input domain 

b1 bias term 

C sensory modality 

D number of dimensions of butterflies 

d,d1,d2 dilation parameters 

f fragrance 

f1 input function of hidden layers 

G given derivative initial value of ODEs 

g current best solution 

H(x,y) given function of ODEs and PDEs 

h0(y),h1(y),q0(x),q1(x) given boundary values of PDEs 

I stimulus intensity 

i,r random number between 0 and 1 

J number of butterflies in population 

j,k,m,n integer index 

K given number of PDEs 

M,N number of hidden nodes 

MaxI maximum number of iterations 

NI number of training points 

NP number at which MAE of run achieves acceptability criteria of 

MAE 

NT total number of independent runs 

O objective function 

o constant in dynamic switch probability 

p switch probability 

pp function of calculating exponential increment of switch 

probability 



xiii 

s,s1,s2 

s,s1 

translation parameters 

translation position 

t current iteration number 

u(x),u(x,y) output of ANNs or WNNs 

v weights connecting input layer and hidden layer of ANNs 

w synaptic weights connecting hidden layer and output layer 

X  butterflies’ position vectors 

X  butterflies’ positions values 

x,y,z 

x 

spatial variables 

spatial position 
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SUATU KAEDAH LATIHAN YANG DITAMBAHBAIK UNTUK 

RANGKAIAN NEURAL WAVELET BAGI MENYELESAIKAN 

PERSAMAAN PEMBEZAAN BIASA DAN SEPARA 

ABSTRAK 

Persamaan pembezaan telah digunakan secara meluas untuk pemodelan kajian 

dan aplikasi yang tidak terkira banyaknya dalam pelbagai disiplin. Beberapa tahun 

kebelakangan ini, rangkaian neural buatan (RNB) telah mendapat perhatian untuk 

menghampirkan penyelesaian persamaan pembezaan dengan suatu keadah yang lebih 

cekap. Di dalam tesis ini, rangkaian neural wavelet (RNW) digunakan dan 

diprogramkan untuk menyelesaikan persamaan pembezaan biasa (PPB) dan 

persamaan pembezaan separa (PPS). Kegunaan RNW muncul oleh kerana ia 

mempunyai struktur yang lebih padat dan kelajuan pembelajaran yang lebih pantas 

sementara mengekalkan sifat penghampiran universal konvensional RNB. Meskipun 

RNW mempunyai sifat yang superior, algoritma pembelajarannya mestilah ditangani 

secara bijaksana memandangkan algoritma pembelajaran yang digunakan untuk 

menyesuaikan parameter pemberat bagi RNW boleh mempengaruhi kualiti ketepatan 

dan penumpuan RNW. Kebelakangan ini, algoritma pengoptimuman rama-rama 

(APR), suatu algoritma metaheuristik, telah menunjukkan keputusan yang efisien 

dalam masalah pengoptimuman global dan pelbagai aplikasi. Namun begitu, APR 

mempunyai masalah penumpuan pramatang di optima tempatan. Dengan demikian, 

suatu penambahbaikan algoritma pembelajaran yang berdasarkan metaheuristik, iaitu 

algoritma pengoptimuman rama-rama ditambah baik (APRP), telah dicadangkan dan 

kemudian digunakan untuk mempertingkatkan proses pembelajaran RNW. Selain itu, 

eksperimen berangka dalam penyelesaian persamaan pembezaan yang sama 



xviii 

dijalankan dengan menggunakan tiga algoritma pembelajaran yang lain, iaitu 

algorithm APR, pengoptimuman kerumunan zarah (PKZ) dan rambatan balik 

momentum (RBM) dalam RNW. Analisis statistik berdasarkan keputusan daripada 

bilangan pengulangan yang tidak bersandar dan mencukupi dijalankan untuk 

mengesahkan keberkesanan kaedah yang dicadangkan dari segi ketepatan, keteguhan 

dan penumpuan. Perbandingan prestasi dengan kaedah-kaedah lain termasuk RNW, 

RNB dan kaedah berangka mengesahkan dengan jelas ketangkasan kaedah RNW 

dengan algoritma pengoptimuman rama-rama ditambah baik (RNWAPRP) yang 

dicadangkan. Kemudian, RNW dengan ilmu pengetahuan yang dikodkan dalam suatu 

set pemberat berangka telah diuji dengan beberapa titik ujian untuk suatu penilaian 

mendalam bagi prestasi model RNW yang telah dilatih. Selain itu, prestasi RNW 

dalam penyelesaian PPB telah diperiksa dengan pelbagai fungsi pengaktifan wavelet, 

iaitu, Mexican Hat (MH), Wavelet Gaussian (WG) dan Morlet (MR). Antara fungsi 

pengaktifan wavelet, WG merupakan satu fungsi pengaktifan wavelet yang berpotensi 

bagi RNWAPRP dalam penyelesaian PPB. Kemudiannya, suatu penghampiran RNW 

dalam bagi penyelesaian PPS yang sama telah dicadangkan di dalam tesis ini. 

