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I. ABSTRACT 

The Domuyo volcanic complex (DVC) and its geothermal field in the retroarc zone of the southern 

Central Andes of Argentina present reduced seismicity according to different catalogs (USGS and 

INPRES). However, in 2015/2016, a local project was carried out in the area to describe its seismo-

volcanic activity, registering a large number of volcano-tectonic (VT) events (538 VT). Considering there 

is scarce information on these events, this study focuses on analyzing the Domuyo Volcanic Complex 

(DVC) to assess its seismicity. Therefore, we installed a local seismological network in the study area 

and compared results with data registered by other authors. Four seismological networks were used, 

to obtain a more precise location of the seismic events and calculate the focal mechanisms of 

earthquakes with magnitudes greater than 2. For the first record of crustal seismicity detected by 

INPRES the September 10th, 2016 with a Ml 3.3, we calculated the focal mechanism with two possible 

solutions: a thrust solution with a strike component and a favored normal solution with a strike 
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component. Additionally, we relocated the largest event in the Domuyo region on March 27th, 2019, 

with a magnitude of 4.4 (NEIC – USGS) and focal mechanism with a normal solution and a small strike 

component, obtaining a shallower depth of 3.9 km instead of 10 km. The new seismological data used 

in this paper, correspond to September 10th 2016, and two different time periods, the first comprising 

continuous data from March to April 2019, when the largest registered earthquake occurred in the 

Domuyo region, and the second from December 2019 to January 2021. At these periods, registered 

seismicity had magnitudes Ml between 1.9 to 2.8, and focal depths between 1.8 and 5.2 km. Four of 

these events count with focal mechanisms with extensional and limited strike-slip components that are 

tentatively linked to the known neotectonic structures affecting the western slope of the DVC. This 

seismic sequence agrees with previous proposals in which degasification from a magmatic body at 

shallow depths constitutes the trigger factor. 

II. INTRODUCTION 

The Domuyo volcanic complex (DVC) is a dome-caldera system with no historical effusive/explosive 

activity (Miranda et al., 2006). It is located in the backarc of the Southern Volcanic Zone (SVZ) in the 

Neuquén Province of Argentina (Stern, 2004), associated with the subduction of the Nazca oceanic 

plate below the South American plate with an east dipping angle of 30° (e.g., Farías et al., 2010; 

Tassara and Yañez, 2003). Since 2008 to the present several changes have been identified in the 

volcanic system, which can constitute potential indicators of volcanic unrest. In particular, a 12 to 15 

cm/yr inflation (Lundgren et al., 2018; Astort et al., 2019) was determined by interferometric synthetic 

aperture radar (InSAR) data, which was explained through a tabular body model at a depth of about 

6.5 km (Lundgren et al., 2020). Additionally, those authors detected thermal changes by satellite-based 
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thermal infrared (TIR) remote sensing. In addition, Tassi et al. (2016) found high values of R/Ra (6.8) in 

the fumaroles located on the western slope of the DVC, which indicates concentrations of mantle He3, 

a product of the active degassing of a magmatic body at an unknown depth. In this line, Godoy et al. 

(2021) determined a thinner magnetized crust of around 5-6 km in this area when compared to 11 km 

thick to the south which doubles its thickness, implying higher thermal conditions in the backarc zone 

at the location of the DVC. All this evidence may indicate triggering mechanisms and alterations in the 

seismic behavior of the DVC after 2008. 

The global (NEIC, USGS) and regional catalogs (INPRES, Argentina) show that the Domuyo volcanic 

complex, whose activity has been largely debated, shows no seismicity from 1973 to 2016 (Figure 1). 

However, since 2016, INPRES has reported seven crustal events (Figure 1C). On March 27th 2019, the 

USGS reported the highest event among these, which was felt by the nearby population (Figure 1C). 

