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RESUMEN

Este trabajo presenta la evaluación de desempeño del Modelo para la Predicción e Investigación del Clima 
(WRF, por su sigla en inglés) para estimar la velocidad y dirección del viento, temperatura del aire y fracción 
de vapor de agua en superficie, considerando 22 configuraciones en alta resolución espacial (1 km) durante 
una semana de invierno y una de primavera, con el fin de determinar los esquemas que presentan mejor 
desempeño en el Área Metropolitana de Buenos Aires, Argentina, para ser utilizados en estudios de calidad 
del aire. Los resultados muestran que el uso de un esquema urbano afecta mayormente a la velocidad del 
viento y a la temperatura. El esquema urbano con una capa (UCM) acoplado con el esquema de capa límite 
(PBL) Boulac presenta el mejor desempeño para velocidad del viento. La dirección del viento y la fracción 
de vapor de agua son más sensibles al esquema de suelo, dando mejores resultados con el esquema de super-
ficie Noah-Mp. Los errores tanto de dirección como de velocidad del viento son mayores cuando esta última 
toma valores pequeños. Al remover los valores de velocidad del viento menores a 2.6 m s–1 para la semana 
de invierno y 3.1 m s–1 para la de primavera, los errores cuadráticos de la dirección del viento decaen entre 
50 y 72% de su valor original, dependiendo de la configuración y la semana. En general, en las condiciones 
estudiadas, las configuraciones que incluyen Noah-Mp o la combinación de Boulac con el esquema urbano 
simple son más adecuadas para utilizarse en estudios de calidad del aire, ya que reproducen de forma aceptable 
la temperatura y la fracción de vapor de agua con errores menores al 10% y Correlaciones mayores a 0.7, y 
poseen el mejor desempeño para dirección y velocidad del viento, respectivamente.

ABSTRACT

This work presents the performance evaluation of the Weather Research and Forecasting (WRF) model to 
estimate surface wind speed and direction, air temperature, and water vapor mixing ratio considering 22 
configurations at high spatial resolution (1 km) during one week in winter and one week in spring, in order 
to determine the best-performing schemes for air quality purposes in the Metropolitan Area of Buenos Ai-
res, Argentina. Results show that the use of urban schemes mostly affects wind speed and temperature. The 
single-layer urban canopy model (UCM) coupled with the Boulac planetary boundary layer (PBL) scheme 
exhibits the best results for wind speed. Wind direction and water vapor mixing ratio are more sensitive to 
the land surface model scheme, with results slightly improving with the Noah-MP land surface model. Wind 
speed and direction errors are larger when the former is lower. When removing from the analysis wind speed 
values below 2.6 m s–1 for the winter week and 3.1 m s–1 for the spring week, the root mean square errors 
for wind direction decreased between 50 and 72% of the original value, depending on the configuration and 
week. Overall, under the studied conditions, configurations including Noah-Mp land surface model or the 
combination of a simple UCM with BouLac PBL are suitable for air quality applications, as they reproduce 
both temperature and water vapor mixing ratio relatively well, with errors below 10% and Correlation values 
above 0.7, and are the best performing configurations for wind direction and speed, respectively.
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1. Introduction
Urban air pollution results from complex interac-
tions between emissions, atmospheric conditions, 
chemistry, and urban morphology. Its assessment 
and study require the combined use of observations 
and results from air quality models. Complex 3D 
models are usually composed of a meteorological 
and a chemical transport model that dynamically 
interact with each other. Since air quality results 
depend largely on the meteorological inputs which 
influence pollutant transport and dispersion as well 
as chemical reactions, the performance evaluation of 
the meteorological model and its sensitivity to several 
parameterization options is an important step in the 
implementation of such modeling systems (e.g., Cog-
liani, 2001; Pearce et al., 2011; Huang et al., 2021).

The Weather Research and Forecasting (WRF) 
model (Skamarock et al., 2019) is widely used for air 
quality applications (NASEM, 2019; Vongruang and 
Pimonsree, 2020; Cheng et al., 2021; Sulaymon et 
al., 2021) and several sensitivity analyses have been 
carried out in order to study how the different physics 
parameterizations affect meteorological variables 
(e.g., Kitagawa et al., 2022; Zhang et al., 2022). At 
the urban scale, most works focus on the planetary 
boundary layer (PBL) scheme, which is responsible 
for the calculation of vertical sub-grid scale fluxes 
due to eddy transports and therefore plays a vital 
role in the vertical dispersion of pollutants (Jia and 
Zhang, 2020; Miao et al., 2019). Those studies show 
that model performance is highly dependent on the 
variable studied with no robust best PBL scheme as 
it is dependent on the site and influenced by local 
terrain topography and weather conditions. The sen-
sitivity of the WRF model results to different urban 
schemes has also been largely studied and most works 
conclude that the use of an urban scheme improves 
model performance (Liao et al., 2014; Rafael et al., 
2019; Gaur et al., 2021). This seems to be generally 
true for meteorological variables, especially for wind 
speed and pollutant concentration levels (de la Paz 
et al., 2016).

