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Statistical domain wall roughness analysis through correlations
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The geometry and morphology of magnetic domain walls (DWs) are closely related to their dynamics when
driven by external forces. Under some reliable approximations DWs can be considered self-affine interfaces,
so universal laws govern their behavior. On the other hand, large-scale DW structure has been less explored
so far. Recently, it has been shown that bubble-like magnetic domains can be strongly deformed on a large
scale by applying alternating (ac) magnetic field pulses. In the present paper, we conduct a comprehensive
analysis of DW structure at both small and large length scales in bubble-like domains present in ferromagnetic
thin films with perpendicular anisotropy, focusing on its initial evolution under the application of ac magnetic
pulses. Results obtained from the widely used roughness correlation function B(r) and its corresponding structure
factor, are consistent with those obtained from the spatial autocorrelation function of DW fluctuations. Whereas
the roughness exponent slightly increases during the ac evolution, a strong deformation is observed at a large
scale, where a striking periodicity (statistically speaking) is observed. This period is probably determined by the
boundary conditions and a characteristic intrinsic length.
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I. INTRODUCTION

The control of magnetic properties in thin films is crucial
for the design of devices for technological applications [1–3].

For this purpose, it is key to deeply understand the physics
that governs the behavior and characteristics of magnetic do-
main walls (DWs) in these systems. In particular, it is well
known that the geometry and morphology of DWs are closely
related to their dynamics when driven by external forces
[4–8]. The basic physical reason for this close relationship
is quite intuitive: As the domain interface is driven in a dis-
ordered media, some DW’s segments remain more pinned
than others, and the interface becomes rough. Moreover, under
some reliable approximations, both the DW dynamics and
morphology display universal laws that govern the behavior
of elastic systems in disordered landscapes [4–13].

An emblematic example of this connection is the link
between the creep exponent μ, which characterizes the de-
pendence of the effective energy barriers (and therefore the
mean DW velocity) on the external drive, and the equilibrium
roughness exponent ζeq, which describes how the roughness
of the interface grows as a function of the length scale at zero
drive. In fact, it can be shown that the creep exponent for a
d-dimensional interface can be expressed in terms of the equi-
librium roughness exponent as μ = (d + 2ζeq − 2)/(2 − ζeq)
[4,14–17]. In a one-dimensional DW belonging to the so-
called Edwards-Wilkinson universality class, the theoretical
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equilibrium roughness exponent is ζeq = 2/3, which should
imply a creep exponent μ = 1/4, a value that has been cor-
roborated in many experiments [5–7,9,17–20].

On the other hand, the experimental determination of
the roughness exponent is much more challenging, leading
to a wide spread of reported values found in the literature
[17,21–24]. The main physical intrinsic reason for this spread
is the fact that DWs are generally frizzed in nonequilibrium
configurations, so the DW morphology is described by differ-
ent roughness exponents at different length scales [21,24–27].
Recently, Albornoz and coworkers [24] proposed a method to
experimentally obtain the characteristic distances that deter-
mine the crossover between the different regimes: the optimal
creep length lopt, below which the interface may be considered
in equilibrium, and the avalanche length lav , associated with
the average size of avalanches from which the disembedding
processes is described. This method is explained in more de-
tail in Sec. III B. On the other hand, the main technical reason
that makes the exponent measurement difficult is the practical
determination of the range where theoretical approximations
are valid, i.e., the range of lengths where criticality holds [24].

In fact, the interface width that characterizes the mean
size of fluctuations in a DW segment of length r, wr =√〈(u(z) − 〈u〉)2〉r , and the corresponding roughness corre-
lation function, B(r) = 〈[u(r + z) − u(z)]2〉, are expected to
scale as w2

r ∝ B(r) ∝ r2ζ for a self-affine interface [28]. In
both cases, z is the coordinate along the main interface direc-
tion, and u(z) is the relative displacement in the perpendicular
direction. In real interfaces, a necessary condition to fulfill
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self-affinity is lres < r � L, where lres is the experimental
resolution and L is the total DW length.

In this framework, an issue that has not been much ex-
plored so far is the role that plays the boundary conditions
in the characteristic of large-scale DW deformations, and
whether these patterns affect or not the short-scale DW fluc-
tuations, where criticality is expected to hold. Interestingly,
recent magneto-optical experiments carried out in ultrathin
ferromagnetic films with perpendicular magnetic anisotropy
(PMA), have shown that large-scale DW deformations are
dramatically enhanced under the applications of alternating
(ac) magnetic field pulses [29,30], while no so significant
changes are observed in the roughness exponent.

In this paper, we perform a detailed analysis of the
roughness correlations at short and large spatial scales of
bubble-like domain walls in ferromagnetic thin films with
PMA, and their evolution under the applications of ac pulses.
We also obtain rich information about this evolution at differ-
ent spatial frequency scales by analyzing the autocorrelation
of DW fluctuations. On the one hand, as expected, the high-
frequency fluctuations follow a universal power law with the
same exponent holding for B(r) in the short distances range.
On the other hand, we show that a large-scale periodic mod-
ulation of the interface is established, whose amplitude grows
with an increasing number of ac pulses. Moreover, the peri-
odicity of this modulation is on the order of the characteristic
avalanche length, obtained from the analysis of the effective
roughness exponent. The underlying physics beyond these
periodic structures is discussed.

