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Abstract: A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power 
system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in 
the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection 
method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers 
typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured 
over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list 
according to the system state. 
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1. Introduction 

Recently, as a consequence of the deregulation of 

power industry, modern power system has been shifting 

from a regulated and vertically integrated system to a 

competitive and uncertain market environment. The 

introduction of competitive supply and corresponding 

organizational separation of supply, transmission, and 

system operation has resulted in more highly stressed 

operating conditions, more vulnerable networks, and an 

increased need to assess the dynamic security level of 

such modern power system. 

The importance of the dynamic security assessment 

is due to that, if the system is operating in an insecure 

state, control actions must to be determined and applied, 

so to bring the system to a more secure operation state. 

Dynamic security assessment, for any given state, is 

generally performed by simulating contingencies like 

line outage and generator outage in the power system, 
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estimating their consequences on the system such as 

line overloading, relays operation, angle stability loss 

or voltage drop, and comparing these results with their 

corresponding acceptable values. It is important to 

mention that it is unnecessary and impractical to study 

all credible contingencies in detail, due to the fact that 

most contingencies simulated during dynamic security 

assessment do not result in unacceptable values of state 

variables, mainly due to their small influence on 

system operation [1, 2]. 

Their exclusion from the set of critical contingencies 

to be simulated would achieve a significant reduction 

in computation time, which is an important issue for an 

on-line implementation of the dynamic security 

assessment [3-5]. 

Finding these critical contingencies for each state 

under study requires for each system component a 

detailed analysis of its characteristics, its response to 

possible perturbations and its interaction with other 

system components. From the set of possible failures, a 

subset must be obtained containing those regarded as 

D 
DAVID   PUBLISHING 



Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks 

  

1664

most significant (i.e. critical) according to system 

operation state. 

The conventional analytical techniques used in 

contingency selection and ranking are usually time 

consuming and therefore not always suitable for 

on-line applications. Moreover, many performance 

indexes based on analytical methods suffer from the 

problem of misclassification and false alarm. 

Misclassification arises when a critical contingency is 

classified as non-critical. A false alarm occurs when a 

non-critical contingency is classified as critical. Given 

that, in general, the problem of contingency selection 

and ranking can be characterized by lack of precise 

mathematical model, and large volume of information 

to be handled, it would be possible to fulfill the 

requirements of critical contingencies analysis when 

working on-line by employing AI (artificial 

intelligence) techniques [6, 7]. 

In recent years, there has been a growing interest in 

using AI and specifically artificial neural network 

based methods to screen and rank contingencies. In 

relation with the analytical methods, artificial neural 

network based methods are faster, requiring a less 

computational burden and also they have a better 

accuracy for on-line contingency ranking [8]. This 

paper proposes a novel critical contingencies selection 

method for on-line dynamic security assessment. The 

selection method results from an off-line dynamical 

analysis, which covers typical scenarios. Indexes 

measured over these scenarios are used to train neural 

networks, capable of performing on-line estimation of 

a critical contingencies list according to the system 

state. 

2. State of the Art 

Bibliography presents a variety of techniques that 

can be used to carry out critical contingencies selection, 

and solve the ranking problem, using AI. However, a 

few experiences exists in the state of art, related to 

implementation of these techniques performing, 

quickly and effectively, the necessary tasks are 

required by an on-line implementation of dynamic 

security assessment. 

In Ref. [9], a contingency ranking method is 

presented. The contingencies are ranked according to a 

PI (performance index), which is a scalar that reflects 

the severity degree of a contingency. 

In Ref. [10], an approach based on RBFN (radial 

basis function neural network) to rank the 

contingencies expected to cause steady state bus 

voltage violations is presented. 

In Ref. [11], a three-layer perceptron artificial neural 

network with back propagation learning technique is 

designed for line flow contingency ranking. In this 

paper, two new indices are defined (a severity index 

and a margin index for line flow). 

In Ref. [12], an AI (fuzzy set) based contingency 

ranking is proposed. The post contingency system 

variables are first expressed in fuzzy set notation, and 

then the heuristic rules employed by the system 

operators are used to code in the form of fuzzy 

reasoning rules. 

In Ref. [13], it used a method based on a coupled 

scheme (artificial neural network and expert system) 

for power system security enhancement, combining 

artificial neural network based contingency screening 

with an expert system based preventive control. An 

extended Hopfield neural network is used for 

evaluating the change in the performance index to 

determine the ranking of a contingency. 

