
AN IMPROVED TRAINING METHOD FOR

WAVELET NEURAL NETWORKS FOR SOLVING

ORDINARY AND PARTIAL DIFFERENTIAL

EQUATIONS

TAN LEE SEN

UNIVERSITI SAINS MALAYSIA

2022

AN IMPROVED TRAINING METHOD FOR

WAVELET NEURAL NETWORKS FOR SOLVING

ORDINARY AND PARTIAL DIFFERENTIAL

EQUATIONS

by

TAN LEE SEN

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

October 2022

ii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Dr. Zarita binti Zainuddin, my

main supervisor, for her excellent supervision, continuous support, and constant

encouragement and motivation. Every piece of her advice in all aspects have helped

me from the beginning to the completion of this thesis. I would also like to extend my

gratitude to Associate Professor Dr. Ong Pauline, my field supervisor, for her valuable

and constructive suggestions that have improved the quality of my research work.

Also, I would like to acknowledge Dr. Mohd Shareduwan bin Mohd Kasihmuddin, my

current supervisor, for providing continuous help.

Also, I would like to take this opportunity thank the staff and administration

members of the School of Mathematical Sciences and related postgraduate

departments of Universiti Sains Malaysia for providing help during my study.

Furthermore, I would like to extend my heartfelt thanks to Universiti Sains Malaysia

for supporting this research under the Research University Grant

1001/PMATHS/8011041 and Bridging Research Grant 304/PMATHS/6316079. Not

to forget, I am very grateful to my parents and siblings, for their support and care

throughout my study. Finally, I would like to thank my postgraduate friend, Ummi

Nurmasyitah binti Hassan and all of those who have encouraged me during the

execution of the research.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES .. ix

LIST OF SYMBOLS ... xii

LIST OF ABBREVIATIONS .. xiv

LIST OF APPENDICES .. xvi

ABSTRAK .. xvii

ABSTRACT ... xix

 INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Motivations of Study .. 3

1.3 Problem Statements .. 5

1.4 Research Objectives ... 6

1.5 Methodology .. 7

1.6 Scope of Thesis .. 7

1.7 Thesis Organization .. 8

 LITERATURE REVIEW .. 10

2.1 Introduction .. 10

2.2 Artificial Neural Networks ... 10

2.2.1 Architecture of an ANN ... 10

2.2.2 Training Algorithms ... 12

2.2.2(a) Deterministic Algorithms .. 13

2.2.2(b) Stochastic Algorithms .. 15

2.2.2(c) Hybrid Algorithms ... 17

iv

2.3 Solving DEs Using ANNs .. 17

2.3.1 Existing ANNs Approach for Solving DEs.................................... 19

2.3.2 Existing Training Algorithms of ANNs for Solving DEs 27

2.4 Summary .. 31

 WAVELET NEURAL NETWORKS AND IMPROVED

BUTTERFLY OPTIMIZATION ALGORITHM ... 33

3.1 Introduction .. 33

3.2 Wavelet Neural Networks .. 33

3.2.1 Advantages and Applications of WNNs .. 37

3.2.2 Training Methods of WNNs ... 38

3.3 The Standard Butterfly Optimization Algorithm ... 40

3.3.1 Overview .. 40

3.3.2 Framework of BOA .. 42

3.3.3 Applications of BOA .. 44

3.3.4 Variants of BOA... 44

3.3.5 Limitations of BOA .. 47

3.4 Improved Butterfly Optimization Algorithm ... 48

3.4.1 Motivation .. 48

3.4.2 The proposed IBOA ... 49

3.5 Solving DEs using WNNs with IBOA ... 56

3.6 Summary .. 58

 SOLVING ORDINARY DIFFERENTIAL EQUATIONS

USING WAVELET NEURAL NETWORKS ... 60

4.1 Introduction .. 60

4.2 Wavelet Neural Networks Architecture ... 61

4.3 Mathematical Formulations for Solving ODEs .. 62

4.4 Numerical Simulations ... 65

4.4.1 Experiment Setup ... 67

v

4.4.2 Performance Evaluation ... 73

4.5 Results and Discussion ... 74

4.5.1 Example 4.1 .. 74

4.5.2 Example 4.2 .. 77

4.5.3 Example 4.3 .. 80

4.5.4 Example 4.4 .. 83

4.5.5 Example 4.5 .. 85

4.5.6 Results and Comparison of Three Different Wavelet

Activation Functions .. 88

4.6 Statistical Analysis ... 90

4.7 Summary .. 96

 SOLVING ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS USING WAVELET NEURAL NETWORKS 99

5.1 Introduction .. 99

5.2 Wavelet Neural Networks Architecture ... 99

5.3 Mathematical Formulations for Solving PDEs .. 101

5.4 Numerical Simulations ... 103

5.4.1 Experiment Setup ... 105

5.5 Results and Discussion ... 106

5.5.1 Example 5.1 .. 106

5.5.2 Example 5.2 .. 109

5.5.3 Example 5.3 .. 110

5.5.4 Example 5.4 .. 112

5.6 Statistical Analysis ... 113

5.7 Summary .. 120

 SOLVING PARTIAL DIFFERENTIAL EQUATIONS USING

DEEP WAVELET NEURAL NETWORKS ... 122

6.1 Introduction .. 122

vi

6.2 Literature Review ... 122

6.3 Deep Wavelet Neural Networks Architecture .. 125

6.4 Mathematical Formulations for Solving PDEs .. 127

6.5 Numerical Simulations ... 130

6.6 Statistical Test .. 131

6.7 Summary .. 134

 CONCLUSIONS AND FUTURE WORKS 135

7.1 Summary and Contributions ... 135

7.2 Future Works .. 139

REFERENCES ... 141

APPENDICES

LIST OF PUBLICATIONS

vii

LIST OF TABLES

Page

Table 2.1 Timeline of the ANNs with the hybrid training methods 30

Table 4.1 Parameter setting for IBOA, BOA (Arora and Singh, 2019), PSO

and MBP .. 68

Table 4.2 The values of dilation and translation of WNNs for ODE examples

 .. 70

Table 4.3 Comparison of AE values at training points obtained by WNNs

methods, PSNNs, CNNs and Heun methods (Haweel and

Abdelhameed, 2015) for Example 4.1 ... 74

Table 4.4 Comparison of AE values at testing points for Example 4.1 77

Table 4.5 Comparison of AE values at training points obtained by WNNs

methods and other ANNs method (Raja et al., 2018a) for Example

4.2 ... 78

Table 4.6 Comparison of AE values at testing points for Example 4.2 79

Table 4.7 Comparison of AE values at training points obtained by WNNs

methods and RBFNs method (Rizaner and Rizaner, 2018) for

Example 4.3.. 80

Table 4.8 Comparison of AE values at testing points for Example 4.3 82

Table 4.9 Comparison of AE values at training points obtained by WNNs

methods and other ANNs method (Sabir et al., 2020c) for Example

4.4 ... 83

Table 4.10 Comparison of AE values at testing points for Example 4.4 85

Table 4.11 Comparison of AE values at training points for Example 4.5 86

Table 4.12 Comparison of AE values at testing points for Example 4.5 88

Table 4.13 Comparison of GW, MH and MR in terms of the MAE for

Examples 4.1–4.5 ... 88

viii

Table 4.14 Percentage of convergence rate in terms of the MAE for WNNs

models .. 90

Table 4.15 Statistical MAE results of different WNNs models 92

Table 4.16 Percentage of accuracy improvements for the WNNIBOA model

in comparison to the other WNNs models in terms of the MIN

MAE ... 94

Table 5.1 Comparison of AE values at testing points obtained by WNNs

methods, BENNs (Sun et al., 2019) and CHNNs methods (Mall

and Chakraverty, 2017) for Example 5.1 ... 109

Table 5.2 Comparison of AE values at testing points for Example 5.2 110

Table 5.3 Comparison of AE values at some training points obtained by

WNNs methods and a numerical method (Shiralashetti et al., 2016)

