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A B S T R A C T   

In this study, we analyze the performance of CHIRPS in comparison with data from 50 rain gauges (OBS) in 
Northern Argentina (NA) for the 1982–2019 period. The methodology consists in a point-to-pixel comparison 
using the correlation coefficient (RHO), the mean relative error (MRE), the mean absolute error (MAE) and the 
Nash-Sutcliffe efficiency (NSE). We analyze monthly rainfall, annual rainfall indices and their trends, differen
tiating between anchor and no-anchor stations. A comparative analysis is performed further between two NA 
sub-regions: Northwestern Argentina (NWA) and Northeastern Argentina (NEA). Results indicate that CHIRPS 
dataset better represents the interannual variability in wetter (drier) months in NWA (NEA). For all months, RHO 
values are higher in NEA than NWA. For annual rainfall indices, RHO values in most of the stations of NA are 
non-significant or low for some number-days (with threshold of 1 mm) and very extreme indices, with the 
exception of the eastern extreme of NA. The less extreme indices (PRCPTOT, R95pad and R99pad) are observed 
to have higher RHO values (> 0.5 in all cases) in NA, as well as better MRE, MAE and NSE values. Monthly values 
and annual indices are underestimated in general, especially in NWA no-anchor stations. Most of the significant 
linear trends observed in rainfall indices are not detected with CHIRPS. As an exception, a relatively better 
performance for the maximum number of consecutive dry days (CDD) is observed in the sense that CHIRPS detect 
the positive linear trends in NWA but do not locate them with precision in comparison with OBS data. CHIRPS is 
not recommended for studies in NA related with the aspects (mean values, interannual variability, linear trends) 
of rainfall analyzed in this work, especially for the extreme rainfall.   

1. Introduction 

Rainfall is a key component of many natural systems, such as agri
culture and hydrology, which are fundamental to society and economy. 
In particular, its excess or deficit can lead to material and even life 
losses. With global warming, rainfall extremes are intensifying at a rate 
consistent with the increase in atmospheric moisture (Fowler et al., 
2021), and in addition, the risk of droughts will increase (Xu et al., 
2019). According to the World Meteorological Organization (WMO) 
(2021) disasters associated with rainfall or drought events have implied, 
since 1970, the death of >1 million people with >91% of these deaths 
occurring in developing countries. At the same time, economic losses 
from weather-related disasters increased around seven times. Thus, 
continuous monitoring of rainfall is crucial for forecasts that would 
allow adequate prevention and mitigation measures planned in advance. 

Furthermore, the availability of high-resolution gridded rainfall datasets 
is a prerequisite for disaster risk reduction and management (Shrestha 
et al., 2021) considering that extreme rainfall indices are based on daily 
records which can have strong spatial gradients. Gridded rainfall data
sets with coarser resolution would fail to detect critical small scale 
features. 

Among different rainfall data sources, gridded data are preferred due 
to its advantage of uniform coverage around vast regions of the world. 
These datasets can be gauge, reanalysis or satellite-based, where each 
can cover distinct periods (in terms of both: length and dates) and also 
have different temporal and spatial resolutions. Each of these three types 
of datasets has deficiencies linked to the number and spatial coverage of 
surface stations in gauge-based case, the data assimilation models in the 
reanalysis-based case, and the satellite algorithms in the last case (Sun 
et al., 2018). In recent years the interest in rainfall data derived from 
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satellites has increased due to the wider spatial coverage that they offer. 
On the other hand, the accuracies of gridded precipitation datasets 
should be evaluated and examined in reference to ground observations, 
as these data can be affected by systematic errors (Faiz et al., 2018). 

Between the available satellite-related datasets, the Climate Hazards 
Group InfraRed Precipitation with Station data (CHIRPS) stands out 
because of it has spatial and temporal coverage, latency, and resolution 
that is unprecedented for a global terrestrial product (Funk et al., 2015). 
The algorithm of CHIRPS incorporates daily, pentadal, and monthly 
1981-present 0.05◦ estimates of precipitation based on infrared Cold 
Cloud Duration (CCD) observations and station data (Funk et al., 2015). 
Among CHIRPS’ purposes are drought monitoring, rainfall detection, 
trend analysis and streamflow simulation. More details of the CHIRPS 
dataset can be found in Funk et al. (2015). 

Validation studies of CHIRPS have been performed in the last years in 
many regions around the globe, e.g., Argentina, Brazil, Chile, Italia, 
China, among others (Funk et al., 2015; Baez-Villanueva et al., 2018; 
Rivera et al., 2018; Cavalcante et al., 2020; and references therein). In 
the Southern of South America, a study of Cerón et al. (2020) was per
formed in La Plata Basin (LPB) (Argentina, Brazil, Paraguay and Bolivia) 
finding that CHIRPS better represents the monthly rainfall in the east 
plain and coastal region than in the west Andean region. Further, as a 
strong point, CHIRPS describes most of the observed rainfall variability 
in the LPB, especially during December–February and March–May sea
sons. On the other hand, in the Central Andes of Argentina, results of 
Rivera et al. (2018) indicate that CHIRPS reproduce adequately the 
seasonal and interannual variability together with the spatial patterns of 
precipitation, but overestimates at higher elevations (above 1000 m) 
with a consequent performance decrease. This difference has been 
attributed in part to the limited number of stations to produce CHIRPS. 
Rivera et al. (2019) obtain further results for that region and state that 
CHIRPS is a suitable tool for assessing dry and wet conditions for 
timescales longer than one month and can support decision-making 
processes within the hydro-meteorological agencies. Likewise, Zam
brano et al. (2017) analyzed rainfall measurements across Chile finding 
that, overall, CHIRPS was a useful dataset for characterizing precipita
tion patterns in this country, providing also a valuable data source to 
calculate precipitation-based drought indices to monitor drought. 