Keputusan statistik menunjukkan bahawa prestasi model RNW yang mempunyai 

lapisan tersembunyi tunggal adalah lebih superior daripada RNW dalam. 
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AN IMPROVED TRAINING METHOD FOR WAVELET NEURAL 

NETWORKS FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL 

EQUATIONS 

ABSTRACT 

Differential equations (DEs) have been widely used for modelling countless 

studies and applications in various disciplines. In recent years, artificial neural 

networks (ANNs) have gained attention in solving DEs in a more efficient way to 

approximate solutions of DEs. In this thesis, wavelet neural networks (WNNs) were 

employed and programmed to solve ordinary differential equations (ODEs) and partial 

differential equations (PDEs). The utilization of the WNNs emerges from having more 

compact structure and faster learning speed while retaining the universal 

approximation property of the conventional ANNs. Despite the superior properties of 

the WNNs, its training algorithm must be judiciously addressed since the training 

algorithm which is employed for adjusting weight parameters of WNNs can 

consequently affect the quality of the accuracy and convergence of the WNNs. 

Recently, butterfly optimization algorithm (BOA) which is a metaheuristic algorithm, 

has shown efficient results to global optimization problems and various applications. 

However, the BOA has a problem of premature convergence at local optima. Thus, an 

improved metaheuristic-based training algorithm, namely, improved butterfly 

optimization algorithm (IBOA), was proposed and subsequently used to enhance the 

training process of the WNNs. Also, numerical experiments on solving the same DEs 

were conducted using three other training algorithms, namely, BOA, particle swarm 

optimization (PSO) and momentum backpropagation (MBP) in the WNNs. Statistical 

analyses of the results based on a sufficient number of independent runs were 



xx 

conducted to validate the effectiveness of the proposed methods in terms of the 

accuracy, robustness and convergence. Performance comparison with other methods 

including WNNs, ANNs and numerical methods clearly verified the ascendency of the 

proposed wavelet neural networks with improved butterfly optimization algorithm 

(WNNIBOA) methods. Then, the WNNs with the encoded knowledge in a set of 

numeric weights were tested with several testing points for an in-depth evaluation of 

the performance of the trained WNNs models. Also, the performance of the WNNs in 

solving ODEs was examined by varying the wavelet activation functions, namely, 

Mexican Hat (MH), Gaussian wavelet (GW) and Morlet (MR). Among the wavelet 

activation functions, the Gaussian wavelet (GW) is a potential wavelet activation 

function for the WNNIBOA in solving ODEs. Subsequently, a deep WNNs 

approximation for the solutions of the same PDEs was proposed in this thesis. 

Statistical results showed that the performance of the WNNs with single hidden layer 

model was superior to that of the deep WNNs. 
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INTRODUCTION 

1.1 Introduction 

Differential equations (DEs) are a powerful mathematical language which give us a 

mathematical way of understanding of how functions relate to its derivatives in a form 

of equations. They have been extensively used to formulate and model many ranges 

of problems and applications such as fundamental theories of physics, engineering 

problems, chemical reactions, and biological processes. For instance, Bernoulli 

equation, Schrödinger equation and Newton’s second law in the fundamental theories 

of physics are expressed by means of the DEs (Panda and Pani, 2018). On the other 

hand, the susceptible-infectious-removed model, which is a biological mathematical 

model is formulated by DEs to predict the spreading rate of specific epidemics.  

Solutions to DEs are vital to a wide range of investigations in various aspects 

of study. By solving DEs, useful outcomes are obtained, i.e., solving the seismic model 

can yield cost-effective wave propagation information, and as such, geophysicists can 

save the cost for drilling (Liao, 2011). Some simple DEs can be solved by analytic 

methods. However, some DEs which do not have exact solutions are approximately 

solved using mesh-based traditional numerical methods such as finite difference and 

finite element methods. These classical methods which approximate solutions at mesh 

grids are found to be computationally expensive when high dimensional DEs are 

considered. Additionally, an additional interpolation procedure is needed to yield 

testing solutions which have not been considered during computation because the 

numerical solutions are only valid in the considered grid of points (Mall and 

Chakraverty, 2014). 
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In response to the importance of the DEs in many disciplines, the construction 

of efficient and reliable numerical methods has become an ongoing research topic. 

Recently, machine learning algorithm has opened up a new attractive category of 

numerical methods. This algorithm can learn to adjust its parameters in response to 

problems which can reap great rewards by making solving DEs closely automated. 

Examples of machine learning algorithms that have been developed for solving DEs 

are support vector machines and artificial neural networks (ANNs). Particularly, 

ANNs for solving DEs have attracted much attention (Mall and Chakraverty, 2017). 

Mathematically speaking, ANNs are an intelligent mathematical model mimicking the 

ability of information processing of the human brain. Its structure comprises of 

interconnected nodes in which each connection carries a numeric weight. An ANN 

will adjust its numeric weights through a training method so that it can learn to solve 

problems. When the nodes are linked with optimal weights, the trained networks are 

able to solve the problems. 

In the late years of 20th century, the ANNs for solving DEs were reported. In 

recent years, many researchers have switched to more computationally efficient ANNs 

alternatives for solving DEs. To solve DEs using the ANNs, the problem of solving 

DEs is usually formulated as an optimization problem, aiming at minimizing an 

unsupervised error function. Given a set of training points to the network, the ANNs 

model with only a few hidden nodes in the single hidden layer is able to approximate 

solutions of DEs. Unlike the numerical methods, the computational complexity of the 

ANNs is relatively simple and does not increase quickly when the number of training 

points increases (Mall and Chakraverty, 2014). Due to its advantageous properties 

such as ease of implementation, adaptability, universal approximator and 
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generalization capability, the application of the ANNs in solving DEs deserves to be 

further explored as powerful alternative methods in solving different kinds of DEs. 

