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Abstract Cosmopolitan marine pelagic species dis-

play variable patterns of population connectivity

among the world’s major oceans. While this informa-

tion is crucial for informing management, information

is lacking for many ecologically important species,

including apex predators. In this study we examine

patterns of genetic structure in the broadnose sevengill

shark, Notorynchus cepedianus across its global

distribution. We estimate patterns of connectivity

among broadnose sevengill shark populations from

three major oceanic regions (South Atlantic, Oceania

and Eastern Pacific) by contrasting mitochondrial and

nuclear DNA haplotype frequencies. We also pro-

duced time calibrated Bayesian Inference phyloge-

netic reconstructions to analyses global

phylogeographic patterns and estimate divergence

times among distinctive shark lineages. Our results

demonstrate significant genetic differentiation

among oceanic regions (UST = 0.9789, P\ 0.0001)
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and a lack of genetic structuring within regions

(UST = - 0.007; P = 0.479). Time calibrated Baye-

sian Inference phylogenetic reconstructions indicate

that the observed patterns of genetic structure among

oceanic regions are historical, with regional popula-

tions estimated to have diverged from a common

ancestor during the early to mid-Pleistocene. Our

results indicate significant genetic structuring and a

lack of gene flow among broadnose sevengill shark

populations from the South Atlantic, Oceania and

Eastern Pacific regions. Evidence of deep lineage

divergences coinciding with the early to mid-Pleis-

tocene suggests historical glacial cycling has con-

tributed to the vicariant divergence of broadnose

sevengill shark populations from different ocean

basins. These finding will help inform global man-

agement of broadnose sevengill shark populations,

and provides new insights into historical and contem-

porary evolutionary processes shaping populations of

this ecologically important apex predator.

Keywords Global distribution � Phylogeography �
Pleistocene � Population structure patterns � Sharks �
Species management

Introduction

The dispersal of marine species and the connectivity

among their populations is often influenced by a

variety of biotic and abiotic factors, such as life history

traits, habitat continuity and availability, ocean cur-

rents, and environmental gradients (Bowen et al. 2016;

Costello et al. 2017; Kumar and Kumar 2018; Palumbi

1994; Sherman et al. 2008). Complex interactions

between these factors shape not only species distribu-

tions, but also the spatial extent and strength of

migration between habitats, and the overall metapop-

ulation structure across species ranges (Domingues

et al. 2017; Miller et al. 2013). Knowledge of these

patterns can inform management efforts geared

toward preserving patterns of endemism and evolu-

tionary potential, which is pertinent in light of

continuing and rapid environmental change (Harrison

and Hastings 1996; Kenchington et al. 2003).

Genetic markers are used widely to gain direct

estimates of population genetic structure, information

on demographic and phylogeographic histories, and

genetic factors underpinning species fitness and envi-

ronmental resilience (Avise 2000; Avise et al. 2016;

Larson et al. 2017; Palsbøll et al. 2006; Städele and

Vigilant 2016; Thompson et al. 2016). While genetic

studies have played pivotal roles in issues such as

marine wildlife conservation, fisheries management
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and biosecurity, genetic data remains limited for many

marine species (McClenachan et al. 2012). One group

of marine species in need of improved genetic

information are the elasmobranchs, with only approx-

imately 10% having been investigated in terms of

population genetics (Domingues et al. 2018; Dulvy

et al. 2014; McClenachan et al. 2012). Sharks are some

of the most widely distributed and ecologically

important marine organisms occupying the world’s

oceans, many of which are in a state of decline and in

need of improved conservation management (Ferretti

et al. 2010; Heithaus et al. 2008; Heupel et al. 2014;

Queiroz et al. 2019).

