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A B S T R A C T   

A system combining ultrasound and infrared radiation was used to increase the chemical reactions between 
incompressible reactants by enhancing their mass transfers with the aim to reduce the energy usage and reaction 
time. In this study, biodiesel from RBO was produced via transesterification, and the process variables were 
optimized using the combination of ANN and GWO algorithm. Process parameters considered in this study are 
ratio of methanol to oil, catalyst concentration, and reaction time. Based on the ANN-GWO algoritm used, the 
optimum conditions for the process parameters were (1) methanol to oil ratio: 60%, (2) concentration of catalyst: 
1 wt%, (3) time: 7.76 min, leading to the metyl ester yield of 98.16 wt%. The algoritm was verified by conducting 
a triplicate independent experiments using the suggested optimum values, resulting in an average methyl ester 
yield of 97.74 wt%. Subsequently, properties of rice bran biodiesel were compared to ASTM D6751 and EN 
14214 standards, and the obtained values met both the standards.   

1. Introduction 

In the last decades, renewable energy has obtained considerable 
global attention as an alternative to fossil fuels due to the increasing 
energy demands and awareness of environmental damages resulting 
from prolonged usage of fossil fuel. As a result, renewable energy in form 
of sea wave, wind, solar, hydro, and geothermal are being implemented 
worldwide [1–3]. In addition, biofuels such as biodiesel and bioethanol, 
which are easily stored and transported are considered as alternatives to 
be utilized in transportation sector. Biodiesels are long-chain fatty acids 
of mono-alkyl esters typically produced from animal fats or vegetable 
oils that posseses beneficial fuel properties similar to petroleum diesel 
[4–8]. Several methods, such as pyrolysis, dilution, and microemulsion, 
can be used to convert triglycerides in vegetable oils to methyl esters 
[9–12]. However, commercialized biodiesel production field typically 

uses esterification and transesterification, as compared to other methods 
[13–15]. 

The main challenge in producing biodiesel is the insolubility be-
tween oil and alcohol, which can inhibit the process of mass transfer and 
reduce the rate of reaction. Hence, it is imperative to enhance the re-
action by using improved technology. Microwave, ultrasound, infrared 
radiation techniques and non-catalytic supercritical are among the 
popular methods [14,15]. Many successful studies apply ultrasonic 
methods for biodiesel production [16,17]. Via ultrasound-assisted pro-
cess, tiny bubbles are created by continous expansion and compression 
in the solvent. These bubbles keep expanding, leading to the buildup of 
energy in the bubbles until their subsequent collapse. This is commonly 
referred to as an acoustic cavitation (Fig. 1) [18]. Via this, liquid solvent 
is affected both physically and chemically [19,20]. As a result, methyl 
ester yields will be higher, reaction times will be shorter, the amount of 
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catalyst used will be lowered, and less energy will be used. The usage of 
ultrasound as an intensification technique in transesterification reaction 
contributes to only a small increase in biodiesel production cost 
(0.08–0.5%), when compared to conventional heating [21]. The 
infrared radiation-assisted reactor is in the same boat. With the range of 
energy between 0.001 and 1.7 eV, infrared radiation can penetrate 
deeper into reactant and intensively absorbed [22]. Therefore, this en-
ergy could lower reaction temperatures and minimize the amount of 
energy consumed by reactant molecules, which is the most essential 
component in enhancing biodiesel quality [20,23]. This process has 
been utilized to convert waste goat tallow into biodiesel, producing 
sufficient yields in a shorter time than the traditional method [24]. 
Furthermore, the energy usage for a transesterification reaction using 
infrared radiation was reported to be only 25% as compared to con-
ventional heating [25]. Hence, a combination of both ultrasound and 
infrared radiation is expected to provide significant time and energy 
saving in producing biodiesel. 