An interesting study of Cavalcante et al. (2020) in the Brazilian Legal 
Amazonia (BLA) compares monthly rainfall, annual rainfall indices and 
their trends calculated using CHIRPS and rain gauge observations. They 
found that in the BLA region, CHIRPS provided mean monthly rainfall 
similar to that obtained using data from the rain gauge stations. How
ever, it has a poor performance for the most extreme indices and is not 
suitable for trend detection in this region. 

In the present work, a validation study of CHIRPS performance in 
representing monthly total rainfall and annual extremes rainfall indices, 
together with their trends in North Argentina (NA) region is done, 
following the scheme of Cavalcante et al. (2020). Some NA stations used 
here are also used in the CHIRPS production, but we included others that 
are not incorporated for comparison. 

Some related studies about rainfall in NA were performed, all of them 
based on gauge observations (Castino et al., 2017; Lovino et al., 2018; 
Ferrero and Villalba, 2019) or CHIRPS data (Cerón et al., 2021), sepa
rately. Only the study of Cerón et al. (2020) compares CHIRPS data with 
gauge observations in a region that encompasses most of NA region. The 
new contribution of this work is to extend this validation to annual 
extremes rainfall indices and trend detection in NA, in order to deter
mine the feasibility of using CHIRPS for climatic studies related with 
rainfall variability and forecast in this region. 

The relevance of understanding the variability, intensity, and dis
tribution of precipitation particularly in NA is given by, on one hand, the 
great importance of the agricultural sector in the economy of the region 
(sugar cane, cereals, oilseeds and fruits). On the other, being able to 
anticipate the floods occurring during the rainy season due, among other 
things, to excessive logging in foothill areas of the region, where housing 

estates were built. In addition, there are unfortunately marginal popu
lation settlement areas on river banks that usually have large floods 
during extreme, and not so extreme, precipitation events. Without 
leaving aside either, that the urban area, in most populated NA prov
inces, has grown markedly in housing density during the last decades 
without any urban planning or strategy for city densification, so there 
was no accompaniment of the drainage infrastructure, for example. This 
means that there are also large floods with damaging consequences in 
these areas (Bello et al., 2018). 

2. Study region 

This study is carried out in the territory of 11 Argentine provinces 
located in the north of the country. The area encompasses the subtrop
ical region between 21◦S and 31◦S and between 69◦W and 53◦W. It has 
an approximate surface area of 900,000 km2, and almost 9 million in
habitants that is 20% of Argentina’s total population (data from INDEC 
available at https://www.indec.gob.ar/indec/web/Nivel4-Tem 
a-2-24-85). This region produces 13% of the Growth Domestic Product 
(data from INDEC available at https://www.indec.gob.ar/indec/web/ 
Nivel4-Tema-3-9-138) in an economy mainly based in hydroelectric 
power and agricultural activities strongly depending on climate. 

Two different sub-regions can be identified in NA: Northwestern 
(NWA) and Northeastern Argentina (NEA). In fact, the country is divided 
into five main regions according to climatic characteristics and pro
ductivity, two of which are precisely NWA and NEA. The boundaries 
between these regions follow the province’s geographical limits, and in 
the case of these two regions, the boundary between them is, even 
though not exactly, almost a straight line at 62◦W. In our case, the gauge 
stations considered are far from this limit and this imaginary straight 
line works properly dividing both regions in our study. The distinction 
between NWA and NEA is often used in studies that involve the NA 
region and it is related with the different rainfall regimes (Doyle, 2020, 
and references therein). We further checked these differences between 
NWA and NEA computing the annual cycle of rainfall for each station 
used in this work and for regional means (Fig. S1). Annual cycle is more 
marked in NWA where a greater concentration of rainfall in warmer 
months is observed in comparison with NEA, where the annual cycle is 
more flattened. Despite these differences, in general warmer months are 
rainier and colder months are drier in agreement with Cerón et al. 
(2020). Fig. 1 shows the location and main topographic features of NA, 
together with rain gauges used for the validation of satellite-based 
rainfall estimates distinguished between NWA and NEA stations using 
different colors (black symbols for NWA and red symbols for NEA). NWA 
is encompassed by the Andes Mountain Range, where rainier conditions 
are found in elevations between 300 and 3000 m and driest conditions in 
elevations above 3000 m (Castino et al., 2017). In contrast, NEA is 
mostly plain with elevations under 300 m and rainier conditions to the 
east (Lovino et al., 2018). 