To date, genetic studies on widely distributed shark

species have demonstrated patterns of genetic differ-

entiation between major ocean basins; between the

Atlantic and Indo-Pacific oceans (scalloped hammer-

head (Sphyrna lewini), (Duncan et al. 2006); blacktip

shark (Carcharhinus limbatus), (Keeney and Heist

2006); silky shark (Carcharhinus falciformis), (Clarke

et al. 2015); tiger shark (Galeocerdo cuvier), (Bernard

et al. 2016)), between the northern and southern

hemispheres (great white shark (Carcharodon car-

charias), (O’Leary et al. 2015)), and eastern and

western Atlantic ocean (oceanic whitetip shark (Car-

charhinus longimanus), (Camargo et al. 2016)). Yet

the degree of genetic structuring and population

connectivity is variable across taxonomic groups and

has been primarily attributed to adult vagility and

habitat use (Giles et al. 2016; Schultz et al. 2008). For

example, demersal sharks and species with a

preference for coastal habitats show greater genetic

structuring and reduced population connectivity (Cor-

rigan et al. 2016; Dudgeon et al. 2009; Geraghty et al.

2014; Karl et al. 2011; Keeney and Heist 2006;

Schultz et al. 2008), compared to pelagic species

which tend to have shallow genetic structuring and

greater connectivity across oceanic regions (Castro

et al. 2007; Heist et al. 1996; Schmidt et al. 2009;

Verı́ssimo et al. 2017). Life history and dispersal traits,

and habitat affinities seem to play a key role in

determining patterns of population and phylogeo-

graphic structure in sharks across the world’s oceans

(Kriwet et al. 2009).

The six- and sevengill sharks (family Hexanchidae,

order Hexanchiformes) are a highly distinctive group

of elasmobranchs, recognized as one of the most basal

lineages of modern sharks, with fossils dating back to

the Lower Jurassic (* 190 mya) (Maisey 2012; Rus

Hoelzel et al. 2006). The genus Notorynchus (Ayres,

1855) is considered to be monotypic and consists of

the broadnose sevengill shark, Notorynchus cepedi-

anus (Péron 1807), common to temperate water

inshore bays and estuaries circumglobally (Anderson

et al. 1998; Barnett et al. 2012). Tagging studies

indicate seasonal, sex specific, and long distance

(* 1800 km) dispersal patterns within their oceanic

regions (Barnett et al. 2011, 2012; Ebert 1996;

Stehfest et al. 2014; Williams et al. 2012), however,

evidence of transoceanic movement has not been

reported. To date only a single population genetic

study with a limited geographic focus has been

conducted on this species (Larson et al. 2015),

reporting significant genetic structuring between two

coastal bays separated by approximately 1000 km on

the west coast of the United States. Further research is

needed to test the degree of population genetic

structure across the species distribution to identify

isolated populations requiring independent manage-

ment consideration, and to gain insights into the

evolutionary history of this ancient shark lineage.

In this study, we use DNA sequence data from the

mitochondrial control region (mtCR) and the nuclear

ITS2 locus to explore patterns of population genetic

structure in the broadnose sevengill shark sampled

across three oceanic regions, Eastern Pacific Ocean

(EPO), South Atlantic Ocean (SAO) and Oceania. We

also use time calibrated phylogenetic reconstructions

to investigate the phylogeographic history of the

species, and gain insights into historical factors that
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have shaped contemporary patterns of genetic diver-

sity. Findings from this study enhance our under-

standing of the population structure and evolutionary

history of broadnose sevengill sharks globally, and are

expected to assist the management of this ecologically

important but under studied apex-predator.

Materials and methods

Tissue collection

Tissue biopsies from 249 individual sharks were

provided from six countries in three oceanic basins;

Eastern Pacific Ocean (EPO), (United States, n = 33

and Peru, n = 22); South Atlantic Ocean (SAO),

(Argentina, n = 47 and South Africa, n = 42); and

Oceania, (Australia, n = 65, and New Zealand,

n = 40) (Fig. 1). Tissue samples were obtained as fin

clips or muscle punches and preserved in 95% ethanol.

Biological and collection information such as sex, fork

length (FL) or total length (TL), and location were

recorded, where possible, for each sample (see Sup-

plementary Information, ESM 1).

