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Summary
Background Global brain health initiatives call for improving methods for the diagnosis of Alzheimer’s disease (AD)
and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-
middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries
(LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical
harmonisation, and limited access to biomarkers.

Methods This cross-sectional observational study aimed to identify the best combination of predictors to discriminate
between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with
AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat
cohort).

Findings A fully automated computational approach included classical statistical methods, support vector machine
procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results
demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced
the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social
cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary
contributions from age, educational attainment, and sex.

Interpretation Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance
diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive
and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an
opportunity for harmonisation of clinical tools for dementia diagnosis in the region.

Funding This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America
(ReDLat), funded by NIA/NIH (R01AG057234), Alzheimer’s Association (SG-20-725707-ReDLat), Rainwater
Foundation, Takeda (CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT (2017-
1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia
(BPIN2018000100059), Universidad del Valle (CI 5316); ANID/FONDECYT Regular (1210195, 1210176, 1210176);
ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096; and Alzheimer’s Association GBHI ALZ UK-22-
865742.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Accurate diagnosis of Alzheimer’s disease (AD) and
frontotemporal dementia (FTD) remains a global brain
health challenge.1–4 Dementia prevalence will increase
around 75% inhigh-income countries (HICs) and around
200% in lower-middle-income countries (LMICs) by
2050.5,6 Moreover, the current scenario of dementia
prevalence shows that two-thirds of individuals with de-
mentia live in LMICs.6,7 Diagnostic difficulties are even
more problematic in both upper-middle-income coun-
tries (UMICs) and LMICs, as in the case in many Latin
American countries (LAC)1,8 in comparison with HICs.
Improvement of diagnostic accuracy in a region with
dramatic and progressive growth in the number of de-
mentia cases is critical to provide tailored interventions.9

In LAC, there are numerous challenges impacting
diagnostic accuracy for AD and FTD, including (a) the
diversity and heterogeneity of instruments for assessing
clinical and cognitive status; (b) the absence of stan-
dardized procedures to incorporate socio-demographic
factors in diagnosis; (c) a dearth of harmonized diag-
nostic procedures across countries; (d) low dementia
awareness among general practitioners and (e) under-
developed training in dementia diagnosis.1,8,9 Addition-
ally, although methods that have been effective in high
income countries (amyloid and tau PET imaging, and
fluid-based biomarker assessment) could be effective
solutions in the future, they currently are not widely
available in LAC for both financial and logistic reasons,
limiting their utility in informing clinical decisions.1,10

Thus, developing methods to harmonise clinical,
cognitive, and functional assessments is the most
promising scalable approach available to diagnose AD
and FTD in LAC.9

Although clinical and cognitive measures are
widely used in LAC, several caveats limit their use
www.thelancet.com Vol 17 January, 2023
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Research in context

Evidence before this study
We developed a methodology to assess the best predictors of
Alzheimer’s disease and frontotemporal dementia using
routine clinical and cognitive measures collected from
underrepresented samples across multiple centres in Latin
America (ReDLat cohort). Diagnostic procedures in this region
are challenging due to a lack of harmonised diagnostic
methods and clinical procedures, and limited access to
biomarkers. Dementia studies in Latin America often rely on
small datasets, meaning results are often not generalisable.
This work represents a unique attempt to present a
comprehensive approach to exploring archival clinical datasets
from a large sample of 1794 individuals (904 diagnosed with
Alzheimer’s disease, 282 diagnosed with frontotemporal
dementia and, 606 healthy controls) from eleven centres
across five countries.

Added value of this study
Based on a comprehensive review of the literature, this is the
first attempt to develop an approach to differentiate and
classify Alzheimer’s disease and frontotemporal dementia
patients with multicentric, heterogeneous, underrepresented,

archival clinical datasets in low-resources settings. Here we
applied data harmonization techniques, classical statistical
approaches and machine learning methods to classify and
differentiate Alzheimer’s disease from frontotemporal
dementia, and both from healthy controls.

Implications of all the available evidence
Our results are comparable to findings from single-centre
studies with homogeneous cohorts, machine learning studies
using neuroimaging and other biomarker-based classification
of Alzheimer’s disease and frontotemporal dementia patients.
We found a high classification accuracy of the dementia and
healthy controls cases by combining classical statistical and
machine learning procedures applied to demographic,
cognitive and behavioural data from clinical settings across
Latin American countries. Importantly, some cognitive and
behavioural measures including executive function, social
cognition and cognitive screening measures produced higher
predictive values than demographic factors such as education,
age or sex. We describe a methodological approach to deal
with highly heterogeneous data from underrepresented
populations.

Articles
for multicentric characterisation of dementia.1 The
lack of appropriate regional normative data in the
clinical assessment hinders direct comparisons
across countries.9 Differences in sociocultural set-
tings, genetic admixture, and clinical expertise in the
region also increase clinical heterogeneity. The
absence of pre-harmonized procedures across centres
and countries brings additional barriers.7 Failure to
account for these limitations may lead to results that
cannot be generalised to other settings, unjustified
extrapolation of local patterns onto regional ten-
dencies, and an inability to ascertain which data
points prove to be the most robust drivers of find-
ings. For these reasons, many studies in LAC rely
on small datasets from cohorts from restricted
geographical regions that may lead to results that
are not generalisable. Thus, any direct multicentric
comparison across LAC is challenging and poten-
tially biased.