The change in the performance index is realized as 

the energy function of the extended Hopfield network. 

The major disadvantage of the proposed approach 

[9-13] includes only one issue regarding to dynamic 

security assessment in the contingency ranking process 

(for example: voltage stability, power flow limits, etc.), 

regardless other important transients effects, they are 

required to perform a complete dynamic security 

assessment.  

3. Critical Contingencies Selection 

Conformation of critical contingencies list is done 
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by comparing the severity level in which each 

contingency affects the system. The greater the 

consequences are suffered by the system, the higher the 

severity level will be. Due to inherent power system 

dynamics, it becomes necessary to analyze the 

phenomena involving a failure not only from a 

stationary viewpoint but also from a dynamic one. In 

addition, the contingencies severity levels as a measure 

of all aspects (stationary and dynamic) need to be 

established, when a failure in some system component 

appears. The severity level indicator approach 

presented in this paper attempts to include the 

following phenomena which may arise after a failure: 

(1) significant increases in transmission lines currents; 

(2) voltage deviations which impact power quality; (3) 

variations in frequency, maximum deviation and 

duration; (4) load disconnections that interrupt energy 

supply to users. A failure in some component causes a 

perturbation, influencing certain system variables 

(undesirable failure consequences). These influences 

must be analyzed to get the failure security level. The 

method employed to find the security level consists in 

taking the distance from the security state for the new 

operation state to the security margin function. Security 

state is determined from indexes which somehow 

summarize failure consequences, while the security 

margin function represents a hyper-surface over which 

the system is secure. 

4. Contingency Selection Methodology 

The process of computing severity level involves 

two steps, the first done in an off-line stage and the 

other in an on-line stage. 

4.1 Off-Line Stage 

The off-line stage (Fig. 1) aims to train two groups of 

neural networks, one group for estimating post 

contingency security state indexes and the other group 

for determining the security margin function. Training 

information for neural network is taken from the 

typical system state (base case scenario) and several 

scenarios extracted from the base case changing the 

load and generation in small steps . Once the 

scenarios are defined, a list with all the contingencies to 

be ranked is created . For each scenario, a power 

flow calculation is done , all the nodal voltages, line 

currents and power flows results are used to calculate 

the pre-contingency indexes . 

These indexes represent: the system state before 

contingency happens, and the failure characteristics. 

More detail of these indexes is given in the next 

sections. Using the obtained scenarios and the failure 

list, a power flow calculation  and a dynamic 

simulation  is done for each contingency following 

the N-1 security criteria. Using the results of the 

dynamic simulations and the power flow calculations, 

the post-contingency indexes are calculated . More 

detail of these indexes is given in the next sections. To 

estimate the severity level , an expert system operator 

must analyze the results (dynamic simulations, power 

flows calculations, pre and post contingencies indexes) 

for each contingency in each scenario. From this 

analysis and his/her experience in the system operation, 

the operator has to choose the most appropriate value.  

This is an empiric evaluation and the severity level is 

an empiric positive value that must measure the 

operating point deviation from the secure zone. For this 

reason, a severity level of 0 indicates a secure state and 

this value increases as the security decreases. With the 

pre-contingency indexes as inputs and the calculated 

post-contingencies indexes as output, a neural network 

is trained for post-contingencies index estimation in the 

on-line stage . To train the severity level neural 

network , the pre and post contingency indexes are 

employed as inputs and the expert severity level 

estimation is used as the output (see Fig. 2 for training 

details). Once this neural network is trained, the 
security margin function ( )f x  is extracted. This 

function defines a hyper-surface where the system is 

totally safe [6]. 

This function is used in the on-line stage to estimate 

the security margin. To determine whether neural 
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Fig. 1  Off-line stage. 
 

 
Fig. 2  Neural networks training to get the security margin 
function. 
 

networks have been correctly trained, a new test 

scenario is extracted from the base scenario. Over this 

tests scenario all failures are simulated, indexes are 

computed from simulations and compared to those 

obtained from neural networks. 

