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We compute Araki’s relative entropy associated with a bounded interval I = (a, b) between a thermal
state and a coherent excitation of itself in the bosonic U(1)-current model, namely the (derivative of the)
chiral boson. For this purpose we briefly review some recent results on the entropy of standard subspaces
and on the relative entropy of nonpure states such as thermal states. In particular, recently Bostelmann,
Cadamuro, and Del Vecchio have obtained the relative entropy at finite temperature for the unbounded
interval (—o0, 1), using previous results of Borchers and Yngvason, mainly a unitary dilation that provides
the modular evolution in the negative half-line. Here we find a unitary rotation in order to make use of the
full PSL(2,R) symmetries and obtain the modular group, the modular Hamiltonian, and the relative
entropy S of a bounded interval at finite temperature. Such relative entropy entails both a Bekenstein-like
bound and a QNEC-like bound, but violates S” > 0 (derivative with respect to the length of the interval,
with its center fixed). Finally, we extend the results to the free massless boson in 1 4 1 dimensions with

analogous bounds.
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I. INTRODUCTION

The relative entropy is a measure of the distinguish-
ability of two states. In quantum mechanics, for two density
matrices p and o it is defined as

S(plle) = Tr(plogp — plogo). (1)

If the system is bipartite, one can reduce each density
matrix to one of the partitions and compute the relative
entropy between the reduced density matrices. The counter-
part in Quantum Field Theory (QFT) would be to reduce
the states to a spacetime region. Intuitively, the smallest this
region is, the fewer operators one has at hand to character-
ize the states, and therefore the relative entropy decreases.
However, generic bounded regions of spacetime such as
causal diamonds are assigned a von Neumann algebra
which is a Type III factor, and these algebras have no trace-
class operators and there are no density matrices [1].
Nevertheless, the definition of the relative entropy (1)
can be suitably extended [2]: given two (normal and
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faithful) states @ and @’ of the von Neumann algebra A
associated with some region, with both states represented
on a Hilbert space by Q and ', the relative entropy is

Sa(ollo) = =(,log Ay o), (2)

where Ag (, is the relative modular operator (which is
defined in the next section). This is in sharp contrast with
the entanglement entropy that necessarily diverges due to
the generic UV behavior of correlations through the
boundary of the corresponding region [3].

Araki’s relative entropy (2) can be hard to compute in
general cases. Recently it has been computed in a number of
specific situations for coherent states acting on the vacuum
of the free scalar QFT: on a Rindler wedge [4—6], on a causal
diamond in spacetime dimension greater than 2 [7], and later
on the two-dimensional case [8]. In addition, in the bosonic
vacuum U(1)-current model (namely, a massless boson on a
light ray) the relative entropy of coherent states was
computed for a half-line in [9] and used to obtain the
analogous expression for (unbounded) regions of the null
plane for a free scalar in [10]. For similar results in free
fermionic Conformal Field Theories (CFTs), see [11]. For
interacting theories, as far as we know the only results
available correspond to coherent states in chiral
CFTs [12,13], while for free QFT in curved space-
times see [14].

All of the above computations compare the vacuum state
to a coherent excitation of itself (with the exception

Published by the American Physical Society
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of [14]). Recently in [15], among other things, the relative
entropy for a half-line in the thermal U(1)-current model
was computed. That is, a Kubo-Martin-Schwinger (KMS)
state of inverse temperature f# was compared to a coherent
excitation of itself, when restricted to a half-line. The fact
that the relative entropy was computed on the half-line is an
important point, since by general arguments its modular
operator had already been obtained in [16]. Even in the
vacuum case, one can see that to obtain the modular
operator for a bounded interval it is necessary to make
use of the full PSL(2, R) group of conformal transforma-
tions of the chiral boson theory (we will discuss this later in
detail).

The main goal of this article is to compute the relative
entropy of coherent states on a bounded interval / C R for
the thermal U(1)-current model and the free massless boson
at finite temperature in 1 4+ 1 dimensions restricted to a
causal diamond. We will find two bounds for each theory, a
Bekenstein-like bound and mainly a controlled violation of
the quantum null energy condition (QNEC), which was
already anticipated in [15].

II. PRELIMINARIES ON THE MODULAR
STRUCTURE OF THE WEYL ALGEBRA

Given a symplectic space (K,6) we get a canonical
commutation relations (CCR) algebra with relations

W)W (g)=eT"VIW(f+g). W(f) =W(=f). (3)
where f, g € K. We will refer to this algebra as CCR(/C, o).
A positive symmetric bilinear form z such that

o(f.9)* <z(f.f)t(g.9) 4)

defines a quasifree state by [17]
O(W(F)) = e ¥ (5)

with two-point function w,(f,g) = z(f,g) + ic(f,g).
However, the state may not be pure. It is pure if and only
if w, is a complex inner product. More precisely, from (4) it
can be shown that a contraction D exists such that

o(f.g9) = =(f. Dg). (6)

Because of the nondegeneracy of o, D is invertible and
D = C|D| is its polar decomposition. C is a complex
structure and the state w is pure if and only if w, is a
complex inner product, bilinear with respect to the complex
structure C. This is actually equivalent to the statement that
w is pure if and only if |D| = 1 (see [18] for further details).
Let us defer how to construct a purification of a nonpure
state to the end of this section.