In general, the best-performing model configura-
tion for a meteorological variable is not necessarily 
the best-performing one for the rest (e.g., Banks and 
Baldasano, 2016; Mohan and Gupta, 2018) and the 
optimal configuration depends on the place and pe-
riod under study. Hence, a comprehensive analysis 

of the model performance to estimate meteorological 
variables under different combinations of physical 
schemes must be performed to determine the optimal 
configuration for each place. In a previous study by 
Luque et al. (2021) the WRF model capability was 
qualitatively explored in the Metropolitan Area of 
Buenos Aires (MABA), Argentina, using an aggre-
gated index (averaging metrics across sites) similar 
to that used by Evans et al. (2012). Here we present 
a quantitative performance evaluation of the WRF 
(v. 4.2.1) model to estimate surface wind speed and 
direction, air temperature, and humidity at each 
meteorological station of the MABA. The objective 
is to identify best-performing configurations for air 
quality high spatial resolution (1 km) simulations 
in the area. The sensitivity of the model to different 
combinations of physical schemes is first assessed 
at the most representative station to select the model 
configurations that perform best there and these are 
then analyzed for air quality purposes in the MABA.

2. Materials and methods
WRF is an atmospheric model designed for both at-
mospheric research and operational forecasting appli-
cations. To resolve physical processes that happen at 
sub-grid level and are non-resolvable by the equations 
of the dynamics of the atmosphere, several options 
are available for the following parameterization 
schemes: microphysics, PBL, cumulus convection, 
radiation, land surface, shallow convection, surface 
layer, and urban canopy. Simulations are performed 
to study the model sensitivity as explained below. In 
this work, 22 WRF model simulations with different 
configurations are considered.

2.1 Model configuration
All runs are forced by ERA5 reanalysis (Hersbach et 
al., 2017) at spatial and temporal resolutions of 30 km 
and 3 h, respectively. The control simulation (c) uses 
the following schemes: Mellor-Yamada-Janjic for 
PBL, Eta similarity for surface layer, Noah for land 
surface, Thompson for microphysics, RRTMG for 
radiation, and no urban canopy. Other configurations 
were selected by changing one scheme at a time as 
shown in Table I and Figure S1 of the supplementa-
ry material. Included PBL schemes are: p1: Yonsei 
University (YSU, Hong et al., 2006), p2: Mellor- 
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Yamada-Janjic (MYJ, Janjić, 1994), p6: Mellor-Ya-
mada Nakanishi Niino (MYYN, Nakanishi and Niino, 
2006), p7: Asymmetric Convection Model 2 Scheme 
(ACM2, Pleim, 2007), and p8: Bougeault-Lacarrere 
Scheme (Bougeault and Lacarrere, 1989). Included 
surface layer schemes: s1: Revised MM5 (Jiménez et 
al., 2012), s2: Eta Similarity (Janjić, 1994), s5: MYNN 
and s7: Pleim-Xiu (Pleim, 2006). Included land 
surface schemes are: l2: Unified Noah Land Surface 
Model (Noah, Tewari et al., 2004) and l4: Noah-MP 
Land Surface Model (Noah-Mp, Niu et al., 2011). 
Included radiation schemes are: r4: RRTMG (Iacono 

et al., 2008), r7: Fu-Liou-Gu (Gu et al., 2011), and 
r14: RRTMG-K (Baek, 2017). Included microphysics 
schemes: m10: Morrison 2-moment (Morrison et al., 
2009), and m52: P3 (Morrison and Milbrandt, 2015). 
Included urban schemes: u1: Urban Canopy Model 
(Chen et al., 2011), u2: BEP (Martilli et al., 2002), 
and u3: BEP + BEM (Salamanca et al., 2010).

As the MABA is a highly urbanized area, an 
improvement in model performance could be ex-
pected with the activation of an urban scheme. For 
that reason, PBL schemes that are compatible with 
urban options (in WRF 4.2.1: Mellor-Yamada-Janjic 

Table I. Model configurations used in the study. 