Here, we present a novel computational framework
(Fig. 1) for classification of AD, FTD, and healthy con-
trols (HCs) in multicentric heterogeneous samples from
LAC using unharmonized clinical, demographic, and
cognitive assessments. We used archival clinical data-
sets collected in heterogeneous populations and pro-
tocols from 11 centres in five LAC. Each centre that
contributed data is an enrolment site for the Multi-
partner consortium to expand dementia research in
dementia in Latin America (ReDLat).8
www.thelancet.com Vol 17 January, 2023
Our approach combined classical statistical
methods (logistic regression models) and machine
learning procedures11 (support vector machine pro-
cedures, random forest, and sequential feature se-
lection procedures) to identify the best factors to
discriminate between AD, FTD, and HCs. Previous
studies analysing dementia diagnosis using databases
with high multidimensionality have revealed better
accuracies with machine learning methods than with
classical statistical models.12 Thus, we anticipated
higher accuracy with machine learning models than
with logistic regression models. Studies in HICs
have revealed a high capacity of cognitive tests to
distinguish HCs from dementia patients and
discriminate between different types of dementia.13,14

In LAC, we expected more heterogeneity in the
cognitive assessment batteries applied,13,15 however in
most countries, basic batteries are used to track
cognition, neuropsychiatric symptoms, and function-
ality level in aging populations.1,8 Against this back-
ground, we expected to achieve moderate
discrimination between subtypes of dementia and
HCs despite the data heterogeneity. Moreover, we
predicted that general cognitive measures would help
discriminate AD and FTD patients from HCs.
Finally, considering that patients living with FTD are
characterised by behavioural and frontal executive
disturbances,16,17 we predicted that instruments that
track frontal functioning and behavioural changes
3
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(including IFS, NPI, and Mini-SEA) would best
discriminate FTD from AD.

Methods
Study design
Cross-sectional observational study.
Sample size calculation and derivation
We used a convenience sample that represented the
total of AD and FTD cases recruited by the centres
included in this study.

Setting
The samples were recruited between January 2015 and
October 2021 in the different sites of the Multi-Partner
Consortium to Expand Dementia Research (ReDLat).
Fig. 1: Approach to dementia diagnosis with standard and non-stand
seen in eleven centres in five LAC, including 904 patients with AD, 282 p
(MMSE, MoCA, and ACE-III), executive function (IFS), social cognition
neuropsychiatric symptoms (NPI). Demographic data included year of b
parisons included Welch’s t-test (unequal variances t-test), Mann–Whitne
test of normality, Levene test for equal variances, outliers’ detection by
logical measurements and demographic variables were standardised and n
in section 2.3). (D) Standard logistic regression models were applied. (E
random forest were applied. (F) The stratified k-fold cross-validation sch
model’s regularization. (G) Classification was obtained using out of sa
Sensitivity, specificity and F1-score were used for model evaluation. AD p
class. LAC, Latin American Countries; AD, Alzheimer’s Disease; FTD, Front
Montreal Cognitive Assessment; ACE-III, Addenbrooke’s Cognitive Examin
Emotional Assessment; Pfeffer FAQ, Pfeffer Functional Activity Questionn
IQR, Interquartile Range; ROC AUC, Receiver Operating Characteristics Ar
Participants
Participants were recruited from eleven Latin American
centres that participate in the Multi-Partner Consortium
to Expand Dementia Research in Latin America (ReD-
Lat9,18) [Argentina (3 centres), Colombia (3 centres),
Chile (2 centres), Mexico (2 centres), and Peru (1
centre)]. The total sample (n = 1792) included 904 par-
ticipants living with AD, 282 with FTD and 606 HCs
(full demographic information is provided in Table 2).
All participants provided informed consent. The Insti-
tutional Review Boards and the Executive Committee of
the ReDLat consortium reviewed and approved the
current study.

Clinical assessment across centres
Clinical diagnoses were established following the stan-
dard procedures employed at each research centre. In
ard methodologies. (A) Data was combined from 1792 participants
atients with FTD, and 606 HCs. Data comprised cognitive screening
(Mini-SEA), functional status (Pfeffer FAQ and Barthel index), and
irth, country, years of education, and sex. (B) Basic statistical com-
y U test, paired t-test, one-way and two-way ANOVA, Shapiro–Wilk
standard deviation, percentiles and IQR methods. (C) Neuropsycho-
ormalised. Cognitive screening total scores were converted (detailed
) Baseline machine learning models: support vector machines, and
eme with standard grid-search approach was used to test different
mple testing sets. (H) ROC AUC, Precision-Recall curve, Accuracy,
atients were set as the “negative” and FTD patients as the “positive”
otemporal Dementia; MMSE, Mini Mental State Examination; MoCA,
ation; IFS, Ineco Frontal Screening; Mini-SEA, Mini-Social Cognition &
aire; NPI, Neuropsychiatric Inventory; ANOVA, Analysis of Variance;
ea Under Curve.
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Country AD HCs FTD Total

Argentina 257 192 53 502

Chile 197 145 59 401

Colombia 320 232 155 707

Mexico 30 21 7 58

Peru 100 16 8 124

Total 904 606 282 1792

AD, Alzheimer Disease; FTD, Frontotemporal Dementia; HCs, Healthy Controls.

