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Double Field Theory with matter and the generalized Bergshoeff-de Roo identification
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The scalar field-perfect fluid (sf-pf) correspondence shows that the energy-momentum tensor of
a scalar field is in correspondence with the dynamics of a perfect fluid. In this work we gener-
alize this concept to study the higher-derivative structure of Double Field Theory with statistical
matter. Using the generalized Bergshoeff-de Roo identification we find nontrivial higher-derivative
corrections for the generalized scalar field Lagrangian. However, these contributions are removed
to any desired order using field redefinitions at the supergravity level. By virtue of the generalized
sf-pf correspondence we obtain the higher-derivative dynamics for the perfect fluid in the double
geometry, which is also trivialized at the supergravity level. These results imply that the well-known
α′-corrections obtained by this procedure only correct the effective vacuum Lagrangian, while the
sf-pf Lagrangian coupled to the supergravity background remains uncorrected to all orders. Our
findings apply for a general (Bosonic-Heterotic-Type II-HSZ) supergravity background.

I. INTRODUCTION

In recent works [1] a classification for higher-derivative
duality invariant theories for purely time-dependent
backgrounds was achieved. These theories admit non-
perturbative dS solutions in the string frame, and they
can be written in a duality invariant way. From a cosmo-
logical point of view, these α′ contributions correct the
vacuum part of the Einstein equations. Matter terms
were added later, mimicking the standard formulation of
the leading-order string cosmology and extending it to
all orders in α′ [2]. Within this formalism, if a matter
Lagrangian contains higher-derivative terms, a system-
atic procedure was presented to take rid of all these con-
tributions. When the matter terms come from a statisti-
cal energy-momentum tensor, like the energy-momentum
tensor of a perfect fluid, the previous method does not
apply straightforwardly because of the lack of a matter
Lagrangian.
A way to overcome this problem is to use a correspon-

dence between the dynamics of a scalar field and the dy-
namics of the perfect fluid. Since the former obeys a vari-
ational principle, the scalar field-perfect fluid (sf-pf) cor-
respondence can be used to define a fluid Lagrangian [3].
In here we propose to use the formalism of Double Field
Theory (DFT) [4] [5] and the generalized Bergshoeff-de
Roo identification [6] [7] to show that the α′-corrections
for the perfect fluid dynamics are trivial at the supergrav-
ity level for arbitrary backgrounds. Consequently the
cosmological reductions described in [1] and [2] contain
α′ corrections only in their vacuum (or gravitational1)
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1 We include dilaton or b-field contributions in here.

part of their dynamics.
Since T-duality is an exact symmetry of string the-

ory [8], its supergravity limit can be cast in a duality
invariant way. The standard procedure consists of a re-
grouping of the fundamental fields in O(D,D) multiplets
2, while the geometry has to be modified in a suitable
way and, for example, the dimensions of the space must
be doubled (standard DFT formulation). One way to ex-
tend DFT for including statistical matter contributions
is to construct a double kinetic theory [9]. Within this
framework, the conservation law for the generalized cur-
rent of particles and the energy-momentum tensor can
be derived in agreement with the variational principle of
DFT [10]. In [11] the explicit T-duality covariant form
of the generalized energy-momentum tensor was given
for a perfect fluid in the double geometry. Furthermore,
the dynamics of this extension of DFT is given by string
cosmologies with dilaton charge when one imposes cos-
mological ansatz for the generalized metric/dilaton, and
upon imposing strong constraint and field redefinitions
for the DFT energy density and pressure. The construc-
tion given in [11] suggests a formal correspondence be-
tween a generalized scalar field and a perfect fluid in the
double geometry.
The main goal of this work is to show that higher-

derivative terms induced by the generalized Bergshoeff-
de Roo identification applied to a generic DFT back-
ground with a perfect fluid coupled only correct the vac-
uum dynamics upon parametrization. Since the starting
point of this mechanism requires an O(D + K,D + K)
DFT, having a zeroth-order matter Lagrangian for the

2 We use D for the critical dimension of the string theory formu-
lation, and we focus on the universal NS-NS (Neveu-Schwarz)
sector.