for Example 5.3 .. 111

Table 5.4 Comparison of AE values at testing points for Example 5.3 111

Table 5.5 Comparison of AE values at testing points for Example 5.4 112

Table 5.6 Statistical MAE results of different WNNs models 113

Table 5.7 Percentage of accuracy improvements for the WNNIBOA model

in comparison with the other WNNs models in terms of the MIN

MAE ... 114

Table 6.1 Comparison of AE values at testing points for Example 5.1 131

Table 6.2 Comparison of AE values at testing points for Example 5.2 131

Table 6.3 Comparative statistical MAE results of deep WNNs and single

WNNIBOA .. 132

ix

LIST OF FIGURES

Page

Figure 2.1 Architecture of an ANN with input x and output u. This

architecture has one input layer with one input node, one hidden

layer with N hidden nodes and one output layer. These nodes are

linked by weight values vn and wn, for n = 1, …, N. The activation

functions n and bias term b1n are only used in the hidden nodes. 11

Figure 2.2 Training algorithms of ANNs .. 13

Figure 2.3 ANNs approaches for solving DEs .. 20

Figure 3.1 Diagrams of (a–c) GW, (d–f) MH and (g–i) MR along with their

first and second derivatives .. 36

Figure 3.2 Plot of variation in the (a) switch probability p and (b) sensory

modality C with respect to iterations ... 51

Figure 3.3 Flowchart of IBOA .. 54

Figure 3.4 Flowchart of WNNIBOA ... 55

Figure 3.5 Flowchart of general steps of WNNs for solving DEs 57

Figure 4.1 Architecture of a WNN with input x and output u. This architecture

has one input layer with one input node, one hidden layer with N

hidden nodes and one output layer. sn and d are the translation and

dilation of the wavelet activation functions n, respectively, for n

= 1, …, N. The hidden nodes and output node are linked by

synaptic weights wn. ... 61

Figure 4.2 Plot of AE for WNNs solutions with different training methods for

Example 4.1.. 75

Figure 4.3 Zoom-in of Figure 4.2 .. 75

Figure 4.4 Plot of AE for WNNs solutions with different training methods for

Example 4.2.. 79

Figure 4.5 Zoom-in of Figure 4.4 .. 79

x

Figure 4.6 Plot of AE for WNNs solutions with different training methods for

Example 4.3.. 81

Figure 4.7 Zoom-in of Figure 4.6 .. 81

Figure 4.8 Plot of AE for WNNs solutions with different training methods for

Example 4.4.. 84

Figure 4.9 Zoom-in of Figure 4.8 .. 84

Figure 4.10 Plot of AE for WNNs solutions with different training methods for

Example 4.5.. 87

Figure 4.11 Zoom-in of Figure 4.10 .. 87

Figure 5.1 Architecture of a WNN with inputs x and y and output u. This

architecture has one input layer with two input nodes, one hidden

layer with N hidden nodes and one output layer. s and d are the

translation and dilation of the wavelet activation functions n,

respectively, for n = 1, …, N. The hidden nodes and output node

are linked by synaptic weights wn. ... 100

Figure 5.2 Plot of the AE for (a) WNNMBP, (b) WNNPSO, (c) WNNBOA,

and (d) WNNIBOA for Example 5.1 ... 106

Figure 5.3 Plot of the AE for CHNNs. Reprinted with permission from

Springer Nature: Springer, Neural Processing Letters, Single layer

Chebyshev neural network model for solving elliptic partial

differential equations, Mall, S. and Chakraverty, S., 2017. 107

Figure 5.4 Plot of the AE for BeNNs. Reprinted with permission from

Springer Nature: Springer, Neural Processing Letters, Solving

partial differential equation based on Bernstein neural network and

extreme learning machine algorithm, Sun et al., 2019. 108

Figure 5.5 Plot of the MAE against ten runs for different training methods for

Example 5.1.. 116

Figure 5.6 Zoom-in of Figure 5.5 .. 117

Figure 5.7 Plot of the MAE against ten runs for different training methods for

Example 5.2.. 117

xi

Figure 5.8 Zoom-in of Figure 5.7 .. 117

Figure 5.9 Plot of the MAE against ten runs for different training methods for

Example 5.3.. 118

Figure 5.10 Zoom-in of Figure 5.9 .. 118

Figure 5.11 Plot of the MAE against ten runs for different training methods for

Example 5.4.. 119

Figure 5.12 Zoom-in of Figure 5.11 .. 119

Figure 6.1 Architecture of a deep WNN with inputs x and y and output u. The

activation functions m and translation parameters s11m and s12m

are used in the mth hidden node of the first hidden layer, for m =

1, …, M. The first hidden layer and second hidden layer are linked

by translation parameters s2mn, for n = 1, …, N. n is the output of

the second hidden layer which will be multiplied with synaptic

weights wn. .. 125

xii

LIST OF SYMBOLS

A given initial values of ODEs

a power exponent

B given boundary values of ODEs

b,c training input domain

b1 bias term

C sensory modality

D number of dimensions of butterflies

d,d1,d2 dilation parameters

f fragrance

f1 input function of hidden layers

G given derivative initial value of ODEs

g current best solution

H(x,y) given function of ODEs and PDEs

h0(y),h1(y),q0(x),q1(x) given boundary values of PDEs

I stimulus intensity

i,r random number between 0 and 1

J number of butterflies in population

j,k,m,n integer index

K given number of PDEs

M,N number of hidden nodes

MaxI maximum number of iterations

NI number of training points

NP number at which MAE of run achieves acceptability criteria of

MAE

NT total number of independent runs

O objective function

o constant in dynamic switch probability

p switch probability

pp function of calculating exponential increment of switch

probability

xiii

s,s1,s2

s,s1

translation parameters

translation position

t current iteration number

u(x),u(x,y) output of ANNs or WNNs

v weights connecting input layer and hidden layer of ANNs

w synaptic weights connecting hidden layer and output layer

X butterflies’ position vectors

X butterflies’ positions values

x,y,z

x

spatial variables

spatial position

ŷ exact solution

Z(x,y) function of first part of trial solutions of PDEs

w step-size of weights

 learning rate

µ momentum

 outputs of second hidden layer of deep WNNs