Label PBL Surface layer Land surface Microphysics Radiation Urban

c

MYJ Eta similarity

Noah

Thompson

RRTMGm10 Morrison 2-moment

m52 P3

r7

Thompson

Fu-Liu-Gu

r14 RRTMG-K

u1

RRTMG

UCM

u2 BEP

u3 BEP+BEM

p1 YSU Revised MM5

p6 MYNN MYNN

p7 ACM2 Pleim-Xiu

p8

BouLac Revised MM5

p8m10 Morrison 2-moment

p8m52 P3

p8r14

Thompson

RRTMG-K

p8u1

RRTMG

UCM

p8u2 BEP

p8u3 BEP+BEM

l4

MYJ Eta similarity Noah-MP
l4m10 Morrison 2-moment

l4m52 P3

l4u1 Thompson UCM
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and BouLac) are tested. Although Yonsei Univer-
sity (YSU) and Asymmetric Convection Model 2 
(ACM2) are not compatible with the Building Effect 
Parameterization (BEP) and the Building Energy 
Model (BEP + BEM) urban schemes in the WRF 
version used in this work, these are still included as 
they are widely used in similar studies for air qual-
ity applications (e.g., Cuchiara et al., 2014; Banks 
and Baldasano, 2016; Mohan and Gupta, 2018). 
BEP (Salamanca and Martilli, 2010) is a 3D urban 
canopy model which accounts for multiple building 
parameters allowing for higher constructions than 
the first model level. BEP + BEM (Martilli et al., 
2002) is a multilayer building energy model com-
posed of a building energy model coupled to BEP. 
BEM accounts for the impacts of anthropogenic heat 
emissions on the urban environment and estimates the 
cooling/heating energy demand due to air-condition-
ing systems. When a UCM is not used, the Noah and 
Noah-MP LSMs use the Bulk scheme to represent 
the urban surface in the WRF model. Although the 
PBL, urban, and land surface model schemes are 
expected to have a greater impact on model results, 
we analyze the sensitivity to other physics options 
(such as radiation and microphysics) as this is the first 
exploratory study of this kind in the area and these 
can also affect model performance as found in other 
works (e.g., Borge et al., 2008).

2.2 Domain
The MABA is composed of the city of Buenos Aires 
and 24 districts of greater Buenos Aires. It has a pop-
ulation of around 15 million inhabitants over 3800 
km2 (INDEC, 2010) of flat terrain and it is surrounded 
by non-urban areas and the La Plata River on its east 
side. It is the third most populated megacity in Latin 
America (UN, 2019). Three modeling nested domains 
with resolutions of 15 km (111 × 101 grid points), 3 
km (121 × 101 grid points), and 1 km (133 × 127 grid 
points) (Fig. 1) are used with the outermost domain 
(d01) comprising the whole Buenos Aires province 
and the innermost domain (d03) covering the whole 
MABA. Eighty terrain-following hybrid vertical 
levels near the ground are used. Twelve of them 
cover the lowest 3 km from the surface with the first 
level at 24 m. Land uses for this region come from 
satellite data (Moderate Resolution Imaging Spectro-
radiometer [MODIS] at a 30” horizontal resolution). 
Unfortunately, there is only one urban class available 
for the area at the moment of this study.

2.3 Period
One week in winter and one week in spring of 2012 
were chosen to cover different meteorological condi-
tions with enough available data on air pollutants con-
centration for future air quality model performance 
validation studies. The first two days of each period 

28ºS

30ºS

32ºS

34ºS

36ºS

38ºS

40ºS

69ºW 66ºW 63ºW 60ºW 57ºW 54ºW 51ºW 48ºW

Fig. 1. WRF modeling nested domains (left) and map of the MABA (right) with the meteorological 
(red crosses and blue crosses) and air quality (yellow crosses) stations. Source: Google Maps.
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are considered as a spin-up. The winter week (July 28 
to August 4) started with a high-pressure anomaly on 
the Atlantic Ocean and a low-pressure anomaly on the 
Pacific Ocean. This led to a rotation of wind direction 
and the week ended with precipitation. On the other 
hand, on the spring period (November 10 to 17) there 
was a high-pressure disturbance that lasted the whole 
week with mostly southeastern winds and dry air over 
the city, as discussed in Luque et al. (2021). Synoptic 
maps are provided in the supplementary material. All 
dates presented in this work are expressed in UTC 
time while the MABA has a local time of UTC-3.

2.4. Model performance evaluation
To assess model performance, four meteorological 
variables that are relevant for air quality purposes 
are considered (Ziomas et al., 1995; Harkey et al., 
2015): 2-m temperature (T) and water vapor mixing 
ratio (Qv), and 10-m wind speed (Ws) and direction 
(Wd). Modeled values of T, Qv, Ws, and Wd are 
statistically compared with those observed in the 
Aeroparque meteorological station (AEP, see Fig. 1). 
This station is the closest one to the three available 
air quality stations whose data will be used for 
validation of future air quality simulations and the 
most representative one. The following statistics are 
computed: bias, mean absolute error (Mae), root 
mean square error (Rmse), Correlation (Corr), and 
index of agreement (Indexagr2) (Emery et al., 2001). 
This last metric is calculated as the ratio between the 
Rmse and the sum of the difference between each 
prediction and the observed mean, and the difference 
between each observation and the observed mean. It 
is a measure of the match between the departure of 
each prediction and each observation from the ob-
served mean. Configurations with the lowest errors 
and higher Corrs and Indexagr2 are selected to be 
further analyzed.

For these configurations, the relationship between 
errors in Wd and Ws is studied following the method-
ology by Jiménez and Dudhia (2013). In addition, the 
planetary boundary layer height (PBLH) is explored. 
PBLH results are contrasted with observations from 
sounding data available only at 12:00 UTC taken in 
the Ezeiza Meteorological station (EZE, see Fig. 1). 
In order to compare PBLH results obtained from 
the different configurations, modeled and observed 
values are recalculated following the methodology 

described in Nielsen-Gammon et al. (2008) and 
used in other works (e.g., Miao et al., 2022; Yan 
et al., 2022). This method estimates the PBLH as 
the height where a “critical inversion occurs”. This 
height is defined in Marsik et al. (1995) as the level 
where potential temperature is 1.5 K higher than the 
minimum value it presents in the PBL.

