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Abstract
Electroencephalographic (EEG) signals are acquired non-invasively from electrodes placed on the scalp. Experts in the 
field can use EEG signals to distinguish between patients with Alzheimer’s disease (AD) and normal control (NC) subjects 
using classification models. However, the training of deep learning or machine learning models requires a large number of 
trials. Datasets related to Alzheimer’s disease are typically small in size due to the lack of AD patient samples. The lack of 
data samples required for the training process limits the use of deep learning techniques for further development in clinical 
settings. We propose to increase the number of trials in the training set by means of a decomposition–recombination system 
consisting of three steps. Firstly, the original signals from the training set are decomposed into multiple intrinsic mode func-
tions via multivariate empirical mode decomposition. Next, these intrinsic mode functions are randomly recombined across 
trials. Finally, the recombined intrinsic mode functions are added together as artificial trials, which are used for training 
the models. We evaluated the decomposition–recombination system on a small dataset using each subject’s functional con-
nectivity matrices as inputs. Three different neural networks, including ResNet, BrainNet CNN, and EEGNet, were used. 
Overall, the system helped improve ResNet training in both the mild AD dataset, with an increase of 5.24%, and in the mild 
cognitive impairment dataset, with an increase of 4.50%. The evaluation of the proposed data augmentation system shows 
that the performance of neural networks can be improved by enhancing the training set with data augmentation. This work 
shows the need for data augmentation on the training of neural networks in the case of small-size AD datasets.

Introduction

Alzheimer’s disease (AD) is a clinical syndrome character-
ized by the progressive deterioration of the memory and 
cognitive functions, particularly in elderly people. The 

disease usually appears silently, and the process is slow 
and irreversible. According to the 2019 Alzheimer’s World 
Report [1], there are more than 50 million people with AD. 
The figure may rise to 152 million by 2050.
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In recent years, the attention paid to AD has been gradually 
increasing. So far, only five drugs have been approved by the 
Food and Drug Administration (FDA) for the treatment of AD 
[2], and all of them can only delay the development of AD 
and alleviate symptoms, but not cure or even treat AD. Con-
sequently, early diagnosis is important to delay the symptoms 
through medication. Typically, AD is divided into four stages, 
and the best time to diagnose the disease is during the early 
stages of mild cognitive impairment (MCI) and mild AD [3–5].

Electroencephalography (EEG) is the non-invasive acqui-
sition of signals corresponding to electrical activity in the 
brain using electrodes positioned directly on the scalp. Mag-
netoencephalography (MEG) is also a non-invasive technique 
which is used to acquire signals by recording the magnetic 
activity of the brain. Functional magnetic resonance imag-
ing (fMRI) indirectly detects changes of the brain neuronal 
activity based on the linked alterations of cerebral blood 
flow as exhibited by the differentiated magnetic properties 
of the hemoglobin molecule between its oxygen saturated 
and desaturated states. The difference between AD patients 
and normal control subjects can be detected using these brain 
signals, each coming with different advantages and disadvan-
tages. Machine learning methods related to the classification 
between AD patients and normal control subjects using EEG, 
MEG, and fMRI brain signals are listed in Table 1.

With the increasing use of deep learning techniques, 
many deep AD detection methods have recently emerged. 
Sarraf and Tofighi [14] used LeNet-5, a convolutional 
neural network (CNN) architecture, to classify fMRI data 
from AD subjects and normal controls, with an accuracy 
on the testing dataset of 96.85%. They used 5-fold cross-
validation on a dataset containing 28 AD subjects and 15 
normal controls. Kim and Kim [15] proposed a classifier 
based on deep neural networks using the relative power 
of EEG to fully exploit and recombine features through 
its own learning structure. Their dataset contained 10 
MCI subjects and 10 normal controls, and leave-one-out 
cross-validation was used to evaluate the model’s perfor-
mance. The accuracy obtained on the testing dataset was 
59.4%. Duan et al. [16] used EEG functional connectivity 

as the network input to train ResNet-18, achieving an 
accuracy of 93.42% and 98.5% on the MCI and mild 
AD datasets, respectively, where the former contained 
22 MCI subjects and 38 normal controls, and the latter 
contained 17 mild AD subjects and 24 normal controls.