 wavelet activation function connecting second hidden layer and

first hidden layer of deep WNNs

 activation function of first hidden layer of ANNs or WNNs

', '' first and second order derivatives of wavelet activation

functions

E/w derivative of an error function with respect to weight parameters

xiv

LIST OF ABBREVIATIONS

AE Absolute Error

ANNs Artificial Neural Networks

BENNs Bernstein Neural Networks

BOA Butterfly Optimization Algorithm

BP Backpropagation

BVPs Boundary Value Problems

CHNNs Chebyshev Neural Networks

CNNs Cosine Neural Networks

DEs Differential Equations

ELM Extreme Learning Machine

FDEs Fractional Differential Equations

GA Genetic Algorithm

GW Gaussian Wavelet

IBOA Improved Butterfly Optimization Algorithm

IPA Interior Point Algorithm

IVPs Initial Value Problems

LENNs Legendre Neural Networks

MAE Mean Absolute Error

MH Mexican Hat

MIN Minimum

MAX Maximum

MSE Mean Square Error

MR Morlet

MBP Momentum Backpropagation

MLPs Multilayer Perceptrons

ODEs Ordinary Differential Equations

PDEs Partial Differential Equations

PSO Particle Swarm Optimization

xv

PSNNs Power Series Neural Networks

RBFNs Radial Basis Function Networks

SOS Symbiosis Organisms Search

SQP Sequential Quadratic Programming

STD Standard Deviation

WNNIBOA Wavelet Neural Networks with Improved Butterfly Optimization

Algorithm

WNNBOA Wavelet Neural Networks with Butterfly Optimization Algorithm

WNNPSO Wavelet Neural Networks with Particle Swarm Optimization

WNNMBP Wavelet Neural Networks with Momentum Backpropagation

WNNs Wavelet Neural Networks

xvi

LIST OF APPENDICES

Appendix A Results of Simulation (ODEs)

Appendix B Results of Simulation (PDEs)

Appendix C Results of Simulation (PDEs)

xvii

SUATU KAEDAH LATIHAN YANG DITAMBAHBAIK UNTUK

RANGKAIAN NEURAL WAVELET BAGI MENYELESAIKAN

PERSAMAAN PEMBEZAAN BIASA DAN SEPARA

ABSTRAK

Persamaan pembezaan telah digunakan secara meluas untuk pemodelan kajian

dan aplikasi yang tidak terkira banyaknya dalam pelbagai disiplin. Beberapa tahun

kebelakangan ini, rangkaian neural buatan (RNB) telah mendapat perhatian untuk

menghampirkan penyelesaian persamaan pembezaan dengan suatu keadah yang lebih

cekap. Di dalam tesis ini, rangkaian neural wavelet (RNW) digunakan dan

diprogramkan untuk menyelesaikan persamaan pembezaan biasa (PPB) dan

persamaan pembezaan separa (PPS). Kegunaan RNW muncul oleh kerana ia

mempunyai struktur yang lebih padat dan kelajuan pembelajaran yang lebih pantas

sementara mengekalkan sifat penghampiran universal konvensional RNB. Meskipun

RNW mempunyai sifat yang superior, algoritma pembelajarannya mestilah ditangani

secara bijaksana memandangkan algoritma pembelajaran yang digunakan untuk

menyesuaikan parameter pemberat bagi RNW boleh mempengaruhi kualiti ketepatan

dan penumpuan RNW. Kebelakangan ini, algoritma pengoptimuman rama-rama

(APR), suatu algoritma metaheuristik, telah menunjukkan keputusan yang efisien

dalam masalah pengoptimuman global dan pelbagai aplikasi. Namun begitu, APR

mempunyai masalah penumpuan pramatang di optima tempatan. Dengan demikian,

suatu penambahbaikan algoritma pembelajaran yang berdasarkan metaheuristik, iaitu

algoritma pengoptimuman rama-rama ditambah baik (APRP), telah dicadangkan dan

kemudian digunakan untuk mempertingkatkan proses pembelajaran RNW. Selain itu,

eksperimen berangka dalam penyelesaian persamaan pembezaan yang sama

xviii

dijalankan dengan menggunakan tiga algoritma pembelajaran yang lain, iaitu

algorithm APR, pengoptimuman kerumunan zarah (PKZ) dan rambatan balik

momentum (RBM) dalam RNW. Analisis statistik berdasarkan keputusan daripada

bilangan pengulangan yang tidak bersandar dan mencukupi dijalankan untuk

mengesahkan keberkesanan kaedah yang dicadangkan dari segi ketepatan, keteguhan

dan penumpuan. Perbandingan prestasi dengan kaedah-kaedah lain termasuk RNW,

RNB dan kaedah berangka mengesahkan dengan jelas ketangkasan kaedah RNW

dengan algoritma pengoptimuman rama-rama ditambah baik (RNWAPRP) yang

dicadangkan. Kemudian, RNW dengan ilmu pengetahuan yang dikodkan dalam suatu

set pemberat berangka telah diuji dengan beberapa titik ujian untuk suatu penilaian

mendalam bagi prestasi model RNW yang telah dilatih. Selain itu, prestasi RNW

dalam penyelesaian PPB telah diperiksa dengan pelbagai fungsi pengaktifan wavelet,

iaitu, Mexican Hat (MH), Wavelet Gaussian (WG) dan Morlet (MR). Antara fungsi

pengaktifan wavelet, WG merupakan satu fungsi pengaktifan wavelet yang berpotensi

bagi RNWAPRP dalam penyelesaian PPB. Kemudiannya, suatu penghampiran RNW

dalam bagi penyelesaian PPS yang sama telah dicadangkan di dalam tesis ini.

Keputusan statistik menunjukkan bahawa prestasi model RNW yang mempunyai

lapisan tersembunyi tunggal adalah lebih superior daripada RNW dalam.

xix

AN IMPROVED TRAINING METHOD FOR WAVELET NEURAL

NETWORKS FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL

EQUATIONS

ABSTRACT

Differential equations (DEs) have been widely used for modelling countless

studies and applications in various disciplines. In recent years, artificial neural

networks (ANNs) have gained attention in solving DEs in a more efficient way to

approximate solutions of DEs. In this thesis, wavelet neural networks (WNNs) were

employed and programmed to solve ordinary differential equations (ODEs) and partial

differential equations (PDEs). The utilization of the WNNs emerges from having more

compact structure and faster learning speed while retaining the universal

approximation property of the conventional ANNs. Despite the superior properties of

the WNNs, its training algorithm must be judiciously addressed since the training

algorithm which is employed for adjusting weight parameters of WNNs can

consequently affect the quality of the accuracy and convergence of the WNNs.

Recently, butterfly optimization algorithm (BOA) which is a metaheuristic algorithm,

has shown efficient results to global optimization problems and various applications.