The NA region includes most of the locations with the highest rainfall 
values in the country (Llano, 2018). As can be noticed in Fig. 2, in the 
summer months (December to February), the maximum rainfall occurs 
in NWA and this is a result of the orography of the Andes (Bookhagen 
and Strecker, 2008). In summer, rainfall is regulated by the South- 
American Monsoon (Marengo et al., 2012). The circulation provides a 
water vapor flux from the Amazonas region and the tropical Atlantic 
Ocean through the low-level jet flux (Vera et al., 2006). Summer rainfall 
in NA is frequently organized in large mesoscale convective systems 
(Laing and Fritch, 2000). During the other seasons the low-level jet 
decays with the maximum rainfall occurring in NEA and mostly related 
to mean latitude synoptic scale activity (Vera et al., 2002). The inter
annual variability in NA is mainly associated to El Niño-Southern 
Oscillation (Barros et al., 2008; Cerón et al., 2020) and to the surface 
temperature gradient between the Atlantic and Pacific Oceans (Barreiro 
et al., 2014). 

Trends in some rainfall indices were observed in the last seven 
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decades in NA according to gauge data. Particularly, a review of Car
valho (2020) identified that NA (subtropics of South-America) is one of 
the two regions of America with the most consistent evidence of rainfall 
positive trends in the past century. However, in the last four decades, 
some differences with respect to this behavior were observed. For NWA 
a decrease was observed in the total annual rainfall and the frequency of 
wet days, but in contrast an increase of rainfall extremes related to the 
95th percentile was observed (Castino et al., 2017). On the other hand, 
for NEA the occurrence of intense rainfall events increased steadily from 
1970 up to 2000 with a stabilization trend since then, and at the same 
time a continuous increase in the duration of dry spells (Lovino et al., 
2018). Thus, rainfall monitoring in the region is increasingly necessary 
due to the rainfall behavior is becoming more extreme. 

3. Material and methods 

As mentioned above, this work uses a similar methodology to that of 
Cavalcante et al. (2020), applied to the NA region. A point-to-pixel 
analysis is made to compare rainfall from CHIRPS and rain gauge sta
tions’ observations (OBS). This analysis consists in extracting the time 
series from CHIRPS database of the pixel closer to the location of each 
rain gauge station selected. Missing daily data in OBS is considered 
missing in CHIRPS for comparison. Monthly total rainfall and annual 
rainfall indices were compared using the following statistics: Pearson’s 
linear correlation coefficient (RHO), the mean relative error (MRE), the 
mean absolute error (MAE) and the Nash-Sutcliffe efficiency (NSE), 
whose equations are listed in Table 1. That is, from the four statistics also 
used by Cavalcante et al. (2020) we only changed one: NSE instead of 
the mean error, considering the first gives more new information 
regarding the other three statistics used. 

RHO measures the linear association strength between, in this 
particular case, CHIRPS and OBS, that is how similar is the variability in 
one series to that of another. It is bounded by 1 and − 1, where 1 is the 
optimal value indicating that both time series varies identically. The 
statistical significance of the RHO was determined using the Student’s t- 
test to 0.05 level of significance. MRE measures the average bias of 
CHIRPS over or underestimating OBS depending on its sign: positive or 
negative, respectively. It gives similar information to the percentage 
bias, and its optimal value is 0. MAE is a scale-dependent measure of 
deviation that in this case corresponds to CHIRPS deviation from OBS. 
The optimal value is 0 indicating that both series are identical. NSE 

Fig. 1. NA location in South America (green rectangle). Further, location of the 50 stations included (anchor: circle, no-anchor: triangle; NWA: black symbols, NEA: 
red symbols), and the 120 stations not included (gray cross) in this study. Elevation of NA in meters above sea level is colored. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Boxplot of seasonal rainfall values in the 1990–2019 period from OBS 
data separated by region (NWA and NEA) for anchor (pink) and no-anchor 
stations (blue). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Equations for the statistical metrics to evaluate CHIRPS performance. CHIRPS 
and OBS are represented by x and y, respectively; n corresponds to the number of 
points.  

Name Equation 

Pearson’s correlation coefficient 
(RHO) RHO =

n (Σxy) − (Σx) (Σy)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
nΣx2 − (Σx)2

] [
n Σy2 − (Σy)2

]√

Mean relative error (MRE) 
MRE =

1
n

Σ
(x − y)

y 
Mean absolute error (MAE) MAE =

1
n

Σ|x − y|

Nash-Sutcliffe efficiency (NSE) 
NSE = 1 −

Σ(x − y)2

Σ
(
x −

Σx
n

)2  
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determines the relative magnitude of the “residual variance” between 
CHIRPS and OBS (called residual for its analogy to regression analysis) 
compared to OBS variance (Nash and Sutcliffe, 1970). This statistic 
range from -∞ to 1. A negative value corresponds to a poor precipitation 
estimation by CHIRPS and implies that OBS mean value is a better 
predictor; 0 indicates that CHIRPS is as accurate as the mean; and 1 (the 
optimal value) implies a perfect match between CHIRPS and OBS. 

The annual rainfall indices analyzed by Cavalcante et al. (2020) were 
also used in this study (Table 2). They selected those defined on the core 
set of ETCCDI descriptive indices of extreme precipitation (Karl et al., 
1999), which are 11 out of a total of 27, plus two all-day percentiles, the 
number of days with rainfall, and the sum of precipitation of the 4 days 
with the highest rainfall, adding up to 15 indices. We included the same 
selection considering that, even though some of them may give redun
dant information, they are all relevant to climate change detection and 
measure aspects of frequency, duration and intensity meaningful to 
policy makers in NA region. 