Among the aforementioned brain signals (EEG, MEG, 
and fMRI), EEG has the best temporal resolution. Nev-
ertheless, since EEG signals are acquired from several 
locations on the scalp with electrodes, their spatial reso-
lution is not as good as that of the measurements for 
the other two types of signals. Despite this, the spatial 
distribution of the signals can be optimized in the pro-
cessing steps with the use of well-designed algorithms 
[17–21]. Given that EEG signals are easier to acquire 
and is less expensive than other techniques, EEG-based 
methods for AD detection are currently more popular.

In studies based on EEG signals, deep learning meth-
ods are trained on small datasets, as electrophysiological 
signals are more difficult to acquire in AD patients. The 
learning capability of deep learning models partially 
relies on their large number of hyper-parameters. A high 
amount of samples is required to fit these hyper-param-
eters and avoid the over-fitting problem [22, 23]. One 
way to deal with the issue is using data augmentation.

Data augmentation can be implemented by generat-
ing artificial data [24, 25]. The strategy of decompos-
ing and recombining the original EEG signals is one 
possible way to create new artificial data for data aug-
mentation [26–28]. EEG signals can be decomposed 
into different filter banks. In each filter bank, the fre-
quency of the decomposed EEG signals is within a 
certain frequency band. All filter banks cover a wide 
range of frequencies. This strategy helps to achieve 
a better performance using deep-learning models in 
the enhancement of small-size datasets. Note that 
in studies where this particular data augmentation 
strategy has been implemented, the details about the 
models used are not entirely the same throughout, 
even though the same overall approach is being used. 
For instance, Zhao et al. [26] proposed a method of 

Table 1  Summary of papers using EEG/MEG/fMRI signals to design a classification system for AD/MCI detection

Ref Method Signal Disease type Accuracy Year

[6] Correlation, phase synchrony, and Granger causality measures EEG MCI and mild AD 83% and 88%, respectively 2012
[7] Hybrid feature selection EEG MCI and mild AD 95% and 100%, respectively 2015
[8] Complex network theory and TSK fuzzy system EEG AD 97.3% 2019
[9] Functional connectivity and effective connectivity analysis MEG AD 86% 2019
[10] Phase locking value, imaginary part, and correlation of the envelope MEG MCI 75% 2019
[11] High-order FC correlations fMRI MCI 88.14% 2016
[12] Hierarchical high-order functional connectivity networks fMRI MCI 84.85% 2017
[13] Strength and similarity guided GSR using LOFC and HOFC fMRI MCI 88.5% 2019
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random recombination of EEG signals in different 
filter banks, which are decomposed by the discrete 
cosine transform. This approach enhances the classi-
fication performance of one-dimension convolutional 
neural networks in the epileptic seizure focus detec-
tion task. Zhang et  al. [27] used the augmentation 
strategy to enhance the classification performance of 
motor imagery. Instead of decomposing signals with 
the discrete cosine transform, the empirical mode 
decomposition (EMD) technique was adopted [29]. 
In the decomposition–recombination strategy, EMD 
has the advantage that the signals can be recovered by 
simply adding up the decomposed intrinsic mode fun-
tions (IMFs). Besides the decomposition–recombina-
tion strategy, generative adversarial networks (GANs) 
also offer a solution to generate artificial signals [30]. 
However, GANs require a large dataset to tune the 
parameters and fit the model. Since the goal of data 
augmentation in small Alzheimer’s datasets is to solve 
the problem of insufficient samples, it is not possible 
to use GANs to generate artificial data.

In this paper, we propose a decomposition and 
recombination model for data augmentation in a small 
Alzheimer’s data set, which is used to distinguish 
AD patients from normal controls. The decomposi-
tion and recombination approach consists of three 
steps. First, empirical multivariate mode decompo-
sition (MEMD) is used to decompose EEG signals 
into IMFs. These IMFs are then randomly recombined 
within each of the two groups. Finally, in each group, 
the IMFs are added up to generate a new artificial 
trial. These artificial trials are used to extend the AD 
training dataset.