1.2 Motivations of Study  

In recent years, various ANNs models in solving DEs have been proposed and seen an 

exponential growth. Among different kinds of ANNs models, multilayer perceptrons 

(MLPs) model has been frequently preferred in the literature to solve DEs such as 

ordinary differential equations (ODEs), partial differential equations (PDEs) and 

fractional differential equations (FDEs). Nevertheless, slow training problems and 

local optima stagnation are the common issues of the MLPs (Zainuddin and Ong, 2012; 

Zainuddin and Pauline, 2011). These weaknesses have led to the emergence of new 

ANNs models. As a result, a great deal of works using other ANNs models for solving 

DEs have been introduced (Mall and Chakraverty, 2014; Mall and Chakraverty, 2016; 

Rizaner and Rizaner, 2018). Despite having promising results in previous studies, the 

approximation accuracy of the ANNs algorithms can be further improved. 

One of the outstanding ANNs models originally conceived by Zhang and 

Benveniste (1992) is wavelet neural networks (WNNs), combining wavelets and 

ANNs. The specialty of the WNNs model is on the processing elements in its hidden 

layers which include wavelet activation functions, translation, and dilation parameters. 

These elements make the WNNs a more compact topology compared with the other 

ANNs approaches and a fast training speed (Ong and Zainuddin, 2019). Besides, 

universal approximation potential of the ANNs is preserved in the WNNs. In fact, 

before the introduction of WNNs, wavelets have been used for solving DEs. The 

compact support property of a wavelet is a useful feature for the approximation of 

functions and differential operators which has been proven by Esteban-Bravo and 
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Vidal-Sanz (2007). Additionally, the WNNs model has been successfully used for 

solving various problems such as classification, prediction, and solving PDEs (Ong et 

al., 2018; Zhang et al., 2016; Zainuddin and Pauline, 2011; Ong and Zainuddin, 2019; 

Li et al., 2013). The great success of the WNNs in solving various applications and its 

beneficial advantages have motivated the investigation of its capability in solving 

ODEs and PDEs. Moreover, not much in-depth research on solving DEs using WNNs 

has been conducted. Yet, the benefits of the WNNs with the commonly used wavelet 

activation functions, namely, Mexican Hat (MH), Gaussian wavelet (GW) and Morlet 

(MR) in solving DEs have not been explored.  

Recently, various deep ANNs models with more than one hidden layer have 

been proposed in tackling various types of challenging applications, with promising 

results reported. These promising results have motivated the employment of more 

hidden layers in the WNNs which can be an advantageous model for solving PDEs. 

When it comes to the training method aspect, some ANNs models in the 

previous studies were impaired by the adopted training methods, jeopardizing the 

approximation capability of the ANNs. Similarly, the approximation capability of the 

WNNs depends heavily on the adopted training algorithm because the underlying logic 

for using WNNs is to find optimal weights for its outputs. A good training method 

gives the WNNs a good quality set of optimal weights which can consequently yield a 

WNNs model with an excellent approximation capability while a poor training method 

makes the WNNs less efficient. Therefore, a WNNs model with a good training 

method is essential to educate the WNNs for providing more accurate DEs solutions. 
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1.3 Problem Statements 

Since the approximation accuracy of the ANNs algorithms in the previous studies can 

be further improved, new intelligent computational techniques based on the WNNs are 

developed to solve ODEs and PDEs. However, given the superiority of the WNNs, it 

is necessary to set correct operation of a WNN, in terms of its training method, 

initialization of the translation and dilation parameters, network architecture, and 

activation functions in the hidden layers (Zainuddin and Pauline, 2011). 

Traditionally, the numeric weights of WNNs are computed with 

backpropagation (BP) algorithm, which adjusts the network parameters based on the 

gradient information of an error function (Cao et al., 2010). The BP algorithm is 

generally useful; however, it might get trapped into local minima, and its speed of 

learning process is slow. In recent years, to address these computational shortcomings 

of the BP algorithm, the metaheuristic algorithm has captured attention to improve 

efficiency in the WNNs (Zhang et al., 2016; Yang et al., 2018; Chitsaz et al., 2015). 

Unlike the BP algorithm, the metaheuristic algorithm is a gradient-free algorithm 

which can increase the flexibility of the WNNs model. Therefore, in this thesis, 

improving the performance of the WNNs by emphasizing the training method is the 

main concern. This enhancement is accomplished by integrating a metaheuristic-based 

method in adjusting the weight parameters of the WNNs. 

Recently, a novel metaheuristic algorithm, namely, the butterfly optimization 

algorithm (BOA) which is inspired by the food foraging behavior of butterflies has 

been proposed (Arora and Singh, 2019). Due to the simplicity of the BOA, it has been 

applied to various kinds of problems. Also, the BOA has been adopted for training 

ANNs (Jalali et al., 2019). Based on their simulation results in terms of accuracy, the 

BOA performed better than the well-regarded metaheuristic training algorithms, 
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including grasshopper optimization algorithm, flower pollination algorithm, genetic 

algorithm (GA), particle swarm optimization (PSO) and differential evolution. 

However, the main drawback of the BOA is the premature convergence due to its weak 

exploitation capability (Arora et al., 2018). 

To improve the exploitation capability of the BOA, a new improvement of the 

BOA, namely, the improved butterfly optimization algorithm (IBOA) is made in this 

thesis. The proposed IBOA training method is able to avoid the local optima and 

premature convergence problems which enable it to find a good quality set of weight 

parameters for the WNNs. As a result, the intelligent computational tool combining 

the strengths of the WNNs and the IBOA training method can achieve higher 

approximation ability, and thus, it is expected to improve the accuracy of the solutions 

of DEs over the existing ANNs and numerical methods. 

