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We compute Araki’s relative entropy associated with a bounded interval I ¼ ða; bÞ between a thermal
state and a coherent excitation of itself in the bosonic U(1)-current model, namely the (derivative of the)
chiral boson. For this purpose we briefly review some recent results on the entropy of standard subspaces
and on the relative entropy of nonpure states such as thermal states. In particular, recently Bostelmann,
Cadamuro, and Del Vecchio have obtained the relative entropy at finite temperature for the unbounded
interval ð−∞; tÞ, using previous results of Borchers and Yngvason, mainly a unitary dilation that provides
the modular evolution in the negative half-line. Here we find a unitary rotation in order to make use of the
full PSLð2;RÞ symmetries and obtain the modular group, the modular Hamiltonian, and the relative
entropy S of a bounded interval at finite temperature. Such relative entropy entails both a Bekenstein-like
bound and a QNEC-like bound, but violates S00 ≥ 0 (derivative with respect to the length of the interval,
with its center fixed). Finally, we extend the results to the free massless boson in 1þ 1 dimensions with
analogous bounds.

DOI: 10.1103/PhysRevD.107.125016

I. INTRODUCTION

The relative entropy is a measure of the distinguish-
ability of two states. In quantummechanics, for two density
matrices ρ and σ it is defined as

SðρjjσÞ ¼ Trðρ log ρ − ρ log σÞ: ð1Þ

If the system is bipartite, one can reduce each density
matrix to one of the partitions and compute the relative
entropy between the reduced density matrices. The counter-
part in Quantum Field Theory (QFT) would be to reduce
the states to a spacetime region. Intuitively, the smallest this
region is, the fewer operators one has at hand to character-
ize the states, and therefore the relative entropy decreases.
However, generic bounded regions of spacetime such as
causal diamonds are assigned a von Neumann algebra
which is a Type III factor, and these algebras have no trace-
class operators and there are no density matrices [1].
Nevertheless, the definition of the relative entropy (1)
can be suitably extended [2]: given two (normal and

faithful) states ω and ω0 of the von Neumann algebra A
associated with some region, with both states represented
on a Hilbert space by Ω and Ω0, the relative entropy is

SAðωjjω0Þ ¼ −ðΩ; logΔΩ0;ΩΩÞ; ð2Þ

where ΔΩ0;Ω is the relative modular operator (which is
defined in the next section). This is in sharp contrast with
the entanglement entropy that necessarily diverges due to
the generic UV behavior of correlations through the
boundary of the corresponding region [3].
Araki’s relative entropy (2) can be hard to compute in

general cases. Recently it has been computed in a number of
specific situations for coherent states acting on the vacuum
of the free scalar QFT: on a Rindler wedge [4–6], on a causal
diamond in spacetime dimension greater than 2 [7], and later
on the two-dimensional case [8]. In addition, in the bosonic
vacuum U(1)-current model (namely, a massless boson on a
light ray) the relative entropy of coherent states was
computed for a half-line in [9] and used to obtain the
analogous expression for (unbounded) regions of the null
plane for a free scalar in [10]. For similar results in free
fermionic Conformal Field Theories (CFTs), see [11]. For
interacting theories, as far as we know the only results
available correspond to coherent states in chiral
CFTs [12,13], while for free QFT in curved space-
times see [14].
All of the above computations compare the vacuum state

to a coherent excitation of itself (with the exception
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of [14]). Recently in [15], among other things, the relative
entropy for a half-line in the thermal U(1)-current model
was computed. That is, a Kubo-Martin-Schwinger (KMS)
state of inverse temperature β was compared to a coherent
excitation of itself, when restricted to a half-line. The fact
that the relative entropy was computed on the half-line is an
important point, since by general arguments its modular
operator had already been obtained in [16]. Even in the
vacuum case, one can see that to obtain the modular
operator for a bounded interval it is necessary to make
use of the full PSLð2;RÞ group of conformal transforma-
tions of the chiral boson theory (we will discuss this later in
detail).
The main goal of this article is to compute the relative

entropy of coherent states on a bounded interval I ⊂ R for
the thermal U(1)-current model and the free massless boson
at finite temperature in 1þ 1 dimensions restricted to a
causal diamond. We will find two bounds for each theory, a
Bekenstein-like bound and mainly a controlled violation of
the quantum null energy condition (QNEC), which was
already anticipated in [15].

II. PRELIMINARIES ON THE MODULAR
STRUCTURE OF THE WEYL ALGEBRA

Given a symplectic space ðK; σÞ we get a canonical
commutation relations (CCR) algebra with relations

WðfÞWðgÞ¼ e−iσðf;gÞWðfþgÞ; WðfÞ� ¼Wð−fÞ; ð3Þ

where f; g ∈ K. We will refer to this algebra as CCRðK; σÞ.
A positive symmetric bilinear form τ such that

σðf; gÞ2 ≤ τðf; fÞτðg; gÞ ð4Þ

defines a quasifree state by [17]

ωðWðfÞÞ ¼ e−
1
2
τðf;fÞ ð5Þ

with two-point function w2ðf; gÞ ¼ τðf; gÞ þ iσðf; gÞ.
However, the state may not be pure. It is pure if and only
if w2 is a complex inner product. More precisely, from (4) it
can be shown that a contraction D exists such that

σðf; gÞ ¼ τðf;DgÞ: ð6Þ

Because of the nondegeneracy of σ, D is invertible and
D ¼ CjDj is its polar decomposition. C is a complex
structure and the state ω is pure if and only if w2 is a
complex inner product, bilinear with respect to the complex
structure C. This is actually equivalent to the statement that
ω is pure if and only if jDj ¼ 1 (see [18] for further details).
Let us defer how to construct a purification of a nonpure
state to the end of this section.