To date, various waste and non-edible oil feedstocks such as Jatropha 
[26,27], Calophyllum inophyllum [18], waste cooking oil [28], rubber 
seed [29], waste coffee ground [30] and rice bran oil [31] have been 
researched. Rice bran oil (RBO) is a by-product from the milling process 
of paddy rice, obtained from the grain’s hard outer layers [32]. This non- 
edible oil is often discarded as agricultural waste. China and India 
produce the most RBO, and a global production of RBO is conservatively 
estimated to be not less than 7.5 million metric tons annually [33]. In a 
study, it was found that a volumetric blend of 20 % RBO and 80 % petro- 
diesel is the most economically effective to be used in the existing diesel 
engines [34]. Hence, RBO is a suitable candidate for sustainable bio-
diesel feedstock, since it is abundantly available and unsuitable to be 
consumed by human [35]. 

In order to obtain maximum biodiesel yield with minimal usage of 
resources, experiments and methods need to be properly planned. 
Optimization techniques utilizing both linear and nonlinear equations 
are ideal for this purpose since they are simple to examine and able to 
solve huge complicated conditions. For the past few years, artificial 
neural networks (ANN) has gained widespread recognition as a 
modeling technique for simulating complicated situations [17,36]. 
Using artificial intelligence, ANN offers series of advantages as 
compared to the traditional modeling tools. It is easier to understand 
both phenomenological and mathematical context of the conditions that 

have to be dealt with by using ANN, without making unnecessary as-
sumptions. Linear and nonlinear correlations of the process parameters 
can be simultaneously studied directly from a collection of conditions. 
ANN can comprehend a large number of factors in a relatively quick 
manner, resulting in precise predictions utilizing inputs from the user. In 
addition, ANN can also understand nonlinear correlations between the 
various diverse inputs related to a biological system. One of the primary 
benefits of utilising ANN for modelling complex systems is the capability 
to operate without complicated physical equations, initial boundary 
conditions, or starting assumptions about the make-up of the function or 
data distribution [6]. 

Furthermore, ANN may be simulated using a set of available exper-
imental data, without the need to thoroughly understand the chemical/ 
biological process being mimicked [37]. Hence, experimental conditions 
obtained from tools such as Box-Behnken design can be used in ANN. 
Compared to other mathematical models, ANN has a better tolerance for 
errors due to its capacity to build on partial knowledge. In addition, ANN 
has also been utilized in optimizing process parameters for biodiesel 
production [38,39]. Therefore, ANN is a helpful modeling tool in fore-
casting and optimizing complex process parameters. In a study, het-
erogeneous catalysts was employed to produce biodiesel from low-grade 
oil using ANN and response surface methodology (RSM) [40]. The re-
sults demonstrated that ANN’s prediction performance was superior to 
RSM’s. Furthermore, an investigation was conducted by Onukwuli et al. 
(2021) by utilizing both RSM and ANN-GA in forecasting optimum 
conditions for producing biodiesel using oil obtained from Chrys-
ophyllum albidum seed [41]. From the study, it was concluded that ANN 
had higher correlation coefficients, resulting in faster reaction time, less 
energy, less catalyst, with higher yield compared to RSM in optimal 
condition. 

A metaheuristic is an algorithmic framework inspired by nature to 
find a near-optimal solution to an optimization issue. By such, grey wolf 
optimizer (GWO) is based on population metaheuristic which imitates 
how a pack of grey wolves behave when hunting a prey [40,41]. 
Comparatively, it is found that GWO requires less modified parameters, 
while outperforms other evolutionary computation-based methodolo-
gies, including particle swarm optimization (PSO), fast evolutionary 
programming (FEP), and gravitational search algorithm (GSA) [42]. 