This work is organized as follows. "Method" includes 
the description of the small Alzheimer’s datasets used, 
the scheme of the proposed decomposition and recombi-
nation approach, and the neural networks used for clas-
sification. "Results" presents the experimental results, 
including the classification performance of the neural 
networks during the training process and the effects of 
data augmentation in the datasets. Then, these results 
are discussed in "Discussion", together with the limita-
tions associated with the method. Finally, the conclu-
sions are presented in "Conclusion".

Method

Alzheimer’s Datasets

All experiments in this work use two datasets: the MCI 
dataset, containing 22 subjects with MCI and 38 normal 
controls, and the mild AD dataset, containing 17 subjects 

with mild AD and 24 normal controls. Other studies have 
been conducted based on these datasets [5, 7, 31].

The MCI Dataset

The MCI dataset is comprised of data from subjects 
who complained of memory impairment and of control 
subjects who did not have memory impairment or other 
diseases. The patient group included 53 subjects who 
underwent a comprehensive neuropsychological test; the 
results showed quantitative and objective evidence of 
memory impairment, but their overall cognitive, behav-
ioral or functional status was not significantly lost. The 
classification of mild dementia impairment requires a 
score of at least 24 in the Mini-Mental State Examina-
tion (MMSE) [32], a score of 0.5 on the Clinical Demen-
tia Rating (CDR) scale [33] and a standard deviation 
lower than the normal memory performance reference 
value. All subjects met these criteria. Then, these sub-
jects underwent an initial assessment, and their pro-
gress was monitored in the clinic during the subsequent 
12–18 months. According to the criteria defined by the 
National Institute of Neurological and Communicative 
Disorders and Stroke and the Alzheimer’s Disease and 
Related Disorders Association (NINCDS-ADRDA), 25 
of these 53 mild AD patients might develop into AD. 
The average age of the 25 subjects in the MCI data set 
is 71.9 ± 10.2 years old, and the MMSE score is 28.5 
± 1.6. The control group had 56 age-matched healthy 
subjects with an average age of 71.7 ± 8.3 years old and 
an MMSE score of 26 ± 1.8.

Twenty-one electrodes from Biotop 6R12 (NEC-
Sanei, Tokyo, Japan) were placed on the subject’s scalp 
in a 10–20 international system with a sampling fre-
quency of 200 Hz. In addition, Fpz and Oz electrodes 
were added to the system, as shown in Fig. 1a. After the 
data was collected, analog bandpass filtering was used 

Fig. 1  Schematic display of the electrode positions from above
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to retain data between 0.5 and 250 Hz, and then third-
order Butterworth filters (forward and reverse filtering) 
were used to perform digital band-pass filtering between 
0.5 and 30 Hz.

The Mild AD Dataset

The mild AD dataset is comprised of data from 17 mild 
AD patients (age: 69.4 ± 11.5 years) and 24 healthy sub-
jects (age: 77.6 ± 10.0 years). The patient group under-
went a full set of cognitive tests (MMSE, Rey auditory 
verbal learning, Benton visual retention, and memory 
recall tests) along with psychological tests. The results 
were graded and interpreted by psychologists and then 
discussed in meetings with multidisciplinary teams. The 
subjects in the control group were all healthy volunteers, 
and their EEG was judged to be normal by the clinical 
neurophysiology consultants.

Nineteen electrodes were placed on the subject’s scalp 
using the Maudsley system, which is similar to the inter-
national 10–20 system. The sampling frequency was 128 
Hz, as shown in Fig. 1b. After data acquisition was car-
ried out, a third-order Butterworth filter (forward filter 
and reverse filter) was used for digital band-pass filter-
ing between 0.5 and 30 Hz.

Recording Conditions in Both Datasets

During the collection process of the two aforementioned 
datasets, the subjects were awake and with their eyes 
closed. The whole process lasted for 5 min. After that, 
the EEG data was checked by EEG experts, and the data 
containing artifacts were discarded. Finally, only clean 
EEG data of 20 s of length was saved for each subject, 
discarding the subjects whose data did not meet this 
condition. Based on this procedure, the MCI dataset 
finally comprised of 22 subjects with MCI and 38 nor-
mal controls, while the mild AD dataset comprised of 
17 subjects with mild AD and 24 normal controls.

A Decomposition and Recombination System

In small data sets, neural networks often face overfitting 
problems. Data augmentation is used to enlarge the size 
of the training set, as shown in Fig. 2.