II. EXPERIMENTAL

Images of magnetic domains were obtained using a home-
made polar Kerr effect microscope described in detail in
Ref. [29]. With this setup, images with 10× magnifica-
tion and 1 µm spatial resolution can be obtained. Specially
designed Helmholtz coils allow applying squared mag-
netic pulses with a maximum amplitude of 700 Oe and
a minimum duration of τ = 1 ms, in the direction nor-
mal to the sample. Magnetic domains were grown on
two reflective ultrathin ferromagnetic films with PMA:
a Pt(4 nm)/Co(1 nm)/Pt(8 nm) monolayer (S1) [5], and
a Al (5 nm)[Co (0.2 nm)/Ni (0.8 nm)]4/Pt (6 nm) multilayer
(S2) [31].

The protocol (pulse sequence) used to study the ac dynam-
ics was established in a previous paper [29] and it is briefly
described here. After nucleation, domains are grown up to an
area of around 4700 µm2 by applying magnetic field pulses,
between 100–250 Oe, and periods between 1–50 ms. Then a
sequence of N square ac pulses of null mean, with amplitude
H and period τ is applied. The magnitudes of H and τ are
chosen in a way to generate a DW displacement of 6 µm
during each half-period. Images of the domain evolution are
acquired after applying each pulse and further processed to
remove the background and enhance their contrast. Finally,
after applying a threshold filter, images are binarized in order
to obtain the domain’s contour, i.e., the boundary between
regions of different magnetization (see Ref. [29] for detailed
descriptions). An example of an already binarized image and
its contour is shown in Fig. 1(a).

FIG. 1. (a) Image of a domain and its contour (red line) obtained
after a nonlinear thresholding process. (b) Domain profile and polar
parametrization where ρ(θ ) = ρ + u(θ ). (c) Local DW relative dis-
placement u(z) in Cartesian coordinates (black dots), where z = ρθ .
The orange line represents the fluctuations in DW displacement ur

l (z)
after applying a moving average smoothing filter with a window size
of r = 6 µm. (d) Corresponding high-frequency profile obtained as
ur

h(z) = u(z) − ur
l (z).

The basic DW dynamics characterization consists of de-
termining the relationship between the mean DW velocity v

and the external drive; in our case, the applied magnetic field
H . The method used to measure the v(H ) dependence essen-
tially consists of applying successive magnetic field pulses of
positive (negative) direction (relative to the nucleation field
direction) and tracking the advance (recoil) of the DW. The
mean DW velocity can be estimated from the ratio between
the average DW displacement and the pulse width (for more
details see Ref. [29]).

Regarding the morphological characterization, in practical
terms, the first step in determining roughness is to obtain a
parametrization of the domain interface. Since our experi-
mental configuration allows obtaining images of the whole
domain, which has an approximately circular shape, a po-
lar parametrization of the DW is performed; as shown in
Fig. 1(b), by using a system centered at the domain’s cen-
troid, each DW point is specified by an angle θ and a radius
ρ(θ ) = ρ + u(θ ), where ρ is the average radius and u(θ ) is,
therefore, the local DW displacement. The DW contour is then
mapped in Cartesian coordinates using a linear transformation
z = ρθ and u(z) = u(θ ), as shown in Fig. 1(c) (black dots).
Evidently, to be able to carry out the above procedure, u needs
to be a single-valued function of θ , a condition that is not
fulfilled in strongly distorted domains. To avoid this problem,
all the analysis of the ac evolution presented in this work is
conducted within the first 30 ac cycles when, in all cases, DWs
are single-valued curves.

Given the statistical nature of DW dynamics and in order to
ensure reliable results, all the reported observables were esti-
mated by averaging the results obtained from ten experimental
realizations conducted for each of the reported conditions.

224434-2



STATISTICAL DOMAIN WALL ROUGHNESS ANALYSIS … PHYSICAL REVIEW B 108, 224434 (2023)

III. RESULTS AND DISCUSSION

In this section, we first describe how we define roughness at
different spatial frequencies. We then obtain the correspond-
ing roughness correlation function B(r) and the associated
structure factor S(q). Next, we introduce the autocorrelation
function A(�) as a tool to retrieve the key features that de-
scribe the DW evolution. Specifically, as a method to analyze
the different spatial frequency scales of DW fluctuations and
unveil hidden periodic structures in the DW fluctuations as
well.

A. DW roughness at different length scales

DW roughness characterization has been done after having
applied field pulses in the creep regime range, where the
velocity dependence on the magnetic field H and temperature
T is predicted to be

v(H, T ) = vd exp

(
Td

T

[
1 −

(
H

Hd

)−1/4
])

, (1)

where Hd and Td are the depinning magnetic field and temper-
ature respectively and vd is the velocity for H = Hd . In fact, as
reported in previous paper [29], a linear relationship between
ln(v) and H−1/4 is observed in a broad magnetic field range
for both samples, confirming that domains are in the creep
regime with the expected dynamic exponent μ = 1/4.