A. Modular theory and relative entropy

We assume we have a complex Hilbert space H with
inner product (f,g) = wy(f,g). In other words, we are
assuming for now that the state is pure. Let us call its
(bosonic) Fock space I'(H). We have a representation of
the CCR(K, 6) algebra on the Fock space I'(H). Indeed,
W(f) acts on I'(H) as V(f):

V(f)e® = emstfflefl, feH, (7)
with
1
f = i e
/=10 ® SO B (8)
Calling Q := ¢° the vacuum vector,
(Q.V(HQ) = e = w(W(f)). )

We can define the local algebras associated with a given
real-linear subspace H C H:

R(H) ={V(f);f € H}". (10)

It turns out that Q is cyclic (respectively, separating) for
R(H) if and only if H is cyclic (respectively, separating). H
iscyclicif H 4+ iH = 'H while separating if H N iH = 0. If
H 1is also closed, it is called a standard subspace.

The Tomita operator S associated with R(H) (and Q) is
defined by (the closure of)

SV(HQ=V(f'Q  V(f)eRH). (1)

The relative Tomita operator Sgy q associated with R(H) is
defined by (the closure of)

SaaV(f)Q= V() (12)

with polar decomposition

Soo = Jooly - (13)

For some algebra R(H) and cyclic and separating states
w and o', Araki’s relative entropy is defined as

Sa(wl|o’) = —(Q.log Ag oQ). (14)

This is hard to compute for generic cases; however, it
simplifies considerably for coherent states [19], namely
when Q' = V(f)Q, and we shall call the corresponding
algebraic state . To see this, we first need to introduce a
modular theory for H C 'H, with H standard, follow-
ing [20]. The analogous Tomita operator is defined by
the closure of Sy(f + ig) = f — ig, and its polar decom-
position is
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Sy = JyAl? (15)

Then, the entropy of a vector f € H with respect to H is
defined by

Su(f) =—(f,log Ay f). (16)

Actually, in [5] it was generalized for f € H N Dom(K )
that

Su(f) =—(f,PylogApf) = o(f, PuiKyf), (17)

where

d .
Ky:=—logAy =i— Al 18
H Og Ay ldu H o (18)

is the one-particle modular Hamiltonian and where
Py: H+ H — H is the cutting projector and we are
assuming that H is factorial, namely H N H' = 0. Here
H' is the symplectic complement of H. In that work they
showed that Araki’s relative entropy (14), between a
coherent state V(f)Q and a pure state Q, is nothing but
the entropy of the vector f € H N Dom(Kpy):

S(ofllw) = o(f. PyiKyf). (19)

We will take advantage of this result to compute the relative
entropy by working exclusively at the level of the one-
particle Hilbert space H.

B. Purification of w

Since we are interested in computing the relative entropy
in the case that w is a thermal state, and since (19) is valid
for pure states, we need to work with a purification of .
This can be achieved by a procedure we recall in this
subsection, following [15] (see also [18]).

By means of (6) we can get [21] a complex structure on
K® =K & K:

CV1+D? > . (20)

i® = ( P
CV1+D? D

Let us call H® the complexification of X®. The complex
inner product is given by

()8 = 1®(.) +i6®(-, ), (21)

with 7% :=7@® 7 and 6%(-,-) = ¢®(-,—i®-). This inner
product reduces to w, on K ~ C & 0:

(f®0,900)® =1(f,g) +io(f.9) =wa(f.9). (22)

We have

CCR(K, ) c CCR(K®,69). (23)
Similarly, for closed subspaces H C K,
CCR(H,0) Cc CCR(K,0). (24)
And most importantly on the CCR(/C, 5) algebra,
GB(W(f @ 0)) = e U070 — o(W(F)),  (25)

which justifies why the pure state ®® of the CCR(K®, 69)
algebra is a purification of .

The relative entropy for nonpure states associated with
R(H), with H ~ H @ 0 the standard and factorial subspace
of H® reads [15]

Sk (@fl||@) = o®(f, Pyi®Kyf),
f €K ®0nDom(Ky). (26)

In [15] a more general expression was obtained for other
subspaces. We will not need this since for the U(1) model
the subspace associated with the bounded interval is
standard and factorial as we will show. Note that in (26)
the modular Hamiltonian K, is associated with the
modular operator that acts on the larger space H® while
Py is the real-linear cutting projector onto H & 0.