Apart from investigating the training method in the WNNs, the types of 

wavelet activation functions and the number of hidden layers are also investigated in 

this thesis. 

1.4 Research Objectives 

The objectives of this thesis are: 

1. To develop a new training method, namely, IBOA for enhancing the training 

process of novel WNNs methods in solving ODEs and PDEs. 

2. To verify the effectiveness of the wavelet neural networks with improved butterfly 

optimization algorithm (WNNIBOA) in solving ODEs and PDEs by comparing 

with the WNNs trained with the other training methods, namely, the momentum 

backpropagation (MBP), PSO and BOA, other ANNs and numerical methods. 
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3. To investigate the performance of the WNNs in solving ODEs with three different 

wavelet activation functions, namely, the MH, GW and MR. 

4. To propose a deep WNNs model for solving PDEs. 

1.5 Methodology 

To achieve objective 1, new WNNs models with a single hidden layer are developed 

and formulated to solve the first and second order linear and nonlinear ODEs, as well 

as elliptic PDEs. Moreover, three modifications are incorporated into the proposed 

IBOA by incorporating dynamic switch probability and modifying the sensory 

modality parameter and local search update equation to improve the problem of 

premature convergence and slow convergence that are suffered by the BOA.  

For objective 2, the performance comparison between the WNNIBOA and the 

WNNs trained with the other training methods is made under the same WNN 

architectures and stopping criteria. The performance of the WNNs models in solving 

DEs is evaluated using two performance metrics, namely, Absolute Error (AE) and 

Mean Absolute Error (MAE). To achieve objectives 3 and 4, the same ODE examples 

in Chapter 4 and the same PDE examples in Chapter 5 are considered, respectively. 

1.6 Scope of Thesis 

This study will be confined in this section to fulfil the aforementioned objectives. 

• Three WNNs architectures, two single WNNs models with one hidden layer, 

one for solving only first and the second order ODEs and the other for solving 

only two dimensional elliptic PDEs with the Dirichlet boundary conditions, 

and one deep WNNs model with two hidden layers for solving the same PDEs, 

are proposed. 

• Only the standard BOA, PSO and MBP training algorithms are incorporated in 
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the WNNs for solving the ODEs and PDEs to validate the effectiveness of the 

proposed WNNIBOA in terms of the accuracy, robustness and convergence. 

• The performance of the deep WNNs with only two hidden layer is compared 

with that of the WNNIBOA with one hidden layer in solving the same PDEs. 

• Only an incremental pattern which increases the switch probability value from 

a minimum to a maximum in the proposed IBOA is investigated. 

1.7 Thesis Organization 

This chapter discussed a general introduction to DEs and its importance. Subsequently, 

the evolvement of ANNs in solving DEs was briefly introduced. The motivations of 

study, problem statements, research objectives, and scope of thesis were given. The 

outlines of the other six chapters are given as follows. 

In Chapter 2, the architecture of an ANN and different training methods for 

training ANNs models are introduced. Afterwards, the steps of integration of ANNs in 

solving DEs are explained. Next, the previously proposed ANNs methods made on 

solving DEs are reviewed. Due to the importance of training methods, this chapter 

includes a comprehensive review of the existing training methods of ANNs in solving 

DEs. 

Chapter 3 starts with the highlight of the architecture of a WNN and the 

development of the training methods of WNNs. Besides, the applications of WNNs 

are discussed. This chapter is followed by reviewing the BOA, including its 

advantages, limitations, applications, and BOA variants. Then, the proposed IBOA is 

introduced. Lastly, a section is spent on presenting how the proposed WNNIBOA is 

integrated in solving DEs. 
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After presenting the detailed description on the proposed IBOA, the ensemble 

proposed WNNIBOA is used for solving ODEs in Chapter 4. The mathematical 

formulations for solving ODEs are described in detail. For numerical simulations, 

linear and nonlinear ODEs taken from literature are considered and the obtained 

simulation results are compared with those of the WNNs trained with BOA, PSO and 

MBP, existing ANNs and numerical methods. At the end of this chapter, the statistical 

analysis of the MAE values obtained by the WNNs methods is conducted. 

Meanwhile, in Chapter 5, the WNNs trained with the four different training 

methods are employed for solving PDEs. The results of the WNNs are compared and 

statistically discussed. On the other hand, Chapter 6 proposes a deep WNNs model for 

solving the PDEs. The numerical results of the deep WNNs are compared with those 

obtained from Chapter 5. Finally, this thesis comes to a close with conclusions and 

future research ideas in Chapter 7. 
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LITERATURE REVIEW 

2.1 Introduction 

The applications of ANNs scale across different domain of studies. In this thesis, the 

application of ANNs is mainly focused on solving DEs. In this chapter, an introduction 

to ANNs and its training algorithms will be presented. The chapter is followed by steps 

on how ANNs are integrated in solving DEs along with the advantages of using ANNs 

methods. Next, literature review of ANNs methods in solving DEs will be discussed in 

detail. Due to the importance of training methods, different training algorithms which 

have been used for training the ANNs in solving DEs will be reviewed. 

2.2 Artificial Neural Networks 

The word ANNs is on everyone’s lips. It is a machine learning algorithm which mimics 

intelligent from biological neural networks and provides learning ability for solving 

different problems. From the mathematical point of view, the ANN is a mathematical 

model in which its outputs are expressed as a mathematical function in terms of the 

adjustable numeric weight parameters. Generally, these weight parameters of an 

untrained ANN are initialized randomly and then optimized through learning to give 

optimal outputs to a particular problem. 