DNA extraction and sequencing

Genomic DNA was isolated from tissue samples using

QIAGEN DNeasy Tissue kits following the manufac-

turer’s instructions (QIAGEN, Inc., Valencia, CA). An

812 base pair (bp) fragment spanning the entire

mitochondrial control region (mtCR) and flanking

DNA sequences from the tRNA-thr and 12S rRNA

genes were amplified by polymerase chain reaction

(PCR) for all tissue specimens using primers CRF6 (C.

Bruels, unpublished, 50 AAGCGTCGACCTTGT

AAGTC 30) and DasR2 (V. Richards, unpublished,

50 GCTGAAACTTGCATGTGTAA 30) respectively,

for all samples. In addition a 620 bp fragment of the

nuclear intergenic spacer subunit 2 region (ITS2) was

also amplified using previously published primers

(Shivji et al. 2002) for a subset of the samples (United

States: n = 8, Peru: n = 9, Argentina: n = 10, South

Africa: n = 10, Australia: n = 15, and New Zealand:

n = 3). PCR reactions were performed following the

protocol outlined in Clarke et al. 2015. Amplified

products were purified using the QIAquick PCR

Purification Kit (QIAGEN, Inc.) following the man-

ufacturer’s instructions prior to direct cycle sequenc-

ing of both DNA strands using the respective PCR

primers on an Applied Biosystems 3130 genetic

analyser (Applied Biosystems, Inc., Foster City,

Fig. 1 Map showing distribution (blue) and collection locations

(pie charts) for broadnose sevengill sharks (N. cepedianus).
Collection locations include South Africa, Argentina, New

Zealand, Australia, United States and Peru with n values

representing the number of mtCR samples per location. The pie

chart size represents the proportion of mtCR sequences samples

per location and depicts the sex ratios
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CA). DNA sequences were aligned and edited using

the software GENEIOUS version 4.04 (Drummond et al.

2008) prior to analysis.

Population genetic analysis

The total number of mtCR and ITS2 haplotypes for

each sample location was identified using DNASP V5

(Labrado and Rozas 2009). Diversity indexes such as

haplotypic (h) and nucleotide (p) diversity, as well as

the number of polymorphic sites (S) were calculated

for each region, again using DNASP V5. To visualize

the relationships among haplotypes a median-joining

(MJ) haplotype network was constructed (Bandelt

et al. 1999) using the program POPART (http://popart.

otago.ac.nz). In addition a statistical parsimony net-

work analysis was conducted using TCS (version

1.21:3) software (Clement et al. 2000) using mtDNA

sequences for all samples only as ITS2 data showed

little divergence. This program joins haplotypes into a

network after calculating the 95% probability of a

parsimonious connection between haplotypes.

An analysis of molecular variance (AMOVA) was

performed on the mtDNA dataset to assess genetic

population structure in ARLEQUIN 3.5. The HKY model

(Hasegawa et al. 1985) was selected as the best fit

model of evolution based on Bayesian Information

Criteria (BIC) (Schwarz 1978) implemented in JMO-

DELTEST v.0.1.1 (Posada 2008). However, as HKY

model is not included in ARLEQUIN 3.5, the Tamura and

Nei model (Tamura and Nei 1993) was used which had

a similar BIC score. Global estimates of UST and

population pairwise measures of UST were calculated

using ARLEQUIN 3.5 with significance determined using

1000 permutations. Demographic history was explored

using neutrality tests based on Fu’s FS (Fu 1997) and

R2 test (Ramos-Onsins and Rozas 2002) implemented

in DNASP V5. Both Fu’s FS and R2 test were calculated

as a deviation from neutrality possibly attributed to

selection and/or population size changes, with signif-

icance level tested at P\ 0.05 using 1000 permuta-

tions. The sequential Bonferroni procedure (Rice

1989) was used to adjust significance levels when

performing multiple simultaneous comparisons. Nega-

tive (significant) Fu’s FS values and a low R2 test can

be interpreted as a signal of purifying selection or

demographic expansion. Evidence of recent popula-

tion expansions or contractions were further explored

via mismatch distribution analysis using ARLEQUIN 3.5.