Trends in rainfall indices were estimated using the Sen’s slope esti
mator (Sen, 1968) and the significance calculated with the modified 
nonparametric Mann-Kendall test (Hamed and Rao, 1998; Kendall, 
1955; Mann, 1945) to 0.05 level of significance. Data from some rain 
gauge stations used here were included in CHIRPS production and are 
named “anchor” stations (circles in Fig. 1). Those not used in CHIRPS 
production are named “no-anchor” stations (triangles in Fig. 1). Unlike 
Cavalcante et al. (2020), we separate explicitly the analysis between 
anchor and no-anchor stations for comparison. 

3.1. Rainfall data 

Daily rainfall records provided by the Servicio Meteorológico 
Nacional (available under request), Subsecretaría de Recursos Hídricos 
(available online at www.argentina.gob.ar/subsecretaria-de-recursos- 
hidricos/base-de-datos-hidrologica-integrada) and Instituto Nacional 
de Tecnologia Agropecuaria (available online at siga.inta.gob.ar/) from 
Argentina are used. From a total of 170 rainfall stations in NA, the 50 
selected for this study are listed in the Supplementary Material 
(Table S1). The density of stations is 0.056 stations per 1000 km2, but 
they are unevenly distributed, as can be noticed in Fig. 1. Many stations 
are placed along main rivers, while others in the airports of the principal 
cities or important agricultural zones in NA. As in Cavalcante et al. 
(2020), we visually checked time series to detect obvious erroneous 
data. Further, for each month, monthly total accumulated rainfall, 
maximum daily rainfall and maximum consecutive days without rainfall 
that deviates four standard deviations or more respect to the monthly 
mean were compared with values of neighboring stations. Values sus
pected as erroneous were considered missing. Stations with <20% of 

monthly missing data in the 1982–2019 period were selected, consid
ering missing those months with more than one-day missing. Some re
cord beginning various years later of the 1982-year, however were 
selected because they had at least 80% of monthly data in the 
1982–2019 period. Based on these criteria we discarded 120 stations out 
of the 170. Between the selected stations, the shortest period covered is 
1989–2019 and the longest is 1982–2019. The major density of the 
stations is concentrated over Tucuman province in the center of NWA, 
where a strong elevation gradient exists. From the 50 selected stations, 
35 are in NWA and 15 in NEA. For the computation of annual indices, we 
consider the year as NA hydrologic year which begins in July 1 and ends 
in June 30, since the maximum rainfall occurs in the warmer months. 

3.2. CHIRPS data 

Daily rainfall estimates from CHIRPS dataset version 2.0 (Funk et al., 
2015) were used with a horizontal resolution of 0.05◦. Data was 
downloaded from https://coastwatch.pfeg.noaa.gov/erddap/gridda 
p/chirps20GlobalDailyP05.html. CHIRPS combines satellite measure
ments of Cloud Cold Duration (CCD) calibrated with Tropical Rainfall 
Measuring Mission (TRMM) 3B42 data and gauge station data. Previous 
to the CHIRPS production is derivate the satellite-only Climate Hazards 
group Infrared Precipitation (CHIRP) field. The primary computing time 
step for the CHIRP is the pentad. There are six pentads in a calendar 
month, five 5-day pentads and one pentad with the remaining 3 to 6 
days, depending on month. Pentadal CHIRP values are disaggregated to 
daily precipitation estimates based on daily CFS (Coupled Forecast 
System reanalysis, version 2) fields, rescaled to 0.05◦ resolution. At each 
pixel, the CHIRP pentad total is redistributed in proportion to the daily 
values of the CFS. The final CHIRPS estimate is a combination of un
adjusted and bias-adjusted CHIRP data. The result is a gridded daily 
product of rainfall with resolution of 0.05◦ that covers from − 50◦ to 50◦

of latitude. Rivera et al. (2018) observe that in CHIRPS production is not 
included data from Argentinean agencies different from the Servicio 
Meterologico Nacional. We checked the list of the anchor stations 
(available in https://data.chc.ucsb.edu/products/CHIRPS-2.0/diagn 
ostics/list_of_stations_used/) of CHIRPS and found that out of the 50 
stations selected for this study 16 were incorporated. Of the 34 no- 
anchor stations, 26 correspond to NWA and 8 to NEA. We analyze 
separately anchor and no-anchor stations to avoid bias in the results of 
this validation study that can arise from a non-distinction of this 
condition. 

4. Results 

4.1. Monthly rainfall and annual indices from rain gauges 

Fig. 2 shows the boxplots of seasonal rainfall for OBS data over the 
period 1990–2019, that is, for this figure we selected a 30-years period 
which is common to all the stations. From the boxplots it is clearly 
deduced that JJA (winter) is the driest season. The maximum seasonal 
rainfall in NA occurs in summer (DJF), and in particular in NWA no- 
anchor stations. Thus, NA rainiest stations are not incorporated in 
CHIRPS production. Furthermore, not only in DJF, but in all seasons, 
NWA no-anchor stations are rainier than anchor stations. In the case of 
NEA, the difference between anchor and no-anchor stations’ seasonal 
rainfall is smaller. 

The spatial distribution of OBS mean monthly rainfall over the 
period 1990–2019 is shown in Fig. 3. The maximum rainfall values are 
found in the center of NWA from December to March. A secondary 
maximum is observed during the same months in the east of NEA. In the 
other months, the maximum rainfall values occur in the east of NEA. In 
general, NA rainfall values are lower from May to August, denoting the 
existence of a dry season which is more evident in NWA than in NEA. 