A first observable that is typically used to quantify rough-
ness is the mean square roughness 〈(u − 〈u〉)2〉, whose
definition coincides with the square of the mean width of
the whole interface w2

L, as long as 〈u〉 = 0 and averages are
computed over the entire DW length L.

By simply inspecting the amplitude of the DW fluctua-
tions in Fig. 1(c), it is evident that they occur at two distinct
scales. A low-frequency scale of fluctuations characterized
by large DW deformations that modulate higher-frequency
fluctuations. The latter is expected to be well described by a
power-law behavior in the roughness correlation function. As
mentioned before, we are interested in studying how the DW
fluctuations behave at these different length scales or spatial
frequencies. With this scope, a moving average smoothing
filter (MASF) of window size r is applied along the profile
u(z), in a way that fluctuations that vary faster than 1/r are av-
eraged, and only the low-frequency scale fluctuations remain
in the averaged signal ur

l (z) [32]. In a continuous interface, a
possible implementation of the MASF to calculate ur

l (u) is

ur
l (u) = 1

r

∫ z+ r
2

z− r
2

u(z′)dz′, (2)

from this expression, implementing a discrete interface be-
comes straightforward. An example for r = 6 µm is shown
in Fig. 1(c) (orange line). Accordingly, the profile that char-
acterizes the high-frequency scale DW fluctuations ur

h(z)
[Fig. 1(d)] is simply obtained by the subtraction of ur

l (z) from
u(z),

ur
h(z) = u(z) − ur

l (z). (3)

FIG. 2. Roughness correlation function (a) and structure factor
(b) obtained from 10 realizations from the same nucleation point in
the sample S2 (gray lines) and the average curves (red line). The
linear fit on B(r) used to obtain ζ is shown in green. Curves obtained
from the S(q) model with the fitting parameters are shown in blue
(see text).

B. Roughness correlation function B(r) and effective exponent

Among the observables that allow analyzing the DW
roughness, one of the most used in the literature is the rough-
ness correlation function

B(r) = 〈[u(r + z) − u(z)]2〉L, (4)

where the subscript L indicates that z values are averaged over
the total length of the interface and the top bar indicates the
statistical average. B(r) therefore quantifies the correlation
between relative displacements u of interface points that are
a distance r apart. Specific numerical expressions used in this
paper are discussed in Appendix A.

Figure 2(a) shows examples of B(r) obtained from indi-
vidual measurements (curves in gray levels) for 10 domains
grown on S2 from the same nucleation center up to a mean
radius ρ ≈ 40 µm with H = 150 Oe, together with the average
B(r) curve (red line).

As mentioned in the introduction, for a self-affine interface
the roughness correlation function is expected to follow a
power law [4,24,33]

B(r) ∼ Bo

(
r

ro

)2ζ

, (5)

224434-3



DOMENICHINI, PASQUINI, AND CAPELUTO PHYSICAL REVIEW B 108, 224434 (2023)

where the prefactor Bo characterizes the typical fluctuation
size in a DW segment of length r, expressed in units of ro,
and ζ is the effective roughness exponent, which characterizes
the power-law scaling. Therefore, from Eq. (5), the roughness
exponent can be determined from the slope of the linear fit
on a logarithmic scale in the range where the scaling holds
[green line in Fig. 2(a)].

In a one-dimensional self-affine interface, the theoretical
equilibrium roughness exponent is predicted to be ζeq = 2/3.
However, real magnetic DW interfaces are not in equilibrium
conditions, and an effective ζ (ranging between 0.6 and 0.8
can be obtained [21–23,29]) depending on parameters such as
field and temperature, as well as the particular procedure used
in its estimation. There are two main reasons for this spread:
On the one hand, the experimental distance range generally
covers more than one dynamic regime (therefore several ex-
ponents coexists); on the other hand, self-affinity would be
a good approximation only in a particular distance range.
As a consequence, there is a limited range of r where the
power law holds, whose delimitation is not obvious. As a gen-
eral criterion in this paper, linear fits were performed within
the interval of distances determined by the optical resolution
(1 µm) on the left side and, on the right side, by the value of r
that results in a Pearson correlation coefficient of R2 > 0.995.
In the particular case of the curves shown in Fig. 2(a), this
procedure resulted in ζ = (0.65 ± 0.03).

The procedures described above were applied to obtain
the mean square roughness 〈u2〉 and the corresponding B(r)
during the ac evolution. Figures 3(a) and 3(b) show the over-
lapping of magnetic domains in a typical evolution during
the application of ac pulses (up to N = 30) with amplitude
of 130 Oe for S1, and 180 Oe for S2. It can be seen with
the naked eye that DW roughness increases during evolution.
Consistently, as the number of pulses increases, the mean
square roughness 〈u2〉 and its dispersion increase [Figs. 3(c)
and 3(d)]. From the linear fit of the mean B(r) curves, and
following the criterion described above, the evolution of the
roughness exponent with the number of applied ac pulses
(N) was obtained. As it is shown in Figs. 3(e) and 3(f), the
roughness exponent slightly grows with the number of pulses
on both samples. It can be also seen that none of these results
show significant differences when varying the magnetic field
amplitude in the range used in our experiments.