Table 1: Distribution of type of individuals by country.

Articles
Colombia, centres diagnose patients through a
consensus conference held by a multidisciplinary team
that includes psychiatrists, neurologists, neuropsychol-
ogists, and geriatricians. In Chile, Peru, Mexico, and
Argentina, patients were diagnosed by experienced
behavioural neurologists and geriatricians with input
from the evaluating neuropsychologists. Each centre
applied a heterogeneous set of neuropsychological
measures to assess cognitive screening, frontal func-
tioning, social cognition, neuropsychiatric symptoms,
and functional status. Each country’s neuropsychologi-
cal battery was selected to align with their respective
standard clinical procedures and the availability of in-
struments. The specific measures used in each centre
are described in Table 3, and Supplementary
Information S1. As expected, we detected a high num-
ber of not-at-random missing values among the neuro-
psychological measures (Supplementary Information
S1) that were addressed by using conversion tables
following recommended procedures.19,20 Irrespective of
the specific battery employed in each centre, all followed
the international NINCDS-ADRDA criteria to diagnose
AD21 and published criteria to diagnose behavioural22

and linguistic variants23 of FTD. Finally, we normal-
ised and standardised neuropsychological scores for
each centre using its respective group of HCs for both
train and test sets sampled randomly.
Neuropsychological measures
Using previously published methods, the measures
used across centres were harmonized,19,20 standardised24

and normalised25 (section 2.3).
AD FTD H

Sex, (%)a M = 310 (17.3%) M = 141 (7.87%) M

F = 594 (33.15%) F = 141 (7.87%) F

Ageb 81.58 (9.95%) 72.33 (9.14%) 73

Years Educationb 10.29 (4.88%) 12.77 (5.10%) 13

AD, Alzheimer Disease; FTD, Frontotemporal Dementia; HCs, Healthy Controls. aChi-Squ

Table 2: Demographic information.

www.thelancet.com Vol 17 January, 2023
Cognitive screening
Each centre tracked general cognitive functioning by
using one of three types of scales comprising the Mini-
Mental State Examination (MMSE),26 the Montreal
Cognitive Assessment (MoCA)27 or the Addenbrooke’s
cognitive examination (ACE)28 (Table 3). The MMSE is a
classical instrument for assessing cognitive domains,
such as verbal memory, working memory, language,
and visuospatial functions. A score below 24 points has
a sensitivity above 88.3% and a specificity close to 87%
for detecting cognitive impairment in patients with de-
mentia.27 The MMSE was used in eight centres. The
MoCA is a widely used cognitive screening tool,
composed of 19 items that evaluate eight cognitive do-
mains, including executive skills, naming, memory,
attention, language, abstraction, deferred memory and
orientation. It has a cut-off point of 26, a sensitivity of
87%, and a specificity of 87%.27 This instrument was
used in six centres. The ACE III is a cognitive screening
instrument that evaluates the cognitive functions of
attention, orientation, memory, language, visual
perception and visuospatial skills. The ACE III was used
in five centres.
Executive function
Four countries assessed executive functioning using the
INECO frontal screening (IFS).29 The IFS encompasses
verbal fluency, inhibitory control, processing speed,
working memory and cognitive flexibility, and has
shown to be effective in detecting executive dysfunction
in patients with dementia.29,30 The maximum possible
score on the IFS is 30 points.
Functionality
All countries assessed basic and instrumental activities
of daily living using either the Pfeffer Functional Ac-
tivity Questionnaire (FAQ)31 or the Barthel index.32 The
FAQ assesses functioning in instrumental activities
such as writing checks, paying bills, shopping and
driving. It consists of 10 questions and is completed by
an informant familiar with the patient’s functioning.
The Barthel index weighs difficulties in basic activities
Cs Statistic Pairwise comparisons using a
one-way ANOVA P values

= 187 (10.43%) 32.123 (P < 0.0001)

= 419 (23.38%)

.65 (10.9%) 146.27 AD vs CN (P < 0.001)
AD vs FTD (P < 0.001)
CN vs FTD (P > 0.05)

.58 (4.7%) 81.133 AD vs CN (P < 0.001)
AD vs FTD (P < 0.001)
CN vs FTD (P > 0.05)

are Test (Critical value). bAnova test. Mean (standard deviation).
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Center MMSE MoCA ACE-III IFS Mini-SEA Barthel Pfeffer NPI NPIC Sample(n)

Arg 1 0 3 31 34 0 0 0 34 0 54

4Arg 2 248 0 0 0 0 0 0 0 0 249

Arg 3 0 63 101 181 114 0 38 23 22 199

Chi 1 1 111 1 0 0 0 0 0 0 127

Chi 2 271 177 176 173 159 0 155 229 223 274

Col 1 59 29 59 59 29 30 0 0 0 59

Col 2 324 35 0 34 0 343 0 13 11 454

Col 3 187 188 0 99 0 0 94 94 0 194

Mex 1 19 17 0 0 0 12 0 0 0 21

Mex 2 37 0 0 0 0 0 37 37 37 37

Per 1 124 0 124 124 124 0 124 124 0 124

Total 1270 623 492 704 426 385 448 554 293 1792

MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; ACE-III, Addenbrooke’s Cognitive Examination; IFS, Ineco Frontal Screening; Mini-SEA,
Mini-Social Cognition & Emotional Assessment; Barthel, Barthel scale; Pfeffer FAQ, Pfeffer Functional Activity Questionnaire; NPI, Neuropsychiatric Inventory; NPIC,
Neuropsychiatric Inventory Caregiver. Arg, Argentina; Chi, Chile; Col, Colombia; Mex, Mexico; Per, Peru.