However, the BOA has a problem of premature convergence at local optima. Thus, an

improved metaheuristic-based training algorithm, namely, improved butterfly

optimization algorithm (IBOA), was proposed and subsequently used to enhance the

training process of the WNNs. Also, numerical experiments on solving the same DEs

were conducted using three other training algorithms, namely, BOA, particle swarm

optimization (PSO) and momentum backpropagation (MBP) in the WNNs. Statistical

analyses of the results based on a sufficient number of independent runs were

xx

conducted to validate the effectiveness of the proposed methods in terms of the

accuracy, robustness and convergence. Performance comparison with other methods

including WNNs, ANNs and numerical methods clearly verified the ascendency of the

proposed wavelet neural networks with improved butterfly optimization algorithm

(WNNIBOA) methods. Then, the WNNs with the encoded knowledge in a set of

numeric weights were tested with several testing points for an in-depth evaluation of

the performance of the trained WNNs models. Also, the performance of the WNNs in

solving ODEs was examined by varying the wavelet activation functions, namely,

Mexican Hat (MH), Gaussian wavelet (GW) and Morlet (MR). Among the wavelet

activation functions, the Gaussian wavelet (GW) is a potential wavelet activation

function for the WNNIBOA in solving ODEs. Subsequently, a deep WNNs

approximation for the solutions of the same PDEs was proposed in this thesis.

Statistical results showed that the performance of the WNNs with single hidden layer

model was superior to that of the deep WNNs.

1

INTRODUCTION

1.1 Introduction

Differential equations (DEs) are a powerful mathematical language which give us a

mathematical way of understanding of how functions relate to its derivatives in a form

of equations. They have been extensively used to formulate and model many ranges

of problems and applications such as fundamental theories of physics, engineering

problems, chemical reactions, and biological processes. For instance, Bernoulli

equation, Schrödinger equation and Newton’s second law in the fundamental theories

of physics are expressed by means of the DEs (Panda and Pani, 2018). On the other

hand, the susceptible-infectious-removed model, which is a biological mathematical

model is formulated by DEs to predict the spreading rate of specific epidemics.

Solutions to DEs are vital to a wide range of investigations in various aspects

of study. By solving DEs, useful outcomes are obtained, i.e., solving the seismic model

can yield cost-effective wave propagation information, and as such, geophysicists can

save the cost for drilling (Liao, 2011). Some simple DEs can be solved by analytic

methods. However, some DEs which do not have exact solutions are approximately

solved using mesh-based traditional numerical methods such as finite difference and

finite element methods. These classical methods which approximate solutions at mesh

grids are found to be computationally expensive when high dimensional DEs are

considered. Additionally, an additional interpolation procedure is needed to yield

testing solutions which have not been considered during computation because the

numerical solutions are only valid in the considered grid of points (Mall and

Chakraverty, 2014).

2

In response to the importance of the DEs in many disciplines, the construction

of efficient and reliable numerical methods has become an ongoing research topic.

Recently, machine learning algorithm has opened up a new attractive category of

numerical methods. This algorithm can learn to adjust its parameters in response to

problems which can reap great rewards by making solving DEs closely automated.

Examples of machine learning algorithms that have been developed for solving DEs

are support vector machines and artificial neural networks (ANNs). Particularly,

ANNs for solving DEs have attracted much attention (Mall and Chakraverty, 2017).

Mathematically speaking, ANNs are an intelligent mathematical model mimicking the

ability of information processing of the human brain. Its structure comprises of

interconnected nodes in which each connection carries a numeric weight. An ANN

will adjust its numeric weights through a training method so that it can learn to solve

problems. When the nodes are linked with optimal weights, the trained networks are

able to solve the problems.

In the late years of 20th century, the ANNs for solving DEs were reported. In

recent years, many researchers have switched to more computationally efficient ANNs

alternatives for solving DEs. To solve DEs using the ANNs, the problem of solving

DEs is usually formulated as an optimization problem, aiming at minimizing an

unsupervised error function. Given a set of training points to the network, the ANNs

model with only a few hidden nodes in the single hidden layer is able to approximate

solutions of DEs. Unlike the numerical methods, the computational complexity of the

ANNs is relatively simple and does not increase quickly when the number of training

points increases (Mall and Chakraverty, 2014). Due to its advantageous properties

such as ease of implementation, adaptability, universal approximator and

3

generalization capability, the application of the ANNs in solving DEs deserves to be

further explored as powerful alternative methods in solving different kinds of DEs.

1.2 Motivations of Study

In recent years, various ANNs models in solving DEs have been proposed and seen an

exponential growth. Among different kinds of ANNs models, multilayer perceptrons

(MLPs) model has been frequently preferred in the literature to solve DEs such as

ordinary differential equations (ODEs), partial differential equations (PDEs) and

fractional differential equations (FDEs). Nevertheless, slow training problems and

local optima stagnation are the common issues of the MLPs (Zainuddin and Ong, 2012;

Zainuddin and Pauline, 2011). These weaknesses have led to the emergence of new

ANNs models. As a result, a great deal of works using other ANNs models for solving

DEs have been introduced (Mall and Chakraverty, 2014; Mall and Chakraverty, 2016;

Rizaner and Rizaner, 2018). Despite having promising results in previous studies, the

approximation accuracy of the ANNs algorithms can be further improved.

One of the outstanding ANNs models originally conceived by Zhang and

Benveniste (1992) is wavelet neural networks (WNNs), combining wavelets and

ANNs. The specialty of the WNNs model is on the processing elements in its hidden

layers which include wavelet activation functions, translation, and dilation parameters.

These elements make the WNNs a more compact topology compared with the other

ANNs approaches and a fast training speed (Ong and Zainuddin, 2019). Besides,

universal approximation potential of the ANNs is preserved in the WNNs. In fact,

before the introduction of WNNs, wavelets have been used for solving DEs. The

compact support property of a wavelet is a useful feature for the approximation of

functions and differential operators which has been proven by Esteban-Bravo and

4

Vidal-Sanz (2007). Additionally, the WNNs model has been successfully used for

solving various problems such as classification, prediction, and solving PDEs (Ong et

al., 2018; Zhang et al., 2016; Zainuddin and Pauline, 2011; Ong and Zainuddin, 2019;

Li et al., 2013). The great success of the WNNs in solving various applications and its

beneficial advantages have motivated the investigation of its capability in solving

ODEs and PDEs. Moreover, not much in-depth research on solving DEs using WNNs

has been conducted. Yet, the benefits of the WNNs with the commonly used wavelet

activation functions, namely, Mexican Hat (MH), Gaussian wavelet (GW) and Morlet

(MR) in solving DEs have not been explored.

Recently, various deep ANNs models with more than one hidden layer have

been proposed in tackling various types of challenging applications, with promising

results reported. These promising results have motivated the employment of more

hidden layers in the WNNs which can be an advantageous model for solving PDEs.

When it comes to the training method aspect, some ANNs models in the

previous studies were impaired by the adopted training methods, jeopardizing the

approximation capability of the ANNs. Similarly, the approximation capability of the

WNNs depends heavily on the adopted training algorithm because the underlying logic

for using WNNs is to find optimal weights for its outputs. A good training method

gives the WNNs a good quality set of optimal weights which can consequently yield a

WNNs model with an excellent approximation capability while a poor training method

makes the WNNs less efficient. Therefore, a WNNs model with a good training

method is essential to educate the WNNs for providing more accurate DEs solutions.

5

1.3 Problem Statements

Since the approximation accuracy of the ANNs algorithms in the previous studies can

be further improved, new intelligent computational techniques based on the WNNs are

developed to solve ODEs and PDEs. However, given the superiority of the WNNs, it

is necessary to set correct operation of a WNN, in terms of its training method,

initialization of the translation and dilation parameters, network architecture, and

activation functions in the hidden layers (Zainuddin and Pauline, 2011).