Exploring phylogeographic patterns

and divergence times

Phylogenetic relationships among mitochondrial hap-

lotypes were explored using Bayesian Inference (BI)

methods using the HKY model implemented in

BEAST 2.3.0 (Bouckaert et al. 2014). Operators

were auto-optimized, and five independent Markov

Chain Monte Carlo (MCMC) runs were performed

using a constant population size coalescent as the tree

prior, each running for 5 9 106 generations, sam-

pling every 10,000 states. Log files were examined

with TRACER v.1.5 (Drummond and Rambaut 2007)

to ensure that runs were sampling from the same

posterior distribution, to determine appropriate burn-

in, and to ensure that effective sample sizes (ESSs) of

parameters of interest were greater than 1000. Tree

files of independent runs were then combined with

LOGCOMBINER v.2.1.3 (Drummond et al. 2012),

discarding the first 20% of trees as burn-in. The

maximum clade credibility (MCC) tree was recov-

ered from a sample of 10,000 posterior trees, and

branch support was annotated, using TREEANNO-

TATOR v.2.1.3 (Drummond et al. 2012). All anal-

yses started with a random starting tree and seed with

no root specified. Sequence data from Hexanchus

(Genbank accessions: AB560490 and AB560491)

and Heptranchias (Genbank accession AB560488)

species were used as an outgroup to estimate the root

of the mitochondrial gene tree. However, ITS data

was not available from an appropriate outgroup

taxon, and the ITS BI reconstruction is presented as

an unrooted tree topology.

To test the timing of divergence between broadnose

sevengill shark mitochondrial lineages, the gene tree

was time calibrated with divergence times of nodes

being inferred from 95% highest posterior density

(HPD) intervals. The time dimension of the analyses

was calibrated by fixing the mean substitution rate to

0.4% per million years (clock rate 0.004), calculated

as the mean rate per lineage based on previous

estimates for MtCR from a variety of shark species

(Chevolot et al. 2006; Duncan et al. 2006; Ferrari et al.

2018; Karl et al. 2012; Keeney et al. 2003; Schultz

et al. 2008). Substitution rates were set in BEAUti

1.7.3 (Drummond et al. 2012), and TRACER was then

used to obtain parameter estimates for time to the most

recent common ancestor (tMRCAs) for nodes within

the gene tree.
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Results

Patterns of genetic diversity and genetic

differentiation

DNA sequence data from an 812 bp of the mtCR and

flanking regions were successfully obtained from all

249 broadnose sevengill sharks (Fig. 1). Across

regions a total of seven mitochondrial haplotypes

(referred to as Hap_1–7) were observed, differing by

up to 15 polymorphic sites (Tables 1, 2). Haplotype

diversity (h) and nucleotide diversity (p) was 0 in the

EPO, 0.1496 and 0.0002 respectively in SAO, and

0.236 and 0.0003 respectively in Oceania (Tables 1, 3,

4).

Our median joining haplotype network (Fig. 2)

indicated two highly divergent clades (EPO and SAO /

Oceania). Individual sharks sampled from the United

States and Peru in the EPO shared a single haplotype

(Hap_1) that was separated from all the other haplo-

types by 11 mutational steps. The remaining

haplotypes (Hap_2 – 7) segregated geographically

between the SAO (Argentina and South Africa) and

Oceania (Australia and New Zealand), however hap-

lotypes between these two regions were only separated

by a single base mutation suggesting more recent

shared ancestry. The statistical parsimony network

analysis indicated similar stratifications of regions,

with a decisive separation between the EPO and other

regions (Fig. 3). The haplotype frequency for each

group is shown in Table 2.

AMOVA indicates strong and significant genetic

differentiation between oceanic regions (global UST-

= 0.9789, P\ 0.0001), with pairwise UST indicating

high levels of significant differentiation between all

oceanic regions (EPO, SAO, and Oceania) (UST-

= 0.8989 to 0.99228; P\ 0.0001). In contrast

AMOVA indicated no significant differences among

collection locations within regions (UST = - 0.007;

P = 0.479 ± 0.01).