Table 3: Assessments by test type and center.
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of daily living such as dressing, bathing, grooming,
toilet use, bowels and bladder continency, and mobility.
The FAQ was used in five centres, while the Barthel
index was used in three centres.
Neuropsychiatric symptoms
The Neuropsychiatric Inventory33 (NPI) is used to track
neuropsychiatric symptoms including delusions, hallu-
cinations, conduct and sleep problems, depression,
anxiety, and changes in eating patterns in dementia.
Seven centres employed the NPI.
Social cognition
The Social cognition and Emotional Assessment (SEA)
in its short form (Mini-SEA)34 was used in four centres.
The Mini-SEA is composed of two segments: theory of
mind (ToM) and emotion recognition.34 ToM is assessed
via the Faux-pas test which uses ten vignettes to track
ability to detect social appropriateness. The emotion
recognition test assesses ability to identify basic emo-
tions using the Ekman pictures.
Group differences in neuropsychological
assessment
We performed an exploratory data analysis using basic
statistical methods and approaches. One-way and two-
way ANOVA was used for all Neuropsychological mea-
surements, as well as Shapiro–Wilk normality tests and
outlier detection using standard deviation, interquartile
range, and percentile methods. We also tested for het-
eroskedasticity using Levene’s test and performed T-
tests for equal and unequal variances (Welch’s t-test)
and non-parametric T-tests (Mann–Whitney U test)
when required. Classical statistical models were run for
model selection, and we retained the best set by model
significance, R2, AIC, BIC, variables significance, and
predictive power (Supplementary Information S3).

Harmonisation across countries
Given the heterogeneity of clinical assessments across
countries, there was a substantial amount of missing
data. To harmonise the available data and increase the
number of individuals with homogeneous cognitive
measures, we applied the following three procedures.

Harmonisation 1
We harmonised the brief global cognitive assessments
using equivalence tables19,20 for MMSE-MoCA and
MMSE-ACE-III. This procedure allows for estimation of
MoCA and ACE-III scores using MMSE scores. We also
used the equivalence tables to estimate MMSE scores
using MoCA and ACE II scores.19,20 Following this
approach, we added a total of seven new converted-
harmonised variables (Supplementary Information S2)
and decreased the number of missing MMSE values by
325. The mean, median and standard deviation for the
original MMSE and converted-harmonised scores are
provided in Table 4.

Harmonisation 2
To mitigate the impact of missing values and preserve
the maximum number of individuals, we calculated z-
scores for all neuropsychological measurements,
resulting in a unified cognitive score.24 Z-scores were
calculated using normative data from each centre
(Eq (1)).

xz = (x−μ)/s) Eq (1)

where:
xz is our new value.
x is the original raw score
www.thelancet.com Vol 17 January, 2023
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MMSE original MMSE conversion method

Van Steenoven Lawton Matías-Guiu

Median Mean Std Median Mean Std Median Mean Std Median Mean Std

AD 22 20.74 5.45 22 20.78 5.36 22 20.77 5.34 22 20.86 5.4
FTD 23.5 22.24 6.23 23 22.35 6.1 23 22.33 6.08 24 22.47 6.04

MMSE, Mini Mental State Examination; AD, Alzheimer Disease, FTD, Frontotemporal Dementia, Std, Standard deviation.

Table 4: Mean, median and standard deviation for MMSE scores.

Articles
μ is the mean score for HCs from the site to which
the patient belongs

s is the standard deviation for HCs from the site to
which the patient belongs.

By using these standardised neuropsychological
scores, the number of available individuals for subse-
quent analysis was increased. We also calculated z-
scores for demographic variables such as age and years
of education, as well as the variables obtained in
Harmonisation 1.

Harmonisation 3
A Min-Max scaling method25 was implemented using
Scikit-learn.35 Each record was transformed from the
original variable into a new one with a range between
0 and 1 (Eq (2)).

xm = (x−xmin)/(xmax−xmin) Eq (2)

where:
xm is our new value
x is the original cell value
xmin is the minimum value of the x variable
xmax is the maximum value of the x variable
These methods have their strengths and weaknesses

and are often required or recommended for Support
Vector Machines.25 This scaling method was imple-
mented with the neuropsychological measurements,
demographic variables and the variables obtained from
Harmonisation 1.

After these procedures, the final dataset included the
original variables, the converted variables (Harmo-
nisation 1), the standardised variables (Harmonisation
2), and the normalised variables (Harmonisation 3).
Data analysis
Statistical and machine learning approaches
Classical statistical approaches - logistic regression. We
first tested logistic regression (LR) models, as they are
efficient, easily interpretable, and widely used. An
exploratory analysis revealed overlapping classes be-
tween many of the variables. As the data is not linearly
separable, the regression models would not yield good
classification results. In the following sections (2.5.2 and
2.5.3) we present the machine learning models used
to surpass the LR limitations. For the LR models,
www.thelancet.com Vol 17 January, 2023
Scikit-learn LR algorithms were used, optimizing the
solver, the algorithm, and regularization both with and
without an intercept term, using the scheme described
in section 2.4.1.2 and 2.4.1.3.