2.2.1 Architecture of an ANN 

The most commonly used ANNs model is MLPs, which are generally composed of 

three layers, namely, input layer, hidden layer, and output layer, with each layer fully 

connected to the adjacent layer. Figure 2.1 depicts the architecture of an ANN. 
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Figure 2.1 Architecture of an ANN with input x and output u. This architecture 

has one input layer with one input node, one hidden layer with N hidden nodes and 

one output layer. These nodes are linked by weight values vn and wn, for n = 1, …, N. 

The activation functions n and bias term b1n are only used in the hidden nodes.  

 

The input node in the input layer receives the input variables x = [x1, x2,..., xNI], 

where NI is the number of training points. In the hidden layer, the accepted input 

variables are multiplied with the weights between the input layer and the hidden layer 

v. This weighted sum of inputs with addition of bias b1 that pointed to each hidden node 

will be used as the inputs for the activation functions  in the hidden nodes. Normally, 

a log-sigmoid function is used as the activation function in the hidden layer to limit the 

amplitude of the outputs of the hidden nodes within the range of the log-sigmoid 

function (Ojha et al., 2017). Subsequently, the outputs of the hidden nodes, which are 

the outputs of the activation functions, will be sent to the adjacent output layer to be 

multiplied with the weights between the hidden layer and the output layer w. The output 
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node in the output layer gives outputs, where the mathematical formulation defining the 

output of the ANN is as follows (Malek and Beidokhti, 2006): 

 
1

( ) ( 1 ),
N

n n n n

n

u x w v x b
=

= +  (2.1) 

where b1n is the bias, x is the input, vn is the weights connecting the input layer and the 

hidden layer,  n is the activation function, wn is the weights connecting the hidden layer 

and the output layer, and N is the number of the hidden nodes. 

In Equation (2.1), the weight and bias parameters are adjustable through training 

to epitomize knowledge that can fit to solve problems. Generally, the training paradigm 

can be classified into supervised training, unsupervised training, and reinforcement 

training (Ojha et al., 2017). In the supervised training, inputs with target outputs are 

required. An ANN is trained by comparing the outputs of the ANN with the target 

outputs and then the weight parameters are adjusted to minimize the differences 

between them. Some examples of problems based on the supervised training are 

classification and prediction problems. On the other hand, the unsupervised training 

consists of only inputs without target outputs. In the case of solving DEs, the target 

outputs are unknown in prior. Therefore, the problem of solving DEs falls into the 

category of unsupervised training. In the reinforcement training, the training of ANNs 

deals with sets of input, output, and grade. 

2.2.2 Training Algorithms 

Since determining the weights of ANNs is considered as an optimization problem, 

almost any general-purpose optimization methods are applicable for training ANNs. 

However, as the fact of the influence of the weights of ANNs on the performance of 

ANNs, various research efforts have been focused on the training methods of ANNs. In 

Yang (2010), there are three types of training or optimization algorithms, namely, 
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deterministic algorithms, stochastic algorithms and hybrid algorithms. Figure 2.2 

depicts the training algorithms of ANNs. 

 

 
 

Figure 2.2 Training algorithms of ANNs 

 

2.2.2(a) Deterministic Algorithms 

Deterministic algorithms are not based on probabilistic perspectives and can be 

categorized in two parts, namely, gradient-based algorithms and gradient-free 

algorithms. 

Gradient-based algorithms are performed based on gradient information. BP is 

an example of gradient-based algorithms which is traditionally used for training ANNs. 

To minimize network error, the weight parameters are iteratively adjusted as follows: 
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where  is the learning rate, t is the number of iterations and E/w is the derivative of 

an error function with respect to weight parameters. Although the BP algorithm has 

been widely used for training ANNs, this algorithm is prone to slow convergence and 
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might converge to local optimal solutions. The convergence of an algorithm represents 

its behavior or rate moving towards the global optimum, which is the best solution with 

the smallest error when considering the entire search space (Mirjalili et al., 2017). On 

the other hand, the local optimal solutions refer to near-optimal solutions that return a 

value close to the objective value of the global optimum. Due to the presence of a large 

number of local optimal solutions in the entire search space, an optimization method 

might mistakenly terminate the training at local optimal solutions. 

To get rid of the shortcomings, a number of variations of the gradient-based 

algorithms has been developed. MBP is one of the improved versions of BP with 

incorporation of a momentum term in the standard BP. The momentum term can speed 

up the convergence rate and prevent the learning process from settling in a local 

minimum. In the MBP algorithm, the weight update includes the current weight change 

and the previous weight change, as shown in the following formula: 

 ( ) ( 1),
( )

E
w t w t

w t
 


 = − +  −


 (2.4) 

where  is the learning rate, µ is the momentum, t is the number of iterations and E/w 

is the derivative of an error function with respect to weight parameters. Besides, Quasi–

Newton and Levenberg–Marquardt methods are the variations of the gradient-based 

algorithms, which are frequently used for training ANNs (Ranković and Savić, 2011). 