The aim of this study is to evaluate the effectiveness of combining 
ultrasound and infrared radiations for biodiesel production from rice 

Fig. 1. Acoustic cavitation of ultrasonic waves.  
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bran oil. Combining infrared and ultrasound will increase the process of 
mass transfer into the reactant molecules. Hence, the combination of 
these techniques is expected to further enhance the transesterification 
reaction rate. Three process variables, which are oil to methanol molar 
ratio, catalyst concentration and reaction time were considered in this 
optimization study. Initially, Box-Behnken experimental designs (BBD) 

was used in obtaining the experimental conditions. Data generated from 
BBD was subsequently supplied to the combination of ANN-GWO algo-
rithm. In this study, GWO was utilized to optimize the weights of ANN. 
Subsequently, rice bran methyl ester (RBME) obtained via trans-
esterification process was characterized accordingly using gas chro-
matographic with flame ionization detection (GC) and Fourier transform 
infrared spectrometry (FTIR). ASTM D6751 and EN 14214 standards 
were used to measure the properties of RBME. With the approach of 
combining ultrasonic and infrared, it is believed that there is a saving in 
energy, which allows future advancement in biodiesel production 
methods. 

2. Materials and methods 

2.1. Materials 

Agricultural waste RBO was collected from Scienfield Sdn. Bhd. 
(Selangor, Malaysia). Methanol and potassium hydroxide (KOH) were 
supplied by Chemolab Supplies (Selangor, Malaysia). The chemicals 
were of analytical chemistry standard with 99% purity. The color of 
crude RBO is yellow bright (Fig. 2). Kinematic viscosity, acid value, 
higher heating value, and density of crude RBO are presented in Table 1. 

2.2. Experimental Set-up 

A 250 mL borosilicate glass beaker, aluminium foil, and thermom-
eter were utilized in the biodiesel production reactor setup. Qsonica 
(Q500-20, 500 W, 20 kHz frequency) sonicator, equipped with a 1-inch 
probe was used to create the ultrasonic cavitation in the mixture. 
Amplitude and pulse of the sonicator were fixed at 35% and 6 s ON with 
2 sec OFF, respectively. The system was fitted with 300 W infrared lamps 
(220 V) to produce infrared radiation. Infrared radiation is supplied with 
the intention to speed up the transesterification process. The set up box 
was covered with aluminium foil and connected to the ultrasound probe. 
The experimental setup of ultrasound combined with an infrared bio-
diesel synthesis schematic diagram is illustrated in Fig. 3. 

2.3. Transesterification process 

Quantity of methanol, KOH catalyst, and reaction time were selected 
for each run, which were planned using Box-Behnken design (BBD). RBO 
in the amount of 30 g was heated to 60 ◦C in the reactor using infrared 
radiation. After the oil had been heated to 60 ◦C, the ultrasound 
equipment was turned on, followed by slowing down the power of 

Fig. 2. Crude RBO.  

Table 1 
Properties of crude RBO.  

Property Unit RBO 

Kinematic viscosity at 40 ◦C mm2/s 40.97 
Density at 15 ◦C kg/m3 922 
Acid value mg KOH/g 1.82 
Higher heating value MJ/kg 36.88  

Fig. 3. Ultrasound and infrared radiation equipment system for bio-
diesel production. 
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infrared bulb. The solution of methanol-catalyst at a certain quantity 
was then mixed in the reactor. The mixture was poured into a separating 
funnel upon completion of the transesterification reaction, and allowed 
to settle for six hours. The lower layer, which consists of catalyst and by- 
product were removed, and then deionized water at 40 ◦C was used to 
wash the end product to remove any impurities. Rotary evaporator 
equipped with a vacuum, set at 60 ◦C bath temperature was used to 
evaporate the moisture in the product. Subsequently, the final product 
was filtered using 541 Whatman filter paper. The processes of trans-
esterification ais summarized in Fig. 4. 