Machine learning approaches - random forest. We used
the Scikit-learn Random Forest (RF) algorithm without
bagging (bootstrap aggregating or resampling with
replacement). RF better avoids overfitting36 in contrast to
LR models.

Support vector machine models. We used non-linear
Support Vector Machine (SVM) models to generate a
predictive binary classification model. SVM transforms
the feature space to establish a linear decision frontier
with wide margins that result in less generalisation and
a lower propensity to overfitting.37 For the Scikit-learn
RBF kernel, we optimized C and gamma hyper-
parameters. For the Scikit-learn Polynomial kernel, we
optimised C, the degree of the polynomial, and the co-
efficient. C and gamma are both hyperparameters used
for regularization; they stand for L2 squared and Kernel
Coefficient, respectively.

Cross-validation for hyperparameter tuning and training
models. We performed cross-validation analyses to
control hyperparameter tuning for each ML model. This
allowed us to recursively search and test the best hyper-
parameters for each model to obtain the best generaliza-
tion results. To this end, we ran a Grid Search for
hyperparameter tuning. For each model, we searched for
hyperparameters applying repeated stratified cross-
validation, where the training sample was divided in
k = 5 folds at random, and each subset was used for
training k-1 times and 1 time for testing; all this was
repeated n = 5 times. The final training score for this
procedurewas obtained through themean of the k * n = 25
test scores.Next,we set aside20%of thedata as a validation
set to apply the learnedmodels on unseen data. Finally, we
trained all models with the best hyperparameters given by
our grid search using the same cross-validation strategy,
but with k = 10 and n = 100, and we then predicted on test
data (the same 20%used for validation on the grid search).

Sequential feature selection. Sequential Feature Selec-
tion algorithms were used as reported elsewhere11 to
7
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reduce the space of d dimensional features to a subspace
k, where k < d, to select the subset of features that were
most predictive. This allowed us to remove irrelevant
features, reducing generalization error and improving
computational efficiency. We applied Sequential Back-
ward Selection from Mlxtend.38

Performance metrics. Seven performance metrics (ac-
curacy, precision, sensitivity, specificity, F1 score, ROC
AUC, confusion matrix) were used across all ML
models.

Data analysis and model selection procedures
Model selection with regression models and identification of
best features to discriminate AD from FTD. Our primary
goal was to discriminate between AD patients and FTD
patients. While our exploratory classification for AD vs
HCs, and for FTD vs HCs was robust (Supplementary
Information S3), our target classification was more
challenging than modelling AD vs. HCs, and FTD vs.
HCs because these two forms of dementia overlap in
cognitive, social, and functional deficits.

Methods to control imbalance in the sample size across
classes. To obtain the train and test sets, stratified
random sampling by site and diagnosis was carried out in
all cases. This procedure ensured that the same propor-
tion of diagnoses per site were assessed in both sets.
Additionally, all classifiers were configured to account for
class imbalance, adjusting class weights to be inversely
proportional to their frequencies in the input data. This
standard procedure can be described as follows:

W = nS/(nC * freqC) Eq (3)

where:
W is an array of new weights with equal length to the

number of classes.
nS is the sample size
nC is the number of classes.
freqC is the frequency of classes for the sample.

Classification models comparing dementia cases and
HCs. Our primary goal was to discriminate between
AD patients and FTD patients. These two forms of de-
mentia partially overlap in cognitive, social, and func-
tional deficits resulting in greater challenges for
classification compared to models used to differentiate
AD vs. HCs; or FTD vs. HCs (patients vs controls).
Nonetheless, we performed exploratory classification
models for the latter comparisons and these results are
reported in Supplementary Information S3.
Country-level analyses
Furthermore, we ran a group of analyses per country to
assess the multi-country variability of RF models. RF
models (n = 5000) were trained and evaluated using the
same parameters for each country, as described in 3.2.
Role of the funding source
Funders did not have any role in study design, data
collection, data analysis, interpretation, or writing of this
report.
Results
The distribution of the number of AD, FTD, and con-
trols participants are listed in Table 1. Demographic
information is provided in Table 2. Ethnicity and gender
identity were not available. The role of sex as a predictor
of AD, FTD, and controls was assessed in all models
described below.
Model selection
First, we classified AD vs FTD following several
methods (LR, RF, and SVM). The best model for
discriminating between AD and FTD patients was the
RF model and included (in order of importance), social
cognition (Mini-SEA), neuropsychiatric symptoms
(NPI), cognitive screening (MMSE normalised following
the Van Steenoven method), age, executive function
(IFS), years of education, and sex. This model showed
strong discriminative power (accuracy = 0.932, sensi-
tivity = 0.75, specificity = 0.972, ROC AUC = 0.965). The
discriminative power of this model was confirmed with
SVM analyses (as revealed by the accuracy = 0.9,
sensitivity = 0.62, specificity = 0.972, and AUC = 0.8).
An LR model with the same variables was less effective
(accuracy = 0.82, sensitivity = 0.62 specificity = 1, and
AUC = 0.5) (Table 5).
Assessing the discriminative power of the model in
a test sample
As a confirmatory analysis, we assessed the discrimi-
native power of our model and its statistical significance
assuming a p-value = .0001. We trained and evaluated a
total of 5000 RF classifiers scrambling the class labels
and counting how many times the AUC of the RF
classifier applied on the scrambled labels was greater
than that of the original classifier (Fig. 2).
AD vs. FTD classification controlling for
demographic factors
Secondary analyses aimed to determine whether de-
mographic variables influenced the results. A sequential
feature selection (SFS) algorithm38 was implemented
over the entire sample. This algorithm eliminates one-
by-one the variables with less predictive power. Cross-
validation is run until an optimal model is reached,
with fewer variables and a higher average score. The
www.thelancet.com Vol 17 January, 2023
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Type Train Test