Fu’s FS calculations for each oceanic region were

negative but not significant (P\ 0.001) for the SAO

Table 1 Population genetics statistics for regions and collection locations

Region Collection

location

Genetic diversity indicies Neutrality tests Mismatch analysis

N H S h p R2 Fu’s FS Harpending’s

raggedness

index

SSD

Eastern

Pacific

ocean

(EPO)

United

States

33 1 0 0 0 0 0 0 0

Peru 22 1 0

Pooled

EPO

55

South

Atlantic

ocean

(SAO)

Argentina 47 2, 3,

4

2 0.150 ± 0.05 0.0002 ± 0.000296 0.09527 - 1.609 0.51591 0.00057

South

Africa

42 2, 3,

4

2

Pooled

SAO

89

Oceania Australia 65 5, 6,

7

2 0.236 ± 0.05 0.0003 ± 0.00038 0.08916 - 0.727 0.33526 0.00427

New

Zealand

40 5, 6 1

Pooled

Oceania

105

Total samples 249 1–7 15 0.709 ± 0.012 0.00591 ± 0.00038 0.07877 10.145 – –

Number of samples (N), haplotype number (H), number of polymorphic sites (S), haplotype diversity (h), nucleotide diversity (p),

Harpending’s raggedness Index, SSD and test of neutrality (R2 and Fu’s Fs) for the broadnose sevengill shark (N. cepedianus)
mitochondrial DNA control region
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and Oceania regions (Table 1), but could not be

calculated for the EPO region due to a lack of

haplotype diversity. Similarly, R2 test values were low

overall, with the exception of EPO, which could not be

calculated due to a lack of diversity (Table 1). These

findings indicate that populations within the respective

oceanic regions may have undergone recent

population expansions. The notion of expanding

population size is further supported by mismatch

analyses which indicates a stochastic and multimodal

pattern, with the Sum of Squared Deviation (SSD) and

Harpending’s Raggedness Index (HRI) not differing

significantly (P[ 0.05) from that which is expected

under a population expansion model for the SAO

(p(Sim[ = Obs) = 0.395 and 0.647, respectively),

and Oceania (p(Sim[ = Obs) = 0.348 and 0.630,

respectively).

In contrast to the MtCR datasets, the ITS2

sequences were highly conserved. The sole difference

was a variation in the number of repeats present in a

dinucleotide repeat motif (bp 276 to 297 of the 776 bp

alignment), separating the dataset into three haplo-

types. All individuals from the Californian region had

6–8 repeats, while 10 repeats were present in the

Peruvian sequence and the SAO/Oceania regions. As a

consequence of this lack of locus specific variation,

Table 2 Frequency of haplotype in the collection locations, haplotype name (Hap_1–7), number of samples (N), for the broadnose

sevengill shark (N. cepedianus) mitochondrial DNA control region

Haplotype (N) Collection location

United States (33) Peru (22) Argentina (47) South Africa (42) Australia (65) New Zealand (40)

Hap_1 (55) 1.000 1.000 – – – –

Hap_2 (82) – – 0.915 0.929 – –

Hap_3 (3) – – 0.0426 0.0238 – –

Hap_4 (4) – – 0.0426 0.0476 – –

Hap_5 (91) – – – – 0.831 0.925

Hap_6 (13) – – – – 0.154 0.075

Hap_7 (1) – – – – 0.0154 –

Table 3 Pairwise UST values (below diagonal) and P-values

(above diagonal, ? represents statistical significance with P-

value\ 0.05) for broadnose sevengill shark (N. cepedianus)
across three regions

Eastern Pacific South Atlantic Oceania

Eastern Pacific 0 ? ?

South Atlantic 0.992 0 ?