In order to assess model performance throughout 
the whole MABA domain, performance metrics are 
then computed at other meteorological stations for the 
best performing configurations, which are presented 
in the supplementary material.

3. Results
3.1 Hourly evolution
Figure 2 presents the hourly evolution of modeled and 
observed values of Ws, Wd, T, and Qv. Observed Ws 
values vary between 0 and 10 m s–1, with the lowest 
ones taking place during the winter week (Fig. 2a, b). 
Temporal variations for this variable are different 
between each week and most configurations follow 
these patterns except for those with complex urban 
schemes (u2, u3, and p8u3) that show lower wind 
intensities. During winter week winds come mostly 
from the SE and SW except for July 31 and August 2, 
when they come from the NE and N, with very low 
intensities (Fig. 2c). During the spring week, winds 
come mostly from the SE (Fig. 2d). This variable is 
also quite well reproduced by most configurations 
during both weeks.

Observed T values (Fig. 2e, f) display different 
behaviors between the two periods, with a clearer 
diurnal cycle during spring. Most configurations 
follow observations, even though for some of them 
differences tend to become larger over time show-
ing the expected decrease in model skill as time of 
forecast increases (Buizza and Leutbecher, 2015).

During the winter week, observed values of Qv 
rapidly grow until August 1 (Fig. 2g), when pre-
cipitation starts reaching its maximum value. This 
behavior is due to the fact that on July 31 there is a 
high-pressure zone in front of the coastline of Uru-
guay centered around 35º S and 55º W (see Figs. S2 
to S7 in the supplementary material). The circulation 
associated with the high-pressure anomaly advects 
wetter air towards the Buenos Aires area. After that, 
variations are smaller. During the spring week, an 
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increase in Qv is also seen (Fig. 2h). During both 
periods, all simulations reproduce well the time 
evolution of Qv but underestimate its values between 
–16 and –5% depending on the configuration, mainly 
in spring.

3.2 Performance metrics
In order to select the best performing configura-
tions, Figure 3 presents the bias, Mae, Rmse, Corr 
and Indexagr2 computed for each variable, week 
and configuration. For values of each statistic see 
section S3 in the supplementary material. For Ws, 
configurations present similar performance metrics 
during both weeks (Fig. 3a), but relative error values 
are smaller in spring (not shown). Relatively large 
values of Corr (> 0.77) and Indexagr2 (> 0.88) are 
obtained for most schemes. Configurations with com-
plex urban schemes (which include the label u2 or u3: 
u2, u3, p8u2, and p8u3) present the worst performance 
metrics with Mae 20-30% higher than the other con-
figurations and lower Correlations, specially u2 and 
u3 during the spring week, which present Correlation 
values below 0.3. While a better performance with 
these configurations could be expected in the highly 
urbanized MABA, some works show that complex 
urban schemes behave better when local urban pa-
rameters suited for the particular city under study are 
used (e.g., Kuik et al., 2016; Shen et al., 2019). In this 
first stage of the model implementation, default WRF 
urban parameters are used. A sensitivity test to the 
multiple parameters (e.g., building height and albedo, 
among others) used to configure the urban schemes is 
beyond the scope of this work due to computational 
constraints and the lack of a set of available reference 
values for these parameters in MABA. The larger 
underestimation for this variable obtained with config-
urations with BEP and BEP + BEM (u2, u3, p8u2, and 
p8u3) could be due to an overestimation of the urban 
fraction in AEP as a consequence of using default 
urban parameters. The other configurations without 
complex urban schemes present bias, Mae and Rmse 
in the ranges of –1.6 to 0.5 m s–1 (with relative values 
of –28.2 to 1.3%), 0.9 to 1.8 m s–1 (17.6 to 33.2%), and 
1.5 to 2.1 m s–1 (27.7 to 53.2%), respectively. During 
both weeks, configurations with a simple urban scheme 
(those labelled with u1, p8u1 and l4u1) have the lowest 
errors. In the spring, p8u1 has the best performance as 
it also presents the higher Corr and Indexagr2.

Wd (Fig. 3b) is counter-clockwise biased by al-
most all configurations during both periods with bias 
ranging between –23.4º and –4.2º (–16.6 and –2.9% 
with stronger underestimations during spring), Mae 
between 18.7º-52.2º (17.0-37.0%) and Rmse in the 
range 40.9º-75º (37.2-53.4%). During the winter 
week, Mae and Rmse values are relatively higher. 
The configuration with the MYNN PBL scheme 
(p6) has a bias close to 0% but this is clearly due to 
a compensation of errors in the calculation, as this 
configuration also has the highest Rmse and Mae. 
Both Corr and Indexagr2 are higher during the spring 
with values greater than 0.6. Configurations with the 
Noah-MP land surface scheme (l4, l4m10 and l4m52), 
with the exception of the combination with the simple 
urban scheme (l4u1), have clearly the lowest errors 
during both weeks with similar Corr and Indexagr2 
to those of other configurations.

