

Structural Aspects of Split G-Quadruplexes in Quadruplex-Duplex Hybrid Systems

Dinda Fluor Agustin⁺,^[a] Yoanes Maria Vianney⁺,^[a, b] Klaus Weisz,^[b] and Mariana Wahjudi^{*[a]}

G-quadruplexes are secondary structures of nucleic acids increasingly employed for biological and also technological applications. Being of particular interest, a structural motif called quadruplex-duplex (QD) hybrid comprises both a Gquadruplex and duplex domain. Here, we attempted to engineer a bimolecular quadruplex-duplex hybrid through dual recognition of a receptor by a target strand with the simultaneous formation of both G-quadruplex and duplex structures. Three different constructs were designed for the Gquadruplex receptor, featuring either one, two, or three vacant sites. Addition of the target strand filled the vacancies when

Introduction

G-quadruplexes are secondary structures of nucleic acids formed by G-rich sequences. They are comprised of stacked Gtetrads with four guanines arranged in a square planar fashion, connected through eight Hoogsteen hydrogen bonds, and further stabilized by monocations in their central cavity. Most commonly observed G-quadruplexes consist of three layers of G-tetrads.^[1] G-quadruplexes play significant roles in biology since their formation has been shown to control various cellular processes.^[2] Various small molecules have been designed to target the G-quadruplex structure for modulating gene activities. In most cases, the ligand features an extended aromatic ring system with planar geometry to maximize π - π stacking interactions with the surface of an outer G-tetrad.^[3]

The use of G-quadruplexes in nanotechnological and analytical applications was promoted by the finding that these structures can act as a DNAzyme when complexed with hemin, mimicking a peroxidase-like activity that can be detected by further reaction with a chromogen.^[4] One technique applying a G-quadruplex system for detection purposes is based on splitting its structure. The split G-quadruplex is characterized as a G-quadruplex only formed by hybridization with another Grich strand. Such a splitting approach was originally developed by Willner's group. Here, the G-quadruplex was equally split

 [a] D. F. Agustin,⁺ Y. M. Vianney,⁺ M. Wahjudi Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, 60292 Surabaya, Indonesia E-mail: mariana_wahyudi@staff.ubaya.ac.id

- [b] Y. M. Vianney,⁺ K. Weisz Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
- [⁺] These authors contributed equally to this work.
- Supporting information for this article is available on the WWW under https://doi.org/10.1002/slct.202304286

simultaneously hybridizing with flanking sequences to form a duplex as shown by NMR studies. Formed QD hybrid constructs either constitute an 11:1, 10:2, or 9:3 split G-quadruplex system. The 10:2 QD construct folds into a non-canonical V-loop topology. Remarkably, the latter also accommodates 5'-overhang residues of the target strand although suggested to impose a steric penalty. Formation of the duplex domain is demonstrated to be critical for the successful formation of the intact G-quadruplex domain. With the formation of a unique QD junction for detection, the constructs may constitute valuable tools for single strand capturing strategies.

into two halves with each strand comprising two G-columns of the quadruplex core. In this strategy, a flanking sequence on one half is designed in such a way as to capture a complementary sequence of the second strand of interest. Depending on the technique or strategy, the G-quadruplex formation may be enabled but may also be disrupted upon hybridization, translating into a positive or negative signal upon reaction with hemin and a chromogen, respectively.^[5,6] Subsequent variations of such bimolecular G-quadruplex architectures involve asymmetrically split G-quadruplexes with strands comprising three and one G-column of three consecutive Gs (9:3)^[7,8] or even with a splitting pattern not compatible with multiples of three Gs in each of the two strands.^[9,10] One study even involved an 'intramolecularly' split G-quadruplex^[11] by using a bulge.^[12]

In most split G-quadruplex DNAzyme designs, the recognition of the target strand mostly involves only the overhang sequences and not the guanine core in the G-quadruplex itself, thus being in close analogy to a normal Southern blot. Here, background signals even in the absence of a target^[13] as well as additional signals observed from the free hemin-peroxide system itself compromise the use of the split G-quadruplex detection system.^[14] Being a unique observation, the background noise can be reduced by adding a duplex-forming sequence on the overhang opposing side in an asymmetrically split G-quadruplex.^[8] Nevertheless, it seems advantageous to include the G-column as part of the analytical arm for the strand of interest.

The latter concept can be derived from the ability of Gquadruplexes to carry a G-vacancy.^[15] G-quadruplexes containing a G-vacancy can be designed by decreasing the number of guanines in one G-run in comparison with the other G-runs. The vacancy can subsequently be filled intramolecularly by an overhang guanine to form a snapback loop. The snapback loop motif is also known to modulate ligand binding to the G-