III. THE CHIRAL BOSON CURRENT

We are interested in applying all the above to the case of
a free chiral boson. More precisely, we consider the current
usually denoted ¢’(x). In the smeared version, the classical
theory is defined by the symplectic space of compactly
supported real functions K = C®(R) with symplectic
structure

o(f.g) = / F)g ()dx. 27)

As reviewed in the previous section, we have a CCR(K, o)
algebra associated with (KC,0). To proceed, we need to
define a quasifree state by means of a positive symmetric
bilinear form 7. We start with the vacuum state that we will
denote w and then move on to a thermal state w.

A. The vacuum case

The vacuum state is defined by

(g =2 [ axa ) (55 09
7 Jre (x-)

Here PV denotes the principal value integral and § the

Hilbert transform. It is pure since D = —$, which is

unitary or equivalently D = —isgn(p) in momentum

space [22]; therefore the complexification described in
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the previous section can be applied directly to C, and we
obtain the complex inner product

_ _%/dedy( f(x)9(y)

x —y—ie)?

(f+9)
= (f.99)> +io(f.9)
/ F(p)*a(p)pdp, (29)

which enables one to establish an isomorphism with
H~L*(R,, pdp). This is the vacuum one-particle
Hilbert space. We will mostly work in the coordinate space.

An important role in this work is played by the
PSL(2,R) symmetry of the model. The unitary represen-
tation on H is given by

Ug)f(x) = f(g™" - x) (30)

with an element of the group g acting on the coordinate x by
linear fractional transformations:

_ax+b
Cex+d’

g € PSL(2. R). (31)

We have three one-parametric subgroups related to the
KAN decomposition of PSL(2, R):

cos? sin? 50
r<9>=( ) 5<s>:(” )
—sing  cos3 0 e

o(f) = ((1) i) (32)

which we will refer to as rotation, dilation, and translation
subgroups, respectively. For example, the dilation-trans-
lation subgroup acts as
Ue(0)f(x) =f(x=1),  U(s))f(x) =f(e™x).  (33)
Note that the generator of translations P defined by
U(z(t)) = €'f is positive. This is most easily seen in
momentum-space with the convention of footnote V.
Now we can discuss the modular theory of standard
subspaces of H. Consider the subspaces H(I) =

C®(a,b) € H, which are standard and factorial [20].
Since the above representation has positive P, the modular
evolution on H(R_) is (Theorem 3.3.1 of [20])

Aé‘(‘)m) = U(6(—27ru)), u€eR. (34)
This can be seen by checking that F(u) := (g, A™f) admits
an analytic continuation to the strip —1 < Im(«) < 0 and
that the KMS property at temperature —1 is satisfied:

(Al F9) = (9. B ) (35)

By covariance U(g)H(I) = H(g-I) we have

Al = U(g)—lAl('gm) U@, ueR, g I=R,. (36)
Note that g is defined modulo multiplication by a dilation

on the left, but this does not affect A}“.

1. The interval (- oo t)

For instance, by considering g a rotation in z followed by
a translation of 7,

Al () = fex =)+ 0. (37)

We can compute then the modular Hamiltonian

d
K( 1) = l—A

) d
2 8 :2m(t—x)d—. (38)

u=0 X

And from here the relative entropy of a coherent state

Sk((~so)) (@|@f) = S(_c0.)(f)

= 27:/_t (t—x)f'(x)*dx. (39)

o

Here f need not be localized in the interval (—oo, #) [15].

2. The interval (ab)

We can repeat what we have just done for an interval

= (a, b). The first step is to find g such that g- I = R_.
The idea is to first project / to the circle, forming an arc
(6,,05). Then, we employ two symmetries (see Fig. 1). The
first one consists of a rotation that maps I to (—oo,b’),
which can be achieved by noticing that in the circle this is
just a rotation of magnitude —z — 6,. Then, (—o0,b’) is
mapped by a translation of magnitude b’ to R_.

2

FIG. 1. In the left, a generic interval (a,b) projected to the
circle. It is first mapped to (—oo, b’) by a rotation of magnitude
—n — 0, as shown in the middle diagram. Then it is mapped by a
translation by 4’ to R_, on the right.
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Having obtained such g, we can compute the modular
evolution using (36),

ae ™ (b — x) + b(x —
e (b—-x)+x—a

a0 =1 D). o

The modular Hamiltonian is

2ri(x—a)(b—x) d
Kap) = —. 41
(a,b) b —a dx ( )

The last ingredient to compute the relative entropy is the
cutting projector P; associated with the interval I = (a, b).
Following the same lines in the proof of Proposition 4.2
in [15] one can see that P; K f(x) = y;(x)K;f(x) where y,
is the characteristic function of the interval.

Proposition IIL1. Let f € C*®(R), then it holds
that P;K;f(x) = y;(x)K;f(x).