C. Structure factor S(q) and avalanche length

The roughness exponent ζ is also related to the power
spectrum in the reciprocal space or structure factor

S(q) = ũ(q)ũ∗(q), (6)

where q = 2π/u is the reciprocal space coordinate, and ũ(q)
is the Fourier transform of u(z).

For discrete interfaces, a discrete expression for S(q) in
terms of u(z) can be obtained by replacing the discrete Fourier
transform of u(z), ũ(qn) = (1/Np)

∑Np

j u jexp(−iqnu j ), in
Eq. (6), to obtain [34], for each individual curve,

S(qn) = 1

N2
p

∣∣∣∣∣
Np∑
j=1

u jexp(−iqnu j )

∣∣∣∣∣
2

, (7)

where Np is the number of points in the discretization of u(z).

FIG. 3. Upper panels show the overlapping of domain contours
evolving as the number of applied ac pulses increases, from N = 0
(blue) to N = 30 (magenta), in samples S1 (a) and S2 (b). The fol-
lowing panels show the corresponding evolution of the mean square
roughness 〈u2〉 [(c) and (d)], roughness exponent ζ [(e) and (f)], and
avalanche length lav [(g) and (h)] as a function of N for different field
amplitudes H . In all panels, shaded areas indicate the dispersion of
each observable.

As it is shown in Refs. [24,34], in the range of distances
r � L, a discrete expression of B(r) can be obtained in term
of S(qn) as

B(rk ) = 4

NP
2 −1∑
n=1

S(qn)[1 − cos(qnrk )] (8)

with rk = k δr and δr is the distance between consecutive
points in the interface (see Appendix A for more details).

The structure factor is then expected to present a region of
q where a power law is fulfilled. In the case where a single ζ

holds at all the involved length scales,

S(q) ≈ S0

(
q

q0

)−(1+2ζ )

, (9)

where S0 is a constant, and q0 is a scale factor. This scaling
would hold for large q values, as long as the range of q allows
the interface to be considered continuous (i.e., 1/q 
 δr). For
discrete interfaces, the scaling law can still be valid, when
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replacing the coordinate q/q0 by [26,33]

q̃ = 2 sin
q

2q0
. (10)

Figure 2(b) shows S(q̃) computed using Eqs. (7) and (10)
with q0 chosen as 1/δr ≈ 2.5 µm−1, and the same dataset of
Fig. 2(a). As observed, it is not possible to fit S(q̃) with a
single linear function across the entire q̃ range. In fact, in
the general case of a DW elastic interface, a critical expo-
nent for each stationary regime (equilibrium, depinning, or
flow) can be predicted. For an Edwards-Wilkinson interface
with random pinning disorder, the theoretical values of the
roughness exponents for these stationary regimes are ζeq =
2/3, ζdep = 1.25, and ζth = 1/2 respectively. As discussed in
the Introduction, Ferrero et al. proposed that the different
stationary regime prevails in different length scales that are
delimited by crossover lengths lopt and lav [27,35]. Therefore,
the effective measured roughness exponent would be deter-
mined by a superposition of all the stationary regimes, each of
them dominating in a particular length scale. In this context, a
generalization for Eq. (9) was proposed in Ref. [24], which
takes different roughness exponent for the different length
scales as

S(q) =
(

1

Seq(q) + Sdep(q)
+ 1

Sth(q)

)−1

, (11)

where

S j (q) = So

(
q

qopt

)−(1+2ζ j )

(12)

with qopt = 2π/lopt and j = dep or eq, and

Sth(q) = So

(
qav

qopt

)−(1+2ζdep )( q

qav

)−(1+2ζth )

(13)

with qav = 2π/lav and qopt = 2π/lopt.
This expression could be used in principle to fit experimen-

tal S(q) data as those shown in Fig. 2(b), in order to obtain
the parameters So, qav , and qopt. Basically, in this procedure,
lopt was estimated from parameters obtained from experimen-
tal v(H ) curves (depinning magnetic field and temperature),
whereas lav was obtained from the proposed model and the
effective roughness exponent. A detailed discussion of this
issue is given in Ref. [24], and the particular implementation
done in this paper is detailed in Appendix B.

In the range of fields used in this paper, lopt−S1 � 0.30 ±
0.01 µm and lopt−S2 � (0.24 ± 0.01) µm. Figure 2 shows, as
an example, results obtained from this model in blue lines
for B(r) (panel a) and S(q̃) (panel b) (see Appendix A for
numerical details). The parameter values found in this partic-
ular example were qav = (1.2 ± 0.1) µm−1 and So = (7.1 ±
0.2) × 10−8µm2. As can be seen in Fig. 2 the model fits the
data for q̃ � 0.08, which is equivalent to r � 30 µm. Notice
that, as expected, the range of distances where this model is
valid is larger than that where a linear fit can be performed
on the log plot of B(r). In fact, the model reproduces the
loss of linearity and the downward curvature observed in the
logarithmic plot of the B(r) function. However, the model fails
to fit the experimental data in the range of large distances
(i.e., on the order of the domain size).

Following the same procedure, the evolution of the
avalanche length lav with the number of applied ac pulses (N)
was obtained for both samples. Figures 3(g) and 3(h) show
this evolution for samples S1 and S2 respectively. According
to what was observed in the effective roughness exponent,
lav slightly grows with N reaching values between 5 µm and
10 µm.