Accuracy Accuracy Precision Specificity Sensitivity F1 Score ROC AUC C.Matrix

Logistic Regression 0.81 0.82 0 1 0 0 0.5 [1, 0, 1, 0]
Support Vector Machine 0.99 0.9 0.83 0.97 0.62 0.71 0.8 [0.97, 0.03, 0.375, 0.625]
Random Forest 0.98 0.93 0.86 0.97 0.75 0.8 0.97 [0.97, 0.03, 0.25, 0.75]

Table 5: Best RF model compared with SVM and LR.

Articles
best model scaled by the Min-Max normalisation
method was reached on step five. The features with the
greatest predictive capacity were cognitive screening
(MMSE - Van Steenoven), social cognition (Mini-SEA),
and neuropsychiatric symptoms (NPI) (Table 6). The
demographic variables were among the least powerful
features in the ranking.
Complementary results (machine learning model
for discriminating HCs vs. patients)
A RF model was optimized for discriminating AD vs
HCs and FTD vs HCs and these models reached high
scores (both models reached an accuracy = +0.9). The
best discriminators of AD vs. HCs were measures that
track social cognition (Mini-SEA), neuropsychiatric
symptoms (NPI), cognitive screening (MMSE – Van
Steenoven) and executive functioning (IFS) and, to a
lesser degree, age, education and sex. By contrast, the
best discriminators of FTD vs. HCs were the measures
of neuropsychiatric symptoms (NPI), social cognition
(Mini-SEA), executive functioning (IFS), age, education,
cognitive screening (MMSE – Van Steenoven) and sex
(Supplementary Information S7–S9).

To control for the possible effects of missing data in
the AD and FTD classification, we ran a new model
using only the data from two sites where data was
complete. The model achieved almost identical results
to those reported when including all centres (accu-
racy = 0.875, sensitivity = 0.714, specificity = 0.91, ROC
AUC = 0.91, see Supplementary information 10 and
Supplementary Fig. 4).

Country-level results
RF models were assessed at the country level to evaluate
the variability across LACs. Our results revealed
adequate feature scores and similar predictors in each
country’s discrimination (Supplementary Information
S11–S12). An expected variability at the country level
was observed regarding power and order of features.
Discussion
This study implemented classical statistical and ma-
chine learning procedures to discriminate between
www.thelancet.com Vol 17 January, 2023
HCs, AD, and FTD patients using archival clinical,
cognitive, and demographic data collected in clinical
settings across multiple LAC. Despite the data hetero-
geneity, machine learning approaches were highly
effective in differentiating groups. A Random Forest
model proved most successful in discriminating be-
tween AD and FTD (accuracy = 0.91 and ROC
AUC = 0.96). The most significant factors in discrimi-
nating between AD and FTD in LAC were social
cognition, neuropsychiatric symptoms, cognitive
screening, and to a lesser extent, demographics (age,
education, and sex).

To the best of our knowledge, this is the first study
using machine learning models to assess the capacity of
clinical, cognitive, and demographic data collected from
multicentric clinical settings to discriminate between
HCs, AD, and FTD in LAC. Currently, there is an un-
met need to study dementia diagnosis across LAC, as
highlighted by multiple international associations.5,39

The data-driven techniques employed here provide a
reliable approach to accurately discriminate between
conditions, in a region known for exhibiting high clin-
ical heterogeneity, having no systematic procedures for
clinical assessment of dementia, and presenting limited
access to biomarkers.1,8,10,40–43 Additionally, the results
add new evidence supporting complementary automa-
tized methods for clinical discrimination of dementia.
Such methods highlight the discriminative potential of
measures of executive functioning, neuropsychiatric
symptoms, and social cognition as compared to classical
cognitive measures.