In this work, we propose a decomposition and recom-
bination system to generate artificial trials and thus 
enlarge the training set. For the decomposition part, the 
empirical mode decomposition (EMD) method is used. 
EMD can divide a signal into multiple intrinsic mode 
functions (IMFs). These IMFs cover different frequency 
bands, with low overlap. The original signal can then be 

recovered by adding up these IMFs [29]. The recombina-
tion part consists of adding IMFs from different trials, 
taking each of the IMFs from a different one.

The simplest EMD method is classical empirical mode 
decomposition (CEMD), which is the original version of 
EMD, as shown in the algorithm 1. A faster version of EMD 
is serial EMD (SEMD), which is used to deal with multi-
channel signals. SEMD converts multi-channel signals into 
a single channel by concatenating them over time, ensuring 
the continuity of the signals by suitably adding a transient 
part between channels. CEMD is then used to decompose the 
single (long) channel. Multivariate EMD (MEMD) is also a 
method used for decomposing multi-channel signals, as shown 
in the algorithm 2. First, it places the multi-channel signals in 
a tangent space and then decomposes these signals into IMFs. 
The IMFs are finally reverted to normal space. Figure 3 shows 
the original multi-channel signals and the signals decomposed 
by MEMD. MEMD ensures that IMFs with the same index 
(shown in Fig. 3) cover the same frequency band.

Fig. 2  The concept of data augmentation. In a small data set, the train-
ing set is small in size, since it is generated from only a portion of the 
(few) original data. When a neural network is used to fit the training set, 
there is a potential overfitting problem. Data augmentation is used to 
mitigate this issue by enlarging the size of the training set

Fig. 3  Data decomposition with MEMD. MEMD can decompose 
multi-channel signals into IMFs. The IMFs are located in different 
frequency bands, but in all the decomposed channels, the kth IMF 
covers the same frequency band. In this figure, the IMFs are sorted in 
descending order in the frequency domain
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In order not to decompose each trial separately, which 
would result in IMFs covering non-equal frequency bands 
in the same trial, and also to decrease the processing time, 
we combine the MEMD and SEMD methods as shown in 
Fig. 4. Multi-channel signals from several trials are first con-
catenated along the time axis as in SEMD, and then MEMD 
is used to decompose the concatenated signals, ensuring that 
each trial has the same number of IMFs. Figure 5 presents 
an example of generating an artificial trial with the original 
EEG signals.

Neural Network Classifiers

In the analysis of EEG signals, there are two traditional 
options used as inputs for the neural networks. In the first 
case, the original multi-channel signals are used as inputs. 
In the second, the multi-channel signals are converted 
into a functional connectivity (FC) matrix [34]; this is an 

EEG-based connectivity matrix between brain regions 
obtained by calculating the inter-channel EEG similarity, 
e.g., by means of the coherence measure. The degree of 
similarity between two brain regions can be reflected in the 
FC matrix. In this way, the generated matrix preserves the 
spatial information of the multi-channel signals. To distin-
guish between controls and AD patients, EEG is often ana-
lyzed in four frequency bands: delta (0.1–4 Hz), theta (4–8 
Hz), alpha (8–13 Hz), and beta (13–30 Hz). The signal in 
each band contains different information about brain con-
nectivity and synchronization [35]. In this work, however, 
we adopt slightly different frequency bands, namely 4–8 Hz, 
8–10 Hz, 10–13 Hz, and 13–30 Hz. These bands are derived 
from a previous work [16] and are optimized for the datasets 
used [7].

The main goal of this work is to measure the effect of 
the data augmentation method on the performance of the 
classifiers when functional connectivity matrices are used 
as inputs to the models. Therefore, it is not in the scope of 
this work to determine the best possible model. To evaluate 
the effects of the data augmentation method on the small 
AD datasets, three neural networks are used: BrainNet CNN 
[36], ResNet [37], and EEGNet [38]. To simplify the expla-
nation of the networks, some symbols are defined here. In 
the following, B is the batch size, C is the number of input 
EEG signals, and T is the number of sample points of the 
EEG signals.