Therefore, under the proposed model, the small evolution
of the effective roughness exponent is ascribed to a subtle
increase in the avalanche length, that increments the weight
of the (larger) critical depinning exponent in the effective
measured ζ .

D. Autocorrelation function

In the previous sections, we deeply discussed the power
laws holding in both B(r) and S(q) for r � L (i.e., high spatial
frequency scale). For larger values of r (lower frequencies),
these laws are no longer valid due to the existence of large-
scale correlations and finite-size effects. Here we introduce
the autocorrelation function as an additional tool to analyze
the fluctuation in different spatial frequency scales. The au-
tocorrelation function of a signal [36] quantifies the degree
of similarity or coherence of a signal to the delayed version
of itself, as a function of the delay. It can be either defined for
spatial or temporal coordinates. For a continuous 1D interface,
the autocorrelation in space for u(z) defined as

A(�) = 〈u(z + �)u(z)〉= 1

L − �

∫ L−�

0
u(z + �)u(z)∗dz, (14)

will quantify the correlation of the fluctuations (o normal dis-
placements) between interface points separated by distances �.
In Eq. (14), u(z)∗ is the complex conjugated of u(z), and can
be replaced by u(z) for real signals, which is the case for DW
displacements described above. It can be easily seen that there
is a close relationship between this expression and the defini-
tion of B(r) in Eq. (4); the implication of this similarity will be
deeply discussed throughout this section. The autocorrelation
is a symmetric function and its maximum A(� = 0) = 〈u(z)2〉
is the mean roughness of the interface. In the present case, this
observable has been already directly estimated, and its evolu-
tion when applying ac pulses has been presented in Fig. 3(b).

By using the linear transformation in the variables z = ρθ ,
it is possible to write the autocorrelation in angular coordi-
nates A(ω) with ω = �/ρ, which makes it easier to compare
results between domains of different radius.

Figures 4(a) and 4(b) show in gray lines examples of the
autocorrelation function obtained for domains grown in iden-
tical conditions, in samples S1 and S2 respectively. Subtle
and small morphological differences observed in the domain
shapes obtained in the various realizations are reflected in
significant changes in A(�). Therefore, in order to obtain more
general results, the average of the autocorrelation function
Ā(�) over 10 experimental realizations is computed (blue and
red lines in the figures). Both, single measurements and av-
erage function, show a main correlation peak and, beyond it,
a structured autocorrelation with many maxima and minima.
The width of the main correlation peak serves as an estimator
for the correlation length 
�, which represents the maximum
distance at which u(z) is similar to the displaced version
of itself. For the particular case of measurements presented
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FIG. 4. Examples of the autocorrelation function for the samples
S1 (a) and S2 (b), where the horizontal arrows show the width of
the mean peak. Secondary maxima can be observed in both samples.
(c) Autocorrelation of profiles after averaging windows of size rp

between 2 and 16 µm, obtained from sample S2 with N = 0. Angular
and linear axis are shown for clarity.

in Fig. 4, and taking 
� as the width of the central peak,
measured between the two closest minima as an estimator, the
correlation length results to be 
� ∼ 35 µm for both samples.
This distance being a substantial fraction of the entire domain
size suggests that it represents a correlation length associated
with low-frequency fluctuations.

In fact, a simple inspection of Figs. 4(a) and 4(b) reveals
some other interesting features characterizing the correlations,
that are general for all the domains: Beyond the main central
peak, other well-defined peaks can be clearly observed, which
may be evidence of a periodicity on u(z). The periodicity, es-
timated as the average distance between the secondary peaks,
is a significant fraction of the whole DW length L.

To further understand the effects that occur on the fluc-
tuations at different spatial frequency scales, we analyze the
average autocorrelation function for ur

l (z) and ur
h(z), for dif-

ferent average window sizes r, that in a discrete version are
expressed as rP = Pδr, with P an integer number. As was
mentioned before, B(r) follows a power law for r � L but,
for larger values of r, this law is no longer valid. However,
B(r) might also contains information about large-scale de-
formations, linked with the size of the interface. Therefore a
deep connection between B(r) and A(�) is expected at both
large and small-scale deformation, as will be developed in the
following subsections.

1. Large-scale fluctuations

Figure 4(c) shows examples of Ā(�) for domains grown in
S2 using windows ranging from P = 5 to 40, corresponding
to distances rP between 2 and 16 µm. As is expected, the
autocorrelation of ur

l (z) preserves some of the main features

FIG. 5. Average A/A(0) curves corresponding to domains
evolved after applying N ac square pulses, with N = 0, 10, 20, and
30, for samples S1 (a) and S2 (b). Dotted lines indicate the angular
positions of the secondary maxima (ωmax) labeled as n = 1, 2, ...
(c) ωmax as a function of n after applying N ac pulses (different
symbols) for samples S1 and S2 (blue and red symbols). (d) ωmax

as a function of the angular minima of the roughness function (ωmin)
in domains growth in both samples (N = 0).

of the autocorrelation of u(z), for example, the width of the
main peak and the presence and positions of the principal
and secondary maxima. On the other hand, the height of the
principal maximum decreases as the window size increases
because the high-frequency fluctuations, that are being blurred
by the MASF, have a strong contribution to the central peak.