Proof—Given f € C®(R) define the functions g(x) =
2K F(x) and g.(x) = 7 (x)K, f(x), which are picce-
wise-differentiable functions so their Fourier transforms
decay at least as p~2 for large p and

1 o
gl = Lot / 9(p)Ppdp < oo:
T Jo

then g € H and also g. € H. Moreover, 6(g,, ¢) = 0 for all

@ € C®(I) because supp(g.) C I., and then by continuity

of o (with respect to the topology induced by 7), g.€ H(I)'.

Similarly one can see that g€ H(I), and therefore,

as H(I) is factorial, P;K;f(x) = P;(g(x)+ g.(x)) =

g(x) = y;(x)K;f(x), which completes the proof. L]
Finally the relative entropy is

= S;(f)

_ b(x_a)(b_x) /()2
—2ﬂl ?f(x) dx. (42)

Sk (@||wy)

It is translation invariant, in the sense that S;(f) =
S.i(for7!). Is is also immediate to see that, keeping
the center ¢ = (a+ b)/2 of the interval fixed, it is
increasing [23] with L = (b — a): ﬁSI(L) (f)>0.

Interestingly, the relative entropy (42) satisfies a
Bekenstein-like bound [24]

$i0) <x5 [ fapar=agEp) @)

and a QNEC-like bound [25]

d2
S” = sz SI )(f)
4 b\?
—wr s - 35 [ (x-150) rras
> —i—f ’ <x - er b> 2. (44)

The QNEC, when stated in terms of the relative entropy,
reads S”(1) > 0, with the understanding that 1 continu-
ously labels nested spacetime regions. However, in (44) we
see a violation of the QNEC, which was anticipated in [15].
What (44) says is that to have a large violation of the
QNEC, a considerable amount of energy must be concen-
trated near the boundaries of the interval (note also that
this negative bound can be saturated). Similarly, the
Bekenstein-like bound (43) implies that to make a coherent
state largely distinguishable from the vacuum, a consid-
erable amount of energy needs to be placed in the interval.

B. The thermal case
We now turn our attention to thermal states. The under-
lying symplectic space is again (C2®(R), o) with (27). The
thermal state is defined by

- f(¥)g(y)
75(f.9) = chVA{2 dxdyﬁ P = (x eyt (45)
This gives the two-point function [16]
7.9 = [ —2 gy e
R

s (5 =) = i)

Such a two-point function satisfies being translation invari-
ant and the KMS condition with respect to translations. The
real Hilbert space K = L*(R.,:2%; 24Py js obtained after
completion of C®(R) with 7 [15]. Note that this thermal
state is the geometric KMS state of [26-28].

Since the state is not pure, we first proceed to “purify.” In
momentum space D = —i(1 —e™#P), which we use to
construct i® [as given by (20)] and then H®, the complex-
ification of K @ K.

There are operators acting as the dilation-translation
group [29] on the half-lines. For example, on H(R_) [16],

U661 ) = (= Ltog (14 e 1)) ).
U (e(1) f (x) = f(x - ;iﬂmg <1 4 %e/_> ) (47)

which satisfy
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Up(8(5))Up(z(1))Up(8(=5)) = Up(z(e*1)).

These operators leave wéﬁ ) invariant, which implies that
UR(f@®0+i®g@0):=Usyf ®0+i®Upg &0,
f.geK, (48)

are unitaries of H® (we show this later on). Because of this,
the modular operator associated with H(R_) is given
by [15,30]

Mgy = Ug (8(2zu)). (49)

Note that this reduces to (37) for f — oo.

1. The interval (- c0.t)

From this last expression, and conjugating with the
(vacuum) translation U(z) as in (36), one can compute
the modular Hamiltonian associated with (—oo, ?),

Koo (x) = pi®(1= 7)), (50)

and the relative entropy

wemaf@gllo) = [ (1-

which was first computed in [15]. Note that in Proposition
5.6 of that reference it is shown that the subspace
H((—o0,1)) is both standard and factorial, so the relative
entropy can be computed with (19).

’” f’( )dx,  (51)

2. The interval (a,b)

Now we would like to approach the computation of the
relative entropy for the bounded interval I = (a, b). The
strategy is analogous to the vacuum case of the previous
subsection, but three issues are worth mentioning. First,
the subspaces H(/) must be shown to be standard and
factorial (which we do at the end). Second the assignment

(UR(f1®0+i%9 ©0),UP(f, ®0+i®g, &0))®

Uy(r(0))f2 ® 0+ i®Us(r(0))g, & 0)®
=wd(f1 0 a(0.-). f> o a(6.

+itp(f1 0 a(0.+). g2 0 (0. ")) + 15(=Dgy © (6,
_Wz <f1°0‘(

+lT/)’(f1 oa(f,-), gy 0 a(0,-)) + o(g) © a0,
—Wz (floa( ), f2 0 a0,

z@&mow ). f o al6.)