Additionally, Godoy et al. (2021), using a local network, detected 538 volcano-tectonic events 

(magnitude range -1.5 to 1.5), at less than 8 km deep, which occurred from December 2015 to March 

2016. These events were classified into two groups according to their depth. The shallower events (2-3 

km) were related to the hydrothermal reservoir whereas the deeper ones (6-8 km) were most likely 

produced around the magma source. They can be interpreted as associated with pore pressure and 

hydrofracturing, and constitute an anomalous number of volcano-tectonic events in only 93 days. The 

analysis of these events was used to complement our results in this work. 
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Figure 1. A) Image representation of southern South America which shows the interplate and intracrustal earthquakes at depths less than 
50 km (NEIC Catalog, USGS). Crustal earthquakes by USGS, from 1973 to 2022, with a green scale representing the epicenter's depth. The 
red rectangle marks the study zone, noting only one earthquake in that area. B) Satellite TM image in which the triangles represent the 
stations used for the earthquake location. The green triangles are the temporal local networks from Instituto Geofísico Sismológico Ing 
Volponi (IGSV). The orange triangles mark the stations from Chile, the National Seismological Center of the University of Chile (CSN) 
network, and the Federation of Digital Seismograph Networks (FDSN). The Domuyo volcanic complex is represented by a red triangle. C) 
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Satellite image with the earthquakes from USGS and INPRES catalogs, the epicenters are represented with a circle and stairs, respectively. 
The numbers near the epicenters represent the year of occurrence (in white color) and the magnitude (in red color). 

All the changes identified in the DVC imply instability in the magmatic/hydrothermal system from at 

least 2008 to 2020 (Tassi et al., 2016; Lundgren et al., 2018; Astort et al., 2019; Godoy et al. 2021). The 

IGSV catalog, available from 2010, was built from 4 local temporary seismological networks, 3 of them 

deployed in the south of Mendoza Province and the other in the center of Neuquén Province (Figure 

1B). We used this catalog to verify the seismic activity in the Domuyo region. From 2010 to 2015 no 

earthquake activity in the Domuyo region was detected, being only detected from 2016 to 2020. In 

particular, from December 2019, after installing a local temporary broadband seismological network in 

the DVC, registering continuously for 13 months, evidence of increased seismic behavior was 

registered. This work analyzes the local seismicity of the DVC from the end of 2015 to the beginning of 

2021, in order to establish possible links between this recent unrest period, the release of magmatic 

gases (Tassi et al., 2016), and the observed inflation (Lundgren et al., 2018; Astor et al., 2019, and 

d'Oreye et al., 2019). 

III. GEOLOGICAL SETTING 

The Domuyo volcanic complex (DVC) is a rhyolitic-dacitic dome-basaltic complex emplaced in a collapse 

caldera that intrudes a large anticline (Groeber, 1947; Llambías et al., 1978; Miranda et al., 2006; 

Folguera et al., 2007). This anticline exhumes the Permian-Triassic Choiyoi Group, which covers and 

intrudes a Carboniferous sedimentary succession at depth (Zöllner y Amos, 1973; Leanza et al., 2005; 

Llambías et al., 2007; Zappettini et al., 2012). Over this succession, deposits of Jurassic and Cenozoic 

ages are sparse in the region (Silva – Fragoso et al., 2021; Borghi et al., 2023). An eruptive initial period 

roughly ranging from 2.5 to 0.11 Ma was recognized, which consisted of two stages (Brousse and 
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Pesce, 1982; JICA, 1983; Pesce, 2013): the first stage, which covered the late Pliocene to the early 

Pleistocene, is characterized by a dominant calc-alkaline composition and widespread pyroclastic 

flows. The second stage, which occurred from the Middle to the Upper Pleistocene (Holocene?), is 

characterized by mafic flows and the development of monogenetic rhyolitic domes like Cerro Domo, 

Covunco Las Papas, and Bota Cura, to the southwest of the Cerro Domuyo. In addition, DVC is 

considered an important geothermal resource. Its geothermal field is located on the western slope of 

Cerro Domuyo (Llambías et al., 1978; JICA, 1983, 1984; Chiodini et al., 2014). This is a high enthalpy 

system controlled by faults, with fumaroles, shallow hot springs, and geysers. It was considered by 