We now focus on the analysis of the evolution of this
large-scale periodicity with the number of ac pulses. Because
the radius of the DW changes during the evolution [29,30],
we will consider angular positions in order to compare the sec-
ondary maxima. Figure 5 shows examples of A/A(0) for S1 (a)
y S2 (b), as a function of the angular distance ω for different
numbers of ac pulses N . We define an index number (n) that
labels each secondary maximum in increasing order relative to
the central maximum of A(�) in the initial condition (N = 0).
This labeling is preserved during the evolution N > 0, even
in cases where a maximum disappears. Figure 5(c) shows the
relative angular positions of the secondary maxima ωmax for
each sample as a function of the index n for a different number
of ac pulses N . After a few pulses, some of the maxima ini-
tially present disappear in S1, while in S2 the total number of
maxima is preserved during the whole evolution up to N = 30.
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Remarkably, as shown in Fig. 5(c) all the data can be fitted
with a unique linear regression with slope (0.76 ± 0.02) rad
for S1 and (0.78 ± 0.02) rad for S2, which indicates that, in
both cases, there is a periodic structure in u(z), and this peri-
odicity is not modified during the evolution. The spatial scale
associated with this periodicity (∼30 µm in the initial domain
size) is large compared with the high-frequency fluctuations
but still a fraction (∼1/8) of the total DW length, and therefore
it is naturally associated with the large-scale deformations.

As mentioned before, a close relationship between A(�)
and B(r) is expected. At large distances, where low-frequency
deformations become significant and the proposed model for
S(q) no longer holds, B(r) also exhibits structured patterns.
In fact, by expanding the squared power in Eq. (4), it can
be shown that B(r) behaves as −2〈u(z + r)u(z)〉, mining that
minima in B(r) may correspond to maxima in the autocorrela-
tion. Figure 5(d) shows the linear correspondence with slope 1
holding between ωmax and the angular position of the minima
in B(r/ρ), ωmin, at N = 0, for samples S1 and S2 respectively.

We also noticed that, in both samples, the amplitude of the
oscillations increases with N , in consistence with the large
domain deformations observed during the ac evolution [29]
evidenced in the increase of 〈u2〉 (Fig. 3).

By analyzing the autocorrelation function at different mag-
netic fields, we conclude that the positions of the secondary
maxima are also independent of the applied magnetic field.
The angular period corresponds to linear distances between
28–31 µm. We then conjecture that this periodicity is deter-
mined by the boundary conditions and some characteristic
intrinsic length, probably associated with the typical size of
the disorder inhomogeneity, rather than for the driving pro-
cess. Moreover, this periodicity is larger but on the order
of lav . This could indicate that the size of the avalanches is
limited by the typical size of the disorder inhomogeneity and
determines in the same way the DW large-scale structure.

2. Small-scale fluctuations

Figure 6(a) shows examples of the central peak in the
autocorrelation obtained for high-frequency fluctuations using
window sizes ranging from rP = 2 µm to 16 µm (equivalent
at P = 5 to 40). It can be seen that, in this case, both the
width and the maximum amplitude increase with the size of
the MASF window. Moreover, the width of the peak increases
linearly with the MASF window size and it is independent of
the number of ac pulses [Fig. 6(b)]. The lack of any particular
characteristic length is in agreement with what is expected in
a self-affine interface.

From expressions (2) and (3), together with the stan-
dard definition of the mean roughness 〈u2〉, it can be easily
shown that the high-frequency fluctuations correlation 〈ur

h(z +
�)ur

h(z)〉 is equivalent to the mean roughness of a segment
of length r, as long as ur

h(z) and ur
l (z) are uncorrelated and

r � L. On the other hand, we know that A(0) = 〈ur
h(z)2〉 that,

in an Edward Wilkinson interface, should present a power law
r2ζ . Figure 6(c) shows examples of A(0) as a function of rP,
for N = 0 and after applying N = 30 ac pulses on samples
S1 (c) and S2 (d). A linear tendency in logarithmic scale is
observed for both samples with slopes corresponding to ζ

values between 0.65 and 0.8, in agreement with the effective

FIG. 6. (a) Example of autocorrelations of high-frequency pro-
files for different values of rP between 2 µm and 16 µm, obtained
from a domain grown in the sample S2 with N = 0. (b) ωC values as
a function of rP for a domain of sample S2 after applying N = 0, 10,
and 30 ac pulses. Maximum of the autocorrelation function A(0) for
the high-frequency profiles as a function of the averaging distance
for N = 0 and N = 30 in samples S1 (c) and S2 (d).

roughness exponents computed from B(r). The linear fit fails
for rP > 10µm; this limit is approximately coincident with the
limit for the linearity interval considered for B(r) and a sig-
nificant fraction of the correlation length. Then by analyzing
the range of linearity in A(0) in terms of the window size, it is
possible to determine the limit between the length range where
the power law holds in a simpler and faster way than studying
the Pearson’s correlation coefficient to properly fit B(r).