4.2 On-Line Stage 

On the on-line stage, the goal is to rank the 

contingencies for the current system state. This task is 

performed in several steps (Fig. 3) but none of them is 

computationally intensive, some power flow 

calculations are done but no dynamic behavior is 

simulated. From the current load and generation 

scenario  and the list with all the generators 

contingencies to be ranked  power flow calculations 

are done for the current system state  and for each 

generator contingency . The power flow calculations 

are used to calculate the same pre-contingency indexes 

used in the off-line stage . The post-contingency 

indexes that were calculated in the off-line stage using 

dynamic simulations to train the post-contingency 

index estimation neural network are now estimated for 

each contingency in the list using the same trained 

neural network . These indexes define the estimated 

 
Fig. 3  On-line stage. 
 

security state (x). To estimate the severity margin for 

each contingency, the distance between estimated 

security state and the surface given by security margin 

function is computed . Once each severity margin for 

each contingency is estimated, they are placed in 

decreasing order to get the contingency ranking . 

5. Pre-contingency State Indicators 

Pre-contingency state indicators are indexes 

expressing the system state before failure that is 

expressed in Eqs. (1) and (2), and also the magnitude 

of the failure is expressed in Eqs. (3)-(5). These 

indexes are used as input data in the on-line stage, so, 

they must be quickly computable to minimize 

estimation delay. The pre-contingency indexes are 

divided into three groups. 

5.1 Power Flow Margin Index MI and Voltage Margin 

Index MTI 

This group of indexes evaluates the system state 

before a contingency. The MI index gives a measurable 

value of the apparent power flow (current flow) 

capacity margin. MTI index measures the global 

voltage change margin. 
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NL : Number of lines; 
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iI : Current on line I; 
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Limit current on line I; iwl : Line weight factor, 

between 0 and 1. 
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NN : Number of nodes; 
pre

iV : Voltage on node I 

before contingency; 
n

iV : Nominal voltage on node I; 
lim

iV : Voltage deviation limit on node i (e.g.: 5% Vn); 

iwn : Node weight factor, between 0 and 1. 

5.2 Quasi-Stationary Power Flow Index MQI and 

Quasi-Stationary Voltage Index MTQI 

These indexes evaluate the system considering the 

component outage but calculating the system state 

using only stationary tools (AC power flow). They are 

defined as quasi-stationary indexes. The index MQI is 

defined similarly to MI index, but considering the 

quasi-stationary power flow results. For the index 

MTQI, respecting to MTI index is valid the same 

consideration. Then:  

2

1 1

  
quasiNL NL
i

i ilim
i

I
MQI wl ( ) wl

I
 (3) 

quasi
iI : Current on line i after quasi-stationary failure. 

2
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quasi nNN NN
i i

i ilim
i

V V
MTQI wn ( ) wn

V
 (4) 

quasi
iV : Voltage on node i after quasi-stationary 

failure. 

5.3 Disconnected Generation Index GI 

This index evaluates the failure’s magnitude 

comparing the disconnected generation produced by 

the failure with total system generation. 

 out totalGI G G Fp   (5) 

outG : Power of failed generator; totalG : Total power 

system generation; Fp : Weight factor. 

6. Post-contingency State Indicators 

These indicators define the estimated security state 

during a contingency. These indicators are modeled by 

four groups of indexes. 

6.1 Power Flow Index SI 

The index is calculated by computing a weighted 

average of differences between current limit flow
lim
iI  

and the one after contingency 
pos

iI  [10] which is 

calculated as the final current value obtained after the 

system dynamic simulation. A weight is assigned to 

each transmission line in accordance with its 

importance in the power system. Weight iwl is the 

same value used in the pre-contingency Eq. (1) and in 

the quasi-stationary indexes Eq. (3). This weight is 

defined by the system operator. The equation used is: 

2

1 1

  
posNL NL

i
i ilim

i

I
SI wl ( ) wl

I
 (6) 

pos
iI : Current on line i after failure. 

6.2 Voltage Index STI 

Weighted average of differences between voltage 

deviation before and after failure and the acceptable 

voltage limit [3] are computed. The weight value 

corresponds to the importance assigned to each node by 

an expert operator as used in Eqs. (2) and (4). The 

expression used is: 

2

1 1


 
pos nNN NN

i i
i ilim

i

V V
STI wn ( ) wn

V
 (7) 

pos
iV : Voltage on node i after failure. 