Chiodini et al. (2014) to be the second-highest measured advective heat flux of any terrestrial 

hydrothermal system, after Yellowstone. Tassi et al. (2016) conducted a comprehensive study of the 

chemical and isotopic composition of water and gas, determining the origin of geothermal fluids. They 

made a model of the hydrothermal reservoir, and the patterns of fluid circulation in the geothermal 

field, and proposed two main water reservoirs at 0.4 and 2-3 km depth, respectively. These authors 

also found high values of R/Ra (6.8) in the fumaroles located on the western slope of Cerro Domuyo, 

indicating high values of mantle He3, a product of the active degassing of a magmatic body at an 

unknown depth (Tassi et al., 2016). 

The principal structure affecting the DVC is the Manchana Covunco fault, located on its western side 

(Figure 1). It is a north-south normal fault dipping to the east which constitutes the main structure 

controlling the geothermal field dynamics (Galetto et al., 2018). This structure shows evidence of 

neotectonic displacements affecting pumice materials emitted in the first phase of the DVC activity 

(Folguera et al., 2007). A series of fault sets with west-east orientation, related to the early Jurassic 
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Neuquén Basin rifting phase, including Penitentes, El Humazo, Covunco, and El Cajon faults (Galetto et 

al., 2018), intersects and segments the Manchana Covunco fault (Figure 1) (Mariot, 2008). 

IV. DATA AND METHODOLOGY 

The seismological data used in this paper, correspond to two different time periods. The first time 

period comprises continuous data from March to April 2019, when the largest registered earthquake 

occurred in the Domuyo region. The stations used are from Instituto Geofísico Sismológico Ing. Volponi 

(IGSV) from San Juan University, Centro Sismológico Nacional from Chile University (CSN, Introducción 

| Centro Sismológico Nacional (uchile. cl)) and from the Federation of Digital Seismograph Networks 

(FDSN) (Figure 1B). For the second period, data was registered from December 2019 to January 2021 

and were obtained from a local seismological experiment by IGSV, which deployed eight broadband 

seismological stations around the Domuyo volcanic complex (Figure 2 and Table 1). Also, additional, 

stations located in Neuquén and Mendoza Provinces by IGSV, and in Chile from available data in the 

FDSN network and were used during this last period. To identify automatically the seismicity of the 

area, we used the SeisComP3 software (Helmholtz Centre Potsdam GFZ German Research Centre for 

Geosciences and gempa GmbH, 2008), which was configured to detect events greater than 1.8 

magnitude, observed in at least six stations. 
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Figure 2. Satellite image of the study zone and the local seismological network with green triangles. A) VAZQ station figure, which shows a 
solar panel, a register in the grey box, and a sensor in the blue container. B) LEVU station figure, with characteristics similar to the 
previous one, except that the sensor is covered with rocks and container. 

STATION Sensor Register Longitude (°) Latitude (°) 
Elevation 

(m) 

VPP 

(Volt) 
Samples per second 

Lagu 6T Minimus -70,621 -36,422 1953 20.5 200 

Cast 120PA Centaur -70,514 -36,680 2480 10 200 

Vazq 120PA Taurus -70,645 -36,58 1613 16 200 

Pich TC-120 Centaur -70,806 -36,625 1376 20 200 

Levu 6T Minimus -70,408 -36,972 1352 20.5 200 

Elia 120PA Centaur -70,031 -36,785 1580 20 100 

Hida 6T Minimus -70,332 -36,339 1615 20.5 200 
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Menu 120PA Centaur -70,29079 -36,50781 1788 20 200 

Table 1. Equipment, location, and configuration details of the eight stations installed in the local Domuyo experiment. 