Traditionally, the numeric weights of WNNs are computed with

backpropagation (BP) algorithm, which adjusts the network parameters based on the

gradient information of an error function (Cao et al., 2010). The BP algorithm is

generally useful; however, it might get trapped into local minima, and its speed of

learning process is slow. In recent years, to address these computational shortcomings

of the BP algorithm, the metaheuristic algorithm has captured attention to improve

efficiency in the WNNs (Zhang et al., 2016; Yang et al., 2018; Chitsaz et al., 2015).

Unlike the BP algorithm, the metaheuristic algorithm is a gradient-free algorithm

which can increase the flexibility of the WNNs model. Therefore, in this thesis,

improving the performance of the WNNs by emphasizing the training method is the

main concern. This enhancement is accomplished by integrating a metaheuristic-based

method in adjusting the weight parameters of the WNNs.

Recently, a novel metaheuristic algorithm, namely, the butterfly optimization

algorithm (BOA) which is inspired by the food foraging behavior of butterflies has

been proposed (Arora and Singh, 2019). Due to the simplicity of the BOA, it has been

applied to various kinds of problems. Also, the BOA has been adopted for training

ANNs (Jalali et al., 2019). Based on their simulation results in terms of accuracy, the

BOA performed better than the well-regarded metaheuristic training algorithms,

6

including grasshopper optimization algorithm, flower pollination algorithm, genetic

algorithm (GA), particle swarm optimization (PSO) and differential evolution.

However, the main drawback of the BOA is the premature convergence due to its weak

exploitation capability (Arora et al., 2018).

To improve the exploitation capability of the BOA, a new improvement of the

BOA, namely, the improved butterfly optimization algorithm (IBOA) is made in this

thesis. The proposed IBOA training method is able to avoid the local optima and

premature convergence problems which enable it to find a good quality set of weight

parameters for the WNNs. As a result, the intelligent computational tool combining

the strengths of the WNNs and the IBOA training method can achieve higher

approximation ability, and thus, it is expected to improve the accuracy of the solutions

of DEs over the existing ANNs and numerical methods.

Apart from investigating the training method in the WNNs, the types of

wavelet activation functions and the number of hidden layers are also investigated in

this thesis.

1.4 Research Objectives

The objectives of this thesis are:

1. To develop a new training method, namely, IBOA for enhancing the training

process of novel WNNs methods in solving ODEs and PDEs.

2. To verify the effectiveness of the wavelet neural networks with improved butterfly

optimization algorithm (WNNIBOA) in solving ODEs and PDEs by comparing

with the WNNs trained with the other training methods, namely, the momentum

backpropagation (MBP), PSO and BOA, other ANNs and numerical methods.

7

3. To investigate the performance of the WNNs in solving ODEs with three different

wavelet activation functions, namely, the MH, GW and MR.

4. To propose a deep WNNs model for solving PDEs.

1.5 Methodology

To achieve objective 1, new WNNs models with a single hidden layer are developed

and formulated to solve the first and second order linear and nonlinear ODEs, as well

as elliptic PDEs. Moreover, three modifications are incorporated into the proposed

IBOA by incorporating dynamic switch probability and modifying the sensory

modality parameter and local search update equation to improve the problem of

premature convergence and slow convergence that are suffered by the BOA.

For objective 2, the performance comparison between the WNNIBOA and the

WNNs trained with the other training methods is made under the same WNN

architectures and stopping criteria. The performance of the WNNs models in solving

DEs is evaluated using two performance metrics, namely, Absolute Error (AE) and

Mean Absolute Error (MAE). To achieve objectives 3 and 4, the same ODE examples

in Chapter 4 and the same PDE examples in Chapter 5 are considered, respectively.

1.6 Scope of Thesis

This study will be confined in this section to fulfil the aforementioned objectives.

• Three WNNs architectures, two single WNNs models with one hidden layer,

one for solving only first and the second order ODEs and the other for solving

only two dimensional elliptic PDEs with the Dirichlet boundary conditions,

and one deep WNNs model with two hidden layers for solving the same PDEs,

are proposed.

• Only the standard BOA, PSO and MBP training algorithms are incorporated in

8

the WNNs for solving the ODEs and PDEs to validate the effectiveness of the

proposed WNNIBOA in terms of the accuracy, robustness and convergence.

• The performance of the deep WNNs with only two hidden layer is compared

with that of the WNNIBOA with one hidden layer in solving the same PDEs.

• Only an incremental pattern which increases the switch probability value from

a minimum to a maximum in the proposed IBOA is investigated.

1.7 Thesis Organization

This chapter discussed a general introduction to DEs and its importance. Subsequently,

the evolvement of ANNs in solving DEs was briefly introduced. The motivations of

study, problem statements, research objectives, and scope of thesis were given. The

outlines of the other six chapters are given as follows.

In Chapter 2, the architecture of an ANN and different training methods for

training ANNs models are introduced. Afterwards, the steps of integration of ANNs in

solving DEs are explained. Next, the previously proposed ANNs methods made on

solving DEs are reviewed. Due to the importance of training methods, this chapter

includes a comprehensive review of the existing training methods of ANNs in solving

DEs.

Chapter 3 starts with the highlight of the architecture of a WNN and the

development of the training methods of WNNs. Besides, the applications of WNNs

are discussed. This chapter is followed by reviewing the BOA, including its

advantages, limitations, applications, and BOA variants. Then, the proposed IBOA is

introduced. Lastly, a section is spent on presenting how the proposed WNNIBOA is

integrated in solving DEs.

9

After presenting the detailed description on the proposed IBOA, the ensemble

proposed WNNIBOA is used for solving ODEs in Chapter 4. The mathematical

formulations for solving ODEs are described in detail. For numerical simulations,

linear and nonlinear ODEs taken from literature are considered and the obtained

simulation results are compared with those of the WNNs trained with BOA, PSO and

MBP, existing ANNs and numerical methods. At the end of this chapter, the statistical

analysis of the MAE values obtained by the WNNs methods is conducted.

Meanwhile, in Chapter 5, the WNNs trained with the four different training

methods are employed for solving PDEs. The results of the WNNs are compared and

statistically discussed. On the other hand, Chapter 6 proposes a deep WNNs model for

solving the PDEs. The numerical results of the deep WNNs are compared with those

obtained from Chapter 5. Finally, this thesis comes to a close with conclusions and

future research ideas in Chapter 7.

10

LITERATURE REVIEW

2.1 Introduction

The applications of ANNs scale across different domain of studies. In this thesis, the

application of ANNs is mainly focused on solving DEs. In this chapter, an introduction

to ANNs and its training algorithms will be presented. The chapter is followed by steps

on how ANNs are integrated in solving DEs along with the advantages of using ANNs

methods. Next, literature review of ANNs methods in solving DEs will be discussed in

detail. Due to the importance of training methods, different training algorithms which

have been used for training the ANNs in solving DEs will be reviewed.

2.2 Artificial Neural Networks

The word ANNs is on everyone’s lips. It is a machine learning algorithm which mimics

intelligent from biological neural networks and provides learning ability for solving

different problems. From the mathematical point of view, the ANN is a mathematical

model in which its outputs are expressed as a mathematical function in terms of the

adjustable numeric weight parameters. Generally, these weight parameters of an

untrained ANN are initialized randomly and then optimized through learning to give

optimal outputs to a particular problem.