6.3 Frequency Deviation Indexes FI and FT 

Frequency deviation is a clear indicator of the 

system’s dynamic evolution after a contingency. Two 

indexes are calculated: maximum frequency deviation 

index Eq. (8) and total frequency deviation index Eq. 

(9). 

  max max admissibleFI F F  (8) 

0

   
ts

admissibleFT F( t )dt F ts  (9) 

maxF : Maximum frequency deviation; 

  admissibleF : Maximum admissible frequency deviation. 

6.4 Load Shedding Index PDI 

This index indicates the amount of load 

disconnected after a failure. As the frequency deviation 
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index, this is an important indicator of the system state 

after a failure in Eq. (10): 

disconnected totalPDI P P   (10) 

disconnectedP : Load disconnected through load 

shedding; 

totalP : Total load before failure. 

7. Severity Margin SM 

In the off-line stage, the pre- and post-contingency 

indexes are used to train the security margin neural 

network. Once this neural network is trained, the 

security margin function is extracted. In the on-line 

stage, the pre-contingency indexes are calculated and 

the post-contingency indexes are estimated using the 

first group of neural network. The values of this 

indexes define the operation security state of the 

system and are used to compute the severity margin by 

measuring the distance from this point to the security 

margin function. 

The security margin function is a multidimensional 

surface and the operational security point defines a 

point in this space. Fig. 4 shows an example of 

measuring the severity margin with only two indexes. 

The SM value is calculated by solving the following 

optimization problem:  

min x xo ; Subject To: ( ) 0f x  (11) 

8. Dynamic Simulation 

8.1 Power System Components 

The tool used for the dynamic simulations has an 

accurate representation for each power system 

component. The generation units, the grid and the load 

are mathematically modeled to reach simulation results 

similar to the reality. For the generation units, three 

types of turbines are modeled: hydraulic, steam and gas. 

The electric generator is modeled as a synchronous 

machine. The speed and voltage regulators are also 

modeled. For the grid, the lines and transformers are 

modeled as passive pi networks. Two types of loads are 

modeled: motor load and non-motor load. The main 

characteristic of the motor load is that active power 

( )f x

xo

 
Fig. 4  Example of a severity margin calculated using only 
two indexes. 
 

consumed is much lower when the frequency drops. 

The non-motor loads are modeled as a linear relation 

with the frequency and a nonlinear with the voltage. 

Automatic load disconnection is also modeled in two 

types: frequency relays and low voltage relays. 

Frequency relays disconnect load in steps, depending 

on the frequency value, or by gradient, measuring the 

rate of change of frequency. Low voltage relays 

disconnect load when the voltage violates the preset 

voltage limits. 

8.2 Simulation Time 

The dynamics of interest in dynamic security 

assessment are, among others, the automatic load 

shedding, speed regulators, voltage regulators; all are 

mechanism that helps in the pos contingency state 

recovery. Starting from the system equilibrium point, 

the outage of a generation unit triggers a power 

unbalance. This unbalance is initially compensated by 

the rotating mass kinetic energy slowing down the 

system frequency. The frequency drop compensates in 

part the unbalance due to the frequency dependency of 

some loads. When frequency drops, the speed regulator 

of generation units, increase the active power generated. 

For the thermal units, this is achieved by increasing the 

steam output, and for hydraulic units, by increasing the 

water flow throw the turbine (primary regulation). This 

increment in power helps to take the system to a new 

equilibrium point. If this actions are not enough to 

reach the system equilibrium point, then the load 

disconnection is the last (and the worst) way to reach it. 
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This mechanism helps to bring the system to a new 

stationary state. The new state of equilibrium is 

reached within approximately 20 seconds after the 

generator outage. This time period depends on the size 

of the system, the extent of the disturbance, the types of 

governors, the availability of spinning reserve, and the 

amount of load that can be disconnected. In order to 

include the dynamics of such mechanisms that help to 

recover the system operation, it is necessary to assess 

the performance of the system 20 seconds following 

the disturbance [14]. This is the time-frame considered 

in this work. 

9. Application Example 

The Argentinean 500 kV power system is taken as a 

test model system (Fig. 5). The main characteristic of 

this system is its radial topology. Because of being a 

radial system, it exhibits the disadvantage of having 

some unique paths for energy to go from generators to 

loads. This topology implies other problems such as the 

conformation of islands when important radial lines 

fail and the difficulty in replacing generation lost by the 

remaining generators when one generator fails. Due to 

these problems, Argentine power system is 

ill-conditioned, exposed to collapse after the 

occurrence of large failures. The initial failure list used 

in this example is composed by outages in main 

generators, and by outages of lines that join node 

GMZA500-RGRAN500 and YACIR500-RINCO500. 