The yield (wt.%) was determined based on Eq. (2): 

Methyl ester yield (wt.%) =
Weight of methyl ester yield produced (g) × 100

Weight of crude oil used (g)
(2)  

2.4. Box-behnken 

The experiment was conducted using conditions suggested by the 
Box-Behnken designs (BBD) model, with reaction time, methanol to oil 
ratio, and catalyst concentration using ultrasound combined with 
infrared radiation to speed up the transesterification process, as shown 
in Table 2. The studied parameters were time of reaction (6, 8, 10 min), 
methanol to oil ratio (30, 45, 60 %) and catalyst concentration (0.5, 
0.75, and 1 wt%). Data obtained from BBD were later supplied to the 
ANN-GWO model. Based on the study parameters and the various con-
ditions, the number of trial with various condition is based on BBD as 
stated in Eq. (3). 

N = 2k(k − 1)+Nc (3) 

In Eq. (3), k and Nc are defined as the number of studied variables 
and number of central points, respectively [43]. MATLAB with neural 
networks and genetic algorithm toolboxes was used to formulate ANN 
and GWO modeling in optimizing the yield of RBME. 

2.5. ANN modelling 

MATLAB (Version 7.10, R2010a, MathWorks Inc., USA) was utilized 
to generate the ANN model. ANN modelling required 3 parts which are 
defined as input, hidden and output layer. Three neurons (one for each 
variables, namely methanol to oil ratio, catalyst concentration, and re-
action time) were used for the input layer, but only one output neuron 
was used (RBME yield). The ANN model was fed with seventeen datasets 
from Table 2, each representing a unique combination of all the three 
variables considered in the study. 70%, 15%, and 15% from the data 
points were subsequently utilized for the purpose of training, validation, 
and testing, respectively. For training, Levenberg-Marquardt technique 
was used until the mean squared error (MSE) falls below a certain 
threshold. At the same time, the value of average correlation coefficient 
(R) was near to or exactly one. 

2.6. Statistical evaluation of the developed models 

As shown in Eqs. (4) and (5), other statistical metrics, such as 

Fig. 4. Transesterification process using ultrasound combined with infrared radiation.  

Table 2 
Experimental conditions for methyl ester conversion using Box Behnken design.  

Run X1:Time (min) X2:Methanol (%) X3: Catalyst (wt.%) 

1 8 45  0.75 
2 6 45  1.00 
3 6 30  0.75 
4 10 45  0.50 
5 10 45  1.00 
6 8 45  0.75 
7 10 60  0.75 
8 8 30  0.50 
9 8 60  1.00 
10 6 45  0.50 
11 8 60  0.50 
12 8 45  0.75 
13 8 45  0.75 
14 8 45  0.75 
15 6 60  0.75 
16 10 30  0.75 
17 8 30  1.00  
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coefficient of determination (R2) and root mean absolute error (RMSE) 
[44], were employed to test the proposed models. 

R2 = 1 −
∑n

i=1(Me − Mp)
2

∑n
i=1(Mp − Mavg)

2 (4)  

RMSE =

̅̅̅
1
n

√
∑n

i=1
(Me − Mp)

2 (5) 

Here, n, Mp, Me and Mavg are defined as number of points, predicted 
value, experimental value, and average experimental values, 
respectively. 

2.7. Gwo 

GWO was initially developed using the inspiration obtained from the 
behavior of a wolf pack when hunting for a prey. First level of the hi-
erarchy consists of the alpha (α), while second, third, and lowest levels 
are referred to as beta (β), delta (δ), and omega (ω), respectively. The 
leader of the pack is referred as α, where the entire pack need to follow 
the decisions of the α. Some α has democratic behavior that follow the 
decision from other wolves in the pack. The lower rank wolf have to 
submit to the α. β will become α, after α gets old or passed away. β will 
also assists the α in decision-making and other activities. The wolves will 
submit to both α and β, but dominant than ω. Therefore, the lowest 
ranking wolves, ω, play the roles of a scapegoat [43]. 

Grey wolves hunting behaviour can be divided into three parts. They 
will hunt in a group by tracking and chasing the prey, then they will 
pursue, encircle and torture the prey until it no longer moves. Lastly, 
they will attack the prey. Hence, Eq. 6 is the developed functions based 
on the social hierarcy and behaviour of the grey wolf [38,45]. 

