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ABSTRACT

The main objective of this study is to evaluate the uncertainties due to sample size associated with the

estimation of the standardized precipitation index (SPI) and their impact on the level of confidence in drought

monitoring inAfrica using high-spatial-resolution data from short time series. To do this, two different rainfall

datasets, each available on a monthly basis, were analyzed over four river basins in Africa—Oum er-Rbia,

Limpopo, Niger, and eastern Nile—as well as at the continental level. The two precipitation datasets used

were the Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product 3B43 and the

Global Precipitation Climatology Centre full-reanalysis gridded precipitation dataset. A nonparametric re-

sampling bootstrap approach was used to compute the confidence bands associated with the SPI estimation,

which are essential for making a qualified assessment of drought events. The comparative analysis of different

datasets suggests that for reliable drought monitoring over Africa it is feasible to use short time series of

remote sensing precipitation data, such as those from TRMM, that have a higher spatial resolution than other

gridded precipitation data. The proposed approach for drought monitoring has the potential to be used in

support of decision making at both continental and subcontinental scales over Africa or over other regions

that have a sparse distribution of rainfall measurement instruments.

1. Introduction

Methods for drought assessment are based mainly on

water supply indices derived from precipitation time

series alone. Over Africa, the main limitation for devel-

oping effective real-time drought monitoring and early

warning systems is the lack of reliable and up-to-date

precipitation data in many regions of the continent.

A sparse distribution of rain gauges and short or in-

complete historical rainfall records pose further prob-

lems. This lack of information can lead to significant

errors in the estimation of statistical parameters for

deriving water supply indices from the precipitation

time series.

When the availability of in situ data is scarce, it is

necessary to determine whether to use longer, but spa-

tially sparse, time series or to use shorter time series

with higher spatial resolution. Prior studies suggest that

within-station substitutionwith amoderate length history

(about 10 yr) performs better than spatial interpolation

of long time series for representing the spatial–temporal

variability of large-scale climatological conditions, such

as time-averaged precipitation (Willmott et al. 1996). In

this way, Rhee and Carbone (2011) studied the effect of

drought estimation with limited precipitation data across

different climatic regions in theUnited States. They show

that the standardized precipitation index (SPI) values

that are based on short-term records generally produced

smaller cross-validationmean absolute errors values than

the spatially interpolated SPI values when the lengths of

records were equal to or longer than 10 yr for all SPI time

scales. This relation was high even when the lengths of

records were only 5 yr. These results using short-term

records show that including as many stations with mod-

erate lengths of records (at least 10 yr) as possible can

improve the representation of spatial–temporal variabil-

ity of drought. The authors also perform an analysis using

5.5 yr of theTropicalRainfallMeasuringMission (TRMM)

3B43 record. They stated that the TRMM data could not

outperform the spatially interpolated daily precipitation in

most regions. In some regions (such asmountainous regions

or those without in situ measurements), however, the use
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of remote sensing–derived data (even with 5.5-yr record

length) could outperform spatial interpolation of long-term

gauge data.

The TRMM satellite has proved to be useful for pre-

cipitation monitoring in regions, such as areas of central

Africa, for which station data are difficult to obtain or in

which there is poor station coverage (Jenkins 2000). In

fact, TRMM precipitation products have been exten-

sively validated at ground sites around the world, some

of these in Africa. Nicholson et al. (2003) show that

TRMM estimations are in excellent agreement with

gauge data over West Africa on monthly to seasonal

time scales, with a root-mean-square (RMS) error of

around 1 mm day21 at monthly resolution.

Adeyewa and Nakamura (2003) conducted a

36-month climatological assessment of the TRMM

precipitation radar, TRMM 3B43, and Global Pre-

cipitation Climatology Project satellite products over

the major climatic regions in Africa. The study shows

that 3B43 closely matches rain gauge data, suggesting

that the goal of the algorithm was largely achieved.