Methods such as Pearson’s correlation coefficient or 
coherence can be used to compute the correlation or rela-
tionship between channels. Here, we adopt the coherence 
to compute the FC matrices. EEG coherence measures the 
degree of phase synchronization of EEG spectral activity 
between two electrodes [39]. For two temporal signals 
x(t) and y(t), the coherence between them can be defined 
as follows:

where Gxy is the cross-spectral density between x and y, 
and Gxx and Gyy are the power-spectral density of x and y, 
respectively. Considering an EEG sample that has 21 chan-
nels containing data of 20 s of length, we can obtain an FC 
matrix with a size of C × C by calculating the coherence 
between each pair of EEG signals. Here, we first divide 
the original signals into the four aforementioned frequency 
bands, namely 4–8 Hz, 8–10 Hz, 10–13 Hz, and 13–30 Hz. 
As a consequence, the input of the neural networks is of size 
4 × C × C (where C is the channel number of EEG signals). 
The inputs for BrainNet CNN and ResNet are the FC matri-
ces of the four frequency bands. The input for EEGNet is the 
original multi-channel time series.

(1)Cxy =

|
|
|
Gxy( f )

|
|
|

2

Gxx( f )Gyy( f )
,



 Cognitive Computation

1 3

BrainNet CNN

BrainNet CNN is a network architecture that analyzes the 
FCs of different frequency bands [36]. This network has 
three basic convolutional blocks: edge-to-edge (E2E), edge-
to-node (E2N), and node-to-graph (N2G), which are spe-
cially designed for FC matrix processing. The three blocks 
are convolutional layers with different kernels. E2N is a con-
volutional layer with kernel size (1, C) which converts the 
edges in FC matrices to nodes. N2G is a convolutional layer 
with kernel size (C, 1) which suppresses the output nodes of 
the E2N layer. Finally, E2E is the added-up output of convo-
lutions with kernel size (1, C) and (C, 1). An illustration of 
E2E is given in Fig. 6. The structure of the BrainNet CNN 
is given in Table 2.

ResNet

In the training process of deep learning methods, the back-
propagation of multiple layers faces the problem of gradient 
vanishing [40]. The residual module of the deep residual 
network can reduce the influence of gradient vanishing by 
introducing a shortcut connection [37]. The deep residual 
network is a network that has already been validated on a 

large number of classification problems. Compared with that 
of deep neural networks without shortcut connections, the 
shortcut connection of the deep residual network allows raw 
input information to be sent directly to a later layer. Assum-
ing that the input of the residual block is x, the expected out-
put is H(x). The learning target of the deep residual network 
is then F(x) = H(x) − x , which is called residual, and then 
the input and output of this block are added together through 
the shortcut (Fig. 7). This approach greatly increases the 
training speed of the model, improves the training effect, and 
effectively solves the vanishing problem when the number 
of layers is deepened without adding extra parameters and 
calculations to the network. In this study, we employed the 
ResNet-18 deep residual network.

EEGNet

EEGNet is a universal solution to the classification of multi-
channel EEG signals, which has been validated in the classi-
fication of other brain activity signals such as motor imagery 
and movement-related cortical potential [38]. EEGNet takes 
the original multi-channel EEG signals as the input instead 
of the FC matrices. Even though EEGNet has not been vali-
dated in the classification of early AD, in this work, we use 

Fig. 4  The procedure of SEMD-MEMD decomposition for multiple trials of multi-channel EEG signals. Trials of EEG signals are concatenated 
along the time axis and then decomposed
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it to test and explore the data augmentation performance. 
The structure of EEGNet is given in Table 3.

Parameter Setting

In the training of these neural networks, the adaptive 
moment estimation (Adam) optimizer was used, with 
�1 = 0.9, �2 = 0.99 and 0.0001 for the learning rate. 
ResNet and BrainNet CNN were trained using 100 epochs, 

and EEGNet was trained using 200 epochs. The mini-batch 
size was 50.