Xd
i (t+1) = Xd

i (t) − Ad
i

⃒
⃒
⃒Cd

i Xd
p(t) − Xd

i (t)
⃒
⃒
⃒ (6) Here, t, Xi, and Xp are 

defined as iterations, position vector of a grey wolf, and position vector 
of the prey, respectively. Moreover, Ad

i = 2a.r1 − a , Cd
i = 2.r2, r1andr2 

are random vectors in [0,1]. Here, the vector a→ is decreasing linearly 
from 2 to 0, which means a(t) = 2–2 t/max_iter, and max_iter is defined as 
the maximum iteration number. Eqs. (7)–(10) are used to update the 
position of ω, regardless the positions of α, β and δ 

Xd
i,α(t+ 1) = Xd

α(t) − Ad
i,1

⃒
⃒
⃒Cd

i,1Xd
α(t) − Xd

i (t)
⃒
⃒
⃒ (7)  

Xd
i,β(t+ 1) = Xd

β (t) − Ad
i,β

⃒
⃒
⃒Cd

i,2Xd
β (t) − Xd

i (t)
⃒
⃒
⃒ (8)  

Xd
i,δ(t+ 1) = Xd

δ (t) − Ad
i,δ

⃒
⃒
⃒Cd

i,3Xd
δ (t) − Xd

i (t)
⃒
⃒
⃒ (9)  

Xd
i (t+ 1) =

Xd
i,α(t + 1) + Xd

i,β(t + 1) + Xd
i,δ(t + 1)

3
(10)  

2.8. Optimization and validation 

To acquire the best yield, ANN-GWO was utilized to predict the the 
optimum values of the three examined process parameters. Here, the 
values with the highest RBME yield for ANN were determined using 

Table 3 
Comparison of RBME yield between ultrasound, infrared irradiation and hybrid of ultrasound-infrared irradiation transesterification using the optimum process 
parameters.  

Method Experimental run Time of reaction (min) Methanol/oil ratio (%) Catalyst (wt.%) RBME (wt.%) Standard error Reference 

Predicted Experimental 

Conventionala 1 60 6:1b 0.9 –  98.7 – [48] 
Ultrasound 1 48 6:1b 0.5 94.12  93.82 0.21 [31] 

2 48 6:1b 0.5 94.12  93.91 
3 48 6:1b 0.5 94.12  94.22 
Average 94.12 93.98 

Ultrasound + Infrared 1 7.76 60 1 98.16  97.79 0.21  This study 
2 7.76 60 1 98.16  97.93 
3 7.76 60 1 98.16  97.51 
Average 98.16 97.74  

a Reaction temperature was 60 ◦C. 
b Methanol to oil molar ratio. 

Fig. 5. Architecture of ANN model for RBME yield.  

Fig. 6. The values for coefficient of correlation (R) obtained specifically for 
training, validation, testing and the overall datasets. 
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GWO. The target values is determined by averaging the values by triple 
trials and compare it will the projected value. 

2.9. Physicochemical properties of RBME 

FTIR spectroscopy was applied to characterize the RBME. Subse-
quently, other properties of RBME were measured using ASTM D6751 
and EN 14214 standards. Kinematic viscosity was measured using Anton 
Paar SVM3000 Stabinger Viscometer (Graz, Austria) at 40 ◦C while the 
density of RBME was measured using DM40 LiquiPhysics TM density 
meter (Mettler Toledo, Greifensee, Switzerland) at 15 ◦C. Calorific value 
was measured using Parr 6200 Isoperibol Calorimeter. Acid value was 
acquired by automation titration rondo 20 (Mettler Toledo, 
Switzerland). 