On the other hand, sequential quadratic programming (SQP) and interior point 

algorithm (IPA) are examples of gradient-based algorithms used in the training of 

ANNs. They are powerful local optimization methods for solving constrained nonlinear 

optimization problems. Despite the usefulness of the existing gradient-based training 

algorithms for optimizing the weights of ANNs, one of the important issues on gradient-

based algorithms is their dependency on gradient information. 

https://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#local minimum
https://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#local minimum
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In order to overcome the disadvantages of gradient-based algorithms, gradient-

free algorithms are introduced by removing the need for computing derivatives. For 

example, Nelder–Mead method is a well-known gradient-free algorithm. Owing to its 

simplicity, Nelder–Mead method has been used for training ANNs with good results. 

However, Nelder–Mead method may converge slowly or may fail to converge to a 

global minimum and can significantly reduce its efficiency in training ANNs 

(Wilamowski and Pham, 2012). Another gradient-free algorithm is extreme learning 

machine (ELM). ELM is not only a gradient-free algorithm but also an iteration-free 

algorithm. In contrast to iterative-based and gradient-based training algorithms, ELM 

can offer feasible weights in a much faster and simpler way, by implementing Moore–

penrose generalized inverse technique (Wang et al., 2015). However, ELM has a 

requirement on the ANNs’ architectures because ELM is specifically used for training 

fixed ANNs architectures where only the weights between the hidden layer and the 

output layer are adjusted. 

2.2.2(b) Stochastic Algorithms 

Besides deterministic algorithms, a class of algorithms known as stochastic algorithms 

has been attempted to increase the performance of ANNs. Stochastic algorithms are 

based on random mechanism to search for solutions with a better objective function 

value. According to Yang (2010), heuristic and metaheuristic algorithms are two 

general types of stochastic algorithms. However, no agreed definitions of heuristic and 

metaheuristic have been rendered in the literature and some of the literature have used 

both terms interchangeably. 

Generally, metaheuristic algorithms are high-level heuristic optimization 

algorithms which typically are inspired by evolutionary and nature-inspired 

understanding from biology, natural phenomena, and social systems (Cuevas et al., 
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2019; Sörensen, 2015). Over the past few decades, the metaheuristic algorithms have 

gained increasing popularity, due to their flexibility and ease of implementation. These 

advantages originate from the derivative-free nature of these algorithms which involve 

two search behaviors, namely, exploration and exploitation, to produce sufficiently 

good solutions for optimization problems. The exploitation search is used to find other 

solutions around the current good solution in a short distance while the exploration 

search is used to find other solutions in new areas in the search space. In addition, 

compared with gradient-based algorithms, metaheuristic algorithms are considered as 

more effective and simpler algorithms to optimize the weights of ANNs, because 

metaheuristic algorithms do not optimize each of the parameters of an ANN separately. 

Therefore, the calculation of the gradient information of an objective function with 

respect to each adjustable parameter is avoided. Specifically, updating weight 

parameters of an ANN using metaheuristic algorithms is done in a single vector 

containing all the weight parameters. 

The metaheuristic algorithms can be categorized into single solution-based 

algorithms and population-based algorithms according to the number of candidate 

solutions processed in every iteration (Mirjalili et al., 2017). The single solution-based 

algorithms contain only one candidate solution which is moved in the search space at 

each iteration for searching neighboring solution with a better quality. Due to a small 

number of function evaluations, this kind of algorithm requires low computation efforts. 

Some examples of algorithms in this category are simulated annealing and tabu search. 

As opposed to the single solution-based algorithms, the population-based algorithms 

initiate with a group of candidate solutions called population. From the context of 

biological ecosystem, the population is a group of one species living in the same habitat. 

Taking this knowledge into the population-based metaheuristic algorithms, the species 
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represents a group of candidate solutions and the habitat represents the search space 

within a boundary area which corresponds to the boundary of the candidate solutions. 

In the context of training ANNs, each candidate solution in the population represents a 

set of weight parameters of ANNs. Therefore, there are many sets of weight parameters 

of ANNs in a run, where the best solution set is chosen according to the fitness value. 

Due to the multiple candidate solutions striking for the best solution, the overall 

efficiency and performance of the optimization can be improved. PSO and GA are well-

known population-based algorithms. 

However, no single metaheuristic algorithm can successfully solve all kinds of 

problems consistently. This fact has been proven by the theorem of No Free Lunch 

(Wolpert and Macready, 1997). Therefore, the modification of existing metaheuristic 

algorithms has been observed. Besides, researchers are continuously unearthing new 

metaheuristic algorithms. A survey on metaheuristic algorithms can be found in Ojha 

et al. (2017). 

2.2.2(c) Hybrid Algorithms  

Since there is no guarantee that optimal solutions can always be reached by 

metaheuristic algorithms that are implemented individually, hybrid algorithms have 

been considered to improve the performance of ANNs. For instance, a gradient-based 

algorithm can be applied to improve the solutions found by a metaheuristic algorithm. 

The hybrid algorithms will be further discussed in Section 2.3.2. 

2.3 Solving DEs Using ANNs  

In recent years, the ANNs have been devoted as an alternative to the numerical methods 

to solve DEs. The general idea of ANNs approach is to define the solutions of DEs in 

terms of the adjustable outputs of ANNs and then employs a training method to tune 
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the adjustable weights in the output of ANNs. Eventually, the problem of solving DEs 

is formulated as an optimization problem, aiming at the minimization of an 

unsupervised error function. 

An ANN starts with receiving a training input vector at the input nodes. 