2

perfect fluid is mandatory. For this reason we first ex-
plore the sf-pf correspondence at the supergravity level,
which can be use to construct a variational principle for
the latter. Then we generalize this correspondence at
the DFT level obtaining a variational principle for the
perfect fluid in the double geometry. We use the gener-
alized Bergshoeff-de Roo identification coupling this La-
grangian to an O(D + K,D + K) invariant DFT and
we obtain the higher-derivative deformation of DFT in
presence of a perfect fluid. Finally, we parametrize the
theory and take a field redefinition to obtain an invari-
ant metric tensor under Lorentz transformations, which
in turn trivialize all the higher-derivative terms in the
matter Lagrangian. We highlight three novel results in
this work:

1. We obtain the explicit correspondence between a
generalized scalar field and the DFT perfect fluid.
The procedure consists in inspecting the general-
ized energy-momentum tensor in each case and to
obtain a formal relation between the derivatives of
the scalar field and the hydrodynamics variables
of the fluid in the double geometry. The general-
ized correspondence results in a variational princi-
ple for the DFT perfect fluid, where the Lagrangian
is given by the DFT pressure, Lm = p̃. Moreover,
this result implies that the energy-momentum ten-
sor given in [11] obeys a generalized version of the
correspondence. The matter Lagrangian for the
perfect fluid in the double geometry is proportional
to the DFT pressure and it reproduces the standard
matter Lagrangian obtained by the ordinary corre-
spondence after parametrization.

2. We couple the sf-pf Lagrangian to an O(D+K,D+
K) extended geometry and perform the generalized
Bergshoeff-de Roo identification. After a gauge
fixing procedure, which consists in identifying the
gauge fields with the O(D+K,D+K) fluxes consid-
ering the matter contributions, we obtain higher-
derivative corrections in terms of O(D,D) fields.
The new contributions for the matter sector de-
form the generalized sf-pf Lagrangian in the dou-
ble geometry, and they are induced because of the
anomalous transformation of the generalized metric
under double Lorentz transformations.

3. At the supergravity level, only the vacuum
Lagrangian receives higher-derivative corrections
when a sf-pf is coupled: the DFT corrections for
the matter are removed to any desired order using a
metric field redefinition. Our results explain from a
geometrical point of view the lack of α′ corrections
for the matter in cosmological backgrounds, as re-
ported in a previous work [2]. However, our proce-
dure is valid for generic a and b values of the gener-
alized Bergshoeff-de Roo identification and there-
fore it applies to generic supergravity backgrounds,
in particular Bosonic-Heterotic-Type II-HSZ super-
gravity among others.

II. THE SCALAR-FLUID CORRESPONDENCE

IN A SUPERGRAVITY BACKGROUND

The scalar-fluid correspondence establishes a formal
identification between a minimally coupled scalar field
and an effective perfect fluid [3]. This correspondence
is very useful in order to include an effective matter La-
grangian for the latter.
Let us focus on the supergravity action with matter

S =
1

2

∫

dDx e−2ϕ √−g

[

R+ 4(∂ϕ)2 − 1

12
H2

]

+ Smat

where

Smat =

∫

dDx e−2ϕ√−g Lmat . (1)

The equation of motion for the metric tensor is given by

Gµν + 2∇µ∇νϕ+ 2gµν(∇ϕ)2 − 2gµν∇2ϕ

+
1

24
gµνH

2 − 1

4
HµρσHν

ρσ = e2ϕ Tµν , (2)

here µ, ν = 0, . . . , D − 1, Gµν is the well-known Einstein
tensor, Gµν = Rµν − 1

2Rgµν , Tµν is the standard energy-
momentum tensor coming from the matter contribution

Tµν =
−2√−g

δSmat

δgµν
, (3)

and the exponential factor e2ϕ acts as an effective gravi-
tational coupling. The dynamics of the dilaton field reads

R− 4(∂ϕ)2 − 1

12
H2 + 4∇µ(∇µϕ) = −e2ϕ σ (4)

with the dilaton source

σ =
−1√−g

δSmat

δϕ
= −e−2ϕ

[

δLmat

δϕ
− 2Lmat

]

(5)

while the dynamics for the b field is given by

−1

2
∇ρHρµν + (∇ρϕ)Hρµν = 2e2ϕJµν (6)

with the b-source

Jµν = − 2√−g

δSmat

δbµν
. (7)

In the case of a scalar field the Lagrangian for the
matter action (1) is

Lmat = −1

2
∂µΦ∂µΦ− V (Φ) (8)

and the dynamics is given by the Klein-Gordon equation

✷Φ− δV

δΦ
= 0 . (9)