IV. CONCLUSIONS

In this paper we analyze the roughness of magnetic
“bubble-like” domain walls present in ferromagnetic thin
films with PMA, focusing on their initial evolution when ap-
plying ac magnetic pulses that strongly deform the domains.
We study the evolution of the scaling roughness exponent,
holding in the small length scale, as well as that of the sta-
tistical pattern of large-scale deformations. The roughness
exponent ζ is obtained by fitting the roughness correlation
function B(r) for r much smaller than the domain size, where
the approximation of self-affinity is valid. By assuming that
this ζ value is an effective exponent associated with various
dynamics regimes holding at different length scales, we can
estimate the lengths involved in the thermal activation pro-
cess (lopt) and DW avalanches (lav). Whereas the first was
estimated from parameters obtained from experimental v(H )
curves (depinning magnetic field and temperature), the second
was obtained from the effective roughness exponent using the
model proposed for the structure factor S(q) in [24]. Values
for lopt range between 0.24 and 0.30 µm (smaller than our
resolution) whereas lav values range from 5 to 15 µm in both
samples. Both S(q) and B(r) curves obtained from the model
with the estimated parameters are in good agreement with
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the experimental data for large q (small r) values. Because
under this model the effective ζ and lav are connected, both
evolve similarly under the application of ac magnetic pulses,
displaying a subtle increase in the first ac cycles, and then
tending to an almost constant value up to N = 30 cycles.

We also study the evolution of the autocorrelation function
of u(z), an additional useful tool to characterize correlations
and characteristic lengths of the DW interface, whose results
are in strong connection with those obtained in the previ-
ous analysis. The obtained correlation length for large-scale
(low-frequency) fluctuations is very similar to the distance
beyond which the proposed S(q) model is no longer valid. By
applying MASF windows of different sizes, we separate large-
scale (low-frequency) and small-scale (high-frequency) DW
fluctuations. The maximum of the autocorrelation of high-
frequency fluctuations scales with the size of the windows
with roughness exponents consistent with those obtained from
B(r).

As an interesting result, we show that large-scale deforma-
tions, whose amplitude notably increases when applying ac
magnetic pulses, display a statistical periodicity: The angular
period of the secondary maxima in the average autocorrelation
[coincident with those of the minima in the average B(r)
at large r] does not change during the ac evolution and is
independent on the amplitude of the applied magnetic fields.
We then propose that this large-scale periodicity is determined
by the boundary conditions and some characteristic intrinsic
length, probably associated with the typical size of the dis-
order inhomogeneity. However, the ac driving process indeed
affects the amplitude of these oscillations, as well as the evo-
lution of the domain size. The fact that the angular periodicity
corresponds to linear distances in the same order that lav ,
could be an indication that, in these bubble domains, the size
of the DW avalanches is limited by the typical size of disorder
inhomogeneity that determines the DW large-scale structure.

In summary, we are presenting a complete analysis of the
domain wall structure in bubbles magnetic domains at small
and large length scales, and its initial evolution when applying
ac magnetic pulses, a procedure that strongly deforms the do-
mains. The analysis has been done by two alternative methods
giving consistent results, both in the critical exponents and
characteristic lengths. While the information contained in the
autocorrelation function is also present in the commonly used
roughness correlation function, from a practical point of view,
the first turns out to be particularly useful for determining both
the roughness exponent and large-scale deformations. We are
confident that the present paper would be useful, not only for
the community working on the specific topic of magnetic DW,
but also for other research areas, involving physical systems
able to be modeled as elastic interfaces of finite size in disor-
dered media.
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APPENDIX A: DISCRETE EXPRESSIONS OF B(R)
AND S(Q) AND THEIR CONNECTION

For a DW of length L sampled with NP data points, the
roughness function B(r) can be discretely written as

B(rk ) = 1

Np − k

Np−k∑
j=1

(u j+k − u j )
2 (A1)

where rk = kδr with δr the distance between consecutive
points. Assuming N 
 k so that (N − k) ≈ N , and replacing
uj with its expression in term of its corresponding Fourier
transform ũ, the roughness function can be written as

B(rk ) =
N∑

j=1

(
N∑

n=1

N∑
m=1

(ũnũ∗
mexp[i(qn − qm)(x j + rk )]

+ũnũ∗
mexp[i(qn − qm)x j] (A2)

+ ũnũ∗
mexp[i(qn − qm)x j]exp[iqnrk]

+ ũnũ∗
mexp[i(qn − qm)x j]exp[−iqnrk]

)
1

N
. (A3)

Using the Kronecker delta δnm = 1
N

∑N
j=1 exp[i(qn −

qm)x j], and considering the symmetry of the structure factor
[24,34], it is possible to write the above equation as the ex-
pression shown in Eq. (8), used to obtain the B(r) function
from the S(q) model (blue curves in Fig. 2 are examples).

To estimate the range of r where Eq. (8) is valid for
our specific case, we calculated the roughness function by
applying this equation to the average experimental structure
factor obtained using Eq. (7) [BS (rk )]. Next, the average B(rk )
obtained from the DW profiles using the Eq. (A1) was sub-
tracted from BS (rk ). Figure 7 illustrates an example of the
difference between both functions, which was obtained from
domain profiles in sample S2. By applying the criterion that
the tolerance range of the subtraction (B − BS )(rk ) should be
less than half of the standard deviation obtained during the
calculation of the average roughness function (which, in this
particular case, is 0.1 µm2), we determine a validity range of
r < 16.3 µm.