For T (Fig. 3c), Corr and Indexagr2 are higher 
during the spring week than during the winter week 
with values above 0.9. This is expected as a better 
representation of the diurnal cycle is observed in 
the spring period (Fig. 2e, f). Still, all Corr and 
Indexagr2 have values over 0.7 in the winter week. 
For both periods, bias, Mae and Rmse values range 
from –1.4 to 1.2 K (–0.5-0.4%), 0.5 K to 1.5 K (0.2-
0.5%) and 1.8K to 3.4 K (0.6-1.2%) respectively. 
Configurations with Noah-Mp land surface scheme 
without urban scheme (l4, l4m10 and l4m52) slightly 
underestimate T while the only configuration with 
Noah-Mp and urban scheme (l4u1) overestimates 
it. This is most likely due to the activation of the 
urban scheme. Other configurations share this char-
acteristic and do not exhibit a similar positive bias, 
but they also have a different land surface model 
(u1) and a different PBL scheme (p8u1). The use of 
urban schemes improves the performance during the 
spring week, but not during the winter one. A pos-
sible explanation for this is that the impact of urban 
environments is larger during the nocturnal period, 
when the impact of accumulated heat from buildings 
and paved surfaces is more noticeable (Argüeso et 
al., 2014). Therefore, it is expected that the impact 
of the presence of urban structures would be more 
noticeable during the warmer season, when the solar 
radiation is also more abundant.

Qv is underestimated during both weeks, as 
observed in Figure 2g, h with bias values in the 
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range of –1.1 and –0.3 g kg–1 (–4.65 and –1.39%) 
(Fig. 3d). Mae and Rmse are both in the range of 
1.3-2.5 g kg–1. Corr and Indexagr2 are higher in the 
winter week than in the spring one with values over 
0.9. During the spring period, on the other hand, Corr 
and Indexagr2 values are close to 0.7 with the excep-
tion of configurations with Noah-Mp (l4, l4m10 and 
l4m52), which have similar values to those obtained 
in the winter week, and p7, that presents lower values 
than other configurations.

In order to gain preliminary insight on the impact 
of each physical scheme on surface meteorological 
variables, configurations that share all characteris-
tics except one are compared: c (control run), m10, 
and m52 differ only in their microphysics scheme 
(Thompson, Morrison 2-moment, and P3, respec-
tively) and as can be seen in Figure 3, the four con-
figurations present similar behavior, suggesting that 
this scheme does not significantly affect the model 
performance. The same is observed with the radiation 
scheme, as configurations c, r7 and r14 differ only in 
their microphysics scheme (RRTMG, Fu-Liu-Gu, and 
RRTMG-K, respectively) and they present similar 
results.

Configurations c, u1, u2 and u3 differ only in their 
urban scheme (Bulk scheme, simple layer, BEP, and 
BEP + BEM, respectively). Contrary to what happens 
with the microphysics and radiation parametrizations, 
here we see a clear effect. Results of the three config-
urations with urban schemes (u1, u2, and u3) change 
mostly in the case of Ws, giving lower values than the 
control configuration due to the increase in surface 
roughness length and blocking effects associated to 
buildings. They also affect results for T. Contrary as 
expected, the activation of the urban scheme lowers 
its values during both weeks.

Configurations c, p1, p6, p7, and p8 differ on their 
PBL and surface scheme (MYJ + Eta similarity, 
MYNN, ACM2+Pleim, Xiu and BouLac + Revised 
MM5, respectively). Control simulation differs 
from the others with higher Ws and T values, but 
these subsets of simulations behave similarly. The 
exception is p7, which has a better performance for 
Wd during the winter week, but a lower one for Qv 
and T during the spring week.

Lastly, configurations c and l4 differ only in their 
land surface model (Noah for c and Noah MP for l4). 
Therefore, minimum differences are expected be-

tween the results obtained with both configurations 
at an urban grid cell such as AEP; however, l4 shows 
a slight improvement in the representation of Qv and 
Wd compared with c, especially during the spring 
week. A possible explanation for this is that since 
both variables depend on their values in other cells, 
an impact from remote non-urban cells could be 
affecting the results found in AEP.

These comparisons suggest that the urban scheme 
has a greater influence on the model performance 
while radiation and microphysics schemes have a 
negligible effect. However, since the response to 
different physical schemes is not linear, more con-
figurations should be compared with each other at 
more weather stations to have a clearer conclusion 
regarding this matter.

Almost all configurations have good performanc-
es for T and Qv. This is consistent with previous 
works where the dynamics of these variables are 
easier to represent by the model than Ws and Wd 
(e.g., Cuchiara et al., 2014; Banks and Baldasano, 
2016; Mohan and Gupta, 2018). For this reason, the 
selection of configurations for further inspection is 
based on model performance to estimate the wind 
variables.