After events detection, the waveform data from different networks were integrated into a unique 1-

hour archive in a miniseed format and organized in the Seisan database (Havskov and Ottemoller 

2010). The instrumental station response was obtained from the software Portable Data Collection 

Centers (PDCC), the Incorporated Research Institutions for Seismology (IRIS). We used Hypocenter 

(Lienert and Havskov, 1995) to obtain the location parameters considering the 1D velocity model from 

Bohm et al. (2002). The local magnitude (Ml) was obtained for each vertical component (and then 

averaged) in semi-automatic mode from the S wave maximum amplitude in the Seisan platform. The 

coda duration is proportional to the size of the earthquake, although it can be affected by other 

factors, such as the soil conditions in which the station is located (Suteau and Whitcom, 1979). 

Nevertheless, in cases where Ml could not be calculated, the coda magnitude was obtained from the 

seismic record in the Seisan platform. 

The focal mechanism solution was obtained from the polarity of the first P wave motion using FOCMEC 

(Snoke et al., 1984). A reliable mechanism solution is subject to good station coverage. Azimuthal´s gap 

larger than 90° can introduce instabilities in the focal mechanism solutions (Hardebeck and Shearer, 

2002). For such reason, data was thoroughly completed using all stations of the different available 

networks (IGSV, CSN, and FDSN). All focal mechanism solutions were determined by allowing less than 

one inconsistent polarity; solutions were rejected when the number of polarity inconsistencies 

(compressions or dilations located in quadrants of opposite polarity) exceeded a predetermined 

maximum. According to the event, we calculated the focal mechanism with grid search (GRS) from 5° 

to 10°. 
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V. RESULTS 

Local Seismicity in the Domuyo 

 The seismicity presented in this work belongs to three different periods, the first period (only 1 event) 

from September 2016, the second is March to April 2019, and the third period from December 2019 to 

January 2021, using different combinations of seismological data (Figure 3a and Figure 4a). In our 

interpretations, we also reference to the volcano-tectonic events in Domuyo region published in Godoy 

et al. (2021), and to the seismicity from IGSV catalog in the 2010 to 2020 period. 

The first records of crustal seismicity detected by INPRES (Instituto Nacional de Prevención Sísmica) at 

Domuyo was the Ml 3.3 10 September 2016 event. We present the relocated earthquake in Table 2. 

Given the distribution of the networks that recorded it, which are far from the area we can not 

accurately calculate the depth, but we could calculate the focal mechanism. The focal mechanism 

presents two possible solutions a thrust solution with a strike component (Figure 3, events 0-A and 

Table 2, Appendix Figure A), and other normal solution with a strike component (Figure 3, events 0-B 

and Table 2, Appendix Figure A). 

The largest event reported in the Domuyo region occurred on March 27th , 2019 and had a magnitude 

of 4.4 (NEIC – USGS). We relocated this event to improve its location parameters. Table 3 shows the 

earthquake parameters in the location from in the USGS catalog and the new parameters (much lower 

azimuthal GAP) (Figure 4). Interestingly, the most important feature observed is its occurrence at a 

different depth, 3.9 km instead of 10 km. 

We visualized the continuous database from March to April 2019 with only five crustal events (depth 

shallower than4.8 km) with coda magnitude from 1.4 to 2.4. Only the event of Ml 4.4 had a reliable 
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focal mechanism, presenting a normal solution with a small strike component. The focal mechanism 

solution (Figure 4, Table 2, and Appendix Figure B) shows approximately WSW-ENE nodal planes 

dipping to the SE (PN1) and the NW (PN2).  

In this work, using the network installed in the DVC from December 2019 to January 2021, we only 

selected events with a magnitude greater than Ml 1.8, which were quickly and automatically detected. 

The detected events show magnitudes Ml between 1.9 to 2.8, and a shallow focal depth, between 1.8 

and 5.2 km, similar to the depth obtained for the Ml 4.4 March 2019 event. In Figure 3, the focal 

mechanisms with reliable solutions of shallow events are plotted and Table 2 shows their parameters. 