The energy-momentum tensor from (3) is

T
µν
Φ = e−2ϕ

[

∂µΦ∂νΦ− 1

2
gµν∂ρΦ∂ρΦ− V gµν

]

,(10)
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while the dilaton source (5) and the b-source (7) for the
scalar field read

σΦ = 2e−2ϕ

[

−1

2
∂µΦ∂µΦ− V (Φ)

]

, (11)

J
µν
Φ = 0 , (12)

respectively.
On the other hand, the energy-momentum tensor for

an effective perfect fluid reads

T
µν
PF = (e+ p)uµuν + pgµν , (13)

with e the energy density, p the pressure and uµ the ve-
locity of the fluid. As usual in cosmological approaches,
the starting point for this kind of matter is given by the
energy-momentum tensor due to its statistical nature, in-
stead of a matter Lagrangian. If in addition to (13) we
also consider arbitrary sources for the dilaton σPF and
the b field J

µν
PF, we can derive string cosmology equations

from (2), (4), (6) and (13) after imposing a cosmological
ansatz. Indeed, the independent equations read [12, 13]

−e2ϕσPF = 2(D − 1)Ḣ +D(D − 1)H2

−4ϕ̈+ 4ϕ̇2 − 4(D − 1)Hϕ̇ (14)

−e2ϕ
(

e+
σPF

2

)

= (D − 1)
(

Ḣ +H2
)

− 2ϕ̈ (15)

e2ϕ
(

p− σPF

2

)

= Ḣ + (D − 1)H2 − 2Hϕ̇ (16)

−2e2ϕJPF
ij = b̈ij + [(D − 5)H − 2ϕ̇] ḃij (17)

At the GR level, the scalar-fluid correspondence was
studied in [3] through the formal comparison between
their energy-momentum tensors. In this supergravity
scenario, an analogous procedure can be carried out in
order to achieve the correspondence by comparing the ex-
pressions (10) and (13). We first define the identification
of the velocity as

uµ =
∂µΦ

√

|∂ρΦ∂ρΦ|
, (18)

with ∂ρΦ∂ρΦ 6= 0 and uµu
µ = sign(∂ρΦ∂ρΦ). Since we

use the positive signature, when ∂ρΦ∂ρΦ < 0 the velocity
uµ defines a time-like vector and the energy density and
the pressure of the effective perfect fluid are related to
the scalar field through

e = e−2ϕ

[

−1

2
∂ρΦ∂ρΦ+ V

]

, (19)

p = e−2ϕ

[

−1

2
∂ρΦ∂ρΦ− V

]

. (20)

Moreover, through this correspondence we can also ob-
tain the sources of the dilaton σPF and the b field J

µν
PF in

terms of the scalar field as

σPF = 2e−2ϕ

[

−1

2
∂µΦ∂µΦ− V (Φ)

]

(21)

J
µν
PF = 0 , (22)

which, in fact, implies that σPF = 2p.
Finally, using (8) and (20) we are able to find the mat-

ter Lagrangian corresponding to a perfect fluid in terms
of its own dynamical variables as

Lmat,PF = e2ϕ p . (23)

In the next section we show that this correspondence can
also be achieved in the context of DFT.

III. THE GENERALIZED SCALAR-FLUID

CORRESPONDENCE

A. The perfect fluid in the double geometry

String cosmologies can be rewritten in terms of
O(D,D) multiplets before compactification [11]. While
the cosmological principle would suggest an invariant
rewriting in terms of an ordinary time and a dual one,
matter contributions can be defined doubling the full
set of coordinates. Since the fundamental dimension of
O(D,D) is 2D, the geometry of DFT consists of a double
space with coordinates X = (x̃, x), equipped with an in-
variant group metric and its inverse. Doubled space-time
vectors can be defined considering generalized infinitesi-
mal diffeomorphisms, and these transformations are reg-
ulated through a generalized Lie derivative,

LξVM (X) =ξN∂NVM (X) + (∂M ξN − ∂NξM )VN (X)

+ω(∂NξN )VM (X) , (24)

where VM (X) is a generic vector with weight ω on the
double space and M,N, . . . are indices in the fundamen-
tal of O(D,D). The strong constraint,

∂M (∂M⋆) = 0 (∂M⋆)(∂M⋆) = 0 , (25)

ensures the closure of the generalized diffeomorphisms in
terms of a C-bracket and, effectively, removes the extra
coordinates x̃ when the constraints are solved through
∂̃ = 0. The DFT indices are contracted with the invariant
group metric