A. Modular theory and relative entropy

We assume we have a complex Hilbert space H with
inner product hf; gi ¼ w2ðf; gÞ. In other words, we are
assuming for now that the state is pure. Let us call its
(bosonic) Fock space ΓðHÞ. We have a representation of
the CCRðK; σÞ algebra on the Fock space ΓðHÞ. Indeed,
WðfÞ acts on ΓðHÞ as VðfÞ:

VðfÞe0 ¼ e−
1
2
hf;fief; f ∈ H; ð7Þ

with

ef ≔ 1 ⊕ f ⊕
1ffiffiffiffi
2!

p f ⊗ f ⊕ � � � : ð8Þ

Calling Ω ≔ e0 the vacuum vector,

ðΩ; VðfÞΩÞ ¼ e−
1
2
hf;fi ¼ ωðWðfÞÞ: ð9Þ

We can define the local algebras associated with a given
real-linear subspace H ⊂ H:

RðHÞ ≔ fVðfÞ; f ∈ Hg00: ð10Þ

It turns out that Ω is cyclic (respectively, separating) for
RðHÞ if and only ifH is cyclic (respectively, separating).H
is cyclic ifH þ iH ¼ H while separating ifH ∩ iH ¼ 0. If
H is also closed, it is called a standard subspace.
The Tomita operator S associated with RðHÞ (and Ω) is

defined by (the closure of)

SVðfÞΩ ¼ VðfÞ�Ω; VðfÞ ∈ RðHÞ: ð11Þ

The relative Tomita operator SΩ0;Ω associated with RðHÞ is
defined by (the closure of)

SΩ0;ΩVðfÞΩ ¼ VðfÞ�Ω0 ð12Þ

with polar decomposition

SΩ0;Ω ¼ JΩ0;ΩΔ
1=2
Ω0;Ω: ð13Þ

For some algebra RðHÞ and cyclic and separating states
ω and ω0, Araki’s relative entropy is defined as

SAðωjjω0Þ ¼ −ðΩ; logΔΩ0;ΩΩÞ: ð14Þ

This is hard to compute for generic cases; however, it
simplifies considerably for coherent states [19], namely
when Ω0 ¼ VðfÞΩ, and we shall call the corresponding
algebraic state ωf. To see this, we first need to introduce a
modular theory for H ⊂ H, with H standard, follow-
ing [20]. The analogous Tomita operator is defined by
the closure of SHðf þ igÞ ¼ f − ig, and its polar decom-
position is
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SH ¼ JHΔ
1=2
H : ð15Þ

Then, the entropy of a vector f ∈ H with respect to H is
defined by

SHðfÞ ≔ −hf; logΔHfi: ð16Þ

Actually, in [5] it was generalized for f ∈ H ∩ DomðKHÞ
that

SHðfÞ ≔ −hf; PH logΔHfi ¼ σðf; PHiKHfÞ; ð17Þ

where

KH ≔ − logΔH ¼ i
d
du

Δiu
H

����
u¼0

ð18Þ

is the one-particle modular Hamiltonian and where
PH∶ H þH0 → H is the cutting projector and we are
assuming that H is factorial, namely H ∩ H0 ¼ 0. Here
H0 is the symplectic complement of H. In that work they
showed that Araki’s relative entropy (14), between a
coherent state VðfÞΩ and a pure state Ω, is nothing but
the entropy of the vector f ∈ H ∩ DomðKHÞ:

SðωfjjωÞ ¼ σðf; PHiKHfÞ: ð19Þ

Wewill take advantage of this result to compute the relative
entropy by working exclusively at the level of the one-
particle Hilbert space H.

B. Purification of ω

Since we are interested in computing the relative entropy
in the case that ω is a thermal state, and since (19) is valid
for pure states, we need to work with a purification of ω.
This can be achieved by a procedure we recall in this
subsection, following [15] (see also [18]).
By means of (6) we can get [21] a complex structure on

K⊕ ≔ K ⊕ K:

i⊕ ¼
�

−D C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

p

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

p
D

�
: ð20Þ

Let us call H⊕ the complexification of K⊕. The complex
inner product is given by

h·; ·i⊕ ¼ τ⊕ð·; ·Þ þ iσ⊕ð·; ·Þ; ð21Þ

with τ⊕ ≔ τ ⊕ τ and σ⊕ð·; ·Þ ¼ τ⊕ð·;−i⊕·Þ. This inner
product reduces to w2 on K ≃K ⊕ 0:

hf ⊕ 0; g ⊕ 0i⊕ ¼ τðf; gÞ þ iσðf; gÞ ¼ w2ðf; gÞ: ð22Þ

We have

CCRðK; σÞ ⊂ CCRðK⊕; σ⊕Þ: ð23Þ

Similarly, for closed subspaces H ⊂ K,

CCRðH; σÞ ⊂ CCRðK; σÞ: ð24Þ

And most importantly on the CCRðK; σÞ algebra,

ω⊕ðWðf ⊕ 0ÞÞ ¼ e−
1
2
τ⊕ðf⊕0;f⊕0Þ ¼ ωðWðfÞÞ; ð25Þ

which justifies why the pure state ω⊕ of the CCRðK⊕; σ⊕Þ
algebra is a purification of ω.
The relative entropy for nonpure states associated with

RðHÞ, with H ≃H ⊕ 0 the standard and factorial subspace
of H⊕ reads [15]

SRðHÞðωfjjωÞ ¼ σ⊕ðf; PHi⊕KHfÞ;
f ∈ K ⊕ 0 ∩ DomðKHÞ: ð26Þ

In [15] a more general expression was obtained for other
subspaces. We will not need this since for the Uð1Þ model
the subspace associated with the bounded interval is
standard and factorial as we will show. Note that in (26)
the modular Hamiltonian KH is associated with the
modular operator that acts on the larger space H⊕ while
PH is the real-linear cutting projector onto H ⊕ 0.

III. THE CHIRAL BOSON CURRENT

We are interested in applying all the above to the case of
a free chiral boson. More precisely, we consider the current
usually denoted ϕ0ðxÞ. In the smeared version, the classical
theory is defined by the symplectic space of compactly
supported real functions K ¼ C∞

c ðRÞ with symplectic
structure

σðf; gÞ ¼
Z
R
fðxÞg0ðxÞdx: ð27Þ

As reviewed in the previous section, we have a CCRðK; σÞ
algebra associated with ðK; σÞ. To proceed, we need to
define a quasifree state by means of a positive symmetric
bilinear form τ. We start with the vacuum state that we will
denote ω and then move on to a thermal state ωβ.