Dinku et al. (2007) studied a relatively dense station

network over the Ethiopian highlands to evaluate the

performance of different satellite products over complex

topography in the tropics. The authors found that, for

those evaluated at a monthly time scale, Climate Pre-

diction Center (CPC) Merged Analysis of Precipitation

and TRMM3B43 performed very well, with a bias of less

than 10% and an RMS of about 25%. The TRMM

Multisatellite Precipitation Analysis (TMPA) estimation

provides reasonable performance at monthly scales but

has lower skill in correctly specifying moderate- and

light-event amounts at short time intervals, in common

with other finescale estimators (Huffman et al. 2007).

As a step toward the implementation of a cost-effective

drought early-warning system in many undergauged

regions around Africa, this paper describes and tests an

approach of unbiased SPI estimation using TRMM3B43

data over Africa. To quantify bias and uncertainties,

a nonparametric bootstrap approach was performed.

2. Data and methods

a. Precipitation datasets

This work uses the TMPA estimation (computed at

monthly intervals as the TRMM 3B43 dataset for the

period 1998–2010) that combines the estimates gener-

ated by TRMM and other satellite products (3B42) with

the Climate Anomaly Monitoring System gridded rain

gauge data produced by the National Oceanic and At-

mospheric Administration CPC and/or the global rain

gauge product produced by the Global Precipitation

Climatology Centre (GPCC). The output is rainfall for

0.258 3 0.258 grid boxes for each month.

The reference dataset that was used is version 5 of the

GPCC full reanalysis (Rudolf et al. 1994) for the period

1951–2009. This dataset is based on quality-controlled

precipitation observations from a large number of sta-

tions (up to 43 000 globally) with irregular coverage in

time. These datasets were evaluated over four river

basins in Africa—Oum-er-Rbia (A), Niger (B), eastern

Nile (C), and Limpopo (D)—as well as at the continental

scale. A short description of these regions is shown in

Table 1 and Fig. 1.

The TRMM product and the reference data are not

completely independent, however, although TRMM is

mainly based on remote sensing data. Figure 1 shows the

mean and standard deviation of annual precipitation for

the TRMM and GPCC datasets over Africa. An overall

agreement is shown between datasets with respect to

average and interannual variability as well as the mean

spatial patterns of annual precipitation. These datasets

agree on the north–south gradient from the desert areas

to the tropical savannas and rain forests related to a

precipitation maximum due to the location of the inter-

tropical convergence zone (ITCZ). Although this agree-

ment exists, the record length of the two datasets is

different.

b. Standardized precipitation index

The SPI was developed by McKee et al. (1993, 1995)

to provide a spatially and temporally invariant measure

of the precipitation deficit (or surplus) for any accu-

mulation time scale. It is computed by fitting a para-

metric cumulative distribution function (CDF) to

a homogenized precipitation time series and applying an

equiprobability transformation to the standard normal

variable. This gives the SPI in units of number of stan-

dard deviations from the median.

The gamma distribution is typically the parametric

CDF chosen to represent the precipitation time series

(e.g., McKee et al. 1993, 1995; Lloyd-Hughes and

Saunders 2002; Husak et al. 2007), since it has the

TABLE 1.Definition ofAfrican regions by latitude and longitude,

basins totally or partially included, and TRMM (0.258 3 0.258) and
GPCC total number of grid points (18 3 18). For GPCC, the per-

centage of stations per grid and the percentage of pixels without

stations are shown in parentheses.

Area

Lat and

lon boundaries Basin

TRMM

grid cells

GPCC

grid cells

A 318–358N, 108W–08 Oum er-Rbia 640 36 (0.52, 0.65)

B 68–188N, 108W–08 Niger 1920 120 (0.23,.70)

C 78–178N, 308–408E Blue Nile 1600 100 (0.23,0.75)

D 268–208S, 258–348E Limpopo 1224 54 (0.56, 0.44)
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advantage of being bounded on the left at zero and

positively skewed (Thom 1958; Wilks 2002). Moreover,

Husak et al. (2007) have shown that the gamma dis-

tribution adequately models precipitation time series

in roughly 98% of locations over Africa.