ηMN =

(

0 δνµ
δµν 0

)

, (26)

where µ, ν = 0, . . . , D − 1. The standard formulation
of DFT takes into account vacuum fields known as the
generalized metric, HMN which is an element ofO(D,D),
and the generalized dilaton, d. For later use we define
in here the DFT projectors: PMN = 1

2 (η − H)MN and

PMN = 1
2 (η +H)MN such that an arbitrary vector can

be projected in this way:

V M = PM
NV N + P

M
NV N = V M + V M . (27)

One can introduce statistical matter in the double ge-
ometry [9]. In order to describe this kind of matter, the
standard construction of DFT needs to be promoted to a
double kinetic theory approach. The double phase space



4

of DFT consists on an extension of the double geom-
etry including both the usual doubled coordinates and
the doubled momentum coordinates as (X,P), where
P = (p̃, p). Considering a generalized one-particle distri-
bution function F (X,P), which is a double phase space
scalar, the generalized energy-momentum tensor for the
statistical matter can be constructed in the following way

T MN (X) =

∫

d2DP e−2d PMPN F (X,P) , (28)

where e−2d is the DFT measure, TMN is clearly symmet-
ric and it can be shown that it is also divergenceless.

When we couple a generalized perfect fluid to the dou-
ble geometry, the generalized energy-momentum tensor
takes the form [11] ,

TMN = −2(ẽ+ p̃)
[

UMUN + UMUN

]

+ p̃HMN , (29)

where ẽ(X) = ẽ and p̃(X) = p̃ are the DFT energy den-
sity and pressure and UM is a generalized velocity whose
parametrization reads (uµ, ũ

µ). Since the parametriza-
tion of the generalized velocity is different from the one
in [11], we must also add a negative sign in the first term
of (29) in order to match string cosmology [12].

The expression (29) reminds the structure of the or-
dinary energy-momentum tensor in GR, but in DFT we
need to impose UMηMNUN = 0 to take rid of the dual
velocity ũµ. Another difference between the DFT tensor
with respect to its GR version is the presence of mixed
projections in the terms which depend on the general-
ized velocity. In the next subsection we will show that
this is a feature of the generalized scalar field Lagrangian,
which motivates the existence of a pf-sf correspondence in
the double geometry. As expected the energy-momentum
tensor (29) encodes the matter contributions of the string
cosmology equations with fixed dilaton charge σPF = 2p
and a vanishing b-field source J

µν
PF = 0. The procedure

for obtaining these equations is to consider a cosmological
ansatz for the DFT fields, to solve the strong constraint
and then parametrize the fields. The field redefinition
ẽ = e2ϕe and p̃ = e2ϕp is also needed to match (14)-(17).

B. The correspondence in the double geometry

We start by considering the following action principle,

S =

∫

d2DXe−2d L [H, d,Φ]

=

∫

d2DXe−2d

(

1

2
R [H, d] + Lm [H, d,Φ]

)

, (30)

where Lm represents matter coupled to the background
field content and Φ represents matter fields. The
standard way of computing the generalized energy-

momentum is using a variational principle such that

δξS =

∫

d2DX

[

δ
(

e−2dL
)

δd
δξd+

δ
(

e−2dL
)

δHMN
δξHMN

+
δ
(

e−2dL
)

δΦ
δξΦ

]

=

∫

d2DXe−2d

[

ξN∇MGMN − ξN∇MTMN +
δLm

δΦ
δξΦ

]

where

GMN = −1

2
ηMNR+ 2

(

RMN −RMN

)

(31)

and

TMN = 2
[

PMKPNL − PNKPML

]

(

δLm

δPKL

− δLm

δPKL

)

+ηMN

(

Lm − 1

2

δLm

δd

)

. (32)

The generalized tensors GMN and TMN are used to con-
struct the generalized symmetric Einstein tensor and the
generalized symmetric energy momentum tensor in the
following way

GMN = GMPHP
N and TMN = TMPHP

N . (33)