A. The vacuum case

The vacuum state is defined by

τðf; gÞ ¼ −
1

π
PV
Z
R2

dxdy
fðxÞgðyÞ
ðx − yÞ2 ¼ ðf;Hg0ÞL2 : ð28Þ

Here PV denotes the principal value integral and H the
Hilbert transform. It is pure since D ¼ −H, which is
unitary or equivalently D ¼ −isgnðpÞ in momentum
space [22]; therefore the complexification described in

RELATIVE ENTROPY OF AN INTERVAL FOR A MASSLESS … PHYS. REV. D 107, 125016 (2023)

125016-3



the previous section can be applied directly to K, and we
obtain the complex inner product

hf; gi ¼ −
1

π

Z
R2

dxdy
fðxÞgðyÞ

ðx − y − iϵÞ2
¼ ðf;Hg0ÞL2 þ iσðf; gÞ

¼ 1

π

Z
∞

0

f̂ðpÞ�ĝðpÞpdp; ð29Þ

which enables one to establish an isomorphism with
H ≃ L2ðRþ; pdpÞ. This is the vacuum one-particle
Hilbert space. We will mostly work in the coordinate space.
An important role in this work is played by the

PSLð2;RÞ symmetry of the model. The unitary represen-
tation on H is given by

UðgÞfðxÞ ¼ fðg−1 · xÞ ð30Þ

with an element of the group g acting on the coordinate x by
linear fractional transformations:

g · x ¼ axþ b
cxþ d

; g ∈ PSLð2;RÞ: ð31Þ

We have three one-parametric subgroups related to the
KAN decomposition of PSLð2;RÞ:

rðθÞ ¼
�

cos θ
2

sin θ
2

− sin θ
2

cos θ
2

�
; δðsÞ ¼

�
e

s
2 0

0 e−
s
2

�
;

τðtÞ ¼
�
1 t

0 1

�
; ð32Þ

which we will refer to as rotation, dilation, and translation
subgroups, respectively. For example, the dilation-trans-
lation subgroup acts as

UðτðtÞÞfðxÞ¼ fðx− tÞ; UðδðsÞÞfðxÞ¼ fðe−sxÞ: ð33Þ

Note that the generator of translations P defined by
UðτðtÞÞ ¼ eitP is positive. This is most easily seen in
momentum-space with the convention of footnote V.
Now we can discuss the modular theory of standard

subspaces of H. Consider the subspaces HðIÞ ¼
C∞
c ða; bÞ ∈ H, which are standard and factorial [20].

Since the above representation has positive P, the modular
evolution on HðRþÞ is (Theorem 3.3.1 of [20])

Δiu
ð0;∞Þ ¼ Uðδð−2πuÞÞ; u ∈ R: ð34Þ

This can be seen by checking that FðuÞ ≔ hg;Δiufi admits
an analytic continuation to the strip −1 < ImðuÞ < 0 and
that the KMS property at temperature −1 is satisfied:

hΔiu
ð0;∞Þf; gi ¼ hg;Δiðu−iÞ

ð0;∞Þ fi: ð35Þ

By covariance UðgÞHðIÞ ¼ Hðg · IÞ we have

Δiu
I ¼UðḡÞ−1Δiu

ð0;∞ÞUðḡÞ; u∈R; ḡ · I¼Rþ: ð36Þ

Note that ḡ is defined modulo multiplication by a dilation
on the left, but this does not affect Δiu

I .

1. The interval ð−∞;tÞ
For instance, by considering g a rotation in π followed by

a translation of t,

Δiu
ð−∞;tÞfðxÞ ¼ fðe−2πuðx − tÞ þ tÞ: ð37Þ

We can compute then the modular Hamiltonian

Kð−∞;tÞ ¼ i
d
du

Δiu
ð−∞;tÞ

����
u¼0

¼ 2πiðt − xÞ d
dx

: ð38Þ

And from here the relative entropy of a coherent state

SRðð−∞;tÞÞðωjjωfÞ ¼ Sð−∞;tÞðfÞ

¼ 2π

Z
t

−∞
ðt − xÞf0ðxÞ2dx: ð39Þ

Here f need not be localized in the interval ð−∞; tÞ [15].

2. The interval ða;bÞ
We can repeat what we have just done for an interval

I ¼ ða; bÞ. The first step is to find ḡ such that ḡ · I ¼ R−.
The idea is to first project I to the circle, forming an arc
ðθa; θbÞ. Then, we employ two symmetries (see Fig. 1). The
first one consists of a rotation that maps I to ð−∞; b0Þ,
which can be achieved by noticing that in the circle this is
just a rotation of magnitude −π − θa. Then, ð−∞; b0Þ is
mapped by a translation of magnitude b0 to R−.

FIG. 1. In the left, a generic interval ða; bÞ projected to the
circle. It is first mapped to ð−∞; b0Þ by a rotation of magnitude
−π − θa, as shown in the middle diagram. Then it is mapped by a
translation by b0 to R−, on the right.
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Having obtained such ḡ, we can compute the modular
evolution using (36),

Δiu
ða;bÞfðxÞ ¼ f

�
ae−2πuðb − xÞ þ bðx − aÞ
e−2πuðb − xÞ þ x − a

�
: ð40Þ

The modular Hamiltonian is

Kða;bÞ ¼
2πiðx − aÞðb − xÞ

b − a
d
dx

: ð41Þ

The last ingredient to compute the relative entropy is the
cutting projector PI associated with the interval I ¼ ða; bÞ.
Following the same lines in the proof of Proposition 4.2
in [15] one can see that PIKIfðxÞ ¼ χIðxÞKIfðxÞ where χI
is the characteristic function of the interval.
Proposition III.1. Let f ∈ C∞

c ðRÞ, then it holds
that PIKIfðxÞ ¼ χIðxÞKIfðxÞ.
Proof.—Given f ∈ C∞

c ðRÞ define the functions gðxÞ ¼
χIðxÞKIfðxÞ and gcðxÞ ¼ χIcðxÞKIfðxÞ, which are piece-
wise-differentiable functions so their Fourier transforms
decay at least as p−2 for large p and

kgk2τ ¼
1

π
ℜ
Z

∞

0

jĝðpÞj2pdp < ∞;

then g ∈ H and also gc ∈ H. Moreover, σðgc;φÞ ¼ 0 for all
φ ∈ C∞

c ðIÞ because suppðgcÞ ⊆ Ic, and then by continuity
of σ (with respect to the topology induced by τ), gc∈HðIÞ0.
Similarly one can see that g ∈ HðIÞ, and therefore,
as HðIÞ is factorial, PIKIfðxÞ ¼ PIðgðxÞ þ gcðxÞÞ ¼
gðxÞ ¼ χIðxÞKIfðxÞ, which completes the proof. ▪
Finally the relative entropy is