It should be noted that while Wd is mostly in-
fluenced by synoptic/mesoscale conditions, Ws can 
also be influenced by local dynamics that depend on 
model configuration. This could explain that while 
dynamics of the predominant synoptic/mesoscale fea-
tures might not be too different between simulations, 
the wind intensity might be. The best performance 
to estimate Ws and l4 is given by l4m10, while l4m52 
presents the best performance for Wd. Configurations 
p1 and l4u1 are also selected to analyze the impact of 
different PBL schemes (a local scheme and a non-lo-
cal one, respectively) and whether the activation of 
a simple urban scheme plays a role in performance.

Figure 4 shows the differences between hourly 
observed and modeled values for all variables in 
each of the six configurations. For Ws, most differ-
ences are within the range –2-2 m s–1 and behave 
similarly among configurations (Fig. 4a, b). During 
both weeks, p8u1 usually presents slightly higher 
Ws values than the rest (typically by 1 m s–1, which 
represents around 25 or 17% of the observed mean, 
depending on the week). This leads to a somewhat 
larger overestimation of minimums but a smaller 
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underestimation of maximums. On the other hand, 
p1 (configured with YSU as PBL scheme) presents 
lower Ws values (around 1 m s–1); therefore, it 
overestimates less minimums values, but underesti-
mates more maximums values. Configurations with 
Noah-Mp are an intermediate case. During some 
periods of a few hours, the difference between model 
results and observations are larger than 2 m s–1, which 
represents around 34 or 50% of the observed mean 
depending on the week. For all configurations, the 
largest underestimation (6 m s–1) coincides with the 
global observed maximum of Ws (see Fig. 2a).

Differences between modeled and observed Wd 
values for the different configurations are also similar 
to each other and within the range –50-50º (Fig. 4c, d). 
Larger differences are observed around August 2 at 
00:00 UTC when Ws values are close to 0 m s–1 and the 
midday of November 13 and 16, when configurations 
with Noah-MP predict Ws values lower than 2 m s–1.

In the case of T (Fig. 4e, f), most differences with 
observations are in the range –2 to 2 K but larger 
differences among the selected configurations are 
observed, compared to those of wind variables. During 
both weeks, l4u1 shows larger (and mainly positive) 
differences between modeled and observed T values, 
while best performing schemes for Wd (l4, l4m10, and 
l4m52) present lower (and mostly negative) differences, 
as also shown in Figure 4c. During the spring week, 
l4u1 shows a larger overestimation of temperature, 
which increases with time during the last three days 
of the period. On the other hand, configurations p1 and 
p8u1 usually present smaller differences. To understand 
why configuration l4u1 (Noah-Mp + single layer urban 
scheme) overestimates observations and presents val-
ues between 1 and 4 K higher than the others, surface 
heat fluxes are explored (see section S4 in the supple-
mentary material). A higher sensible heat flux for this 
configuration (l4u1) is expected, but it is found that it 
presents values similar to the other, all with higher 
values during the spring week. To understand why it 
still presents higher T, surface temperature is analyzed, 
since sensible heat flux depends on the temperature 
difference between the surface and the air above it. 
If surface temperature is higher in this configuration, 
it could explain why it presents similar sensible heat 
values as the other configurations, but with a higher T. 
This is the case, and is most likely due to the activation 
of the urban scheme.

For Qv (Fig. 4g, h), differences between model 
results and observations are mostly negative and 
vary similarly. During the winter week, most differ-
ences range between –1.5 and 1.0 g kg–1. Configu-
rations p1 and p8u1 present larger differences with 
observations, especially during the spring week 
where a greater underestimation (up to 6 g kg–1) 
is observed. From Figure 2h, it can be seen that in 
this week the largest underestimations occur around 
minimums.

To better understand the relationship between 
wind direction errors and wind speed, the root mean 
square error of Wd is calculated for different subsets 
of data, eliminating those with observed Ws values 
below a given threshold, which varies between 0 
and 5 m s–1 covering most of the dataset in order 
to find if a change in behavior exists at some point 
and how configurations behave after it. This is done 
for the six selected configurations (Fig. 5). Rmse 
for all configurations in both weeks is larger for 
lower Ws threshold values, consistent with results 
by Jiménez and Dudhia (2013). During the winter 
week (Fig. 5a), the Wd Rmse varies from 44º to 
18º for Noah-Mp configurations, 73º to 20º for 
p1, and 88º to 24º for p8u1. A very small variation 
of Wd Rmse is observed for Ws threshold values 
above 2.6 m s–1. The most abrupt decrease (70%) 
is presented by p8u1, highlighting its large sensi-
tivity to this variable for low Ws values. Note that 
around 35% of wind speed measurements during 
this week have wind speed values below 2.6 m s–1. 
In turn, during the spring week (Fig. 5b), the Wd 
Rmse varies form 38º to 19º, representing a change 
of around 40%) for all configurations. This change in 
Rmse occurs when the threshold is around 3.1 m s–1. 
In this case, only 19% of the observed hourly Ws 
values are below this value. The larger presence of 
lighter winds during the winter week may explain the 
relatively worse results to simulate wind variables 
during this period.