3. Results and discussion 

3.1. ANN modelling 

A total of 17 experimental runs were carried out with three input 

variables: reaction time (6, 8 and 10 min), methanol to oil ratio (30, 45, 
and 60%), and catalyst concentration (0.5, 0.75, and 1.00 wt%), as well 
as one output variable: RBME. The result of output variable was shown 
in Fig. 7 and Table 3 tabulated the experimental design of this study 
where the data was acquired for training, validation and testing algo-
rithm. Utilizing Levenberg–Marquardt algorithm model, 70%, 15% and 
15% of the data was used for training, testing and validation, respec-
tively. The three input neurons, four hidden neurons and one output 
neuron was used to train the algorithm as shown in Fig. 5. The optimal 
number of the hidden neurons was determined by a heuristic technique. 
The ANN prediction model with R for training, validation, test and all is 
1, 0.999, 0.9989, and 0.9946, respectively, illustrated in Fig. 6. 
Furthermore, the lowest mean square error (MSE) of 0.251 was obtain 
this study. The prediction of ANN with BBD design on the output vari-
able of RBME and the experimental shown in Fig. 7. The comparison 
revealed that the model suited the target values linearly and accurately. 
This suggests that the model was appropriate for accurately predicting 
the RBME output. The network projected values for the biodiesel 
transesterification process were found to be consistent with the actual 
experiment. This indicates the network’s intrinsic sensitivity and 

Fig. 7. Experimental vs prediction yield of RBME.  

Fig. 8. Three-dimensional surface plots of reaction time and catalyst concentration.  
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precision in tracking the transesterification process simultaneously. 

3.2. Interaction effects of reaction time and concentration of Catalyst. 

Fig. 8 shows the interaction of reaction time and catalyst concen-
tration in the transesterification of RBO. When the reaction time is 
prolonged from 6 to 7.76 min, it can be seen that the RBME yield in-
creases up until a certain point. After the optimum point, it shows an 
significant decrease in the RBME yield. While, the catalyst concentration 
must be sufficient to facilitate the transesterification. Both parameter 
shows that they are both equally important to determining the optimum 
condition for the RBME yield. The time of reaction must be controlled in 
the specific range, because it was found that longer reaction time might 
actually reverse the transesterification process, leading to less methyl 
ester yield [46]. Consequently, the amount of glycerides in the target 

biodiesel will be higher than the biodiesel produced using optimal 
conditions. 

3.3. Interaction effects between reaction time and methanol to oil ratio 

Interation effects between reaction time and methanol to oil ratio is 
shown in Fig. 9. For this purpose, methanol to oil ratio was set between 
30 and 60 % to study its effect on other studied parameters. It is found 
that the plot in Fig. 8 is very similar to Fig. 9. With the introduction of 
higher methanol to oil ratio, RBME yeild is observed to increase as well. 
Highest RBME yield can be obtained at the value of 60% for the meth-
anol to oil ratio. One explanation for this is caused by the nature of 
miscibility between methanol and oil, where sufficient ratio must be 
made available in order to shorten the transesterification time, as 
miscibility will increase the contact between methenium and glycerides 
[18,47]. The time of reaction is found to be favourable at 7.76 min. 

3.4. Interaction effects of methanol to oil ratio and catalyst concentration 

Fig. 10 depicts the relationship between methanol to oil ratio and 
catalyst concentration. Here, methanol to oil ratio and catalyst loading 
were varied from 30 to 60%, and 0.5 to 1 wt%, respectively. It can be 
seen that low values of these two process parameters is not favorable as 
it will only produce approximately 90% of RBME yield. With increasing 
value of both parameters, it is observed that the RBME yield rises as well, 
eventually reaching 98.16%. Hence, from the surface plot, 1 wt% of 
catalyst concentration is considered as the most suitable option. 