9.1 Off-Line Stage Neural Networks Training 

Three load and generation scenarios are proposed, 

and failures for each single generator are simulated in 

the off-line stage. Proposed scenarios are: (1) Base 

Scenario A. Generation: 5,650 MW. Load: 5,517 MW; 

(2) Scenario B = A scenario + 500 MW load distributed 

among all load nodes; (3) Scenario C = A scenario – 

500 MW load distributed among all load nodes. 

Table 1 shows a critical contingencies list for each 

proposed scenario. Instead of using an expert operator 

to estimate the severity level of each contingency, the 

level was calculated adding each post-contingency 

 
Fig. 5  500 kV test system. 
 

Table 1  CC for scenarios A, B, C. 

Scenario A Scenario B Scenario C 

Generator SM Generator SM Generator SM 

YACIR500 43.66233 YACIR500 44.44909 YACIR500 45.996232 

CHOCO500 3.58661 RODRI500 3.49964 CHOCO500 4.473781 

EMBA500 2.670967 CHOCO500 3.207076 EMBA500 3.548333 

CCOST500 1.764373 EMBA500 2.355602 CCOST500 2.256529 

BBLA500 1.610828 CCOST500 1.58545 BBLA500 2.129098 

GMZA500 1.362748 ABAST500 1.496355 PILAR132 1.809512 

RAMA220 1.348878 BBLA500 1.483668 RAMA220 1.749722 

ABAST500 1.348025 GMZA500 1.342004 OLAVA500 1.720783 

ATUCH220 1.345319 ATUCH220 1.277675 SNICO132 1.690918 

PILAR132 1.321216 RAMA220 1.261 ABAST500 1.674846 

OLAVA500 1.299286 PILAR132 1.216443 ATUCH220 1.674553 

SNICO132 1.276531 OLAVA500 1.212177 GMZA500 1.635527 

RODRI500 1.266391 SNICO132 1.199055 RODRI500 1.632284 

 

index with a weighting factor. The severity level neural 

network was trained with these values, the severity 

margin function was extracted and the SM values 

shown in Table 1 were calculated using this function. 

It can be seen that for scenarios A and C, the list is 

similar up to the sixth contingency, this does not 

happen with scenario B where the similarity with the 

other two is up to the first contingency. This behavior is 

explained by analyzing security state indexes: for the 

RODRI500 generator contingency, the value of 

disconnected generation is similar in all of three 

scenarios 3.5% 3.3% and 3.9%, respectively. Index 

flow values are also similar, but voltage index values 

are not similar, in scenario A is 0.0776, in scenario C is 

0.139689 and in scenario B is 0.377309, which is 
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higher than previous ones. Differences in 

contingencies list were to be expected since scenarios 

have different load levels. 

9.2 On-Line Stage Test 

An intermediate scenario between the training ones 

was used as tests scenario. This tests scenario is 

described by: Scenario D = Base scenario + 250 MW 

load distributed among all load nodes. Results from 

this scenario D are not used to train neural networks. 

The results were employed only to obtain estimated 

indexes values, and from them to get a severity level 

for each contingency. Once the indexes are estimated, 

the same failures are simulated and indexes and 

severity margin for each contingency are calculated. 

A comparison between contingencies lists obtained 

by estimation and by simulation is shown in Table 2. It 

can be seen that the first four contingencies are the 

same, while the rest does not, the error in the 

contingencies list estimation is due to an existing error 

in security state indexes estimation. 

9.3 Final Test and On-Line Stage 

The results obtained in the estimated contingencies 

have a low satisfaction degree respect the simulated 

contingencies, such as shown in Table 2. For this 

reason, a test scenario is introduced as additional data 

training for the neural networks, to improve the 

estimation indexes. To verify whether improvement 

exists when adding scenario D as training data, another 

tests scenario (Scenario E) was derived from the base 

scenario. This scenario consists in adding to the base 

scenario a 150 MW load uniformly distributed. The 

indexes and SM index were estimated for each failure 

in this scenario, and all failures were dynamically 

simulated and indexes are calculated for each 

contingency. 