3.3. Planetary boundary layer height
Figure 6 shows modeled PBLH values at AEP and 
EZE stations (Fig. 1) during both weeks. Only five 
sounding data points are available for EZE (black 
dots) during the analyzed period, and they are in-
cluded only for comparison in the EZE plots. For 
each week, the temporal variations of the PBLH are 
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similar at the two stations, with maximum diurnal 
values being somewhat higher at AEP. At these sites, 
modeled PBLH values vary from 100 to 1500 m 
during the winter week and from 250 to 2000 m in 
the spring week. These values are a bit higher than 
the ones studied in Mazzeo and Gassmann (1990), 
who found average maximum values of 1100 m 
during August and 1500 m during November. In 
general, configurations present similar temporal 
variations with higher PBLH values during the day 
and lower ones at nighttime, as expected. However, 
large differences are observed on some days. For 

example, on July 31, p8u1 presents larger values 
than other configurations at the two stations. This is 
consistent with the fact that this configuration also 
presents higher wind speed values leading to more 
mechanical turbulence during that day. On November 
16 and 17, p8u1 and p1 simulate PBLH peaks that are 
considerably higher (by 1000 m) than those estimated 
by other configurations. Although on November 17 p1 
and p8u1 present stronger wind intensities that could 
partially explain this, no significant differences in 
wind speed between configurations are observed on 
November 16.
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3.4. Performance evaluation at other meteorologi-
cal stations
Model performances metrics (bias, Mae, Rmse, Corr 
and Indexagr2) are computed for best performing 
configurations for Ws and Wd at AEP (p8u1 and l4, 
respectively) at other five meteorological stations 
of the MABA (San Miguel [SMG], Ezeiza [EZE], 
Moron [MOR], Observatorio de Buenos Aires [OBS] 
and Palomar [PAL]; see Fig. 1). Results are included 
in section S5 in the supplementary material. Both 
configurations present a good performance to esti-
mate T with Corr > 0.7 and errors under 15% for all 
stations. Similar results are obtained for Qv with the 
exception of San Miguel and Moron stations during 
the spring week. On the other hand, model perfor-
mance to estimate Ws and Wd varies with the station 
and the week. Ws presents an acceptable performance 
(Corr > 0.6 and Mae < 35%) in Ezeiza and Palomar 

stations during both weeks and in Moron during 
the spring period, but a poor one in San Miguel and 
Palomar during the winter week. Wd has an accept-
able performance in Ezeiza and in Moron during 
the winter period. The worst model performance for 
both wind variables is obtained at OBS, which may 
be expected as this station is surrounded by buildings 
and trees that affect wind measurements (Mazzeo and 
Gassmann, 1990).

4. Conclusions
The performance of the WRF model to simulate 
wind speed (Ws), wind direction (Wd), air tem-
perature (T) and water vapor mixing ratio (Qv) in 
the Metropolitan Area of Buenos Aires (MABA) 
under different parameterizations of the physical 
processes in the PBL is analyzed. It is found that 

Fig. 6. Planetary boundary layer height for chosen configurations and observations (black dots) for winter (left col-
umn) and spring weeks (right column). (a) and (b) Aeroparque, (c) and (d) Ezeiza.
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there is no single configuration that presents the best 
performance for all variables. This is consistent with 
previous works performed for other urban areas. 
Ws is mostly affected by the activation of a simple 
urban scheme, especially during the spring week, 
and model performance is improved when coupled 
with the BouLac PBL. On the other hand, Wd and 
Qv are most sensitive to changes in the land surface 
scheme. For both variables, performance improves 
when using Noah-MP, especially during the spring 
week. The ability of WRF to estimate T improves 
with the activation of the urban and the BouLac PBL 
schemes during the spring week, but not during the 
winter. On the other hand, when the simple urban 
scheme is coupled with Noah-Mp land surface model, 
T values are consistently higher than for any other 
configuration and overestimate observations.

In general, the selected configurations present 
similar hourly evolutions of the PBLH values, but 
some configurations have significantly higher values 
during certain days, which can be explained by the 
fact that they also exhibit higher wind intensities that 
might produce higher mechanical turbulence.

In the Aeroparque (AEP) station and for the sur-
face variables analyzed in this work, configurations 
with Noah-Mp land surface model scheme and the 
combination of BouLac PBL with the simple urban 
scheme, show the best overall performance during 
the analyzed weeks. They reproduce both T and Qv 
relatively well (with Mae lower than 1 and 10%, 
respectively) and present the best performance: No-
ah-Mp for Wd (Mae < 25%) and Boulac coupled with 
a simple urban scheme for Ws (Mae < 28%). For all 
variables, these configurations present Corr over 0.7.