Results

The experiments aim to explore the effects of data aug-
mentation on the small AD dataset with the decomposition 
and recombination strategy using FC matrices as inputs 
and with three different neural networks as classifiers. In 
Table 4, the number of trials in the training and testing 
sets is given. In the training set, 10 trials are randomly 
selected from the original EEG signals of AD patients and 
controls to avoid the imbalance of the training set. Five 
hundred artificial trials are generated from the 10 original 
trials for each class. The rest of the original trials are used 
in the testing set. The chance level is calculated with the 
stratified dummy classifier in Python’s scikit-learn toolbox 
[41]. The training set consists of both original and artifi-
cial EEG signals. Artificial EEG signals in the training set 
are generated exclusively from the real EEG data of this 
set (Fig. 5). The original EEG signals in the training set 

Fig. 5  Outline of the proposed decomposition and recombination sys-
tem. As an example, for an artificial signal generated in channel c, the 
procedure consists of i randomly selecting NIMF trials from the origi-
nal EEG signals; ii obtaining the IMFs, which are decomposed using 
the method outlined in Fig.  4; iii collecting the decomposed IMFs 

of channel c from randomly selected NIMF trials; iv recombining the 
IMFs in channel c. The nimf -th IMF of the artificial signal is the nimf
-th IMF of the nimf -th randomly selected trial; and v adding the IMFs 
and obtaining the artificial signal of channel c 

Fig. 6  A schematic depiction of the E2E block in BrainNet CNN. The 
output of the block is the sum of two convolution results
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are randomly selected ten times, and the classification is 
repeated as a cross-validation procedure.

Feature Distribution

First, the feature distributions of the artificial data gener-
ated by data augmentation are assessed. To clearly illustrate 
this, the FC matrices of mild AD patients vs controls are 
depicted in Fig. 8 using the uniform manifold approxima-
tion and projection method (UMAP) [42, 43]. There are four 
FC matrices for each trial: 4–8 Hz, 8–10 Hz, 10–13 Hz, and 
13–30 Hz. Since FC matrices are symmetric, their upper tri-
angle is taken as the feature of said matrix. For each trial, we 
have 4 × C × (C − 1)∕2 features. The UMAP model is first 
trained with features from 10 mild AD trials and 10 control 
trials. Then, 100 artificial mild AD trials and 100 artificial 
control trials generated with SEMD-MEMD, SEMD, or 
CEMD are transformed with the trained UMAP model. In 
the UMAP setting, the size of the local neighborhood used 
for manifold approximation is set to 10, and the effective 
minimum distance between embedded points is set to 1; the 
training epoch number for embedding optimization is 1000. 
The dimension of the features is reduced and projected onto 

a two-dimensional map with UMAP. Figure 8 shows that 
artificial data of the two classes generated with MEMD are 
more easily separable than those generated with SEMD or 
CEMD.

Performance Analysis

The evolution of the classification accuracy of the classifiers 
during the training process is depicted in Fig. 9. The train-
ing set is augmented with SEMD-MEMD. For the mild AD 
dataset, EEGNet has the worst classification performance 
with an average accuracy of around 53%. The data augmen-
tation deteriorates the performance of EEGNet compared 
to the case of not using artificial data. On the other hand, 
the classification accuracy for BrainNet CNN improves 
with data augmentation when the number of artificial tri-
als is greater than 20, as the accuracy converges faster than 
without data augmentation. The ResNet performance also 
improves with data augmentation.

In Fig. 10, the trend of the accuracy of the classification 
is given. The accuracies of ResNet and BrainNet CNN in 
this figure are obtained after 100-epoch training, while the 
number of training epochs of EEGNet is 200. We note that 
data augmentation does not always help to improve the train-
ing of neural networks.

Finally, Fig. 11 shows the confusion matrices, with only 
real data (before) or with 10 artificial trials per class (after), 
respectively. The number of artificial trials generates an 
increase of 100% of samples in the training dataset (fac-
tor of 2). These confusion matrices are calculated using 
MATLAB’s “confusionmat” function [44]. The results were 

Table 2  The structure of BrainNet CNN

Layer Output size Parameter

Input layer [B, 4, C, C]
BatchNorm [B, 4, C, C]
ReLU [B, 4, C, C]
E2E [B, 16, C, C] (C, 1)
BatchNorm [B, 16, C, C]
ReLU [B, 16, C, C]
E2E [B, 32, C, C]
ReLU [B, 32, C, C]
E2N [B, 64, C, 1] (1, C)
N2G [B, 512, 1, 1] (C, 1)
Flatten [B, 512]
Linear and softmax [B, 2]