Table 3 shows a comparison between contingencies 

lists obtained by estimation and by simulation. In the 

first column are the estimated indexes before adding D 

scenario as training data. In the second column are the 

simulated values of the severity indexes, these values 

are the reference, and the estimations must match them. 

The third column gives the estimated indexes after 

adding scenario D as training data. As it can be seen, 

the third column list of contingencies is closer than the 

first column, due to the addition of scenario D as 

training data. Comparing this table the second and third 

columns of Table 3 with Table 2, significant 

improvements are noticed in the contingency list 

estimation, however, errors prevail in some positions, 

mostly in those contingencies with similar severity 

level values (e.g. for nodes ATUCH220, ABAST500 

and RAMAL220). 

10. Conclusions 

The new competitive environment in that power 

systems operates has created a need of an on-line 

dynamic security assessment, due to the necessity of 

predicting future operation conditions. In order to carry 

out a complete on-line assessment, it is necessary to 

evaluate the power system dynamic behavior when 

contingencies occur for a given operating state. This is 

a time-consuming task and most contingencies 

simulated do not result in unacceptable values of state 

variables, mainly due to their small influence on 

system operation. Therefore, previous selection of 

critical contingencies becomes necessary, specially to 
 

Table 2  Simulated and estimated CC for scenario D. 

Scenario D (simulated) Scenario D (estimated) 

Generator SM Generator SM 

YACIR500 44.317445 YACIR500 44.480546 

CHOCO500 3.356028 CHOCO500 3.708806 

EMBA500 2.244625 EMBA500 2.282154 

CCOST500 1.662381 CCOST500 2.013404 

BBLA500 1.536574 RODRI500 1.932605 

GMZA500 1.351459 SNICO132 1.928779 

ABAST500 1.300225 RAMA220 1.636928 

ATUCH220 1.296962 BBLA500 1.583393 

RAMA220 1.289881 OLAVA500 1.491689 

PILAR132 1.258326 ATUCH220 1.470355 

OLAVA500 1.246194 ABAST500 1.455058 

SNICO132 1.226863 GMZA500 1.427926 

RODRI500 1.223033 PILAR132 1.340695 
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Table 3  Simulated and estimated CC for scenario E. 

Scenario E (estimated) Scenario E (simulated) Scenario E (estimated) 

Generator SM Generator SM Generator SM 

YACIR500 44.359917 YACIR500 44.377559 YACIR500 44.400873 

EMBA500 3.298236 EMBA500 3.222287 EMBA500 3.092986 

CCOST500 2.962575 CHOCO500 2.863401 CHOCO500 2.946154 

CHOCO500 2.319165 CCOST500 2.320389 CCOST500 2.279349 

ABAST500 1.982618 BBLA500 2.034767 BBLA500 2.143031 

RODRI500 1.923749 RODRI500 1.945171 RODRI500 1.908641 

GMZA500 1.821868 RAMA220 1.822203 ATUCH220 1.640684 

ATUCH220 1.704511 ATUCH220 1.780764 ABAST500 1.616711 

BBLA500 1.682856 ABAST500 1.692207 RAMA220 1.607112 

RAMA220 1.424001 GMZA500 1.484978 GMZA500 1.539526 

SNICO132 1.386794 SNICO132 1.405988 SNICO132 1.312402 

OLAVA500 1.244918 OLAVA500 1.312675 OLAVA500 1.290389 
 

get an on-line dynamic security assessment 

implementation. This paper presents a new approach 

useful for selection and ranking of critical 

contingencies. The process of selection involves 

several steps, some of them have done in an off-line 

stage and some in an on-line stage. Five 

pre-contingency state indicators and five 

pos-contingency state indicators are defined. It is true 

that proposed indexes do not cover all the phenomena 

in the power system dynamics, buy they do not pretend 

to be a security system measurement. However, they 

are enough for contingencies selection because they 

provide information about the worst dynamic effects of 

systems failures. On the off-line stage, the pre- and 

post-contingency indexes are calculated using dynamic 

simulations. A neural network is used for 

pos-contingency index estimation on the on-line stage. 

The method presented here for contingency ranking is 

an extension to similar methods used for contingency 

selection where no dynamic effects are considered. The 

extension proved to be effective in the example case 

based only on the proposed indexes.  
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