SRðIÞðωjjωfÞ ¼ SIðfÞ

¼ 2π

Z
b

a

ðx − aÞðb − xÞ
b − a

f0ðxÞ2dx: ð42Þ

It is translation invariant, in the sense that SIðfÞ ¼
Sτ·Iðf ∘ τ−1Þ. Is is also immediate to see that, keeping
the center c ¼ ðaþ bÞ=2 of the interval fixed, it is
increasing [23] with L ¼ ðb − aÞ: d

dL SIðLÞðfÞ > 0.
Interestingly, the relative entropy (42) satisfies a

Bekenstein-like bound [24]

SIðfÞ ≤ π
L
2

Z
b

a
f0ðxÞ2dx≕ π

L
2
EðfÞ ð43Þ

and a QNEC-like bound [25]

S00I ≔
d2

dL2
SIðLÞðfÞ

¼ π

2
ðf0ðbÞ2 þ f0ðaÞ2Þ − 4π

L3

Z
b

a

�
x −

aþ b
2

�
2

f0ðxÞ2dx

≥ −
4π

L3

Z
b

a

�
x −

aþ b
2

�
2

f0ðxÞ2dx: ð44Þ

The QNEC, when stated in terms of the relative entropy,
reads S00ðλÞ > 0, with the understanding that λ continu-
ously labels nested spacetime regions. However, in (44) we
see a violation of the QNEC, which was anticipated in [15].
What (44) says is that to have a large violation of the
QNEC, a considerable amount of energy must be concen-
trated near the boundaries of the interval (note also that
this negative bound can be saturated). Similarly, the
Bekenstein-like bound (43) implies that to make a coherent
state largely distinguishable from the vacuum, a consid-
erable amount of energy needs to be placed in the interval.

B. The thermal case

We now turn our attention to thermal states. The under-
lying symplectic space is again ðC∞

c ðRÞ; σÞ with (27). The
thermal state is defined by

τβðf; gÞ ¼ −πPV
Z
R2

dxdy
fðxÞgðyÞ

β2 sinh2 ðπβ ðx − yÞÞ : ð45Þ

This gives the two-point function [16]

wðβÞ
2 ðf; gÞ ¼ −π

Z
R2

fðxÞgðyÞ
β2sinh2

�
π
β ðx − yÞ − iϵ

� dxdy: ð46Þ

Such a two-point function satisfies being translation invari-
ant and the KMS condition with respect to translations. The
real Hilbert space K ¼ L2ðRþ;

pdp
1−e−βpÞ is obtained after

completion of C∞
c ðRÞ with τβ [15]. Note that this thermal

state is the geometric KMS state of [26–28].
Since the state is not pure, we first proceed to “purify.” In

momentum space D ¼ −ið1 − e−βpÞ, which we use to
construct i⊕ [as given by (20)] and then H⊕, the complex-
ification of K ⊕ K.
There are operators acting as the dilation-translation

group [29] on the half-lines. For example, on HðR−Þ [16],

UβðδðsÞÞfðxÞ ¼ f

�
−

β

2π
log

�
1þ e−sðe−2πx

β − 1Þ
��

;

UβðτðtÞÞfðxÞ ¼ f
�
x −

β

2π
log
�
1þ 2πt

β
e
2πx
β

��
; ð47Þ

which satisfy
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UβðδðsÞÞUβðτðtÞÞUβðδð−sÞÞ ¼ UβðτðestÞÞ:

These operators leave wðβÞ
2 invariant, which implies that

U⊕
β ðf ⊕ 0þ i⊕g ⊕ 0Þ ≔ Uβf ⊕ 0þ i⊕Uβg ⊕ 0;

f; g ∈ K; ð48Þ
are unitaries ofH⊕ (we show this later on). Because of this,
the modular operator associated with HðR−Þ is given
by [15,30]

Δiu
HðR−Þ ¼ U⊕

β ðδð2πuÞÞ: ð49Þ
Note that this reduces to (37) for β → ∞.

1. The interval ð−∞;tÞ
From this last expression, and conjugating with the

(vacuum) translation UðtÞ as in (36), one can compute
the modular Hamiltonian associated with ð−∞; tÞ,

KHðð−∞;tÞÞfðxÞ ¼ βi⊕
�
1 − e

2π
β ðx−tÞ

�
f0ðxÞ; ð50Þ

and the relative entropy

SRðð−∞;tÞÞðωfjjωÞ ¼ β

Z
t

−∞

�
1 − e

2π
β ðx−tÞ

�
f0ðxÞ2dx; ð51Þ

which was first computed in [15]. Note that in Proposition
5.6 of that reference it is shown that the subspace
Hðð−∞; tÞÞ is both standard and factorial, so the relative
entropy can be computed with (19).

2. The interval ða;bÞ
Now we would like to approach the computation of the

relative entropy for the bounded interval I ¼ ða; bÞ. The
strategy is analogous to the vacuum case of the previous
subsection, but three issues are worth mentioning. First,
the subspaces HðIÞ must be shown to be standard and
factorial (which we do at the end). Second the assignment

I ↦ HðIÞ is not PSLð2;RÞ-covariant anymore, namely
UβðgÞHðIÞ ≠ Hðg · IÞ. However, we only need to find a ḡ
such that

UβðḡÞHðIÞ ¼ HðR−Þ; ð52Þ
and then we conjugate with this unitary the modular
operator of the negative real line (49) [in complete analogy
with (36)]. Explicitly,

Δiu
I ¼ UðḡÞ−1Δiu

ð−∞;0ÞUðḡÞ; u ∈ R: ð53Þ

Third, the attempt to construct ḡ as described in the
vacuum case (see Fig. 1) is not immediate to generalize,
since the unitary rotation is no longer available (the vacuum

rotation does not leave wðβÞ
2 invariant). In [16] the authors

find the unitary dilations and translations (47). We need to
find a unitary operator that works as a rotation, meaning
that it does not fix ∞ (in the real-line picture). We propose
that there exists αðθ; xÞ such that

UβðrðθÞÞfðxÞ ¼ fðαðθ; xÞÞ: ð54Þ
This means αðθ; xÞ should obey the following three
conditions:
(1) Identity: αð0; xÞ ¼ x.
(2) One-parameter

group: αðθ1; αðθ2; xÞÞ ¼ αðθ1 þ θ2; xÞ.
(3) wðβÞ

2 compatibility:

∂αðθ; xÞ
∂x

∂αðθ; yÞ
∂y

sinh

�
π

β
ðαðθ; xÞ − αðθ; yÞÞ

�
−2

¼ sinh

�
π

β
ðx − yÞ

�
−2
:

Of course, αðθ; xÞ also depends on β. The third condition,
together with (48), assures that the operator U⊕