Fig. 7  A residual block with a shortcut in ResNet

Table 3  The structure of EEGNet

Layer Output size Parameter

Input layer [B, 1, C, T]
ZeroPad2d [B, 1, C, T+63] (31, 32, 0, 0)
Conv2d [B, 8, C, T] (1, 64)
BatchNorm2d [B, 8, C, T]
Conv2d [B, 16, 1, T] (C, 1), grouped
BatchNorm2d [B, 16, 1, T]
ELU [B, 16, 1, T]
AvgPool2d [B, 16, 1, T//4] (1, 4)
Dropout [B, 16, 1, T//4] 0.25
ZeroPad2d [B, 16, 1, T//4+15] (7, 8, 0, 0)
Conv2d [B, 16, 1, T//4] (1, 15), grouped
Conv2d [B, 16, 1, T//4] (1, 1)
BatchNorm2d [B, 16, 1, T//4]
ELU [B, 16, 1, T//4]
AvgPool2d [B, 16, 1, T//32] (1, 8)
Dropout [B, 16, 1, T//32] 0.25
Flatten [B, 16*T//32]
Linear [B, K] bias = False
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obtained by averaging over ten folds, and the final values 
were normalized by dividing by the sum of each row. The 
experiment was carried out using only a small number of 
artificial trials, as the results depicted in Fig. 10 pointed out 
that this was a good value in almost all the models. Table 5 
contains the accuracy, sensitivity, and precision calculated 
using the “confusionmat” function.

Discussion

In this work, we proposed a decomposition and recombi-
nation system to enlarge the size of two AD datasets and 
explored the data augmentation performance on three dif-
ferent neural networks. This work is based on the following 
two assumptions: 

1. The AD dataset is a small dataset.
2. Neural networks need a considerable amount of data to 

tune the parameters.

Most patients affected by AD are elderly people. In con-
trast to the EEG signal acquisition of healthy people, AD 
patients are easily exhausted, weak, or less willing in the 
process of acquiring EEG signals. Sometimes, the acquisi-
tion can even be interrupted for unexpected reasons such as 
the non-collaboration of the patients. Therefore, AD datasets 

are very valuable and are usually small in size. To protect 
the health of the patients and to facilitate data acquisition 
in experiments, a data augmentation method is needed to 
process small AD datasets.

When it comes to the second assumption, note that deep 
neural networks can accurately find the unknown relation-
ship between the raw data and the corresponding labels 
because of their intrinsic nature and huge number of param-
eters. At the same time, these parameters can only be learned 
from the available data, but the higher the number of param-
eters, the higher the number of signals needed to train the 
model. Therefore, data augmentation on small AD datasets 
is again of great interest.

In addition to the decomposition and recombination strat-
egy in data augmentation, generative adversarial networks 
(GANs) are also a universal solution for time series data 
augmentation. However, in these, both the generator and 
discriminator parameters require a certain amount of data to 
be tuned. For an AD dataset of limited size, this requirement 
on the amount of data is not met, and hence, GANs are not 
suitable in this case.

In the classification of mild AD, data augmentation has a 
positive effect on the training of ResNet. When the number 
of artificial trials increases, the average accuracy of ResNet 
increases from 72.38 to 77.62%, with a consistent perfor-
mance. In the BrainNet CNN case, a positive outcome is 
also obtained in the classification performance when using 
data augmentation in the mild AD dataset. However, this 
effect is only positive for a small number of artificial trials 
in the MCI dataset; if the number of artificial trials increases 
above 30, the mean accuracy decreases. Finally, the EEGNet 
network is the one with the poorest results for the mild AD 
dataset, and artificial trials only have a moderate positive 
effect for the MCI dataset again when the number of artifi-
cial trials is small.

In Fig. 11, the confusion matrices before and after data 
augmentation are given. Both ResNet and BrainNet CNN 
obtain a consistent accuracy, sensitivity, and precision 

Table 4  Distribution of the number of trials

Training set Testing set Chance level

Data type Artificial Original Original

Data type Artificial Original Original
Mild AD 0–500 10 7 0.3333
Control 0–500 10 14
MCI 0–500 10 12 0.3000
Control 0–500 10 28

Fig. 8  Feature map of artificial mild AD patients vs controls, plotted with UMAP. For each class, 100 artificial samples are generated using 
MEMD a, SEMD b, and CEMD c. The obtained embedding is normalized with min-max normalization before visualization
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increase when 10 artificial trials per class are used. As 
expected, the improvement is more noticeable in the mild 
AD database, as the two classes (controls and patients) are 
more distant from each other when compared to the MCI 
case, in which the patients are closer to the control subjects.