Oceania 0.987 0.899 0

Significant results denoted in bold

Table 4 Pairwise UST values (below diagonal) and P-values (above diagonal, ? represents statistical significance with P-

value\ 0.05) for broadnose sevengill shark (N. cepedianus) within the three regions

Eastern Pacific South Atlantic Oceania

California Peru Argentina South Africa Australia New Zealand

California 0 – ? ? ? ?

Peru 0 0 ? ? ? ?

Argentina 0.99199 0.99069 0 – ? ?

South Africa 0.99355 0.99242 - 0.02051 0 ? ?

Australia 0.98362 0.98153 0.87664 0.87953 0 –

New Zealand 0.99352 0.99234 0.92274 0.92918 0.00696 0

Significant results denoted in bold
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the ITS2 data was not used for population genetic or

phylogenetic analyses.

Phylogenetics and divergence

Bayesian Inference phylogenetic reconstruction indi-

cated a pattern of paraphyly and strong support for

three distinctive monophyletic clades representing the

EPO, SAO, and Oceania regions (Posterior Probability

(PP[ 0.9). A fourth moderately supported (PP = 0.8)

clade consisting of haplotypes from the Oceania

region was also revealed, indicating potential para-

phyly and genetic structuring of the Oceania popula-

tion. A sister relationship between the SAO and

Oceania clades gained strong statistical support

(PP = 1.0), while the relationships among the three

clades were not fully resolved. A basal position of the

EPO clade was also highly supported (PP = 1.0). Time

calibrated branch divergences indicate that all four

clades diverged from a common ancestor approxi-

mately 1.95 Mya (95% HPDs = 1.22 – 2.812), with

the SAO and Oceania clades diverging from a more

recent common ancestor approximately 0.69 Mya

(95% HPDs = 0.39 – 1.08) before the present day. The

timing of these events coincides with the early to mid-

Pleistocene (Fig. 4).

Discussion

Our study revealed high levels of genetic structuring

and a lack of connectivity between broadnose sev-

engill shark populations from three of the world’s

major ocean basins; the SAO, EPO and Oceania

regions. Time calibrated phylogenetic reconstructions

suggest the observed patterns of genetic structure are

historical, estimating the EPO population to have been

isolated from the SAO and Oceania populations for

approximately 1.95 Mya years. In contrast, divergence

between SAO and Oceania regions appears to be more

recent, diverging from shared common ancestor

approximately 0.69 Mya years ago. The sharing of

Fig. 2 Median-joining

network of mtCR

haplotypes for broadnose

sevengill sharks. Circles

represent individual

haplotypes with circle size

proportional to haplotype

frequency, connection lines

indicate one base pair

difference and breaks

indicate inferred un-

sampled haplotypes.

Collection locations are as

follows: United States

(Blue), Peru (Yellow),

Argentina (Green), South

Africa (Orange), Australia

(Red), and New Zealand

South (Purple). Numbers of

samples per circle size (N),

haplotype designation (H)
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haplotypes among locations within ocean basins

suggests a lack of genetic structure and potential

connectivity in broadnose sevengill sharks over spatial

scales of several hundreds to thousands of kilometers.

However, more sensitive marker systems (e.g. single

nucleotide polymorphisms or microsatellites) are

needed to provide sufficient resolution of contempo-

rary patterns of gene flow within regions.

Our findings indicate deep lineage diversification

between broadnose sevengill sharks from different

ocean basins, consistent with patterns of genetic

structuring reported for several cosmopolitan sharks

species, e.g. the tiger shark (Galeocerdo cuvier)

(Holmes et al. 2017), the tope shark (Galeorhinus

galeus) (Bester-van der Merwe et al. 2017), and the

scalloped hammerhead shark (Sphyrna lewini) (Quat-

tro et al. 2006). In particular, several coastal associated

shark species, like broadnose sevengill sharks, exhibit

similar population structuring across the globe, with

distinct grouping between oceanic gradients. Copper

sharks (Carcharhinus brachyurus), showed phylogeo-

graphic delineations between Oceania (Australia and

New Zealand) and the south Atlantic/Indian ocean

(Namibia and South Africa) and the south Pacific

(Peru) (Benavides et al. 2011). Clear genetic diver-

gences were observed for sandbar sharks (Carcharhi-

nus plumbeus), with delineations between the Atlantic

and Pacific ocean basins (Portnoy et al. 2010). These

coastal associated sharks tend to show some form of

female fidelity to coastal nursery areas, which may

Oceania South Atlantic

East er n Paci f i c
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Sout h AtlanticOceania
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Fig. 3 Broadnose sevengill shark 95% parsimony network.