β induced by
UβðrðθÞÞ is unitary. Let us see why:

hU⊕
β ðf1 ⊕ 0þ i⊕g1 ⊕ 0Þ; U⊕

β ðf2 ⊕ 0þ i⊕g2 ⊕ 0Þi⊕ ¼ hUβðrðθÞÞf1 ⊕ 0þ i⊕UβðrðθÞÞg1 ⊕ 0;

UβðrðθÞÞf2 ⊕ 0þ i⊕UβðrðθÞÞg2 ⊕ 0i⊕

¼ wðβÞ
2 ðf1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ þ wðβÞ

2 ðg1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ þ τβðf1 ∘ αðθ; ·Þ;−Dg2 ∘ αðθ; ·ÞÞ
þ iτβðf1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ þ τβð−Dg1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ − iτβðg1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ

¼ wðβÞ
2 ðf1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ þ wðβÞ

2 ðg1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ − σðf1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ
þ iτβðf1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ þ σðg1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ − iτβðg1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ

¼ wðβÞ
2 ðf1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ þ wðβÞ

2 ðg1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ þ iwðβÞ
2 ðf1 ∘ αðθ; ·Þ; g2 ∘ αðθ; ·ÞÞ

− iwðβÞ
2 ðg1 ∘ αðθ; ·Þ; f2 ∘ αðθ; ·ÞÞ

¼ wðβÞ
2 ðf1; f2Þ þ wðβÞ

2 ðg1; g2Þ þ iwðβÞ
2 ðf1; g2Þ − iwðβÞ

2 ðg1; f2Þ
¼ hf1 ⊕ 0þ i⊕g1 ⊕ 0; f2 ⊕ 0þ i⊕g2 ⊕ 0i⊕; ð55Þ
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where in the fifth equality we used the wðβÞ
2 -compatibility

condition.
To find αðθ; xÞ, there is a hint coming from the

PSLð2;RÞ product rules:

δðsÞrðθÞδð−sÞ ¼ rð2 arctan ðe−sλÞÞδ
�
log

�
1þ e−2sλ2

1þ λ2

	�

× τ

�
2 sinhðsÞλ
1þ e−2sλ2

�
;

where λ ¼ tan θ
2
. This translates, by means of (47) and (54),

into a functional equation

ðes þ e−sλ2Þðe2π
β αðθ;ϕðs;xÞÞ − 1Þ

¼ ð1þ λ2Þðe2π
β αð2 arctanðe−sλÞ;xÞ − 1Þ − 4π

β
sinhðsÞλ ð56Þ

with

ϕðs; xÞ ¼ β

2π
log
�
1þ e−sðe2πx

β − 1Þ
�
: ð57Þ

It is convenient to work with Aðλ; xÞ defined by

αðθ; xÞ ¼ β

2π
log ½1þ Aðλ; xÞ�: ð58Þ

Differentiating with respect to s and setting s ¼ 0 we get a
partial differential equation

λ2 − 1

λ2 þ 1
Aðλ; xÞ þ β

2π

�
1 − e−

2π
β x
�
∂xAðλ; xÞ

¼ λ∂λAðλ; xÞ þ
4π

β

λ

λ2 þ 1
; ð59Þ

which has infinite solutions of the form

Aðλ; xÞ ¼ 2π

β

�
−λþ 1þ λ2

λ
B
�
λ
�
e
2π
β x − 1

��	
ð60Þ

for any function B. From αð0; xÞ ¼ x we get

BðzÞ ∼ β

2π
z; z → 0: ð61Þ

From this and condition 2 above (group property) evaluated
at x ¼ 0 we get

BðzÞ ¼ z
zþ 2π

β

: ð62Þ

Now plugging this form of B into (60) and taking into
account (54) and (58), UβðrðθÞÞf ¼ fðαðθ; ·ÞÞ can be

shown to be compatible with wðβÞ
2 (condition 3 above)

where

αðθ; xÞ ¼ β

2π
log ½1þ Aðλ; xÞ�;

Aðλ; xÞ ¼ 2π

β

e
2π
β x − 1 − 2π

β λ

λ
�
e
2π
β x − 1

�
þ 2π

β

: ð63Þ

Let us see this: first of all we rewrite the wðβÞ
2 -compatibility

condition

sinh2
�
π

β
ðαðθ; xÞ − αðθ; yÞÞ

�

¼ ∂αðθ; xÞ
∂x

∂αðθ; yÞ
∂y

sinh2
�
π

β
ðx − yÞ

�
:

Astraightforward computation [using e
π
βαðθ;xÞ¼ð1þAðλ;xÞÞ12]

of the square root of the left-hand side gives

sinh
�
π

β
ðαðθ; xÞ − αðθ; yÞÞ

�

¼ 1

2

�ð1þ Aðλ; xÞÞ12
ð1þ Aðλ; yÞÞ12 −

ð1þ Aðλ; yÞÞ12
ð1þ Aðλ; xÞÞ12

	
:

Squaring this expression and with (63),

sinh2
�
π

β
ðαðθ; xÞ − αðθ; yÞÞ

�

¼ 1

4

�
1þ Aðλ; xÞ
1þ Aðλ; yÞ −

1þ Aðλ; yÞ
1þ Aðλ; xÞ − 2

	

¼ Yðλ; xÞYðλ; yÞsinh2
�
π

β
ðx − yÞ

�
; ð64Þ

where

Yðλ;xÞ¼ 4π2βðλ2þ1Þe2πx
β

ðβλðe2πx
β −1Þþ2πÞðβðβλþ2πÞe2πx

β −ðβ2þ4π2ÞλÞ
:

But it turns out that a straightforward computation gives

∂α

∂x
ðθ; xÞ ¼ Yðλ; xÞ;

which means that the wðβÞ
2 -compatibility condition holds.