The event of 3 January 2020, with a magnitude of Ml 2.6, presents a normal solution with a strike 

component (Figure C in Appendix). On the other hand, the events of 2 and 22 May (Appendix Figure D 

and Figure E, respectively), with a calculated Ml of 2.8, present normal solutions with a small strike 

component. It is remarkable the similarity of the focal mechanism solutions of events 1, 2, 3, and 4 (see 

Table 2), all with their nodal planes approximately W-E, dipping PN1 ~ to the south (average 47°) and 

PN2 ~ to the north (average 44°). Finally, the event of 8 September 2020, with a magnitude of 1.9 and 

the shallowest depth of 1.8 km, presents a single solution (Figure 5 and appendix Figure F). This event 

presents NNE-SSW nodal plane (PN1) dipping to the southeast and NNW-SSE nodal plane 2 dipping to 

the SW. 
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Figure 3. In the left image, the green triangles represent the IGSV station locations, and the orange triangles the FDSN station (from 
Centro Sismológico Nacional, Universidad de Chile) locations, used to calculate the focal mechanism corresponding to the 2020 events. On 
the right, the focal mechanism solutions are plotted in their locations. Each mechanism has a number to identify it in Table 2. 
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ID Month_Day_Year HRMM_Sec Latitude Longitud Prof. NSTA Ml RMS GAP NPol GRS Rb/Bz/Des Plane 

0 09_10_2016 1122_2.5 -36.673 -70.496 0 19 3.3* 0.41 153 16 10 221/56/156 PN1-A 

            325/71/36 PN2-A  

            221/56/156 PN1-B 

            107/66/-32 PN2-B 

1 03_27_2019 2027_29.3 -36.616 -70.366 3.7 52 4.4* 0.7 81 18 5 85/45/-83 PN1 

            255/45/-97 PN2 

2 01_03_2020 1150_35.3 -36.632 -70.469 5.2 25 2.6 0.9 77 15 10 89/50/-90 PN1 

            269/40/-90 PN2 

3 05_02_2020 2119_32.2 -36.628 -70.522 4.2 24 2.8 1.0 97 12 10 69/40/-98 PN1 

            259/50/-83 PN2 

4 05_22_2020 1731_1.3 -36.665 -70.463 3.6 25 2.8 1.0 81 16 10 73/51/-103 PN1 

            273/41/-75 PN2 

5 09_08_2020 1955_11.1 -36.658 -70.475 1.8 13 1.9 0.9 90 9 5 25/42/-17 PN1 

            128/79/-131 PN2 

Table 2. Events with focal mechanism solutions, which were obtained in this research. The table indicates the event identification number 
(ID), location parameters, number of stations used (NSTA), magnitude (Ml), root mean square residual (RMS), the maximum angle where 
there is no station coverage (GAP), reading number of first arrivals with identified polarity (NPol), grid search (GRS) *Magnitude from NEIC 
Catalog. Strike, dip, and rake for each nodal plane according to the convention of Aki and Richards (1980). 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 4. a) Image of the location of the seismological stations. Green and orange triangles are the IGSV stations and CSN stations, 
respectively. The red triangle shows the Cerro Domuyo. The light blue star shows the 27 March 2019 epicenter from NEIC Catalog and the 
beach ball in blue color shows the focal mechanism solution obtained in this work for this event. b) Amplified region shows the 27 March 
2019 epicenter (USGS), the new location 20 km to the east (at the beach ball position) including foreshock and aftershock events. 

Source Latitude (°) Longitude (°) Depth (km) Local Magnitude (Ml) Gap 

NEIC -USGS -36.611 -70.539 10 4.4 151 

This research -36.616 -70.366 3.9 - 81 

Table 3. Location parameters for the earthquake of 27 March 2019 from the NEIC Catalog (USGS) and from this research. 

 

Figure 5. Focal mechanism solution that belongs to event #5. The waveform of the first P wave arrivals at each station is picked and 
classified according to whether it is distensive (D) or compressive (C). The distensive and compressive movements are plotted with white 
triangles and blue circles in the stereographic representation. The solutions found are two nodal planes represented by continuous lines 
marked by PN1 and PN2. 