Wz (fl,f2)+W2 (91792)+iW2ﬁ)(f1392)
=(f1®0+i% ®0,/, ®0+ %9 ®0)®,

) +wP (g 0 al.), g2 0 al6.)) + 75(f1 © al6,-),

)i froa(d,-)) =

)

), f2 0 ald, ))+W2 (g1 0a(0,:),9, 0 a(0,-)) —o(f10a(d,-),g, 0 ald,-)
)
))+W2 (91 0a(6,-), 9, © alb, ))+1W2 (f1 o a0,

I~ H(I) is not PSL(2, R)-covariant anymore, namely
Up(g)H(I) # H(g- I). However, we only need to find a g
such that

Up(9)H(I) = HR_), (52)

and then we conjugate with this unitary the modular
operator of the negative real line (49) [in complete analogy
with (36)]. Explicitly,

Al =U(g)~ 1A”‘mo) U(g), ueR. (53)
Third, the attempt to construct g as described in the

vacuum case (see Fig. 1) is not immediate to generalize,

since the unitary rotation is no longer available (the vacuum

rotation does not leave w(zﬂ ) invariant). In [16] the authors

find the unitary dilations and translations (47). We need to
find a unitary operator that works as a rotation, meaning
that it does not fix oo (in the real-line picture). We propose
that there exists a(@, x) such that

Up(r(0))f(x) = f(a(6,x)). (54)

This means a(f,x) should obey the following three
conditions:
(1) Identity: a(0,x) = x.
(2) One-parameter
group: a0y, a(6,,x)) = a(f, + 6,, x).
3) w<2/}) compatibility:

oa(0, x) 0a(0, y) -2
G20 o (% ato.) - a0.)) )

— sinh (/% (x - y)> N

Of course, a(0, x) also depends on f. The third condition,
together with (48), assures that the operator U;,e induced by
Up(r(6)) is unitary. Let us see why:

= (Uy(r(0))f1 ® 0+ i®U(r(0))g &0,

—Dg; o a(6,-))

), f20a(0,-)) = ”/3(9100‘< ), f20a(0,))

)
ity(g1 0 al0.). f2 0 a(0."))
).z a(6."))

lW2 (glva)

(55)
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where in the fifth equality we used the wgﬁ )—compatibility

condition.
To find a(6,x), there is a hint coming from the
PSL(2,R) product rules:

(s)r(0)3(~s) = r(2arctan (¢7°2)) (1°g Hj—;ﬂ )
L+e222)

where A = tan g. This translates, by means of (47) and (54),
into a functional equation

(es + 6_3/12)(62/_;[&<6'¢(S'x)) — 1)

, 4
= (1 + 22)(eFe@actan(e™ 00 _ 1) —?ﬂsinh(s)/l (56)

with
B Lo, 2
(s, x) =—log (1+€ (e —1)). (57)
2w
It is convenient to work with A(4,x) defined by

a(0,x) = ;iﬂlog [+ A(A ). (58)

Differentiating with respect to s and setting s = 0 we get a
partial differential equation

21 p L
oA+ (1 — e )axAu, x)
dr 2
= 20,A(Ax) + 2L 59

which has infinite solutions of the form
2
Al x) =2 {—/1

1+ 22 2
B(a(eF-1))| (60
5 + ] e (60)
for any function B. From a(0,x) = x we get

B(z) ~ ﬁz,

o z—0. (61)

From this and condition 2 above (group property) evaluated
at x =0 we get

Z

B(z) = ——.
(2) 2+

(62)

Now plugging this form of B into (60) and taking into
account (54) and (58), Uy(r(0))f = f(a(d,-)) can be

shown to be compatible with w(zﬁ ) (condition 3 above)
where

a(6,) = 2-log 1 + (1. )]

2
2r et =1-%2)
AQx) =F L (63)
p /1(6/_”‘ - 1) + 2

Let us see this: first of all we rewrite the wgﬂ )

condition

-compatibility

sinh? (% (a(6, x) — a(0, y))>

_ 0a(0,x)0a(0,y) . b3
= o sinh? (B (x —y)).

A straightforward computation [using /%) = (1+A(4.x))1]
of the square root of the left-hand side gives

sinh (% (a(0.x) — a(0, y)))

1 [(1 +AAX)): (1 +A(/1,y))%}
(1+Ay)): (1+AAx)

2
Squaring this expression and with (63),

sinh? (% (a(6, x) — (0, y)))

1 {1 +AMAx) 1 —l—A(l,y)_z}
1+A(4y) 1+A(4,x)

4
= Y(4,x)Y(2, y)sinh? (% (x— y)), (64)
where

4B +1)eT

Y(’Lx) = 2nx 2ox .
(BA(e7 =1)+27)(B(pA+2m)e 7 — (*+4n*)2)