Having found a unitary rotation, we can implement the
first transformation of Fig. 1 with Uβðrðθ̃ÞÞ where

θ̃ ¼ 2 arctan

�
−
2π

β

e
2πa
β

e
2πa
β − ð2πβ Þ2 − 1

�
; ð65Þ
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and taking into account that the corresponding unitary
U⊕

β ðrðθÞÞ on H⊕ is defined by (48). This rotation sends a

to −∞ and b to b0 ¼ αðθ̃; bÞ, so it maps HðIÞ to
Hðð−∞; b0ÞÞ. Then, by a unitary vacuum translation

Uð−b0Þ, Hðð−∞; b0ÞÞ is mapped to HðR−Þ as desired.
The unitary UðḡÞ is the composition of these two unitary
transformations.
From (53), the modular evolution on HðIÞ ⊕ 0 is

Δiu
ða;bÞfðxÞ ⊕ 0 ¼ f

�
β

2π
log

� sinhðπuÞeπ
βðaþb−xÞ − sinhðπβ ðb − aÞ þ πuÞeπx

β

− sinhðπuÞe−π
βðaþb−xÞ þ sinhð− π

β ðb − aÞ þ πuÞe−πx
β

�	
⊕ 0: ð66Þ

By differentiating, the modular Hamiltonian is

Kða;bÞfðxÞ⊕ 0

¼ 2βi⊕
sinhðπβ ðx−aÞÞsinhðπβ ðb−xÞÞ

sinhðπβ ðb−aÞÞ f0ðxÞ⊕ 0: ð67Þ

It coincides with (50) in the limit a → −∞ and with (41) for
β → ∞. Again, as in the vacuum case now one can still see
that PIKIfðxÞ ¼ χIðxÞKIfðxÞ. The proof is similar to the
one we showed above; the only difference is that this time
we have to see that g has a finite τβ norm, but the same
argument works. Given f ∈ C∞

c ðRÞ, define once again the
functions gðxÞ ¼ χIðxÞKIfðxÞ and gcðxÞ ¼ χIcðxÞKIfðxÞ.
These are piecewise-differentiable functions so its Fourier
transform is bounded, decays at least like p−2 for large p,
and then

kgk2τβ ¼
1

π
ℜ
Z

∞

0

jĝðpÞj2p
1 − e−βp

dp < ∞:

Finally, the relative entropy is given by

SRðIÞðωfjjωÞ

¼ 2β

Z
b

a

sinhðπβ ðx−aÞÞsinhðπβ ðb−xÞÞ
sinhðπβ ðb−aÞÞ f0ðxÞ2dx; ð68Þ

which is our main result. This relative entropy coincides,
modulo some factor, with the modular Hamiltonian in the
cutoff theory [Eq. (4.2) in [31] ]. This can be formally
understood by first noticing that the relative entropy can be
related to a difference of mean values of the modular
Hamiltonian K and a difference of entanglement entropies,

Sðω2jjω1Þ ¼ ðhK1i2 − hK1i1Þ − ðS2 − S1Þ: ð69Þ

In our case the last parentheses is zero since one state is a
unitary applied to the other state (in the vector representa-
tion). This explains the connection of (68) to the modular
Hamiltonian of [31]. Since the arguments of [31] are of
general validity within CFTs, and taking into account
the above discussion, it is reasonable to expect that in
general (68) will hold with f0ðxÞ2 replaced by the classical

energy density T00ðxÞ of the theory. We will confirm this
expectation in the next section for the massless scalar QFT
in 1þ 1 dimensions.
Identically to the vacuum case (42), the relative entropy

(68) is translation invariant and with a positive derivative
with respect to the length L of the interval, keeping the
center ðaþ bÞ=2 fixed. There is also a Bekenstein-like
bound

Sða;bÞðfÞ ≤ π
L
2

�tanh ðπβ L
2
Þ

π
β
L
2

�Z
b

a
f0ðxÞ2dx

≤ π
L
2

Z
b

a
f0ðxÞ2dx; ð70Þ

and a QNEC-like bound [32]

d2

dL2
SIðLÞðfÞ ≥ −

π2

β sinh3ðL π
βÞ
Z

b

a

��
cosh

�
π

β
L

�
− 1

�
2

þ 2 sinh2
�
π

β
ðx− cÞ

��
1þ cosh2

�
π

β
L

��	
× f0ðxÞ2dx; ð71Þ

where c ¼ ðaþ bÞ=2. We shall discuss this expression
later on.
Before concluding this section we have to show that

HðIÞ is standard and factorial so the machinery we have
been using, and in particular (19), is valid. We do this in the
following Proposition.
Proposition III.3. HðIÞ is standard and factorial.
Proof.—The condition of separabilityHðIÞ∩ i⊕HðIÞ¼0

follows exactly as in Proposition 5.6 of [15] (or
with the logic for what follows). The cyclicity,
ðHðIÞ þ i⊕HðIÞÞ⊥ ¼ 0, can be shown to hold using the
unitary rotation (54). Given any Hðða; bÞÞ there is an
associated subspace Hb0 ≔ Hðð−∞; b0ÞÞ ¼ U⊕

β ðrðθ̃ÞÞHðIÞ
obtained by a rotation in θ̃ given by (65) and explained after
that equation. The subspace Hb0 is, by Proposition 5.6
of [15], standard and factorial. It is immediate to show that
0¼ ðHb0 þ i⊕Hb0 Þ⊥ ¼ U⊕

β ðrðθ̃ÞÞðHðIÞ þ i⊕HðIÞÞ⊥ which
implies that HðIÞ is cyclic. Similarly, we conclude
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that HðIÞ is factorial since 0 ¼ Hb0 ∩ H0
b0 ¼

U⊕
β ðrðθ̃ÞÞðHðIÞ ∩ HðIÞ0Þ. ▪

IV. THE FREE MASSLESS BOSON IN 1+ 1
DIMENSIONS AT FINITE TEMPERATURE

In this section we take advantage of the quantities we
have computed for the chiral boson and combine the
two chiralities to obtain the modular flow, modular
Hamiltonian, and relative entropy on the interval ða; bÞ
for the massless free boson in two dimensions Φ.
First of all, let us define x� ¼ t� x, and j�ðx�Þ ¼

∂�ϕ�ðx�Þ are the (nonsmeared) chiral currents of the
previous section (below we give further details). In this
section we will use � symbols to denote copies of the
objects of the chiral case (with the exception of the
symplectic structure σ and the bilinear form τ). So, for
example, H now refers to a Hilbert space of the two-
dimensional model, and H� are Hilbert spaces of the
chiral case.
The symplectic space of the massless boson in two

dimensions is [8,33]

K ¼ C∞
c ðRÞ ⊕ _C∞

c ðRÞ ð72Þ

with symplectic structure

σ2Dððf1; g1Þ; ðf2; g2ÞÞ ¼
1

2

Z
R
dxðg1ðxÞf2ðxÞ− f1ðxÞg2ðxÞÞ:

ð73Þ

Here the pair ðf; gÞ ∈ K should be thought as the initial
conditions Φð0; xÞ ¼ fðxÞ, _Φð0; xÞ ¼ gðxÞ of a solution
Φðt; xÞ of the Klein-Gordon equation. In general,