Our findings are consistent with those from studies
in HICs,13,14 showing that in underrepresented pop-
ulations such as those found in LAC, machine learning
analysis of clinical and cognitive tests can have high
accuracy in discriminating AD from other dementias.
Particularly, a ranking of conventional cognitive tests (so-
cial cognition > executive functioning > neuropsychiatric
symptoms > cognitive screening) discriminated between
AD and FTD patients with high accuracy in our sample.
Results confirms that social cognition,34 executive func-
tioning and neuropsychiatric symptoms44–46 are useful to
discriminate between FTD and AD patients.46

The functionality scales did not have high discrimi-
native values in predicting AD and FTD in our study, as
9
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Fig. 2: Mean Main results, including random forest model evaluation, CV validation curves, and feature importance test sets. (A) The
upper left graph shows the confusion matrix in relative magnitudes. The upper central graph shows the ROC curves with confidence intervals
and its AUC, the upper right graph shows the Precision-Recall curves for the original classifier (blue) and the scrambled one (red). (B) The central
and lower graphs show the validation curves on five RF hyperparameters (regularization) on Stratified Cross Validation with k = 5, repeats = 20.
The dots represent the average score for k * n = 100 scores for each range of possible values shown on the x axis. The red and green areas
around the lines represent the standard deviation for the results of training and testing for each of the 100 scores. (C) The bottom graph shows
the importance of every feature of the original model. The most important ones were social cognition (Mini-SEA), executive functions (IFS),
cognitive screening (measured with MMSE normalized via Van Steenoven method), age, neuropsychiatric symptoms (NPI), years of education
and sex.

Articles

10
previously reported results.44,47 High dispersion of
functionality values and the inability to control for other
potential confounders such as disease severity could
explain the reduced discriminative power and similar
impairments in instrumental activities of daily living.

Although FTD patients have an earlier average age of
disease onset48,49 and tend to be more highly educated
than AD patients,48 the classical demographic factors
(age, sex, and education) had lower predictive scores
than the cognitive variables in this study. The sample
used in this study exhibited a high dispersion in age,
sex, and education levels in AD and FTD patients. That
heterogeneity could explain why cognitive measures
performed better than demographic factors in discrim-
inating between AD and FTD. Nonetheless, our results
coincided with past studies showing that demographic
factors are less effective predictors than cognitive mea-
sures in differentiating AD from FTD.50

Our results also revealed that social cognition (Mini-
SEA), neuropsychiatric symptoms (NPI), executive
functioning (IFS), and cognitive screening tests (MMSE
normalised following Van Steenoven) are the best pre-
dictors to differentiate HCs vs. AD and HCs vs. FTD.
The best discriminators for AD vs. HCs were the mea-
sures tracking social cognition, neuropsychiatric symp-
toms, cognitive screening and executive functioning
and, to a lesser degree, age, education and sex. By
contrast, social cognition and neuropsychiatric symp-
toms were more useful in differentiating FTD from
HCs (Supplementary Information S7–S9). Results are
www.thelancet.com Vol 17 January, 2023
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Step Min Max scaled feature names AVG score CI bound Std dev Std error

1 Mini-SEA total, NPI total, MMSE Van Steenoven total, Years of
education, Sex, IFS total, Age

0.8322 0.0282 0.0982 0.0140

2 Mini-SEA total, NPI total, MMSE Van Steenoven total, Years of
education, Sex, IFS total

0.8322 0.0279 0.0973 0.0139

3 Mini-SEA total, NPI total, MMSE Van Steenoven total, Years of
education, Sex

0.8393 0.0309 0.1077 0.0154

4 Mini-SEA total, NPI total, MMSE Van Steenoven total, Years of
education

0.8489 0.0295 0.1028 0.0147

5 Mini-SEA total, NPI total, MMSE Van Steenoven total 0.8500 0.0291 0.1014 0.0145

6 Mini-SEA total, NPI total 0.8093 0.0344 0.1201 0.0172

7 Mini-SEA total 0.7211 0.0286 0.0996 0.0142

Table 6: Sequential Feature Selection (SFS) algorithm for best Random Forest model.
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consistent with past studies showing that in comparison
with HCs, patients with AD and FTD tend to more
frequently exhibit impairment in cognitive processes,51

social cognition16 and neuropsychiatric symptoms
(comparing HCs vs. AD45,52 and HCs vs. FTD44,45).
However, in our study, the measures that track social
cognition and executive functioning held more weight
as discriminators of HCs vs. AD and FTD than cognitive
screening tools (MMSE) or demographic factors.
Although heterogeneity issues could explain this pattern
of results, it could also suggest a high sensitivity of
measures tracking specific frontal functioning16,41,53,54 in
discriminating healthy and pathologic aging.

The country-level analyses also revealed similar pre-
diction scores of AD and FTD as those run with data
gathered from all countries. Not surprisingly, the accu-
racy level decreased in particular countries, and the or-
der of features showed country-level variability. These
differences can be explained by disparate sample sizes,
heterogeneity in data collection, clinical assessment
procedures, and other unknown country-level differ-
ences. Beyond these expected differences, our results
reached correspondence in predictive values and rele-
vant features of AD and FTD, allowing a regional clin-
ical dementia standardization.