Circles, ovals and square represent haplotypes of the respective

regions. Size of the circles and ovals correspond to haplotype

frequency and nodes indicate inferred un-sampled haplotypes.

The number of samples is represented by ‘‘N’’
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account for the lack of dispersal among regions,

promoting delineations between oceanic basins. How-

ever, males of these species show limited fidelity to

these areas and tend to travel over larger coastal

ranges, thus male-mediated gene flow may persist over

wider geographical ranges and may provide some

connectivity between regions (Benavides et al. 2011;

Daly-Engel et al. 2012; Portnoy et al. 2010). Broad-

nose sevengill sharks have been shown to exhibit

fidelity behavior toward feeding grounds in coastal

bays, (Barnett et al. 2012, 2010; Ebert 1996; Williams

et al. 2012), and only a few studies have discussed

anecdotal evidence of nursery/pupping areas within

coastal bays (Ebert 1989; Lucifora et al. 2005). Many

other marine taxa such as teleosts, cetaceans and

marine turtles also display similar phylogeographic

patterns (Bermingham et al. 1997; Bowen et al.

1998, 2016; Kraft et al. 2020).

Patterns of genetic structure in marine species from

different ocean basins have been attributed to a range

of geological and climatic factors, such as of the

closure of the Tethys Sea * 13Mya, the uplift

Isthmus of Panama * 3.5 Mya, glacial cycles, and

the Indo-Pacific Barrier (IPB) (Bermingham et al.

1997; Bowen et al. 2016; Kumar and Kumar 2018).

Our time calibrated phylogenies suggest broadnose

sevengill shark lineages from the different ocean

basins diverged between 0.69 and 1.95 Mya which

coincides with the early to mid-Pleistocene epoch

(Avise 2000). Silky sharks, Carcharhinus falciformis

from the Atlantic and Indo-Pacific oceans are esti-

mated to have diverged from a common ancestor

during the Pleistocene epoch (Domingues et al. 2017).

Glacial cycles throughout the Pleistocene are known

to have affected temperate marine habitats primarily

through changes in sea level, influencing patterns of

habitat continuity and disrupting coastal habitats

(Bowen et al. 2016; Cheng et al. 2019) which are

key feeding and breeding areas for broadnose sev-

engill sharks (Barnett et al. 2012). Therefore, it is

possible that glacial cycling throughout the Pleis-

tocene epoch has contributed to contemporary patterns

of phylogeographic structuring observed in broadnose

sevengill and other shark species.

Large expanses of water (e.g. entire oceanic basis)

are prominent factors affecting species vagility and

biogeographic structuring in marine ecosystems

(Bowen et al. 2016; Lessios et al. 1998). Species

Fig. 4 Time calibrated Bayesin Inference phylogenetic recon-

struction of relationships among broadnose sevengill shark

mitochondrial control region haplotypes. Nodal support values

provided represent Bayesian posterior probabilities ([ 0.8), and

estimated tMRCAs with 95% highest posterior density intervals

(illustrated by purple bars at branch nodes) are provided, with

the scale provided in millions of years. The ‘‘Outgroup’’ consists

of sister taxa Heptranchias_perlo (sharpness sevengill), Hex-
anchus_nakamurai (bigeyed sixgill), Hexanchus_griseus
(Bluntnose sixgill)
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abilities to overcome such barriers depend largely on

dispersal traits, physiological limitations, and avail-

ability of resources such as prey (Bowen et al. 2016).