But it turns out that a straightforward computation gives

0
a—‘;(e, xX) = Y(4,x),

which means that the wg})—compatibility condition holds.
Having found a unitary rotation, we can implement the
first transformation of Fig. 1 with U,(r(6)) where

2ra

~ 2w e’

0 =2arctan | ———————|, 65
( ﬁezﬁ”—(zﬁ—ﬂ)Z—J (63)
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and taking into account that the corresponding unitary
U;?(r(e)) on H® is defined b~y (48). This rotation sends a
to —oo and b to b’ =a(f,b), so it maps H(I) to
H((—o0,b’)). Then, by a unitary vacuum translation
|

sinh(zzu)ef =) — sinh( (b — a) + mu)er

U(-b'), H((—0,b")) is mapped to H(R_) as desired.
The unitary U(g) is the composition of these two unitary
transformations.

From (53), the modular evolution on H(I) & 0 is

A’('Z’b)f(x) D0= f[%log(

By differentiating, the modular Hamiltonian is

Kapnf(x)®0
sinh ([% (x—a))sinh (% (b—x))

= G G (- a))

fl(x)®0. (67)

It coincides with (50) in the limit a - —oo and with (41) for
f — oo. Again, as in the vacuum case now one can still see
that P;K;f(x) = y;(x)K;f(x). The proof is similar to the
one we showed above; the only difference is that this time
we have to see that g has a finite 75 norm, but the same
argument works. Given f € C®(R), define once again the
functions g(x) = x;(x)K;f(x) and g.(x) = y;e(x) K f(x).
These are piecewise-differentiable functions so its Fourier
transform is bounded, decays at least like p=2 for large p,
and then

Ly, [= )P
2 _
lall, =530 [ " PR dp < oo

Finally, the relative entropy is given by

Sk (@gl|w)
psinh (2(x—a))sinh (%(b —x))
=% / " (5(b— af)

f'(x)2dx. (68)

which is our main result. This relative entropy coincides,
modulo some factor, with the modular Hamiltonian in the
cutoff theory [Eq. (4.2) in [31]]. This can be formally
understood by first noticing that the relative entropy can be
related to a difference of mean values of the modular
Hamiltonian K and a difference of entanglement entropies,

S(@s|lwy) = ((K1)y = (K1)1) = (S2 = 81).  (69)

In our case the last parentheses is zero since one state is a
unitary applied to the other state (in the vector representa-
tion). This explains the connection of (68) to the modular
Hamiltonian of [31]. Since the arguments of [31] are of
general validity within CFTs, and taking into account
the above discussion, it is reasonable to expect that in
general (68) will hold with f/(x)? replaced by the classical

= sinh(zu)e 7™ - sinh (- z(b—a) + zu)e 7

)} ®0. (66)

|

energy density Ty(x) of the theory. We will confirm this
expectation in the next section for the massless scalar QFT
in 1+ 1 dimensions.

Identically to the vacuum case (42), the relative entropy
(68) is translation invariant and with a positive derivative
with respect to the length L of the interval, keeping the
center (a + b)/2 fixed. There is also a Bekenstein-like
bound

L [b
< = f'(x)%dx, (70)

and a QNEC-like bound [32]

d2 ﬂ'2 b T 2
ESI(L)(]C) > —ml [(cosh<ﬁL> — 1)

+ 2sinh? <% (x— c)> (1 + cosh? <%L )]

x f!(x)%dx, (71)

where ¢ = (a+ b)/2. We shall discuss this expression
later on.

Before concluding this section we have to show that
H(I) is standard and factorial so the machinery we have
been using, and in particular (19), is valid. We do this in the
following Proposition.

Proposition IIL.3. H(/) is standard and factorial.

Proof.—The condition of separability H(1) Ni®H(I) =0
follows exactly as in Proposition 5.6 of [I5] (or
with the logic for what follows). The cyclicity,
(H(I) 4+ i®H(I))* = 0, can be shown to hold using the
unitary rotation (54). Given any H((a,b)) there is an
associated subspace Hy = H((—o0,b')) = U;e(r(é))H(I)
obtained by a rotation in  given by (65) and explained after
that equation. The subspace H, is, by Proposition 5.6
of [15], standard and factorial. It is immediate to show that
0= (Hy +i®Hy)" = UP(r(0))(H(I) +i®H(I))* which
implies that H(I) is cyclic. Similarly, we conclude
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that H(I) is factorial since O0=Hy NH, =
U (r(@)(H(I) n H(I)'). "

IV. THE FREE MASSLESS BOSON IN 1+1
DIMENSIONS AT FINITE TEMPERATURE

In this section we take advantage of the quantities we
have computed for the chiral boson and combine the
two chiralities to obtain the modular flow, modular
Hamiltonian, and relative entropy on the interval (a,b)
for the massless free boson in two dimensions .