VI. INTERPRETATION AND DISCUSSION 

I. Interpretation of local seismicity and focal mechanism solutions 

To understand the seismic potential of structures affecting the Domuyo volcanic complex (DVC), we 

used local and regional seismological networks. We calculated focal mechanism solutions, which 

showed mostly the activity of normal faults with a small strike-slip component. In particular, the 

earthquake of March 27th, 2019 (focal mechanism 1 in Figure 6 and Table 2) is located on the eastern 
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flank of Domuyo, in coincidence with E – W structures. However, this event (and events 2, 3, and 4, see 

Table 3 and Figure 6) could be associated with normal E -W structures (e.g. Humazo) or with a 

structure inferred by satellite gravimetric data (Godoy, 2022). Considering there is no available 

geological data to constrain, it is not possible to determine which of those nodal planes constitutes the 

fault plane. 

In the local experiment carried out in DVC (Figure 2), we calculated 4 focal mechanisms, 3 of them had 

a normal solution (with a small strike-slip component) with approximately east-west nodal planes 

(events located at similar depths and with similar Ml) (see events 2, 3, and 4 in Table 2). The other 

event occurred on 8 September 2020 (Table 2), was located at a shallower depth, and had a lower 

magnitude, presenting a strike-slip solution with a normal component and nodal planes oriented in 

NNE-SSW and NW -SE directions. In the event 3 (2 May 2020 earthquake), given its proximity to the El 

Humazo fault (due to a location uncertainty of approximately 3 km), we assume that this mechanism 

could represent an event associated with this southeast-dipping normal fault (PN1 has been chosen as 

the fault plane). We consider that this structure is the source of the high shallow seismicity registered 

in 2015/2016 (Godoy et al., 2021). However, we also analyzed the mechanism solution of this event 

together with events 2 (3 January 2020) and 4 (22 May 2020). Therefore, these solutions probably 

belong to a structure inferred by other authors (Pesce, 1987; Mariot, 2008; Galetto et al., 2018). 

Consequently, we defined it as a normal fault, with an approximate E -W direction of both fault planes. 

As we have no prior field evidence, we were unable to select a nodal plane as the fault plane. 

The focal mechanism of the 8 September 2020 earthquake (Number 5, Figure 6) corresponds to 

another fault system, a strike-slip type with normal components (appendix Figure F). In this work, we 

assumed that the Nodal Plane 1 (PN1) was the most suitable, fault plane, considering the trend of the 
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photo-interpreted structures (Galetto et al., 2018) with a northeast-southwest orientation, such as the 

one located in the Cerro Domo area. Additionally, Galetto and co-authors (2018) carried out kinematic 

measurements in the fault planes of the Manchana Covunco Fault, in the homonymous stream and 

nearby areas, and identified normal dextral kinematic displacements and two planes of NNE and NNW 

fault solutions. We conclude that the results obtained by Galetto and co-authors (2018) and those 

obtained from seismological data in this work (with greater depths) correspond to the same family of 

faults with a NNE- SSW orientation, marked as inferred lineaments/structures in Figure 6. 

 

Figure 6. Satellite image with the results of the focal mechanism. The normal fault determined by mechanisms 1, 2, 3, and 4 is plotted. The 
focal mechanism solution of the 8 September 2020 earthquake, is compared with the kinematic results of Galetto et al. (2018). 

II. Ten-year seismological evolution of the Domuyo Volcanic Field 
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In order to assess the long-term evolution of the seismic activity in DVC, we first searched the available 

earthquake IGSV catalog for information about seismicity in the area, including events with a 

magnitude greater than 2. This catalog comprises events that occurred from 2010 to 2020 when the 

local IGSV networks in the nearest Domuyo region (south of Mendoza Province and north of Neuquén 