Many marine species, including some sharks, appear

incapable of crossing large expanses of temperate

water, leading to strong biogeographic structuring of

marine communities and genetic differentiation of

species populations both between and within oceanic

basins (Bowen et al. 2016; Luiz et al. 2012). Temper-

ate oceanic regions tend to have fewer ‘‘stepping stone

areas’’ compared to tropical regions, which can restrict

an organism’s ability to cross large expanses of water.

Atolls and islands, including the Hawaiian archipe-

lago, act as a bridge between the east and west tropical

Pacific, allowing some species to maintain population

connectivity (Duncan et al. 2006; Lara-Lizardi et al.

2020). For example, the scalloped hammerhead

sharks, Sphyrna lewini, displays gene flow among

populations from the east, central and western tropical

Pacific, while populations from the Pacific and

Atlantic oceans are highly differentiated (Daly-Engel

et al. 2012). Consequently, it is possible that contem-

porary genetic structuring across ocean basins in many

temperate marine species is driven purely by geo-

graphical distance and the sheer expanse of water that

separates temperate habitats.

In contrast to the stark genetic differentiation

between broadnose sevengill sharks among ocean

basins, we provide evidence of little genetic structur-

ing within oceanic basins, indicating gene flow and

connectivity over 100 s to 1000 s of kilometers. Our

findings differ from those of (Larson et al. 2015) who

demonstrated genetic structuring among populations

separated by approximately 1000 km on the west

coast of the United States. However, Larson et al.

(2015) used microsatellite markers, suggesting genetic

differentiation (with some genetic mixing) between

populations frequenting certain bays along the west

coast of the United States. Larson et al. (2015) also

suggested possible separate breeding grounds being

used by the two distinct populations. More fine scale

analyses within each oceanic region using more

sensitive genetic markers, such as SNPs or microsatel-

lites, is needed in the future to fully understand the

genetic structure of this species across its distribution.

Interestingly, our results suggest historical connectiv-

ity across the equator between northern and southern

American populations in the EPO, between sites from

California and Peru separated by[ 2000 km. This is

unexpected considering the thermal preferences of

broadnose sevengill sharks. As broadnose sevengill

sharks have been shown to travel large distances, up to

1800 km (Barnett et al. 2012; Stehfest et al. 2014;

Williams et al. 2012) and occur to depths of

360–550 m (Anderson et al. 1998), it is possible that

deep cold-water environments may act as a conduit for

gene flow between northern and southern EPO pop-

ulations. Again more sensitive genetic markers along

with tagging studies will help to confirm if contem-

porary gene flow is occurring across the equator.

Conclusion

Across the broadnose sevengill shark’s global distri-

bution there are many data deficiencies and knowledge

gaps in ecology, biology, as well as fisheries infor-

mation, such as stock structure, catch data and

population status/trajectories. Given that broadnose

sevengill sharks are a common bycatch species in

multiple fisheries around the world, and targeted in

some locations, there is a need for updated information

in almost all areas. Indeed, in most countries where

they are exploited (bycatch or targeted), there are no

species-specific management strategies, yet their life-

history and coastal associations suggest that this

species may be vulnerable to fishing pressure and

coastal habitat disturbances in some locations (Barnett

et al. 2012; da Silva et al. 2015; Smith et al. 1999).

Results from our study provide a resource for manag-

ing populations and stocks of broadnose sevengill

sharks across the globe. The findings of this study

suggest management of broadnose sevengill sharks

needs to give consideration to the isolated and

genetically diverse nature of the different lineages

from the world’s major ocean basins. At this broad

level, it would require coordinated approaches by

neighboring countries within oceanic regions to man-

age shared/straddling stocks. Additionally, country-

based management strategies are also required and

should be based on current available information on

broadnose sevengill shark movements (Barnett et al.

2012). However, while our findings suggest little

structuring within ocean basins those of Larson et al.

(2015) indicate that further studies investigating

genetic diversity and stock structure within countries

are required.
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exécuté par ordre de sa majesté l’Empereur et Roi, sur les
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