Mean annual rainfall indices estimated with OBS data over the 
period 1990–2019 are shown in Fig. 4. The case of PRCPTOT is 

Table 2 
Description of the 15 rainfall indices used in this study.  

Name Description 

nP Number of days with R ≥ 1 mm 
RX1DAY Maximum 1-day precipitation 
SDII Simple precipitation intensity index: mean daily precipitation intensity 

of days with R ≥ 1 mm 
RX5DAY Maximum consecutive 5-day precipitation 
R10MM Count of days when R ≥ 10 mm 
R20MM Count of days when R ≥ 20 mm 
R50MM Count of days when R ≥ 50 mm 
CDD Maximum length of dry spell: maximum number of consecutive days 

with R < 1 mm 
CWD Maximum length of wet spell: maximum number of consecutive days 

with R ≥ 1 mm 
R95P Total precipitation when R > 95 percentile of days with R ≥ 1 mm 
R99P Total precipitation when R > 99 percentile of days with R ≥ 1 mm 
R95pad Total precipitation when R > 95 percentile of all days 
R99pad Total precipitation when R > 99 percentile of all days 
PRCPTOT Annual total precipitation 
RTOP4 Sum of precipitation of the 4 days with highest R  
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equivalent to the sum of the 12 panels in Fig. 3. Stations in the west 
extreme have the lowest PRCPTOT, compatible with the highest CDD 
values observed at the same stations. In comparison, this drier zone has 
on average less than half of PRCPTOT (< 500 mm) and more than 
duplicate CDD values (>100 days) than the rest of NA. Two well defined 
zones with PRCPTOT maximum values can be noted: one at NWA center 
and the other in eastern NEA, consistent with the monthly analysis. For 
the other rainfall indices, except for CWD, the spatial pattern is similar 

to that of PRCPTOT with a stronger longitudinal than latitudinal 
gradient. In CWD case, maximum values are present in a great part of 
NWA with values up to 8 days. Discerning between anchor and no- 
anchor stations, as can be deduced from Fig. S2, NWA no-anchor sta
tions present higher annual rainfall indices than anchor stations in most 
of the cases. In the case of NEA, similar to the monthly rainfall case 
(Fig. 2), no marked differences between anchor and no-anchor rainfall 
index values are observed. 

Fig. 3. Mean monthly precipitation in the 1990–2019 period for OBS data.  

Fig. 4. Mean annual rainfall indices in the 1990–2019 period from OBS data.  
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4.2. Performance for monthly rainfall 

Fig. 5 shows monthly rainfall values from CHIRPS versus the corre
sponding values from OBS distinguishing NWA and NEA regions, as well 
as anchor and no-anchor stations. Our results indicate that CHIRPS data 
strongly underestimate the highest monthly rainfall in no-anchor sta
tions over NWA (Fig. 5, lower panel) as evinced by the blue dots well 
below the 1:1 line for the highest OBS data values. In the rest of the 
stations, at both NWA and NEA regions, even though in a lesser extent, 
an underestimation can also be observed for OBS values above ~400 
mm noting that dots almost systematically fall below the 1:1 line. 

The squared RHO values (displayed in each panel of Fig. 5) indicate 
that CHIRPS has the lowest performance representing rainfall values 
variability in the case of NWA no-anchor stations (RHO2 = 0.64). In the 
rest of the cases, RHO2 is higher than 0.70. It is worth noting that, as 
already mentioned, NWA no-anchor stations are located in NA zones of 
strong elevation gradients and with some of the highest rainfall values. 

Curves of frequency density constructed with daily OBS and CHIRPS 
data are shown in Fig. 6. CHIRPS underestimates OBS frequency at the 
lowest and highest rainfall values in the cases of NEA anchor and no- 
anchor stations, and in the case of NWA anchor stations. That is, rain
fall frequencies at NEA anchor (no-anchor) stations under 20 (15) mm 
and above 195 (190) mm are underestimated, while being over
estimated between these values. In the similar case of NWA anchor 
stations, these limiting values are 5 mm and 200 mm. Regarding NWA 
no-anchor stations, frequency density of rainfall values under 30 mm 
and between 70 and 200 mm are overestimated, while for values be
tween 30 mm and 70 mm and above 200 mm an underestimation is 
observed. The underestimation of higher rainfall frequency is expected 
as a result of the CHIRPS building-process that eliminates more extreme 
observed rainfall values (Funk et al., 2015), and also due to the 

disaggregation process from pentad to daily rainfall. 
Regarding the four statistical metrics here analyzed, the spatial dis

tribution of each one is shown in Figs. 7 to 10, and the corresponding 
frequency distributions in Figs. S3 to S6. In the case of RHO, shown in 
Fig. 7, overall lower values are observed in NWA than in NEA, especially 
for the driest months, with values even lower than 0.5 and a few which 
are statistically non-significant (see also Fig. S3). Within NEA, RHO is 
greater for the driest months (June to September) than for the rainiest 
(October to May). In NWA the inverse behavior is noticed, that is RHO is 
greater for the rainiest months (October to April) than for the driest 
(May to September). This can also be noticed from RHO frequency dis
tribution curves (Fig. S3). In addition, in the case of NEA it can be clearly 
noticed that most RHO values are >0.5 for all months while in the case 
of NWA RHO decreases in some cases (especially in the no-anchor case) 
to values below significance. Fig. S3 also shows that NEA anchor and no- 
anchor stations behave more similarly between them than in the case of 
NWA. In the latter case RHO values and distribution for anchor stations 
are markedly different from those of no-anchor stations. 