Moreover, it is possible to summarize the dynamics defin-
ing a generalized Einstein equation GMN = TMN from
the equations of motion.
At this point it is important to observe that since the

generalized dilaton d is a fundamental field which takes
part in the DFT measure, the construction of the gener-
alized energy-momentum tensor T MN not only includes
the contribution of the generalized metric sources but
also the generalized dilaton charge, which explains from
a variational principle why the perfect fluid in the double
geometry dictates the existence of a nonvanishing fixed
dilaton source at the supergravity level.
Now we focus on an O(D,D) invariant scalar field cou-

pled to the background content of DFT. We consider that
the DFT matter Lagrangian is given by,

Lmatter[H,Φ] = −1

2
HMN∂MΦ∂NΦ− V (Φ) . (34)

The equation of motion of the generalized scalar field is
the equivalent of the Klein-Gordon equation,

HMN∇M∇NΦ− δV

δΦ
= 0 (35)

and its generalized energy-momentum tensor for the pre-
vious field reads

TMN = −4PK(M PN)L ∂KΦ∂LΦ− 1

2
HMNHRQ∂RΦ∂QΦ

−HMN V (Φ) . (36)

We first establish the generalization of the fluid veloc-
ity and scalar field derivative correspondence as

UM =
∂MΦ

√

|HPQ∂PΦ∂QΦ|
. (37)
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A comparison between (29) and (36) through (37) shows
that the generalized pressure and energy density are
given by

p̃ = −1

2
HPQ∂PΦ∂QΦ− V (Φ) , (38)

ẽ+ p̃ = |HPQ∂PΦ∂QΦ| , (39)

and hence the matter Lagrangian reads

Lm = p̃ . (40)

Using this correspondence the DFT action, when a per-
fect fluid is coupled to the double geometry, is given by

SDFT =

∫

d2DXe−2d

(

1

2
R [H, d] + p̃(X)

)

. (41)

Then the supergravity matter action (eqs. (1) and (23))
is recovered when p̃(X) → p̃(x) upon parametrization,
namely

d2DXe−2d → dDx
√−g e−2ϕ

1

2
R [H, d] + p̃(X) → 1

2
(R+ 4(∂ϕ)2 − 1

12
H2) + p̃(x) ,

and p̃ = e2ϕp with p the physical pressure.

IV. THE GENERALIZED BERGSHOEFF-DE

ROO IDENTIFICATION

A. The generalized Bergshoeff-de Roo

identification for the vacuum case

The higher-derivative extension of the ordinary DFT
formulation requires to abandon the generalized metric
formalism and to consider a generalized frame, EM

A, as
a fundamental field with A = 0, . . . , 2D − 1 a double
flat index. The frame formulation of DFT is invariant
under a local double Lorentz group given by O(9, 1)L ×
O(1, 9)R, infinitesimally generated by a parameter ΛAB.
The frame formulation of DFT demands the existence
of two constant, symmetric and invariant metrics ηAB

and HAB. The former is used to raise and lower the flat
indices and the latter is constrained to satisfy

HA
CHC

B = δBA . (42)

The generalized frame is constrained to relate the metrics
ηMN and ηAB and defines the generalized background
metric HMN from HAB as

ηMN = EM
AηABEN

B , HMN = EM
AHABEN

B .
(43)

At this point it is convenient to introduce the flat pro-
jectors PAB = 1

2 (η −H)AB and PAB = 1
2 (η +H)AB.

The vacuum DFT action principle with higher-
derivative terms is given by [7],

S =

∫

d2DXe−2d

[

1

2
R(E, d) +

1

2
R(m,n)(E, d)

]

,(44)

where R is the generalized Ricci scalar and R(m,n) is a
higher-derivative Lagrangian which depends on two pa-
rameters, a and b, such that each term scales as anbm.
The action (44) is obtained after gauge fixing the zeroth
order O(D +K,D + K) invariant DFT and performing
the identification of the gauge degrees of freedom in or-
der to obtain a O(D,D) invariant DFT with only grav-
itational fields. For instance 3, the MN component of
O(D+K,D+K) metric encodes an O(D,D) metric plus
higher-derivative contributions,

HMN
O(D+K,D+K) = (H + I(m,n))MN

O(D,D) (45)

and, notably, the RHS is (double) Lorentz invariant. The
terms IMN are given in terms of the generalized fluxes
of DFT [14],

IMN = −aFM
ABFNAB − bFM

ABFNAB

+O(a2, ab, b2) . (46)

The a and b parameters are present in the Lorentz
transformations of the generalized frame which emulate
a generalized Green-Schwarz mechanism