First of all, let us define x* =t4x, and j=(x*) =
d.¢*(x*) are the (nonsmeared) chiral currents of the
previous section (below we give further details). In this
section we will use 4+ symbols to denote copies of the
objects of the chiral case (with the exception of the
symplectic structure ¢ and the bilinear form 7). So, for
example, H now refers to a Hilbert space of the two-
dimensional model, and H_. are Hilbert spaces of the
chiral case.

The symplectic space of the massless boson in two
dimensions is [8,33]

K=C2(R) ® CZ(R) (72)

with symplectic structure

oa((F1e90): (F292)) = [ delr (0F2(0) = F(3)g2(0).

(73)

Here the pair (f,g) € K should be thought as the initial
conditions ®(0, x) = f(x), ®(0,x) = g(x) of a solution
®(1,x) of the Klein-Gordon equation. In general,

(t.x) = (x") +¢_(x7). T CER). (74)

Then, the symplectic structure (73) can be written as
o ((f1.91). (f2.92))
— [ ({08 @) + i3 ). (79

The lack of mixing between the chiralities implies that there
is a symplectic isomorphism [34] y that maps (K, 6,p) to
(K_® K,,—(c ® o)), with the inverse given by

-1 ¢+> _ <¢+(x) —|—¢_(—x)> _ (f(x)) 76
(5 ) = (msin) = G ) 0
In turn, this implies that the CCR(K,0,p) algebra is

equivalent to the tensor product

CCR(K_,—0) ® CCR(K ., —0),

with ¢ as in (27). More precisely, we identify these CCR-
algebras by

W(g-(x)) ® W(d.(x))
= W((ds(x) + - (=x). s (x) + ¢L(=x))).  (77)

This is, in fact, a % isomorphism of the algebras. The
change in sign in the symplectic structure o with respect to
the previous section requires a change in sign in the
complex structure [35], and these two signs end up
compensating each other in the relative entropy [36] (19).

Given a positive symmetric bilinear form z,;, on X and
its corresponding quasifree state on CCR(KC, 6,p), by the
isomorphisms mentioned above we get a quasifree product
state on CCR(K,,0) ® CCR(K_, 6) with the same 7 for
each chiral copy. Therefore the vacuum one-particle Hilbert
space is

HeH_ @ H,, (78)

where H. are copies of the chiral boson Hilbert space
L*(R, pdp). The isomorphism (76) is antilinear, since in
momentum space (or coordinate space, using properties of
the Hilbert transform $)) it is direct to show that

7l = =i, (79)

where 7; is the complex structure of the chiral boson and i,
is the complex structure in [7,8]

()

7op(P, V) = 02p (P, i,'¥)
= —o(¢y. (xix¥),) —o(d-. (xix¥).)
=—1(¢y. —i1 (xix¥) ) — (- i1 (xix¥))
=1(¢.. iy (x¥) ) + (-, i) (xir¥)_)
= (i) T (- wo). (81)

Therefore,

Analogously, for the thermal state we have
HE® ~H® @ H® (82)

with Hf two copies of the purified Hilbert space that we
constructed in the previous section (which was called H®,
and we hope there is no confusion). The Fock spaces are
related as

T(H®) ~T(H®) @ T(HY). (83)

125016-9



ALAN GARBARZ and GABRIEL PALAU

PHYS. REV. D 107, 125016 (2023)

From now on we identify all these spaces with the
appropriate isomorphisms.

A. Modular flow and modular Hamiltonian

Let us consider a causal diamond with base (a, b) on the
time-zero surface. Its corresponding standard subspace is
H({) of pairs (f, g) € K supported on the interval (a, b) or
equivalently Klein-Gordon (KG) fields @ with initial
conditions given by (f,g). Note that such a diamond is
described in null coordinates as (x~,x") € ((—=b,—a),
(a,b)). Right wedges are obtained in limit b — oo and
similarly ¢ — —oo for left wedges.

At the one-particle level, we have

Kr(o) = Kp((=b-a)) ® Kn(ap))- (84)

This follows from the fact that for @, ¥ € H({),

Suio) (@ +i¥) = @ — ¥
=¢.—iy" +¢_—
= S((=ba)) (- + iw")
+SH @n)(by +iw™),  (85)

implying that SH( ) 2 SH((=b-a)) D SH((ap)) and then
An(o) = Au((=b—a)) D A ((ab))- The modular evolution
in the dlamond

Abio) = DH((-b-a)) D Bi((an)) (86)

which explicitly reads

() G- (0= @

where ¢, should be thought as given in terms of (f, g)
using the isomorphism y and the evolution of each chirality
is given in (66). A more intuitive presentation of the
modular flow is to show the geometric transformation of
the coordinates (7, x) inside the diamond, as in Fig. 2.

B. Relative entropies and bounds

The relative entropy in two dimensions is the sum of the
relative entropies of the chiral copies, which follows from
(75) and (84). Before arriving to an explicit expression of
the relative entropies for different cases, we first find the
modular Hamiltonians.