Fig. 8 shows MRE spatial distribution. As in the case of RHO, a better 
CHIRPS performance is detected for NEA than for NWA in all months 
(see also Fig. S4). In the case of NEA, for anchor and no-anchor stations, 
optimal MRE values (about zero) are noticed in wettest months ranging 
between − 0.15 and + 0.15. In NWA the best performance is detected for 
anchor stations in February and March. In this region some isolated 
cases of a strong overestimation (red dots) can be noticed in April, May 
and June. The worst cases, with MRE values up to − 1, occur for NWA 
driest months in most stations, and in almost every month in the case of 
no-anchor stations. In general, the frequency distribution (see Fig. S4) 
shows that CHIRPS underestimates monthly rainfall values in NA 
specially in no-anchor stations of NWA, while Fig. 8 evidence that the 
most MRE extreme values are observed over the center and the north- 
extreme of NWA where the no-anchor stations are located. 

In the case of MAE, shown in Fig. 9, it is noticeably lower during the 
driest months, which is expected taking into account MAE’s scale 
dependence and that the mean rainfall during these months is much 
lower than during the rainiest season. According to its spatial distribu
tion, CHRIPS performs better in NEA than in NWA during the rainiest 
months (November to April), and in vice versa during the driest months 
(May to August). The maximum MAE is observed in the January month 
in one location of the center of NWA with a value of 247 mm. 

NSE spatial variation, seen in Fig. 10, shows as in the case of RHO 
that CHIRPS has a better performance in NEA than in NWA, with values 
closer to 1 in most of NEA region, for anchor and no-anchor stations (see 
Fig. S6). Within NWA, CHIRPS anchor stations have better values of NSE 
than no-anchor where the NSE values are almost − 2.5 in the worst case. 
From Fig. S6, almost all distribution curves, except some cases of NWA 
no-anchor stations, lie mainly between 1 and 0, indicating that the re
sidual variance between CHIRPS and OBS are lower than the OBS 
variance in each case. 

4.3. Performance for annual rainfall indices 

The spatial distribution of each comparison statistical metric for the 
annual rainfall indices is shown in Figs. 11 to 14, and the corresponding 
histograms in Figs. S7 to S10. In the case of RHO values, shown in Fig. 11 
(and Fig. S7), non-significant values can be noticed in many stations for 
some number-days based indices related with the 1 mm threshold (CDD, 
CWD, nP) and very extreme indices (for instance R99P, RX1DAY). In 
these cases, the better values of RHO are observed in anchor stations of 
NEA centered between 0.4 and 0.6 by the index. On the other hand, 
PRCPTOT, R95pad, R99pad, R10MM and R20MM are observed to have 
much higher RHO values in comparison with other indices, especially in 
the east of NEA. These high values correspond mainly to anchor stations 
(see Fig. S7) in both regions. For example, for NWA no-anchor stations, 
PRCPTOT, R95pad and R99pad present a RHO distribution centered in 
the lowest statistical significant value (indicated by a vertical dashed 

Fig. 5. Scatter plot of OBS and CHIRPS monthly rainfall for the 1982–2019 
period for NWA (lower panel) and NEA (upper panel), for anchor (pink dots) 
and no-anchor (blue dots) stations. The dashed line indicates 1:1. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

F.D. Medina et al.                                                                                                                                                                                                                              



Atmospheric Research 283 (2023) 106545

7

black line in Fig. S7) while for anchor stations it is centered in ~0.7. 
In the cases of PRCPTOT, R95pad and R99pad, MRE values close to 

zero in most of the stations is added to the good correlation already 
observed, as can be seen in Fig. 12. In addition, in Fig. S8 it can be 
noticed that these three indices for anchor stations in the whole NA 

region have the sharpest distribution around zero. However, CHIRPS 
overall underestimate most of the indices in most of the stations. The 
greatest underestimation corresponds to R50MM, followed by Rx1DAY, 
RTOP4, R99P and R95P, which are very-extreme indices that can be 
more sensitive and therefore have great relative bias when gauge- 

Fig. 6. Frequency density of daily rainfall for OBS (solid blue line) and CHIRPS (dashed pink line) for the 1982–2019 period for NEA (left panels) and NWA (right 
panels), for anchor (upper panels) and no-anchor (lower panels) stations. Vertical lines indicate rainfall values where there is a change in the position (above or 
below) of CHIRPS curve with respect of OBS curve. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Spatial distribution of RHO values between OBS and CHIRPS monthly rainfall for the 1982–2019 period. Non-significant RHO values appear as empty circles.  
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stations are not used in CHIRPS production, especially in zones with 
great rainfall gradients as NWA. 

In the case of MAE (see Fig. 13 and Fig. S9), CHIRPS better represents 
NEA in the case of CDD, CWD, nP and SDII. In the remaining cases, NWA 

is better represented in the particular case of anchor stations. For no- 
anchor stations MAE values are more spread towards higher values in 
both regions, as can be noticed in Fig. S9. Consistent with MRE, 
PRCPTOT, R95pad and R99pad have the sharpest distributions closest to 

Fig. 8. Spatial distribution of monthly MRE values between OBS and CHIRPS monthly rainfall for the 1982–2019 period.  