To the best of our knowledge, no other studies have
aimed to develop an approach to distinguish between
AD and FTD using multicentric, heterogeneous,
archival clinical datasets from underrepresented, low-
resource settings. The combination of classical statisti-
cal approaches and machine learning methods resulted
in an effective technique.55 Logistic regression is sensi-
tive to capturing outliers and correlated features,
modulating the estimation of coefficients when data is
sparse, and assuming a linear relationship between the
inputs and the output.25 However, complex datasets
usually require non-linear decision boundaries to
improve classification outcomes. Particularly, Support
Vector Machines and Random Forest models can learn
non-linear decision boundaries and thus, achieve better
classification results than logistic regression.37
www.thelancet.com Vol 17 January, 2023
Our study obtained the most accurate results by
using machine learning models confirmed with stan-
dard cross-validation procedures with training and
testing sets. These methods are more robust to ac-
count for heterogeneity of data and complex interac-
tion between features. Our results support a better
performance of machine learning methods than clas-
sical statistical approaches in predicting dementia
outcomes when databases combine multiple variables
and interactions.12 Accuracy levels achieved by ma-
chine learning procedures in our study are compara-
ble with those observed in machine learning studies
analysing neuroimaging and other biomarkers classi-
fication of AD and FTD.56

Furthermore, results revealed that random forest was
superior in classifying AD and FTD cases. The lower
classification power of the logistic regressions and SVM
(compared to Random Forest) could be explained by
their reduced accuracy with multidimensional datasets.
In fact, variance across groups can impact the SVM
hyperplane to discriminate groups.57,58 The heterogene-
ity across groups in the present research suggest that
this is the case. By contrast, our results confirm that
Random Forest is one of the most accurate procedures
for datasets with multidimensional information and
larger interactions between variables.59,60

Together, results reveal important insights for the
study of dementia diagnosis in LAC’s underrepresented
populations, including (a) conventional data used for
clinical assessment of dementia is a reliable source of
information to discriminate AD, FTD, and controls
across different LACs, partially compensating the
limited regional access to biomarkers; (b) similar
discrimination scores for AD and FTD were observed at
the regional level, as found in other studies using bio-
markers [1–3]; (c) the regional reproducibility in
discriminating groups supported the efficacy of clinical
procedures for dementia diagnosis in Latin America; (d)
combined neuropsychiatric symptoms, executive func-
tions, and social cognition are relevant measures to
characterize dementia in LACs.
11
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Our work does have important limitations. Differ-
ences in protocols between centres led to missing
values, which resulted in a reduction in the number of
samples used for modelling. The data collection process
across centres was not harmonised, only global scores
were used, and severity scores were not available. These
are typical challenges when using multicentric data. We
addressed this problem by harmonising and reducing
missing data following previously published
procedures.19,20,24,25 Moreover, we tested and verified the
replicability of our results in a complementary model
using only the information from two centres with a high
proportion of complete data. Results from the comple-
mentary models produced similar predictive scores and
similar predictors as the models that included data from
all sites. Although these results suggest that missing
data did not ostensibly affect the classification processes
in our study, future studies should test the replicability
of our data-driven models in large datasets with more
balanced data across different centres and compare
those results using missing data imputation methods.

Our study was also limited by a smaller than optimal
sample size for the statistical methods used. However,
the sample size was comparable to, and often larger
than, other multicentric studies of dementia.15,61–63

Furthermore, our applied methodology allows us to
integrate futures samples to our current data and test
our models on new unseen data. Another potential
limitation of our study is the imbalance in sample size
of the two diagnostic groups. To account for this, we
performed additional procedures to control for the
imbalance in the classifications (section 2.4.2.2). While
this imbalance is expected given previous studies in
LAC which have described a higher prevalence of AD
(representing 55% of dementia cases seen in clinics)
than FTD (representing between 2.8% and 1.5% of de-
mentia cases [1–3]), future studies may benefit from
increasing the number of FTD cases included.

Specific data describing neuropsychiatric symptoms
beyond the total NPI score was not available in the
current study. Future investigation assessing predictors
of AD and FTD should track neuropsychiatric symp-
toms with more granularity. Furthermore, our study
goals are focused on LAC where differences in dementia
presentation and varied prevalence in dementia risk
factors across countries are determined by varied social,
medical, and genetic risks. A comparison of data from
LAC with other regions is not within the scope of this
study. However, the present framework can be used in
future studies to assess data from other regions across
the world using similar approaches.

Finally, dementia diagnoses in our study were based
on clinical expertise without biomarker confirmation as
access to traditional biomarkers is limited in LAC due to
cost. While it would be ideal for future studies to test the
classification power against biomarker confirmed cases,
our results indicate that the usage of clinical and
neuropsychological data could help support dementia
diagnosis, particularly in underrepresented populations
where access to biomarkers is limited. Looking forward,
we expect to add more underrepresented samples from
other LMIC and UMICs to further test the generaliz-
ability of our approach and develop new models.
Conclusions
A high classification accuracy for AD, FTD, and HCs
was obtained by combining classical statistical and ma-
chine learning procedures applied to demographic,
cognitive, and behavioural data from clinical settings
across LAC. Results highlight the importance of
combining conventional clinical assessment with fine-
grained cognitive tests tracking social cognition, execu-
tive functioning, behavioural symptoms, and cognitive
screening to diagnose AD and FTD in LAC. We devel-
oped a robust methodological approach to deal with
highly heterogeneous data based on the measurements
described above from archival clinical datasets to classify
dementia subtypes and HCs. These findings support the
use of combined statistical analysis, statistical model-
ling, and machine learning methods for multicentric
studies involving low-resource regions with restricted
access to biomarkers for underrepresented cohorts.
Dementia services in LAC could benefit from improving
diagnosis accuracy by applying the current methodo-
logical approach.
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