Generally, the inputs can be presented to the ANN either through batch training or 

incremental training. In a batch training, all the inputs are presented to the network and 

the weights are updated only after all the inputs are received. In an incremental training, 

each input is presented to the network and the corresponding weights are updated. The 

number of weight updates will be equal to the number of input entries present in the 

training input vector. In this thesis, all inputs are presented to the network through the 

batch training because the error of solving DEs is taken over all the training points for 

adjusting the parameters. 

Then, the output of the ANN can be generated using Equation (2.1) with 

initialized weight parameters. In this stage, the initialized weights are not able to allow 

for an error function to converge to zero. Therefore, these weights should be updated to 

reduce network error. To perform an error minimization, an unsupervised error function 

is designed by taking the difference between the left-hand side and the right-hand side 

of a DE since desired targets are supposed to be unknown in prior in the context of 

solving DEs. One of the aspects to consider when forming the error function is the 

associated initial and/or boundary conditions of a DE. Therefore, the minimization 

optimization problem of training ANNs is subjected to a set of constraints. Then, the 

error function is minimized by applying a training method to adjust the weight 

parameters. 
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Generally, when the residue of an error function ceases to zero, the DE can be 

considered as solved. In general, the employment of the ANNs approach towards 

solving DEs brings some attractive advantages (Lagaris et al., 1998): 

1. The ANN is simple in structure and easy to implement and to modify for solving 

various kinds of DEs. 

2. The ANNs methods require low computational complexity and lesser training 

points as compared with the numerical methods. Unlike the traditional 

numerical methods, when the number of training points increases, the 

computational complexity of the ANNs methods does not increase quickly. 

3. The ANNs methods generally provide differentiable solutions in a closed 

analytic form over the computational domain which are useful for further 

evaluation. 

2.3.1 Existing ANNs Approach for Solving DEs 

The building of any ANNs composes of two steps. The first step is to develop the 

ANN’s architecture for representing the solutions of a given DE while the second step 

is to employ a training method for training the adjustable weight parameters in the ANN. 

It is clear that the overall performance of an ANN model is highly dependent on both 

the ANN’s architecture and training method. In this subsection, the existing ANN 

approaches for solving DEs in the literature are reviewed, subsequently the training 

algorithms which have been used in ANNs for solving DEs will be discussed in next 

subsection. 

Various strategies based on the ANNs have been investigated by many 

researchers. Generally, solving DEs using ANNs in the literature can be categorized 

into two approaches, namely, differentiable approach and integrable approach. Figure 

2.3 depicts the ANNs approaches for solving DEs. 
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Figure 2.3 ANNs approaches for solving DEs 

 

The differentiable approach is the most frequently used approach in which one 

uses a differentiable activation function in each hidden node in a network. Therefore, 

the solutions of DEs based on this approach correspond to differentiable and closed 

form output of a network. Then, the derivatives of the solutions can be derived through 

differentiation. In this approach, the network can be trained either through constrained 

optimization or unconstrained optimization, depending on how the associated 

conditions of DEs are satisfied. If one can satisfy the conditions of a DE, the 

optimization is called unconstrained optimization. Therefore, an objective function is 

formed by using the explicit form of the DE only because the associated conditions are 

exactly satisfied. For this purpose, a special consideration is required in formulating the 

approximate solutions for the automatic satisfaction of the associated conditions. The 

incorporation of trial solution by Lagaris et al. (1998) is an example of unconstrained 

optimization. On the other hand, the constrained optimization is the optimization in 

which the conditions of a DE are not satisfied exactly but approximately by adding a 

penalty term to an objective function. Although the constrained optimization is seemed 
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to be easy to implement and able to save the amount of time for formulating the trial 

solutions, it can cause a low convergence rate and a low accuracy solution (Rudd and 

Ferrari, 2015). Accordingly, the unconstrained optimization provides a good trade-off 

in terms of the accuracy. Since this thesis is aiming for a better approximation accuracy, 

the unconstrained optimization is considered. 

In contrast, the integrable approach uses an integrable activation function in 

each hidden node in a network to generate the output of a network which corresponds 

to the highest derivative appearing in DEs. Therefore, to obtain the solutions of DEs, 

the computation is done by integration. Towards this end, it is seen that the property of 

activation functions in the hidden layer of an ANN is an important feature in order to 

ensure that the solutions of DEs and its derivative functions are computable and fit the 

requirements based on the selected approach. 

A substantial growth in the study of ANNs based on the differentiable approach 

in solving different types of DEs is observed. Lee and Kang (1990) firstly introduced a 

method to solve first order ODE using finite difference methods for the discretization 

of ODEs and the Hopfield neural network for minimizing error function. However, the 

emergence of the ANNs as a promising approximator in the context of DEs was first 

proposed by Lagaris et al. (1998). This earliest method is based on the differentiable 

approach. In this work, the authors proposed the MLPs as a DE’s approximator and the 

trial solution as an approximate solution for the automatic satisfaction of the associated 

conditions. Using the trial solution, the original problem of solving DEs is reduced from 

a constrained optimization problem to an unconstrained optimization problem. 

Since 1998, such ANNs method with the trial solution has gained increasing 

popularity and has been frequently used by other researchers. For instance, higher-order 

ODEs have been solved using ANNs (Malek and Beidokhti, 2006). In particular, the 
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automatic satisfaction of the boundary conditions of the fourth-order ODE has been 

made using the trial solution. The same authors proposed ANNs with the trial solution 

for solving mixed BVPs of biharmonic PDEs (Beidokhti and Malek, 2009). In other 

works, the initial conditions of the first Painlevé equations and the boundary conditions 

of the Lane–Emden equations have automatically been satisfied using the trial solutions 

(Raja et al., 2015b; Mall and Chakraverty, 2014; Mall and Chakraverty, 2016). Also, 

the ANNs approach with trial solution has been employed to solve Stokes problem 

(Baymani et al., 2010). 