Fig. 9. Spatial distribution of monthly MAE values between OBS and CHIRPS monthly rainfall for the 1982–2019 period.  
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zero in the case of anchor stations for both regions, NWA and NEA (see 
Fig. S9). 

In the case of NSE, shown in Fig. 14, PRCPTOT, R95pad and R99pad 
present overall the optimum values, and in particular for NEA anchor 
stations (see Fig. S10) where the maximum value observed is 0.88 for 
PRCPTOT in comparison with values under − 1 in some no-anchor sta
tions of NWA. For the other indices, in general variance between CHIRPS 

and OBS exceeds the OBS variance (NSE < 0). 

4.4. Performance for linear trends in rainfall indices 

The location of stations shown in Fig. 15, indicate if the corre
sponding rainfall index trend is significant in the case of CHIRPS, of OBS, 
of both simultaneously or in neither of them. Their values can be seen in 

Fig. 10. Spatial distribution of monthly NSE values between OBS and CHIRPS monthly rainfall for the 1982–2019 period.  

Fig. 11. Spatial distribution of RHO values between OBS and CHIRPS annual rainfall indices for the 1982–2019 period. Non-significant RHO values appear as 
empty circles. 
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the dispersion diagram in Fig. S11 showing CHIRPS vs. OBS trends. 
There are only two trends out of ninety in OBS that are detected 
simultaneously in CHIRPS: a positive trend in CDD, similar in both cases, 
and a negative trend in R99P, stronger in OBS than in CHIRPS, at the 
same NWA anchor station. In the case of CDD, even though there is only 
one coincidence, it is worth noting that both, CHIRPS and OBS, detect 
positive trends concentrated in northern NWA. However, a lack of 
CHIRPS ability for trend detection in rainfall indices is noted overall, 
with more trends detected in OBS than in CHIRPS. The undetected 

trends occur both for anchor and no-anchor stations, being fifteen for 
anchor and seventy-three for no-anchor stations, with nP the index with 
more trends OBS which are undetected in CHIRPS. 

CHIRPS detect negative trends in RX1DAY, R99P and RTOP4 at NEA 
stations which are not detected with OBS. However, in the cases of 
RX1DAY and RTOP4 many of these trends have similar values to OBS 
trends despite the lack of significance in the latter case. 

Fig. 12. Spatial distribution of MRE values between OBS and CHIRPS annual rainfall indices for the 1982–2019 period.  

Fig. 13. Spatial distribution of MAE values between OBS and CHIRPS annual rainfall indices for the 1982–2019 period.  
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Fig. 14. Spatial distribution of NSE values between annual rainfall indices from OBS and CHIRPS data for the 1982–2019 period.  

Fig. 15. Location of the stations with significant trends (p < 0.05) detected for OBS (blue cross), CHIRPS (red plus) and both data series (black asterisk) for annual 
rainfall indices along the 1982–2019 period. Gray circles indicate stations with no significant trend. (See Fig. S11 for the trends’ sign and values). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Discussion and conclusions 

The underestimation of rain gauge data by CHIRPS in the case of high 
rainfall values determined in this work for NA, is in agreement with the 
result obtained by Cavalcante et al. (2020) for BLA. In our case, having 
distinguished between anchor and no-anchor stations, we have detected 
that this occurs particularly for no-anchor stations (especially in NWA) 
as can be noticed in Fig. 5. Regarding frequency distribution, also in 
coincidence with Cavalcante et al. (2020), CHIRPS overall un
derestimates low and high rainfall values’ frequency in comparison to 
OBS. In our case this occurs in NEA for all stations and in NWA for an
chor stations. 

The lower RHO values in NWA with respect to NEA in all months 
agrees with previous results about the lower performance of CHIRPS in 
mountain regions (Funk et al., 2015; Gupta et al., 2019) where rainfall 
spatial variability is strong and smaller scale. In addition, the lower RHO 
values for drier climatic conditions obtained in NWA is a common 
characteristic observed in CHIRPS and similar products in others regions 
of the world (Liu et al., 2019; Zhang et al., 2022), due to their lower 
detection ability for lighter rainfall. This result agrees with results for 
the north of Chile (country bordering east of Argentina) where the 
precipitation estimates from CHIRPS were more accurate from 
December to March when higher rainfall amounts occur (Zambrano 
et al., 2017), with both regions having marked rainfall annual cycles. In 
contrast, in NEA the greatest RHO values were verified in driest months 
in agreement with results for the Amazon region obtained by de Moraes 
Cordeiro and Blanco (2021). In NEA the rainfall decrease is weaker and 
thus detection ability can be better. The Amazon region provides hu
midity flux to the NEA region sustained along the whole year (Vera et al., 
2002), and thus, similar results are expected due to the connection be
tween rainfall in these regions. In wetter months, strong convection and 
cloud cover non-related with rainfall are present, with a consequent 
increase of the erroneous detection of rainfall from satellite estimation. 
In driest months this effect is reduced and rainfall is better represented. 
However, in NWA and north of Chile rainfall values drop strongly in the 
dry season and the detection of the few and lighter rainfall episodes, as 
already mentioned, is more difficult. 