APPENDIX B: EFFECTIVE ROUGHNESS EXPONENT
AND CHARACTERISTIC LENGTHS

As mentioned in Sec. III C, according to the model
proposed in Ref. [24], the structure factor [Eq. (11)] is ex-
pressed in terms of the roughness exponents ζeq, ζdep, and ζth

(corresponding to three stationary states equilibrium, depin-
ning and flow), the amplitude S0, and the characteristic lengths
limiting the regions where each of those states will preponder-
ate, lav = 2π/qav and lopt = 2π/qopt. The free parameters of
the model are then S0, lopt, and lav .

To determine the optimal parameter set, one approach is
to calculate B(r) from Eq. (8) by substituting the proposed
S(q) from Eq. (11) with different parameter values. These
calculated B(r) values can then be compared with the exper-
imental results. However, because the experimental ln (B(r))
is fitted with a linear regression, only two parameters (B0 and
the effective ζ ) can be determined [see expression (5)], while
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FIG. 7. (a) Roughness correlation function obtained from 10 re-
alizations of a domain grown in nearly identical conditions (gray
lines), their average curve (red line), and the roughness function
B(rk ) obtained from Eq. (7) using the average structure factor (BS).
(b) Difference between the average roughness function B and BS .
With a tolerance of 0.1 µm2 (dashed red lines), a validity range of
r < 16.3 µm (blue line) is obtained.

S(q) depends on three (So, qav , qopt). Therefore, this compar-
ison cannot be optimized unequivocally and it is necessary to
estimate one of these parameters independently.

The characteristic length lopt is a good candidate for this
estimation. From a phenomenological point of view [24,37]

lopt = LC

(
H

Hd

)−νeq

, (B1)

where νeq = 1/(2 − ζeq) = 3/4, and

LC =
(

σkBTd

4M2
S tH2

d

)1/3

, (B2)

is the Larkin distance [4], being Hd = σλ/2MSL2
C the depin-

ning magnetic field defined in terms of the micromagnetic
parameters σ (elastic energy per unit of area) and MS (sat-
uration magnetization) together with λ, the characteristic
displacement when moving a DW segment of length LC .

Estimations for Hd and Td can be obtained experimen-
tally by fitting the velocity v as a function of H1/4 using
Eq. (1) at a fixed known temperature. From this dependence,
a linear relationship ln(v) = β + α(H1/4), is expected, being
α = (Td H1/4

d )/T and β = ln(vd ) + (Td/T ), where v and vd

are adimensional velocities, expressed in units of m/s. There-
fore, the depinning field and temperature can be estimated

TABLE I. Estimated parameters obtained from experimental
v(H ) and Refs. [5] (S1) and [31] (S2) for both samples.

Sample Unity S1 S2

α Oe−4 109 (3) 164 (3)
β 25 (1) 38 (1)
MS kA/m 910 540
σ mJ/m2 2.26 2.26
Hd Oe 600 (200) 830 (100)
Td K 6630 (580) 10249 (830)
LC nm 80 (30) 90 (30)

from the slope α and the intercept β of the linear regression as

Td = (β − ln vd )T ; Hd =
(

αT

Td

)4

. (B3)

On the other hand, MS and σ are known micromagnetic
parameters [29]. The first rows in Table I show experimen-
tal values of α and β obtained in both samples at room
temperature (see Refs. [29] and [30]), whereas the values of
MS and σ was extracted from [5] (S1) and [31] (S2). It can be
seen that vd takes values between 2 and 100 m/s [19], so ln vd

is much smaller than β and does not substantially modify the
estimation of Td .

Last columns in Table I contain the estimated values of Hd

and Td and the Larkin length LC , obtained using (B2).
Finally, from expression (B1), we can obtain lopt for differ-

ent fields H . In the range of fields used in this paper, lopt−S1 �
0.30 ± 0.01 µm and lopt−S2 � (0.24 ± 0.01) µm, smaller than
our resolution.

Having obtained an estimation of qopt = 2π/lopt, S(q)
curves for different values of qav = 2π/lav were con-
structed following the proposed model [Eqs. (11)–(13)]. The

FIG. 8. Effective roughness exponent ζ as a function of the
avalanche length lav following the proposed model and the estimated
lopt for sample S2 (black line). Horizontal dashed lines are examples
of experimental ζ values obtained in sample S2, in a pristine do-
main (N = 0) and after applying N = 30 ac pulses with amplitude
H = 150 Oe and period τ = 50 ms. The procedure used to obtain
lav from the experimental values of ζ (N ) is illustrated with vertical
dashed lines. It can be seen that this method yields asymmetric error
bars for lav (shaded area).
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corresponding B(r) was fitted (in the linear log-log region
with the same criterion followed in the experimental case),
in order to obtain the effective roughness exponent ζ (łav ).
Figure 8 shows the function obtained in sample S2 and its

interception with several experimental roughness exponents
obtained after applying N ac cycles of amplitude H = 150 Oe.
The corresponding lav (N ) values were obtained as illustrated
in the figure.
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