Province; Figure 1) were operating. In Figure 7, we plotted the detected earthquakes with circles, 

characterizing each year with a different color. The histogram shows that the Domuyo region was 

seismically inactive in the 2010-2015 period, with no evidence of earthquakes with a magnitude over 2, 

so we can consider the DVC as a zone of reduced seismicity around 2016. Seismicity begins to be 

detected in 2016 (according to the regional catalog, see Figure 1), with a maximum peak of “tectonic” 

events observed in 2017-2018, decreasing then until 2020. This becomes more evident if we refer to 

global (NEIC-USGS) and regional (INPRES) catalogs, which have been characterized as a reduced 

seismicity zone since 1973 (until 2019) and 1999 (until 2016), respectively (see Figure 1C). Additionally, 

from December 2015 to March 2016 a local network detected a large number of volcano-tectonic 

events with magnitudes Ml less than 1.2 in the Domuyo region (Godoy et al., 2021).  
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Figure 7. Location of the crustal earthquakes in the study area from data obtained by the IGSV local-temporal seismological networks. The 
histogram represents the number of earthquakes that occurred per year. Different colored circles mark the earthquake epicenters per 
year. Note that from 2016 to 2020, an increase in crustal seismicity is observed in the study area. 

Based on the obtained results a clear temporal and spatial relationship is observed between crustal 

seismicity and VT events in relation to detected inflation, described neotectonic deformations, and 

surficial warming (Galetto et al., 2018; Lundgren et al. 2018; Astor et al., 2019; d’Oreye et al., 2019, 

Lundgren et al., 2020). In particular, Lundgren et al. (2020), from a crossed correlation analysis applied 

to the INSAR and TIR temporal series propose three possible models to explain Domuyo´s behavior 

from 2008 to 2019. In particular, in Model 3, the Authors propose that magma injection at shallower 

levels (evidenced by surficial deformation since mid-2014) leads to gas transfer processes from the 

reservoir to the surface (evidenced by surficial warming from approximately mid-2017). 
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From the focal solution mechanisms associated to the measured crustal events, it is evident that at 

least from September 2016 (two years later than the beginning of the inflation process), the DVC is 

submitted to extensional-transtensional deformation. Crustal seismicity presents a higher peak around 

2017/18. In particular, higher magnitude earthquake in 2019 locates on the eastern slope of the DVC, 

showing that the entire system was subject to extension. Extensional crustal seismicity continues up to 

2020 concentrated beneath the western volcanic slope near the Humazo Fault where most VT events 

occurred. Since 2020 seismicity has decreased in accordance with a stabilization of the vertical 

deformation. This seismic sequence agrees with the proposal of a degasification process associated 

with the emplacement of a magmatic body at shallow depth, evidenced by the inflation described in 

Lundgren et al. (2020). 
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Figure 8. A- -DEM showing the principal volcanic centers that form the DVC with black triangles. The hot springs are indicated with yellow 
color and the active normal faults with black lines. The crustal earthquakes and volcano-tectonic (VT) epicenters are shown with different 
colored circles (the VT events are as described by Godoy et al., 2021). B- A summary model, the magmatic chamber is observed at a depth 
of approx. 6,5 km (Lundgren et al., 2020) where the magnetic crust is shallower. The new magmatic pulse is close to the Manchana 
Covunco fault. The seismicity is plotted with colored ovals as in the description of the map above. 3D representation made with Andino 3D 
(Cristallini et al., 2019). 
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VII. CONCLUSIONS 

In this work, we re-located the first seismic crustal event since 1973 that were registered in 2016. 

Additionally, we re-located the higher magnitude event in 2019 in the area. For both events we 

calculated the first focal mechanisms yielding extensional deformations plusstrike-slip components. 

Four additional focal mechanisms yielding extensional deformations were added following the seismic 

sequence of 2019/21. These extensional-transtensional events coincide with neotectonic deformations 

mainly concentrated beneath the western slope of the . Therefore, based on the data released by 

Lundgren et al. (2018, 2020) and the data obtained in this work, we infer that the DVC from 2016-2020 

was subject to an extensional deformation most likely associated with the degasification of a shallow 

magmatic body that promoted surficial warming, delayed 2.7 years with respect to the beginning of 

the inflation process. 
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 First focal mechanisms in Domuyo Volcanic Complex (DVC), with principally normal solution. 

 DVC from 2016-2020 was subject to an extensional deformation. 

 This deformation is associated with the degasification of a shallow magmatic body.  
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