δΛEM
A =EM

BΛB
A + a ∂[PΛ

BCFM ]BCE
PA

−b ∂[PΛ
BCFM ]BCE

PA +O(a2, ab, b2) .(47)

Consequently the Lorentz transformation for the
O(D,D) generalized metric is nonvanishing when higher-
derivative terms are considered, namely

δΛHMN = −2aF(N|AB ∂M)Λ
AB − 2b F(N|AB ∂M)Λ

AB

+O(a2, ab, b2) . (48)

When the O(D,D) metric HMN is parametrized using

a symmetric and antisymmetric tensor
{

g̃µν , b̃µν

}

a field

redefinition for the symmetric tensor is required to obtain
a Lorentz invariant (inverse) metric gµν ,

gµν =g̃µν +∆g̃µν . (49)

The form of the field redefinition ∆g̃µν can be easily
obtained taking ∆g̃µν = I(m,n)µν . With this choice it
is possible to trivialize the inverse of the metric tensor
to any desired order and then it is straightforward to
trivialize the metric. Hence the anomalous transforma-
tion of g̃µν is removed, meaning that the metric tensor
gµν is Lorentz invariant. Once the metric redefinition
is imposed, the dilaton is also redefined according to

e−2d =
√−g̃e−2φ̃ =

√−ge−2φ. We do not comment on
the redefinition of the b field since it will play no role in
the matter Lagrangian.

3 For a pedagogical introduction to this topic see [16].
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B. Coupling the scalar field

The action principle which describes an scalar field Φ
coupled to the O(D +K,D +K) geometry is given by

Lm =

[

−1

2
H−1∂Φ∂Φ− V (Φ)

]

O(D+K,D+K)

. (50)

This Lagrangian reduces to the following O(D,D) in-
variant matter Lagrangian (with higher-derivative terms)
according to the generalized Bergshoeff-de Roo identifi-
cation,

Lm[E,Φ] =−1

2
(H + I(m,n))MN∂MΦ∂NΦ− V (Φ) .(51)

Since (50) contains a pair of O(D + K,D + K) deriva-
tives acting on the generalized scalar field contracted
with the O(D + K,D + K) metric the MN component
is the only relevant contribution, i.e. we only need the
expression (45) to construct the higher-derivative matter
Lagrangian (51)4. Therefore the higher-derivative action
principle for this configuration reads

S =

∫

d2DXe−2d

(

1

2
R [H, d] +

1

2
R(m,n)(E, d))

−1

2
(H + I(m,n))MN∂MΦ∂NΦ− V (Φ)

)

. (52)

The parametrization of the matter contribution in the
previous action principle is

−1

2
(H + I(m,n))µν∂µΦ∂νΦ− V (Φ)

= −1

2
(g̃ +∆g̃)µν∂µΦ∂νΦ− V (Φ) . (53)

where we use ∂M = (∂̃µ, ∂µ) with ∂̃ = 0 given by the
usual solution to the strong constraint. By virtue of the
mandatory redefinition (49), the higher-derivative cor-
rections of the scalar field Lagrangian are removed to
any desired order. Hence, when one couples a scalar
field to the double geometry, only the background fields
receive higher-derivative corrections in their dynamics
upon parametrization. In the next part of the section
we take advantage of this result for the scalar field and
we use it, together with the sf-pf correspondence at the
DFT level, to study the higher-derivative structure of
perfect fluid dynamics.

C. Coupling the perfect fluid

The perfect fluid Lagrangian can be directly coupled
to the O(D,D) geometry with higher-derivative terms

4 Here we are using the fact that the generalized partial derivatives
in the gauge-directions vanish.

promoting the correspondence (38) to O(D+K,D+K).
This procedure produces the following action principle,

S =

∫

d2DXe−2d

[

1

2
R [E, d] +

1

2
R(m,n) [E, d]

+
(

p̃+ p̃(m,n)
)

]

. (54)

where p̃(m,n) = − 1
2IPQ∂PΦ∂QΦ .

Upon parametrization and considering the field re-
definition (49) the perfect fluid matter Lagrangian re-
covers its leading order form, just as happens in
the parametrization of the generalized scalar field La-
grangian,

p̃+ p̃(m,n) → e−2ϕp . (55)

The sf-pf dynamics have a rich and nontrivial higher-
derivative interactions at the DFT level which deform,
for instance, the algebraic L∞ structure of the theory
[19]. These interactions are a genuine deformation of
the matter Lagrangian and cannot be absorb using field
redefinitions of the generalized metric. Nonetheless, it
turns out that, after parametrization, these corrections
are trivialized for all a and b at any desired order. At
this point it is important to recall that the generalized
Bergshoeff-de Roo identification recovers all the α′ cor-
rections for the Heterotic and Bosonic supergravity up
to α′2 [7, 15, 18] for particular values of the parameters
a and b, but new deformations of the model are required
to include α′3 contributions as pointed out in [17].