2.2.1 Architecture of an ANN

The most commonly used ANNs model is MLPs, which are generally composed of

three layers, namely, input layer, hidden layer, and output layer, with each layer fully

connected to the adjacent layer. Figure 2.1 depicts the architecture of an ANN.

11

Figure 2.1 Architecture of an ANN with input x and output u. This architecture

has one input layer with one input node, one hidden layer with N hidden nodes and

one output layer. These nodes are linked by weight values vn and wn, for n = 1, …, N.

The activation functions n and bias term b1n are only used in the hidden nodes.

The input node in the input layer receives the input variables x = [x1, x2,..., xNI],

where NI is the number of training points. In the hidden layer, the accepted input

variables are multiplied with the weights between the input layer and the hidden layer

v. This weighted sum of inputs with addition of bias b1 that pointed to each hidden node

will be used as the inputs for the activation functions in the hidden nodes. Normally,

a log-sigmoid function is used as the activation function in the hidden layer to limit the

amplitude of the outputs of the hidden nodes within the range of the log-sigmoid

function (Ojha et al., 2017). Subsequently, the outputs of the hidden nodes, which are

the outputs of the activation functions, will be sent to the adjacent output layer to be

multiplied with the weights between the hidden layer and the output layer w. The output

v1

v2

 .

 .

 .

vN

w1

w2

.

.

.

wN

1()

x

2()
∑ u(x)

b11

b12

.

.

.

Input Layer Hidden Layer Output Layer

N()

b1N

12

node in the output layer gives outputs, where the mathematical formulation defining the

output of the ANN is as follows (Malek and Beidokhti, 2006):

1

() (1),
N

n n n n

n

u x w v x b
=

= + (2.1)

where b1n is the bias, x is the input, vn is the weights connecting the input layer and the

hidden layer, n is the activation function, wn is the weights connecting the hidden layer

and the output layer, and N is the number of the hidden nodes.

In Equation (2.1), the weight and bias parameters are adjustable through training

to epitomize knowledge that can fit to solve problems. Generally, the training paradigm

can be classified into supervised training, unsupervised training, and reinforcement

training (Ojha et al., 2017). In the supervised training, inputs with target outputs are

required. An ANN is trained by comparing the outputs of the ANN with the target

outputs and then the weight parameters are adjusted to minimize the differences

between them. Some examples of problems based on the supervised training are

classification and prediction problems. On the other hand, the unsupervised training

consists of only inputs without target outputs. In the case of solving DEs, the target

outputs are unknown in prior. Therefore, the problem of solving DEs falls into the

category of unsupervised training. In the reinforcement training, the training of ANNs

deals with sets of input, output, and grade.

2.2.2 Training Algorithms

Since determining the weights of ANNs is considered as an optimization problem,

almost any general-purpose optimization methods are applicable for training ANNs.

However, as the fact of the influence of the weights of ANNs on the performance of

ANNs, various research efforts have been focused on the training methods of ANNs. In

Yang (2010), there are three types of training or optimization algorithms, namely,

13

deterministic algorithms, stochastic algorithms and hybrid algorithms. Figure 2.2

depicts the training algorithms of ANNs.

Figure 2.2 Training algorithms of ANNs

2.2.2(a) Deterministic Algorithms

Deterministic algorithms are not based on probabilistic perspectives and can be

categorized in two parts, namely, gradient-based algorithms and gradient-free

algorithms.

Gradient-based algorithms are performed based on gradient information. BP is

an example of gradient-based algorithms which is traditionally used for training ANNs.

To minimize network error, the weight parameters are iteratively adjusted as follows:

 (1) () (),w t w t w t+ = + (2.2)

 () ,
()

E
w t

w t

 = −

 (2.3)

where is the learning rate, t is the number of iterations and E/w is the derivative of

an error function with respect to weight parameters. Although the BP algorithm has

been widely used for training ANNs, this algorithm is prone to slow convergence and

 Training algorithms

of ANNs

 Deterministic

algorithms

Stochastic

algorithms

Hybrid

algorithms

 • Gradient-based algorithms

• Gradient-free algorithms

 • Heuristic algorithms

• Metaheuristic algorithms

•

14

might converge to local optimal solutions. The convergence of an algorithm represents

its behavior or rate moving towards the global optimum, which is the best solution with

the smallest error when considering the entire search space (Mirjalili et al., 2017). On

the other hand, the local optimal solutions refer to near-optimal solutions that return a

value close to the objective value of the global optimum. Due to the presence of a large

number of local optimal solutions in the entire search space, an optimization method

might mistakenly terminate the training at local optimal solutions.

To get rid of the shortcomings, a number of variations of the gradient-based

algorithms has been developed. MBP is one of the improved versions of BP with

incorporation of a momentum term in the standard BP. The momentum term can speed

up the convergence rate and prevent the learning process from settling in a local

minimum. In the MBP algorithm, the weight update includes the current weight change

and the previous weight change, as shown in the following formula:

 () (1),
()

E
w t w t

w t

 = − + −

 (2.4)

where is the learning rate, µ is the momentum, t is the number of iterations and E/w

is the derivative of an error function with respect to weight parameters. Besides, Quasi–

Newton and Levenberg–Marquardt methods are the variations of the gradient-based

algorithms, which are frequently used for training ANNs (Ranković and Savić, 2011).

On the other hand, sequential quadratic programming (SQP) and interior point

algorithm (IPA) are examples of gradient-based algorithms used in the training of

ANNs. They are powerful local optimization methods for solving constrained nonlinear

optimization problems. Despite the usefulness of the existing gradient-based training

algorithms for optimizing the weights of ANNs, one of the important issues on gradient-

based algorithms is their dependency on gradient information.

https://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#local minimum
https://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#local minimum

15

In order to overcome the disadvantages of gradient-based algorithms, gradient-

free algorithms are introduced by removing the need for computing derivatives. For

example, Nelder–Mead method is a well-known gradient-free algorithm. Owing to its

simplicity, Nelder–Mead method has been used for training ANNs with good results.

However, Nelder–Mead method may converge slowly or may fail to converge to a

global minimum and can significantly reduce its efficiency in training ANNs

(Wilamowski and Pham, 2012). Another gradient-free algorithm is extreme learning

machine (ELM). ELM is not only a gradient-free algorithm but also an iteration-free

algorithm. In contrast to iterative-based and gradient-based training algorithms, ELM

can offer feasible weights in a much faster and simpler way, by implementing Moore–

penrose generalized inverse technique (Wang et al., 2015). However, ELM has a

requirement on the ANNs’ architectures because ELM is specifically used for training

fixed ANNs architectures where only the weights between the hidden layer and the

output layer are adjusted.

2.2.2(b) Stochastic Algorithms

Besides deterministic algorithms, a class of algorithms known as stochastic algorithms

has been attempted to increase the performance of ANNs. Stochastic algorithms are

based on random mechanism to search for solutions with a better objective function

value. According to Yang (2010), heuristic and metaheuristic algorithms are two

general types of stochastic algorithms. However, no agreed definitions of heuristic and

metaheuristic have been rendered in the literature and some of the literature have used

both terms interchangeably.