Φðt; xÞ ¼ ϕþðxþÞ þ ϕ−ðx−Þ; ϕ� ∈ C∞
c ðRÞ: ð74Þ

Then, the symplectic structure (73) can be written as

σ2Dððf1; g1Þ; ðf2; g2ÞÞ

¼ −
Z
R
dxðϕþ

1 ðxÞϕþ0
2 ðxÞ þ ϕ−

1 ðxÞϕ−0
2 ðxÞÞ: ð75Þ

The lack of mixing between the chiralities implies that there
is a symplectic isomorphism [34] χ that maps ðK; σ2DÞ to
ðK− ⊕ Kþ;−ðσ ⊕ σÞÞ, with the inverse given by

χ−1
�
ϕþ
ϕ−

�
¼
�
ϕþðxÞ þ ϕ−ð−xÞ
ϕ0þðxÞ þ ϕ0

−ð−xÞ

�
¼
�
fðxÞ
gðxÞ

�
: ð76Þ

In turn, this implies that the CCRðK; σ2DÞ algebra is
equivalent to the tensor product

CCRðK−;−σÞ ⊗ CCRðKþ;−σÞ;

with σ as in (27). More precisely, we identify these CCR-
algebras by

Wðϕ−ðxÞÞ ⊗ WðϕþðxÞÞ
↦ WððϕþðxÞ þ ϕ−ð−xÞ;ϕ0þðxÞ þ ϕ0

−ð−xÞÞÞ: ð77Þ

This is, in fact, a � isomorphism of the algebras. The
change in sign in the symplectic structure σ with respect to
the previous section requires a change in sign in the
complex structure [35], and these two signs end up
compensating each other in the relative entropy [36] (19).
Given a positive symmetric bilinear form τ2D on K and

its corresponding quasifree state on CCRðK; σ2DÞ, by the
isomorphisms mentioned above we get a quasifree product
state on CCRðKþ; σÞ ⊗ CCRðK−; σÞ with the same τ for
each chiral copy. Therefore the vacuum one-particle Hilbert
space is

H ≃H− ⊕ Hþ; ð78Þ

where H� are copies of the chiral boson Hilbert space
L2ðRþ; pdpÞ. The isomorphism (76) is antilinear, since in
momentum space (or coordinate space, using properties of
the Hilbert transform H) it is direct to show that

χ−1i1 ¼ −i2χ−1; ð79Þ

where i1 is the complex structure of the chiral boson and i2
is the complex structure in [7,8]

i2 ≔
�

0 jpj−1
−jpj 0

�
: ð80Þ

Therefore,

τ2DðΦ;ΨÞ ¼ σ2DðΦ; i2ΨÞ
¼ −σðϕþ; ðχi2ΨÞþÞ − σðϕ−; ðχi2ΨÞ−Þ
¼ −τðϕþ;−i1ðχi2ΨÞþÞ − τðϕ−;−i1ðχi2ΨÞ−Þ
¼ τðϕþ; i1ðχi2ΨÞþÞ þ τðϕ−; i1ðχi2ΨÞ−Þ
¼ τðϕþ;ψþÞ þ τðϕ−;ψ−Þ: ð81Þ

Analogously, for the thermal state we have

H⊕ ≃H⊕
− ⊕ H⊕

þ ð82Þ

with H⊕
� two copies of the purified Hilbert space that we

constructed in the previous section (which was called H⊕,
and we hope there is no confusion). The Fock spaces are
related as

ΓðH⊕Þ ≃ ΓðH⊕
− Þ ⊗ ΓðH⊕

þÞ: ð83Þ
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From now on we identify all these spaces with the
appropriate isomorphisms.

A. Modular flow and modular Hamiltonian

Let us consider a causal diamond with base ða; bÞ on the
time-zero surface. Its corresponding standard subspace is
Hð◊Þ of pairs ðf; gÞ ∈ K supported on the interval ða; bÞ or
equivalently Klein-Gordon (KG) fields Φ with initial
conditions given by ðf; gÞ. Note that such a diamond is
described in null coordinates as ðx−; xþÞ ∈ ðð−b;−aÞ;
ða; bÞÞ. Right wedges are obtained in limit b → ∞ and
similarly a → −∞ for left wedges.
At the one-particle level, we have

KHð◊Þ ≃ KHðð−b;−aÞÞ ⊕ KHðða;bÞÞ: ð84Þ

This follows from the fact that for Φ;Ψ ∈ Hð◊Þ,

SHð◊ÞðΦþ iΨÞ ¼ Φ − iΨ

¼ ϕþ − iψþ þ ϕ− − iψ−

¼ SHðð−b;−aÞÞðϕ− þ iψ−Þ
þ SHðða;bÞÞðϕþ þ iψþÞ; ð85Þ

implying that SHð◊Þ ≃ SHðð−b;−aÞÞ ⊕ SHðða;bÞÞ and then
ΔHð◊Þ ≃ ΔHðð−b;−aÞÞ ⊕ ΔHðða;bÞÞ. The modular evolution
in the diamond,

Δiu
Hð◊Þ ≃ Δiu

Hðð−b;−aÞÞ ⊕ Δiu
Hðða;bÞÞ; ð86Þ

which explicitly reads

�
Δiu

Hð◊Þ

�
f

g

�
⊕
�
0

0

�	
ðxÞ ¼

� ½Δiu
Hðð−b;−aÞÞϕ−�ð−xÞ þ ½Δiu

Hðða;bÞÞϕþ�ðxÞ
½Δiu

Hðð−b;−aÞÞϕ−�0ð−xÞ þ ½Δiu
Hðða;bÞÞϕþ�0ðxÞ

�
⊕
�
0

0

�
; ð87Þ

where ϕ� should be thought as given in terms of ðf; gÞ
using the isomorphism χ and the evolution of each chirality
is given in (66). A more intuitive presentation of the
modular flow is to show the geometric transformation of
the coordinates ðt; xÞ inside the diamond, as in Fig. 2.

B. Relative entropies and bounds

The relative entropy in two dimensions is the sum of the
relative entropies of the chiral copies, which follows from
(75) and (84). Before arriving to an explicit expression of
the relative entropies for different cases, we first find the
modular Hamiltonians.