3.5. Optimization and validation of model 

Effects of the three studied process variables are shown by the three 
dimensional surface plots. By observing the plots, optimum operating 
conditions for all the studied variables can be determined. In other 
words, with the help of ANN-GWO modelling and BBD experimental 
design, the optimum operating parameter for biodiesel conversion was 
obtained. The values of optimum operating parameters for RBME yield 
are as follows: methanol to oil ratio = 60%, catalyst concentration = 1 

Fig. 9. Three-dimensional surface plots of reaction time and methanol to 
oil ratio. 

Fig. 10. Three-dimensional response surface plots of methanol to oil ratio and catalyst.  
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wt%, and reaction time = 7.76 min. Using the values, the maximum 
forecasted RBME yield is 98.16 wt%. Based on the above operating 
parametric conditions, the experiment was tri-replicated to validate the 
accuracy of the model and the average RBME yield obtained is 97.74 wt 
%. Based on the forecasted and experimental RBME yield, the difference 
was less than 0.41% with standard error of 0.21. This is a significant 

improvement to our previous study on ultrasound-assisted trans-
esterification of rice bran oil, specifically for the optimum reaction time 
and methyl ester yield. Without the application of infrared in the pre-
vious study, the optimum reaction time was in the ultrasound-assisted 
reaction was found to be 48 min, with a yield of 94.12% [31]. Be-
sides, using conventional heating to produce RBME required a longer 
optimum reaction time of 60 min and a catalyst of 0.9%. It found that the 
RBME yield for conventional is 98.7 wt% [48]. The detailed comparison 
of RBME yield using conventional, ultrasound, hybrid ultrasound and 
infrared irradiation is shown in Table 3. It can be observed that ultra-
sound irradiation only required a longer reaction time (~six times 
longer), and the yield obtained is slightly lower than the hybrid method 
by 3.76%. Then, it indicates that the hybrid method effectively facili-
tates transesterification because ultrasound promotes bubble implosion 
and infrared irradiation that provides instant heat. Finally, the hybrid 
method promotes the dispersion of oil molecules into smaller sizes and 
promotes better catalyst distribution, increasing accessibility to active 
sites that shorten the reaction time. 

3.6. Ftir 

FTIR can differentiate between crude oil and biodiesel and helps 
rapid analysis of liquid samples. Therefore, this research used ultra-
sound coupled with infrared for RBME production. The results were then 
studied by using FTIR and shown in Fig. 11. The functional group of 

Fig. 11. FTIR spectra of RBME.  

Table 4 
FAME and linolenic methyl ester content of the RBME produced from Ultrasound 
and Infrared Radiation.  

Name of FAME Carbon amount Area Percentages 

Methyl Octanoate C8:0  202.813  3.72 
Methyl Tetradecanoate C14:0  20.334  0.37 
Methyl Palmitate C16:0  954.044  17.49 
Methyl Octadecanoate C18:0  101.850  1.87 
Methyl cis − 9 - octadecenoate C18:1  1981.401  36.32 
Methyl Linoleate C18:2 (CIS)  1701.202  31.18 
Methyl Linolenate C18:3  81.460  1.49 
Methyl Arachidate C20:0  50.325  0.92 
Methyl Docosanoate C22:0  16.762  0.31 
Methyl Erucate C22:1  46.858  0.86 
Methyl Lignocerate C24:0  25.919  0.48 
FAME 95.00 
FAME- saturated 25.15 
FAME-unsaturated 69.85  

Table 5 
Physical and chemical properties of RBME.  

Property Unit Standard test method ASTM D6751 En standards 14,214 Diesel RBME RBME 
[31] 

RBME 
[48] 