In this study we use the maximum-likelihood estima-

tion method to estimate the parameters of the gamma

distribution. To show the effect of period length on the

estimation of the gamma distribution, the shape and

scale parameters for each month using 15 (1994–2009),

30 (1979–2009), and 60 (1949–2009) yr of GPCC data

were calculated for the Oum-er-Rbia basin (Fig. 2).

c. Nonparametric bootstrap method

Here we use a nonparametric bootstrap method to

estimate the parameters and confidence intervals of the

gamma distribution. This is done for aggregated pre-

cipitation for the 3-month time scale over the 13-yr time

series of the TRMM 3B43 dataset from 1998 to 2010.

Consider that a random sample of observations, X 5
fX1, X2, . . . , Xng, is used to obtain a sample estimate us
of a parameter of interest u that can be the shape or scale

parameter that defines the gamma distribution for X.

The purpose of bootstrap simulation is to estimate un-

certainty (bias and variance) associated with the sample

estimate us. According to Efron and Tibshirani (1993),

a random sample size of size n is drawn with re-

placement from the original sample.

Using the kth bootstrap sample of b bootstrap simu-

lations and denoting by

X(k)5 fX1
*,X2

*, . . . ,XN
*g, k5 1, 2, . . . ,b , (1)

a new bootstrap estimate uk* of us can be obtained. The set

of u* 5 fu1*, u2*, . . . , ub*g constitutes the sampling distri-

bution of us. The boostrap estimate of the bias is given as

bias5 (um*2 us) , (2)

where um* represents the average of all bootstrap esti-

mates u*. This leads to the bias-corrected estimator of

the parameter u:

u5 us 2bias5 2us 2 um*. (3)

The variance S of us is estimated as

S(us)5
1

b2 1
�
b

k51

(uk
*2 um

* )2 . (4)

This is a statistical resampling technique that does not

require preselected distribution ormodels to fit the data,

FIG. 1. Annual mean precipitation (mm) for the (left) TRMM 3B43 and (right) GPCC datasets. The labeled

rectangles show theAfrican regions used in this analysis: Oum-er-Rbia (A), InnerNigerDelta (B), BlueNile (C), and

Limpopo basin (D).
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because the simulations have the same distributional

properties of the original dataset. On the other hand,

this behavior may produce spurious fine structure in the

original data (Silverman 1986).

3. Results

In Fig. 2 it is shown that the confidence interval de-

creases as the record length of data increases, meaning

that the stability of the coefficients that can be estimated

with reasonable accuracy increases as the sample size

increases. Stability is usually understood to mean that

the fitted distribution (i.e., parameters) is also applicable

to independent future data so that the parameters would

be substantially unchanged if based on a different sam-

ple of the same kind of data. Furthermore, the error in

the estimation of the scale parameter is greater for dry

months (June–August). This result suggests that the

error in the estimation is not constant during the year

and also that it changes for each climate region, being

greater for dry climates.

This lack of stability for the shorter time series could

produce greater uncertainties when the drought indices

are calculated. Figure 3 shows the empirical distribution

of the 3-month TRMM averaged precipitation over the

Limpopo basin for February. This distribution was fitted

using kernel, gamma, and unbiased gamma distributions

using the bootstrap technique [Eq. (3)]. The unbiased

estimation fits best (i.e., lower Kolmogorov–Smirnov

distance: 0.15 for unbiased, 0.18 for kernel, and 0.23 for

uncorrected estimation) when compared with the other

approaches. Figure 3 also shows the distribution esti-

mation and the family of distributions associated with

the bootstrap resampling. It is shown that the members

could vary widely, but the mode is in general well rep-

resented by the majority of members.

At the pan-African level, Fig. 4 shows the spatial

distribution of the unbiased shape and scale parameters

using 3-monthly averaged TRMM precipitation data.

FIG. 2. Annual cycle of shape and scale gamma parameters of GPCC precipitation at region A (Oum er-Rbia) for different record lengths

(red) and its uncertainties (light gray).
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This estimation shows a regional consistency and is

in agreement with the findings of Husak et al. (2007).