Generally, metaheuristic algorithms are high-level heuristic optimization

algorithms which typically are inspired by evolutionary and nature-inspired

understanding from biology, natural phenomena, and social systems (Cuevas et al.,

16

2019; Sörensen, 2015). Over the past few decades, the metaheuristic algorithms have

gained increasing popularity, due to their flexibility and ease of implementation. These

advantages originate from the derivative-free nature of these algorithms which involve

two search behaviors, namely, exploration and exploitation, to produce sufficiently

good solutions for optimization problems. The exploitation search is used to find other

solutions around the current good solution in a short distance while the exploration

search is used to find other solutions in new areas in the search space. In addition,

compared with gradient-based algorithms, metaheuristic algorithms are considered as

more effective and simpler algorithms to optimize the weights of ANNs, because

metaheuristic algorithms do not optimize each of the parameters of an ANN separately.

Therefore, the calculation of the gradient information of an objective function with

respect to each adjustable parameter is avoided. Specifically, updating weight

parameters of an ANN using metaheuristic algorithms is done in a single vector

containing all the weight parameters.

The metaheuristic algorithms can be categorized into single solution-based

algorithms and population-based algorithms according to the number of candidate

solutions processed in every iteration (Mirjalili et al., 2017). The single solution-based

algorithms contain only one candidate solution which is moved in the search space at

each iteration for searching neighboring solution with a better quality. Due to a small

number of function evaluations, this kind of algorithm requires low computation efforts.

Some examples of algorithms in this category are simulated annealing and tabu search.

As opposed to the single solution-based algorithms, the population-based algorithms

initiate with a group of candidate solutions called population. From the context of

biological ecosystem, the population is a group of one species living in the same habitat.

Taking this knowledge into the population-based metaheuristic algorithms, the species

17

represents a group of candidate solutions and the habitat represents the search space

within a boundary area which corresponds to the boundary of the candidate solutions.

In the context of training ANNs, each candidate solution in the population represents a

set of weight parameters of ANNs. Therefore, there are many sets of weight parameters

of ANNs in a run, where the best solution set is chosen according to the fitness value.

Due to the multiple candidate solutions striking for the best solution, the overall

efficiency and performance of the optimization can be improved. PSO and GA are well-

known population-based algorithms.

However, no single metaheuristic algorithm can successfully solve all kinds of

problems consistently. This fact has been proven by the theorem of No Free Lunch

(Wolpert and Macready, 1997). Therefore, the modification of existing metaheuristic

algorithms has been observed. Besides, researchers are continuously unearthing new

metaheuristic algorithms. A survey on metaheuristic algorithms can be found in Ojha

et al. (2017).

2.2.2(c) Hybrid Algorithms

Since there is no guarantee that optimal solutions can always be reached by

metaheuristic algorithms that are implemented individually, hybrid algorithms have

been considered to improve the performance of ANNs. For instance, a gradient-based

algorithm can be applied to improve the solutions found by a metaheuristic algorithm.

The hybrid algorithms will be further discussed in Section 2.3.2.

2.3 Solving DEs Using ANNs

In recent years, the ANNs have been devoted as an alternative to the numerical methods

to solve DEs. The general idea of ANNs approach is to define the solutions of DEs in

terms of the adjustable outputs of ANNs and then employs a training method to tune

18

the adjustable weights in the output of ANNs. Eventually, the problem of solving DEs

is formulated as an optimization problem, aiming at the minimization of an

unsupervised error function.

An ANN starts with receiving a training input vector at the input nodes.

Generally, the inputs can be presented to the ANN either through batch training or

incremental training. In a batch training, all the inputs are presented to the network and

the weights are updated only after all the inputs are received. In an incremental training,

each input is presented to the network and the corresponding weights are updated. The

number of weight updates will be equal to the number of input entries present in the

training input vector. In this thesis, all inputs are presented to the network through the

batch training because the error of solving DEs is taken over all the training points for

adjusting the parameters.

Then, the output of the ANN can be generated using Equation (2.1) with

initialized weight parameters. In this stage, the initialized weights are not able to allow

for an error function to converge to zero. Therefore, these weights should be updated to

reduce network error. To perform an error minimization, an unsupervised error function

is designed by taking the difference between the left-hand side and the right-hand side

of a DE since desired targets are supposed to be unknown in prior in the context of

solving DEs. One of the aspects to consider when forming the error function is the

associated initial and/or boundary conditions of a DE. Therefore, the minimization

optimization problem of training ANNs is subjected to a set of constraints. Then, the

error function is minimized by applying a training method to adjust the weight

parameters.

19

Generally, when the residue of an error function ceases to zero, the DE can be

considered as solved. In general, the employment of the ANNs approach towards

solving DEs brings some attractive advantages (Lagaris et al., 1998):

1. The ANN is simple in structure and easy to implement and to modify for solving

various kinds of DEs.

2. The ANNs methods require low computational complexity and lesser training

points as compared with the numerical methods. Unlike the traditional

numerical methods, when the number of training points increases, the

computational complexity of the ANNs methods does not increase quickly.

3. The ANNs methods generally provide differentiable solutions in a closed

analytic form over the computational domain which are useful for further

evaluation.

2.3.1 Existing ANNs Approach for Solving DEs

The building of any ANNs composes of two steps. The first step is to develop the

ANN’s architecture for representing the solutions of a given DE while the second step

is to employ a training method for training the adjustable weight parameters in the ANN.

It is clear that the overall performance of an ANN model is highly dependent on both

the ANN’s architecture and training method. In this subsection, the existing ANN

approaches for solving DEs in the literature are reviewed, subsequently the training

algorithms which have been used in ANNs for solving DEs will be discussed in next

subsection.

Various strategies based on the ANNs have been investigated by many

researchers. Generally, solving DEs using ANNs in the literature can be categorized

into two approaches, namely, differentiable approach and integrable approach. Figure

2.3 depicts the ANNs approaches for solving DEs.

20

Figure 2.3 ANNs approaches for solving DEs

The differentiable approach is the most frequently used approach in which one

uses a differentiable activation function in each hidden node in a network. Therefore,

the solutions of DEs based on this approach correspond to differentiable and closed

form output of a network. Then, the derivatives of the solutions can be derived through

differentiation. In this approach, the network can be trained either through constrained

optimization or unconstrained optimization, depending on how the associated

conditions of DEs are satisfied. If one can satisfy the conditions of a DE, the

optimization is called unconstrained optimization. Therefore, an objective function is

formed by using the explicit form of the DE only because the associated conditions are

exactly satisfied. For this purpose, a special consideration is required in formulating the

approximate solutions for the automatic satisfaction of the associated conditions. The

incorporation of trial solution by Lagaris et al. (1998) is an example of unconstrained

optimization. On the other hand, the constrained optimization is the optimization in

which the conditions of a DE are not satisfied exactly but approximately by adding a

penalty term to an objective function. Although the constrained optimization is seemed

Solving DEs using

ANNs

Differentiable

approach

Integrable

approach

Constrained

optimization

Unconstrained

optimization

Constrained

optimization

21

to be easy to implement and able to save the amount of time for formulating the trial

solutions, it can cause a low convergence rate and a low accuracy solution (Rudd and

Ferrari, 2015). Accordingly, the unconstrained optimization provides a good trade-off

in terms of the accuracy. Since this thesis is aiming for a better approximation accuracy,

the unconstrained optimization is considered.