A comparison can be made of our monthly rainfall analysis in NA 
with that of Cerón et al. (2020) in La Plata Basin, since the latter includes 
NEA and much of NWA. Rainfall series in Cerón et al. (2020) case 
consists of monthly means but without separating them into each 
month, so their time series have the seasonal variation included while 
ours do not. We consider that this fact improves RHO performance in 
their case, since both series, CHIIRPS and OBS have the seasonal vari
ation which is stronger and more likely to resemble than the interannual 
variation. Turning now to MRE, equivalent to the bias in Cerón et al. 
(2020), considering an average of monthly MRE (Fig. 8) in our case, 
there is an agreement in the NEA region with the lowest values and thus 
the best CHIRPS performance. Also in the NWA region, CHIRPS main 
underestimation with some isolated MRE positive values in the center 
and northern extreme of NWA agrees in both studies. In the case of MAE, 
it is similar, even though not equal, to RMSE used by Cerón et al. (2020). 
Considering again that their analysis includes all the months as single 
time series, they obtain a range between 40 and 90 mm, which is a little 
lower than ours. Circumscribing their results for NA, the highest values 
are seen in eastern NEA, as in our case during winter (the driest months), 
and also in the central area of NWA as in our case during summer (the 
rainiest months). We have some isolated MAE values reaching 100 mm 
and more. 

Going to rainfall indices, for the very extreme ones, the literature has 
similar results concerning a lower performance of CHIRPS as in Cav
alcante et al. (2020) and Paredes Trejo et al. (2016). With respect to the 
low performance in the case of indices related to number days, Katsanos 
et al. (2016) attribute it to a deficiency in the criteria used for the 
identification of a wet day. In addition, Paredes Trejo et al. (2016) point 
out the low capabilities of CHIRPS for detection of rainfall events. 

Indices based on number days are affected directly by these deficiencies, 
while very extreme indices are affected too because they are related to 
one or a few daily events. In particular, based on the four statistics used 
in this study, the more similar results between CHIRPS and OBS in the 
cases of PRCPTOT, nP and R95pad obtained by Cavalcante et al. (2020) 
for BLA, together with the strong underestimation they observe in the 
most extreme rainfall indices (R50mm, Rx1day, Rx5days) is also ob
tained in this study for NA, even though not for the whole region. 

Moving to trend results, the deficiencies detected here for trend 
analysis using CHIRPS are in agreement with similar studies in other 
regions of the world such as India and Brazil (Cavalcante et al., 2020; 
Bhattacharyya et al., 2022). However, it should be mentioned that there 
are regions of the world, such as sub-Saharan Africa or Pakistan, where 
CHIRPS is among the best to analyze long-term changes in extreme 
rainfall (Harrison et al., 2019; Nawaz et al., 2021). Our study, where 
anchor and no-anchor stations were distinguished, allowed us to identify 
the existence of undetected trends both in anchor and no-anchor sta
tions, and thus, we can conclude that the incorporation of stations in the 
CHIRPS production does not necessarily guarantee the linear trend 
representation. 

In the case of CDD trends, our results are in agreement with the in
crease in this same region, reported by Skansi et al. (2013) for the period 
1969–2009, and Balmaceda Huarte et al. (2021) for the period 
1979–2017. So, we can conclude that CDD presents a sustained 
increasing trend since 1969 at least. It could also be said that CHIRPS 
have problems to detect accurately locations of significant CDD trends 
(Fig. 15). However, increasing to a regional scale, the detection 
improves. 

Summarizing, a validation of CHIRPS rainfall dataset was performed 
for NA, distinguishing two separate regions: NWA and NEA, and also 
anchor and no-anchor rain gauge stations. This validation was done 
using daily data covering a period of 38 years (1982–2019) and 50 
stations, not used before for this purpose. Concerning monthly rainfall, 
CHIRPS dataset better represents the interannual variability of monthly 
rainfall in wetter (drier) months in NWA (NEA). However, regarding 
intensity, CHIRPS underestimates NA monthly values, with the most 
extreme MRE negative values observed over the center of NWA, during 
the rainiest months, where the no-anchor stations are located. 

About the temporal variability of rainfall indices, RHO values in most 
of the stations of NA are non-significant for some number-days based 
indices related with the threshold of 1 mm (CDD, CWD, nP) and very 
extreme indices (R99P, RX1DAY, R50MM). Only a few stations of 
eastern NA have significant RHO values for these indices. The less 
extreme indices PRCPTOT, R95pad, R10MM and R20MM are observed 
to have higher RHO values in both regions without differences between 
anchor and no-anchor stations. From MRE values, it can be concluded 
that CHIRPS underestimate most of the indices in most of the stations. 
This is more evident in no-anchor stations of NWA for total-accumulated 
and very-extreme indices due to the higher spatial variability along this 
region. 

Concerning long-term trends, most of the significant linear trends 
observed in rainfall indices are not detected with CHIRPS. As an 
exception, a relatively better performance for CDD is observed in the 
sense that CHIRPS detect the positive linear trends in NWA but do not 
locate them with precision. This relatively better performance for CDD is 
related with the recommendation of the use of CHIRPS for drought 
monitoring, but performance in NA still must improve. 

As a recommendation, and in coincidence with Cavalcante et al. 
(2020) we consider that CHIRPS is not indicated for studies in NA 
related with the aspects (mean values, interannual variability, linear 
trends) of rainfall analyzed in this work, especially for the extreme 
rainfall. The inclusion in the CHIRPS production of no-anchor stations, 
can highly enhance their representation. 
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