V. DISCUSSION

Most of the string cosmologies scenarios in the liter-
ature are based on the coupling of a perfect fluid to
a cosmological supergravity background [2, 10–13]. In
some cases, the matter Lagrangian is represented by the
Helmholtz free energy, which is equivalent to the pres-
sure Lagrangian here discussed for a canonical ensemble
of particles [20] after integration of the spatial volume.
These kind of cosmological ansatz can be easily obtained
from the double geometry as showed in [11] paying the
cost of a nonvanishing fixed dilaton charge. The latter
is mandatory if one wants to preserve the DFT measure
which indeed ensures the invariance under generalized
diffeomorphisms.
In this work we show that the perfect fluid dynamics

coupled to a generic supergravity background does not
receive higher-derivative terms on its dynamics. Consid-
ering the generalized version of the sf-pf correspondence
our result is related to the families of covariant field re-
definitions discussed in [21]. In the context of super-
gravity with O(d, d)-invariant matter, the absence of α′

corrections was also noticed in [2] for an arbitrary matter
Lagrangian within the cosmological framework. The au-
thors used the formalism developed in [1] in order to get
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rid of the higher-derivative contributions, in agreement
with the results presented here for general backgrounds.
In other words, the generalized version of the sf-pf corre-
spondence makes a formal analogy between the general-
ized scalar physics and the dynamics of a perfect fluid in
the double geometry and since the higher-derivative cor-
rections of the former can be trivialized at the supergrav-
ity level so the corrections for the fluid at the same level.
As a particular case, the cosmological framework is not
corrected with α′ corrections or other higher-derivative
terms which can be put in a T-duality invariant way as
in HSZ theory [22].
On the other hand, the results of this work show that

the proposal for the generalized the energy-momentum
tensor given in [11] implies a formal correspondence be-
tween the generalized scalar field and the fluid in the
double geometry. Our results explains why it is manda-
tory a dilaton charge in order to find agreement between
DFT and string cosmologies. Furthermore, it is expected
that the generalized correspondence can be a useful tool
to explicitly construct this tensor from (double) kinetic
theory [9], where the form of the generalized distribution
function is not known.
Deforming the perfect fluid structure could be a way

to include nontrivial higher-derivative terms coming from
the matter Lagrangian coupled to a DFT background.
The current obstruction of this program relies in the
fact that this deformation would include nonvanishing
entropy production and the entropy current is not well-
understood, at the DFT level, when statistical matter is
present in the double geometry. These imperfect fluids
may require a new correspondence in order to use the
generalized Bergshoeff-de Roo identification.

VI. CONCLUSIONS

We explore the scalar-fluid correspondence for a
generic D-dimensional supergravity background. On the

one hand we couple a scalar field and, on the other, we
consider a perfect fluid with generic dilaton and b-field
sources. The structure of the energy-momentum tensors
for both types of matter allows a formal correspondence
between them. Consequently it is possible to find a mat-
ter Lagrangian for the perfect fluid which is indeed pro-
portional to the pressure.

We generalize this correspondence for a generic DFT
background, where the vacuum fields are given by the
generalized metric/dilaton and the matter is coupled con-
sidering a generalized scalar field and a double perfect
fluid. The generalized version of the sf-pf correspondence
allows us to construct a variational principle for the lat-
ter, whose Lagrangian is proportional to the DFT pres-
sure. Upon parametrization, this pressure can be related
to the ordinary pressure up to a field redefinition.

The higher-derivative structure of DFT with matter is
analyzed using the generalized Bergshoeff-de Roo iden-
tification. Interestingly enough, the identification pro-
duces nontrivial higher-derivative corrections for the gen-
eralized sf-pf Lagrangian. However these corrections are
removed to any desired order considering a field redefini-
tion for the metric tensor at the supergravity level. These
results are valid for generic D-dimensional supergravity
backgrounds and explain the absence of α′ corrections for
the perfect fluid dynamics in the cosmological ansatz.
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