1. The wedge

On a right wedge WRðaÞ with base ða;∞Þ, given (76)
and (84), we have the corresponding vacuum modular
Hamiltonian acting on the initial conditions

KHððWRðaÞÞ

�
f

g

�

¼
� ðKHðð−∞;−aÞÞϕ−Þð−xÞ þ ðKHðða;∞ÞÞϕþÞðxÞ
ðKHðð−∞;−aÞÞϕ−Þ0ð−xÞ þ ðKHðða;∞ÞÞϕþÞ0ðxÞ

�

¼ −2πi
� ð−aþ xÞϕ0

−ð−xÞ þ ðx − aÞϕ0þðxÞ
ðð−a − xÞϕ0

−Þ0ð−xÞ þ ððx − aÞϕ0þÞ0ðxÞ

�

¼ −2πi
� ð−aþ xÞϕ0

−ð−xÞ þ ðx − aÞϕ0þðxÞ
ðða − xÞϕ0

−ð−xÞ þ ðx − aÞϕ0þðxÞÞ0
�

¼ −2πi
� ðx − aÞgðxÞ
ððx − aÞf0ðxÞÞ0

�
; ð88Þ

where in the second line we made use of the antilinearity
between the chiral spaces H� and H. Then,

KHðWRðaÞÞ ¼ −2πi
�

0 x − a
d
dx ðx − aÞ d

dx 0

�
: ð89Þ

Plugging this modular Hamiltonian in (19),

SHðWRðaÞÞððf; gÞÞ ¼ 2π

Z
∞

a
ðx − aÞT00ðxÞdx; ð90Þ

with

T00ðxÞ ¼
1

2
ðf0ðxÞ2 þ gðxÞ2Þ ð91ÞFIG. 2. Modular flow for low temperature (left) and high

temperature (right).
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the classical energy density at t ¼ 0 of the KG fieldΦ. This
is the same result as that of [4], with a translation by a.
Similarly, for the thermal state we have

KðβÞ
HðWRðaÞÞ

�
f

g

�
⊕
�
0

0

�

¼ −βi⊕
� ð1 − e−

2π
β ðx−aÞÞgðxÞ

½ð1 − e−
2π
β ðx−aÞÞf0ðxÞ�0

�
⊕
�
0

0

�
; ð92Þ

where we have used (50) and (67) in the limit b → ∞. The
relative entropy on the wedge at finite temperature is then

SðβÞHðWRðaÞÞððf; gÞÞ ¼ β

Z
∞

a
ð1 − e−

2π
β ðx−aÞÞT00ðxÞdx: ð93Þ

Note that this expression is valid even for initial conditions
supported outside x > a, since the cutting projector in (19)
restricts the integral to the wedge [7]. The only restriction
on the initial conditions ðf; gÞ is that they belong to the
domain of the modular Hamiltonian (92).

2. The interval

Repeating the previous computations for the time-zero
interval ða; bÞ, we obtain for the vacuum

KHðða;bÞÞ

�
f

g

�
¼ −2πi

 ðb−xÞðx−aÞ
b−a gðxÞ

½ðb−xÞðx−aÞb−a f0ðxÞ�0

!
: ð94Þ

The vacuum relative entropy of a coherent state is

SHðða;bÞÞððf; gÞÞ ¼ 2π

Z
b

a

ðb − xÞðx − aÞ
b − a

T00ðxÞdx: ð95Þ

On the other hand, at finite temperature we have

Kβ
Hðða;bÞÞ

�
f

g

�
⊕
�
0

0

�

¼−2βi⊕

0
B@

sinhðπβðx−aÞÞsinhðπβðb−xÞÞ
sinhðπβðb−aÞÞ gðxÞ

½sinhð
π
βðx−aÞÞsinhðπβðb−xÞÞ
sinhðπβðb−aÞÞ f0ðxÞ�0

1
CA⊕

�
0

0

�
: ð96Þ

The relative entropy of a coherent state in the thermal state
representation is

SðβÞHðða;bÞÞððf; gÞÞ ¼ 2β

Z
b

a

sinh ðπβ ðx − aÞÞ sinh ðπβ ðb − xÞÞ
sinh ðπβ ðb − aÞÞ

× T00ðxÞdx: ð97Þ

This expression confirms, at least for this model, the
expectation that in a CFT the relative entropy of coherent
states on a finite interval has this form, where the

dependence on the model enters only in T00. Because of
this, the bounds obtained earlier for the chiral model also
hold in this case. The Bekenstein-like bound reads

Sða;bÞððf; gÞÞ ≤ π
L
2

�tanh ðπβ L
2
Þ

π
β
L
2

�Z
b

a
T00ðxÞdx

≤ π
L
2

Z
b

a
T00ðxÞdx; ð98Þ

while the QNEC-like bound is

d2

dL2
SIðLÞððf; gÞÞ

≥ −
π2

βsinh3ðL π
βÞ
Z

b

a

��
cosh

�
π

β
L

�
− 1

�
2

þ 2sinh2
�
π

β
ðx − cÞ

��
1þ cosh2

�
π

β
L

��	
× T00ðxÞdx: ð99Þ

V. CONCLUSIONS

We have extended the relative entropy on R− with T ≥ 0
of [15] to a bounded interval [see (68)]. To achieve this, we
found a unitary in the thermal Hilbert space implementing a
rotation. Such a unitary may turn out to be useful for other
related computations.
From the relative entropy (68) a Bekenstein-like bound

and a QNEC-like bound can be observed. There is,
however, a violation of the QNEC S00 > 0, and all of this
is in agreement with [15]. For the vacuum case, given an
energy E we can find a family of functions fn ∈ HðIÞ such
that S00I ðfnÞ given in (44) goes to zero (just concentrating
the energy density closer and closer around the center of the
interval), thus making the QNEC violation as small as
desired. On the contrary, in the thermal case this is not
possible because there is always a bound for the violation of
the QNEC given by

S00I ðfnÞ → −
π2

βsinh3ðL π
βÞ
�
cosh

�
π

β
L

�
− 1

�
2

E < 0

despite how the energy density is distributed [see (71)].
The computations in the context of a thermal Uð1Þ

current left a clear path to analyze the case of a thermal state
of the free massless boson in 1þ 1 dimensions restricted to
a causal diamond. In the last section we obtained the
modular Hamiltonian (96) and relative entropy (97) at finite
temperature in 1þ 1 dimensions, with analogous bounds as
in the chiral case. In principle most of these techniques
could be used for the massless boson in higher dimensions
and also the free massive boson in dþ 1 dimensions with
T > 0 [37]. In addition, it would be very interesting to
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extend the formalism to include noncoherent states,
although this seems a much more complicated affair.
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