Summarizing the above experiments, the proposed 
decomposition and recombination system helps the training 
of neural networks in small AD datasets, and it seems that 
just a factor of 2 is enough for that. Having more artificial 
data does not always provide a better result, as we have seen 

Fig. 9  The testing accuracy averaged across ten folds of the two data-
sets during the training process. A different number of artificial trials 
are generated, each one of them shown in a different color in the sub-
plots. For each case, the upper panel contains the experiments with 

0 to 50 artificial trials, and the lower panel contains the experiments 
with 0 to 500 artificial trials. The dashed line represents the 0 case, 
where no artificial trials are used
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in our experiments. The effects of the data augmentation 
depend on two factors: (i) the type of neural networks and 
(ii) the data set. Determining the number of artificial trials 
is influenced by these two factors, and ascertaining how to 
obtain an optimal value requires further experiments.

One possible reason for why the proposed data aug-
mentation method does not always improve the accuracy 

results is due to the different characteristics of the two 
datasets. In Fig. 9a, the accuracy of ResNet in the mild 
AD dataset converges as the number of training epochs 
increases, and the result is stable in the training, with a 
small variance around the mean accuracy. However, in 
Fig. 9d, the accuracy in the MCI dataset still fluctuates 
in a larger range, especially compared with the mild AD 

Fig. 10  Accuracy evolution when the number of artificial trials increases from 0 to 500. The trend of the accuracy is fitted with the power func-
tion f (x) = axb + c . The dotted line represents the accuracy without data augmentation

Fig. 11  Comparison of the confusion matrices before and after data augmentation for the two datasets. The confusion matrices are averaged 
across ten folds and normalized by dividing by the sum of each row
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dataset. This means that the network is more difficult to fit 
for the MCI dataset or that perhaps the quality of the data 
is also worse in that case. Although data augmentation 
improves the accuracy in the MCI dataset very slightly 
when the number of artificial trials is small, it still helps to 
train the ResNet: when the accuracy converges, the num-
ber of training epochs needed after data augmentation 
is smaller than without data augmentation, as shown in 
Fig. 9d. Similar fluctuations can be observed for the Brain-
Net CNN network in both datasets (Fig. 9b, e). This could 
explain why data augmentation is not helping in this case.

The proposed decomposition and recombination sys-
tem has its own limitations. No pre-processing was used 
to remove artifacts or noise in the databases used in the 
experiments. Since the proposed method recombines all 
existing information in the data to enlarge the size of 
the training data, it is possible that artifacts or noise 
may also be replicated, which would negatively affect 
the results. Another aspect that can play a role is the 
decomposition method used. Here, we combine SEMD 
and MEMD, but other EMD-based methods have been 
proposed in the literature. Each method has different 
properties which impact the frequency mixing effect 
(overlapping of IMFs) and hence may inf luence the 
quality of the artificial frames. Moreover, the number of 
required artificial trials is unknown, as has been shown, 
and should be further investigated. More experiments 
are also needed to determine the number of epochs in 
the training phase, as our results indicate that the use 
of artificial trials may help to reduce the number of 
epochs in training and thus control possible overfitting. 

All of these aspects are now under consideration, and we 
expect to propose more reliable methods in future works.

Conclusion

In this paper, we proposed a decomposition and recombina-
tion system for data augmentation of the small AD data set 
as a way to solve the problem of insufficient data in neural 
network training.

This system consists of signal decomposition with 
SEMD-MEMD and a random recombination of the decom-
posed IMFs. The performance of this system is evaluated 
using three classifiers on two datasets. The main results 
show that the proposed system improves the accuracy of 
ResNet on the mild AD dataset with an increase of 5.24% 
and on the MCI dataset with an increase of 4.50%. Further-
more, BrainNet CNN results improve on the mild AD data-
set with an increase of 2.38% and an increase of 0.75% on 
the MCI dataset. This work is expected to help the training 
process of detection methods for early diagnosis of Alzhei-
mer’s disease.
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