However, the trial solution proposed by Lagaris et al. (1998) is feasible only for 

regular domains. For irregular domains, the ANNs have been proposed to solve two-

dimensional and three-dimensional PDEs with irregular domain boundaries based on 

the combination of MLPs and radial basis function networks (RBFNs) in which the 

RBFNs are used to satisfy the boundary conditions (Lagaris et al., 2000). A similar 

network combination has also been studied by Hoda and Nagla (2011) in solving the 

mixed BVPs of PDEs on irregular domains. Although the method proposed for the 

automatic satisfaction of the mixed boundary conditions on irregular domains is 

computationally expensive, the solutions of PDEs are fairly encouraging. Besides, the 

concept of length factor has been introduced in trial solution to satisfy the mixed BVPs 

conditions automatically for irregular domains (McFall and Mahan, 2009). The length 

factor is introduced to measure the perpendicular distance from a point to the boundary 

in order to return zero value on the boundary. Also, based on the length factor, the 

coupled systems of PDEs with discontinuities and the advection dispersion equations 

characterizing the mass balance of fluid flow in a chemical reactor have been solved 

using ANNs (McFall, 2013; Yadav et al., 2018). 
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On the other hand, numerous ANNs schemes have been proposed to solve DEs 

based on the constrained differentiable approach. For instance, numerous literatures by 

Raja et al. for solving DEs problems including nonlinear Jeffery–Hamel flow systems 

(Raja and Samar, 2014a), two-dimensional nonlinear Bratu’s problems (Raja and 

Samar, 2014b), nonlinear boundary value problems (BVPs) governed with pantograph 

functional differential equations (Raja, 2014), thin film flow of third grade fluids (Raja 

et al., 2015a), nanotechnology problems based on multi-walled carbon nanotubes (Raja 

et al., 2016a), nonlinear singularly perturbed BVPs (Raja et al., 2018a), nonlinear 

Mathieu’s systems (Raja et al., 2018b) and Troesch's problem (Raja et al., 2018c) have 

been observed. These ANNs approaches have shown a promising alternative numerical 

method in solving DEs. In other works, the hyperbolic and parabolic PDEs have been 

solved by Rudd and Ferrari (2015) using a constrained integration with ANNs approach. 

Moreover, a number of ANNs techniques based on the differentiable approach for the 

solutions to problems governed by PDEs have been developed, including the direct 

current motor, and a ball and beam system (He et al., 2000), the one-dimensional 

Kuramoto–Sivashinsky and two-dimensional Navier–Stoke (Smaoui and Al-Enezi, 

2004), Burger’s equations (Hayati and Karami, 2007), and nonlinear Schrodinger 

equations (Shirvany et al., 2009). For some complex PDEs, the PDEs of the system 

model were reduced to a system of nonlinear ODEs and this system was solved by 

ANNs (Mehmood et al., 2018). 

Apart from solving ODEs and PDEs, the applicability of ANNs approach has 

also been extended to solve FDEs (Raja et al., 2017; Raja et al., 2015c; Lodhi et al., 

2019; Raja et al., 2010; Pakdaman et al., 2017; Zúñiga-Aguilar et al., 2017; Jafarian et 

al., 2018). These methods either use constrained optimization or unconstrained 

optimization. To solve FDEs by using the ANNs methods, a fractional derivative of 
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activation functions is needed (Raja et al., 2017). For instance, the Maclaurin series 

expansion of log-sigmoid function and fractional derivatives of exponential functions 

involving Mittag–Leffler function were used as activation functions in the ANNs 

(Jafarian et al., 2018; Raja et al., 2010; Raja et al., 2015c; Raja et al., 2017; Lodhi et 

al., 2019). On the other hand, the ANNs techniques have been applied by Effati and 

Pakdaman (2010) to solve fuzzy differential equations. In this work, the fuzzy 

differential equations were replaced by a system of ODEs. 

Most of the aforementioned works use the MLPs model. Although the MLPs 

model has reported significant as the DEs approximator, this model is subject to local 

minima and slow learning problems (Zainuddin and Ong, 2012; Zainuddin and Pauline, 

2011). Additionally, the MLPs model has a lot of weight parameters, i.e., the weights 

between the input layer and the hidden layer, as well as between the hidden layer and 

the output layer, to be trained which require considerable computational cost. 

Besides the MLPs, other ANNs models, including Legendre neural networks 

(LENNs), Chebyshev neural networks (CHNNs), and Bernstein neural networks 

(BENNs) have been proposed to solve DEs. The LENNs, CHNNs and BENNs are a 

kind of single-layer functional link ANN where its hidden layer is replaced by a 

functional expansion block based on orthogonal polynomials. Removing the hidden 

layer and expanding the input pattern by the Legendre, Chebyshev, and Bernstein 

polynomials in the LENNs, CHNNs and BENNs, respectively, lower computational 

complexity and a much lesser number of adjustable parameters are achieved as 

compared with the MLPs. In the literature, Mall and Chakraverty (2016) has developed 

the LENNs for solving Lane–Emden equations. This ANNs model is capable of 

producing more accurate solutions with less computational efforts as compared with the 

MLPs. In another work, the same author has proposed a similar type of ANNs but based 