Kinematic viscosity at 40 ◦C mm2/s D 445 1.9–6.0 3.5–5.0 2.86 4.88  4.8 4.12 
Density at 15 ◦C kg/m3 D 1298 860–880 860–900 833 878  879.2 884 
Acid value mg KOH/g D 664 Max. 0.5 Max 0.5 0.06 0.38  0.17 0.45 
Higher heating value MJ/kg D 975 Min. 35 35 45.82 40.36  40.44 40  
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–COOH was shown by the three absorption bands which serve as a proof 
that the carboxylate is there. Intense absorption peak at 2923 cm− 1 is 
attributed to the strongest carbonyl group’s stretching (CH stretch), and 
absorption peak at 1742 cm− 1 corresponds to the stretching of CO 
double bond [49]. Meanwhile, absoption peak at 1436 cm− 1 is related to 
–CH3 asymmetric stretch, while the peak at 1196 cm− 1 corresponds to C- 
O-C asymmetric stretch [50]. Furthermore, the peak at 1,361 cm− 1 in 
the FTIR spectrum is in line with O-CH3 in glycerol that indicate the 
presence of the residual of the transesterification process. Absorption 
peaks with intensities between 1000 and 1800 cm− 1 suggest a high 
FAME concentration in RBME. 

3.7. FAME analysis 

FAME analysis is one of the important methods to determine bio-
diesel’s purity. Table 4 contains the FAME results obtained through gas. 
The results depends on the available fatty acid in the RBO, and it can be 
seen that methyl cis − 9-octadecenoate (36.32%) and methyl linoleate 
(31.18%) are dominant FAME in RBME. The remaining methyl ester 
found were methyl palmitate (17.49%), methyl octanoate (3.72%), 
methyl octadecanoate (1.87%), methyl linolenate (1.49%), while others 
methyl ester compromised less than 1% of FAME content individually. 
The FAME’s content has met the minimum requirement (>90%) stipu-
lated in EN 14103: 2011. The RBME’s saturated and unsaturated FAME 
contents were 25.15% and 69.85%, which compromised 95%. In com-
parison, the yield of the same feedstock was done by Mazaheri et al. is 
92.38 wt% using a heterogeneous catalyst and heating mantle. Even 
though comparison can not be made under a similar process. Still, ul-
trasound coupled with infrared has shown better FAME production than 
the heating mantle. Saturated acids content promotes oxidation stability 
as the oxidation rate of saturated FAME is slower than that of unsatu-
rated FAME [6,9]. 

3.8. RBME and RBO characterization 

The properties of RBO and RBME fuel were evaluated and the results 
are tabulated in Table 5. The biodiesel produced from RBME in the range 
of all standards in EN 14214 and ASTM D6751 and was compared with 
RBME produced using ultrasound only [31] and conventional [48]. 
Therefore, RBME produced through ultrasound and infrared radiation- 
assisted shows better properties and it met the standard requirement 
stated by the ASTM D6751 and EN 14214. Consequently, this approach 
is viable for biodiesel production, as the RBME produced possesses the 
apropriate physicochemical qualities. 

4. Conclusions 

Biodiesel was produced from crude RBO using ultrasound combined 
with infrared radiation-assisted and assisted by ANN-GWO modelling. 
The optimization was performed based on three process parameters, 
namely methanol to oil ratio, catalyst concentration, and reaction time. 
The best parameters are obtained with reaction time of 7.76 min, 
methanol to oil ratio of 60%, and a 1 wt% catalyst concentration. The 
forecasted RBME based on the above conditions is 98.16, and the 
experimental result is 97.74 wt% with low standard error. From this 
study, it shows that ultrasound coupled with infrared radiation has 
improved the yield of biodiesel conversion. However, there is a partic-
ular limitation that must be taken into account, which was the capacity 
of the design equipment. Hence, we suggest to further investigate with a 
more powerful ultrasound, in meeting the capacity for industrial needs. 
Furthermore, this system is especially useful for transesterification using 
heterogeneous catalysts. Slow reaction rate involving heterogenous 
catalysts due to the existence of three-phase mixture (methanol-oil- 
catalyst) can be remedied with this combined system. Moreover, opti-
mization using ANN-GWO modelling with BBD experimental design 
shows its value and accuracy in predicting the yield of RBME produced 

via the ultrasound coupled with infrared radiation system. 
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