1. The wedge
On a right wedge Wg(a) with base (a, o), given (76)

and (84), we have the corresponding vacuum modular
Hamiltonian acting on the initial conditions

FIG. 2. Modular flow for low temperature (left) and high
temperature (right).

f
Kri((wWi(a)) < g

N ( (Kt ((=oo.—a))P-) (=%) + (Kt ((a.00)) P+ ) (%) )
(KH(( 00,—a) ¢ )/(_x)+(KH aoo))¢+),(x)

:_27”.< (= a+x)/¢/ (=x) + (x—a) '+/(X/) >
(ma=x)gl) (=x) + ((x —a)¢'.)' (x)

— o (—a+x)¢_(—x) + (x —a)@/,(x)
- <((a—x)¢’_(—x)+ (x —a)@ (x))

=25 oy ) 1

where in the second line we made use of the antilinearity
between the chiral spaces H. and H. Then,

0 XxX—a
(Wg(a)) d(x_a)i 0
dx dx

Plugging this modular Hamiltonian in (19),

vy ((Fo9)) = 21 / ® (= a)To(x)dx,  (90)

a

with

(f'(x)? +

l\)\'—

Too(x) =
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the classical energy density at t = 0 of the KG field ®. This
is the same result as that of [4], with a translation by a.
Similarly, for the thermal state we have

()@ o)
_ o)y oy
- —ﬁi€9<[((11_ e a>))fg/ix;]’) o (8), (92)

where we have used (50) and (67) in the limit b — co. The
relative entropy on the wedge at finite temperature is then

Sg()wk(a))((f, 9) = ﬂ/ﬂm (1- e_%(x_“>)T00(x)dx. (93)

Note that this expression is valid even for initial conditions
supported outside x > a, since the cutting projector in (19)
restricts the integral to the wedge [7]. The only restriction
on the initial conditions (f, g) is that they belong to the
domain of the modular Hamiltonian (92).

2. The interval

Repeating the previous computations for the time-zero
interval (a, b), we obtain for the vacuum

AN =t 169
KH((a.b)) < g) = —27i ( [(b—)bf&:—a) f/(x>]/ . (94)

The vacuum relative entropy of a coherent state is

(U7.9) =24 | D) ma) k. (95)

u b—a

On the other hand, at finite temperature we have

f 0
thn ()2 (o)

sinh (§(x—

——2pi®

[smh( (x a))sinh (5(b—x))
sinh (;—;(b—a))

fgi))] v @ "

The relative entropy of a coherent state in the thermal state
representation is

psinh (2 (x —a)) sinh (2 (b — x
b))((f’g)) =2ﬂL (ﬁ( ) (/;( )

sinh (5 (b — a))

X Too(x)dx. (97)

This expression confirms, at least for this model, the
expectation that in a CFT the relative entropy of coherent
states on a finite interval has this form, where the

dependence on the model enters only in 7'y,. Because of
this, the bounds obtained earlier for the chiral model also
hold in this case. The Bekenstein-like bound reads

(a,b) ((f g))

L [b
Sﬂa/ Too(x)dx, (98)

while the QNEC-like bound is

L <<f,g>>

" ﬂsmm >/ KCOSh( ) )
+ 2sinh? <ﬂ (x— C>> (1 + cosh? <ﬁL>)]

X Too(x)dx. (99)

V. CONCLUSIONS

We have extended the relative entropy on R_ with 7 > 0
of [15] to a bounded interval [see (68)]. To achieve this, we
found a unitary in the thermal Hilbert space implementing a
rotation. Such a unitary may turn out to be useful for other
related computations.

From the relative entropy (68) a Bekenstein-like bound
and a QNEC-like bound can be observed. There is,
however, a violation of the QNEC S” > 0, and all of this
is in agreement with [15]. For the vacuum case, given an
energy E we can find a family of functions f,, € H (/) such
that S7(f,) given in (44) goes to zero (just concentrating
the energy density closer and closer around the center of the
interval), thus making the QNEC violation as small as
desired. On the contrary, in the thermal case this is not
possible because there is always a bound for the violation of
the QNEC given by

2
—m <COSh(%L> - 1)2E <0

despite how the energy density is distributed [see (71)].
The computations in the context of a thermal U(1)
current left a clear path to analyze the case of a thermal state
of the free massless boson in 1 4 1 dimensions restricted to
a causal diamond. In the last section we obtained the
modular Hamiltonian (96) and relative entropy (97) at finite
temperature in 1 + 1 dimensions, with analogous bounds as
in the chiral case. In principle most of these techniques
could be used for the massless boson in higher dimensions
and also the free massive boson in d + 1 dimensions with
T > 0 [37]. In addition, it would be very interesting to

S7(fa) =
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extend the formalism to include noncoherent states,
although this seems a much more complicated affair.
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