In contrast, the integrable approach uses an integrable activation function in

each hidden node in a network to generate the output of a network which corresponds

to the highest derivative appearing in DEs. Therefore, to obtain the solutions of DEs,

the computation is done by integration. Towards this end, it is seen that the property of

activation functions in the hidden layer of an ANN is an important feature in order to

ensure that the solutions of DEs and its derivative functions are computable and fit the

requirements based on the selected approach.

A substantial growth in the study of ANNs based on the differentiable approach

in solving different types of DEs is observed. Lee and Kang (1990) firstly introduced a

method to solve first order ODE using finite difference methods for the discretization

of ODEs and the Hopfield neural network for minimizing error function. However, the

emergence of the ANNs as a promising approximator in the context of DEs was first

proposed by Lagaris et al. (1998). This earliest method is based on the differentiable

approach. In this work, the authors proposed the MLPs as a DE’s approximator and the

trial solution as an approximate solution for the automatic satisfaction of the associated

conditions. Using the trial solution, the original problem of solving DEs is reduced from

a constrained optimization problem to an unconstrained optimization problem.

Since 1998, such ANNs method with the trial solution has gained increasing

popularity and has been frequently used by other researchers. For instance, higher-order

ODEs have been solved using ANNs (Malek and Beidokhti, 2006). In particular, the

22

automatic satisfaction of the boundary conditions of the fourth-order ODE has been

made using the trial solution. The same authors proposed ANNs with the trial solution

for solving mixed BVPs of biharmonic PDEs (Beidokhti and Malek, 2009). In other

works, the initial conditions of the first Painlevé equations and the boundary conditions

of the Lane–Emden equations have automatically been satisfied using the trial solutions

(Raja et al., 2015b; Mall and Chakraverty, 2014; Mall and Chakraverty, 2016). Also,

the ANNs approach with trial solution has been employed to solve Stokes problem

(Baymani et al., 2010).

However, the trial solution proposed by Lagaris et al. (1998) is feasible only for

regular domains. For irregular domains, the ANNs have been proposed to solve two-

dimensional and three-dimensional PDEs with irregular domain boundaries based on

the combination of MLPs and radial basis function networks (RBFNs) in which the

RBFNs are used to satisfy the boundary conditions (Lagaris et al., 2000). A similar

network combination has also been studied by Hoda and Nagla (2011) in solving the

mixed BVPs of PDEs on irregular domains. Although the method proposed for the

automatic satisfaction of the mixed boundary conditions on irregular domains is

computationally expensive, the solutions of PDEs are fairly encouraging. Besides, the

concept of length factor has been introduced in trial solution to satisfy the mixed BVPs

conditions automatically for irregular domains (McFall and Mahan, 2009). The length

factor is introduced to measure the perpendicular distance from a point to the boundary

in order to return zero value on the boundary. Also, based on the length factor, the

coupled systems of PDEs with discontinuities and the advection dispersion equations

characterizing the mass balance of fluid flow in a chemical reactor have been solved

using ANNs (McFall, 2013; Yadav et al., 2018).

23

On the other hand, numerous ANNs schemes have been proposed to solve DEs

based on the constrained differentiable approach. For instance, numerous literatures by

Raja et al. for solving DEs problems including nonlinear Jeffery–Hamel flow systems

(Raja and Samar, 2014a), two-dimensional nonlinear Bratu’s problems (Raja and

Samar, 2014b), nonlinear boundary value problems (BVPs) governed with pantograph

functional differential equations (Raja, 2014), thin film flow of third grade fluids (Raja

et al., 2015a), nanotechnology problems based on multi-walled carbon nanotubes (Raja

et al., 2016a), nonlinear singularly perturbed BVPs (Raja et al., 2018a), nonlinear

Mathieu’s systems (Raja et al., 2018b) and Troesch's problem (Raja et al., 2018c) have

been observed. These ANNs approaches have shown a promising alternative numerical

method in solving DEs. In other works, the hyperbolic and parabolic PDEs have been

solved by Rudd and Ferrari (2015) using a constrained integration with ANNs approach.

Moreover, a number of ANNs techniques based on the differentiable approach for the

solutions to problems governed by PDEs have been developed, including the direct

current motor, and a ball and beam system (He et al., 2000), the one-dimensional

Kuramoto–Sivashinsky and two-dimensional Navier–Stoke (Smaoui and Al-Enezi,

2004), Burger’s equations (Hayati and Karami, 2007), and nonlinear Schrodinger

equations (Shirvany et al., 2009). For some complex PDEs, the PDEs of the system

model were reduced to a system of nonlinear ODEs and this system was solved by

ANNs (Mehmood et al., 2018).

Apart from solving ODEs and PDEs, the applicability of ANNs approach has

also been extended to solve FDEs (Raja et al., 2017; Raja et al., 2015c; Lodhi et al.,

2019; Raja et al., 2010; Pakdaman et al., 2017; Zúñiga-Aguilar et al., 2017; Jafarian et

al., 2018). These methods either use constrained optimization or unconstrained

optimization. To solve FDEs by using the ANNs methods, a fractional derivative of

24

activation functions is needed (Raja et al., 2017). For instance, the Maclaurin series

expansion of log-sigmoid function and fractional derivatives of exponential functions

involving Mittag–Leffler function were used as activation functions in the ANNs

(Jafarian et al., 2018; Raja et al., 2010; Raja et al., 2015c; Raja et al., 2017; Lodhi et

al., 2019). On the other hand, the ANNs techniques have been applied by Effati and

Pakdaman (2010) to solve fuzzy differential equations. In this work, the fuzzy

differential equations were replaced by a system of ODEs.

Most of the aforementioned works use the MLPs model. Although the MLPs

model has reported significant as the DEs approximator, this model is subject to local

minima and slow learning problems (Zainuddin and Ong, 2012; Zainuddin and Pauline,

2011). Additionally, the MLPs model has a lot of weight parameters, i.e., the weights

between the input layer and the hidden layer, as well as between the hidden layer and

the output layer, to be trained which require considerable computational cost.

Besides the MLPs, other ANNs models, including Legendre neural networks

(LENNs), Chebyshev neural networks (CHNNs), and Bernstein neural networks

(BENNs) have been proposed to solve DEs. The LENNs, CHNNs and BENNs are a

kind of single-layer functional link ANN where its hidden layer is replaced by a

functional expansion block based on orthogonal polynomials. Removing the hidden

layer and expanding the input pattern by the Legendre, Chebyshev, and Bernstein

polynomials in the LENNs, CHNNs and BENNs, respectively, lower computational

complexity and a much lesser number of adjustable parameters are achieved as

compared with the MLPs. In the literature, Mall and Chakraverty (2016) has developed

the LENNs for solving Lane–Emden equations. This ANNs model is capable of

producing more accurate solutions with less computational efforts as compared with the

MLPs. In another work, the same author has proposed a similar type of ANNs but based