Large shape values tend to follow the ITCZ through

each of the monthly maps. Regions with higher shape

values indicate that the probability of events drier than

average becomes similar to the probability of events

wetter than average, since the distribution is more

symmetrical (Wilks 2002). The maxima are located

near the coasts of Gabon, the Republic of the Congo,

and the Democratic Republic of the Congo in January,

whereas in July they are located between 08 and 108N
mainly in western and central Africa. The wet seasons

in these regions are driven by the ITCZ, accompanied

by large and consistent rainfall in the observations. The

areas with a higher scale parameter are mainly ob-

served in the poleward borders of the ITCZ where the

rainfall could be more variable. This larger variability

is mainly due to fluctuations in the position of the ITCZ

across the continent and may give one region heavy

rainfall for an extended period of time while causing

another to have an abbreviated rainy season.

Figure 5 shows the 3-month SPI estimated with unbi-

ased CDF estimation using a 13-yr baseline for TRMM

(including confidence intervals) and a 60-yr baseline for

GPCC over the four regions. It is shown that in general

TRMM exceeds the peaks when compared with GPCC.

This means that the main source of error is due to the

estimation of the tails of the distribution, and this is

related to the stability of the time series. The GPCC

estimation is within the TRMM estimation confidence

intervals, however. This is confirmed by the correlation

coefficient r that is shown in Fig. 5, which is statistically

significant for all river basins. The lack of agreement is

observed only for a few specific periods in the Blue Nile

and to a minor extent in the Niger basin. Examples are

the years of 2001, 2002, 2004, 2006, and 2008 in the Blue

Nile basin, and 2000 and 2007 in the Niger basin. The

largest differences are observed for the regions with

the most complex orography or a lack of in situ infor-

mation: the Blue Nile basin and the Niger basin, respec-

tively. In addition, as shown in Table 1, these regions also

have the lowest station density per grid, with up to 75%of

pixels without any ground observation for the GPCC

dataset. This means that more in situ data are needed to

improve the GPCC precipitation datasets and the

TRMM calibration as well.

4. Conclusions

The comparative analysis between the TRMM and

GPCC datasets suggests that for reliable drought mon-

itoring over Africa it is feasible to use TRMM time se-

ries that have a higher spatial resolution than other

gridded datasets like GPCC. Higher discrepancies in

SPI estimations are shown in mountainous areas and

areas with sparse in situ station density.

FIG. 3. Gamma and kernel probability distribution functions of TRMM precipitation at

Limpopo basin. Blue: kernel distribution, green: gamma distribution, red: bootstrap gamma

distribution, and gray: gamma distribution of each bootstrap member.

OCTOBER 2012 NAUMANN ET AL . 1871



A nonparametric resampling bootstrap approach was

used to compute the confidence bands of the sampling

uncertainties associated with the SPI estimation. The

proposed approach for drought monitoring has the

potential to be used in support of decision making at

continental and subcontinental scales over Africa or

other regions that have a sparse distribution of rainfall

measurement instruments.

This kind of approach could be used to improve the

monitoring of rainfall conditions in two ways. The first

FIG. 4. (left) Shape and (right) scale parameters for (top) January and (bottom) July using unbiased estimation

of parameters.
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way is to obtain an unbiased estimation of the gamma

parameters with short precipitation time series. This

could allow the development of a pan-African SPI using

near-real-time rainfall estimates. The second is to es-

timate the confidence bands of SPI. This can prepare

decision makers, through the measurement of un-

certainties associated with the datasets, to better un-

derstand in which situations this tool is more reliable

than others. Moreover, this type of approach could

enable some forecast applications. For instance, it is

possible to use the distribution information for each

member of the bootstrap as initial conditions to de-

velop drought scenarios. These types of scenarios could

prepare decision makers and local stakeholders to take

the appropriate action needed in the cases of high- and

low-risk situations.
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