Overall, performance for T and Qv is acceptable at 
all meteorological stations, while p8u1 and l4 perform 
best for wind variables at the AEP meteorological 
station, though they show poor results at some other 
sites of the MABA. Future work including local 
information on urban parameters (as they become 
available) will allow to study whether more complex 
urban schemes (BEP and BEP + BEM) can improve 
model performance at those stations.
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S1. Model configurations
Figure S1 shows a map of all configurations studied in this work. 

S2. Synoptic conditions
Figures S2 to S13 present the synoptic conditions for both weeks studied (July 30 to August 4 and November 
12 to 17, 2012) over the MABA and Argentina. 

Figures S2-S13 show the synoptic atmospheric evolution from ERA5 reanalysis used to force the sim-
ulations. A large-scale synoptic evolution at different times is shown on the right panel (Argentina), while 
the left panel presents the evolution over the MABA Area. The winter week (S2 to S7) shows the presence 
of a strong high-pressure area that advected wet air over the MABA from the Atlantic Ocean. Light precip-
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Fig. S3. Synoptic map for July 31 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).

itation took place during August 1 with 6-h accumulated values lower than 3 mm. Precipitations returned 
during the night of August 2, lasting until the end of the week with 6-h accumulated values between 5 and 
25 mm. The summer week (S8 to S13) is mostly dominated by a weak high-pressure zone with dry air over 
the city and no precipitation.

S3. Model performance metrics at the AEP meteorological station
This section presents statistic values for all 22 used configurations for each variable and week at the AEP 
meteorological station (see Tables I-IV). 
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Fig. S5. Synoptic map for August 2 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).

tas (ºC) [-5, 40, 1] mslp (hPa) [960, 1040, 1] wss (ms–1) tas (ºC) [-20, 40, 5] mslp (hPa) [960, 1040, 4] wss (ms–1)

–32ºS

–34ºS

–36ºS

–38ºS

–62ºW –60ºW –58ºW –56ºW –54ºW

–15ºS

–20ºS

–30ºS

–40ºS

–50ºS

–25ºS

–35ºS

–45ºS

–55ºS
–90ºW –80ºW –70ºW –60ºW –50ºW –40ºW –30ºW

30

25

15 pr
 (m
m

)

5

20

10

100

80

60

40

20

pr
 (m
m

)

2012/08/03 00 UTC 2012/08/03 00 UTC

Fig. S6. Synoptic map for August 3 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).
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Fig. S7. Synoptic map for August 4 at 00:00 UTC over the MABA (left figure) and Argentina (right figure).
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Fig. S8. Synoptic map for November 12 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).
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Fig. S9. Synoptic map for November 13 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).
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Fig. S10. Synoptic map for November 14 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).



256 S. E. Luque et al.

–32ºS

–34ºS

–36ºS

–38ºS

–62ºW –60ºW –58ºW –56ºW –54ºW

–15ºS

–20ºS

–30ºS

–40ºS

–50ºS

–25ºS

–35ºS

–45ºS

–55ºS
–90ºW –80ºW –70ºW –60ºW –50ºW –40ºW –30ºW

tas (ºC) [-5, 40, 1] mslp (hPa) [960, 1040, 1] wss (ms–1) tas (ºC) [-20, 40, 5] mslp (hPa) [960, 1040, 4] wss (ms–1)

30

25

15 pr
 (m
m

)

5

20

10

100

80

60

40

20

pr
 (m
m

)

2012/11/15 00 UTC 2012/11/15 00 UTC

Fig. S11. Synoptic map for November 15 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).
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Fig. S13. Synoptic map for November 17 at 00:00 UTC over the MABA (left panel) and Argentina (right panel).
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Table V. Statistics for Ws, Wd, T and Qv calculated for 
the San Miguel station during both weeks.

Winter week Spring Week

Ws (m/s)

Statistics p8u1 l4 p8u1 l4

Bias 2.25 1.47 1.91 1.18
Mae 2.29 1.66 2.13 1.54
Rmse 2.92 2.25 2.37 1.79
Corr 0.62 0.58 0.23 0.35
Indexagr2 0.49 0.58 0.41 0.53

Wd (º)

Statistics p8u1 l4 p8u1 l4

Bias 26.35 8.02 –32.65 –18.33
Mae 53.28 51.00 60.16 71.61
Rmse 88.08 67.03 45.26 47.55
Corr 0.31 0.30 0.23 0.04
Indexagr2 0.61 0.60 0.42 0.31

T (K)

Statistics p8u1 l4 p8u1 l4

Bias 1.06 –5.03 –6.85 –1.16
Mae 1.61 1.34 5.30 1.28
Rmse 3.18 2.28 3.13 3.49
Corr 0.84 0.88 0.97 0.95
Indexagr2 0.85 0.88 0.98 0.94

Qv (g/kg)

Statistics p8u1 l4 p8u1 l4

Bias –0.87 0.02 –1.35 –0.67
Mae 0.54 0.50 1.38 0.88
Rmse 1.68 1.51 1.88 1.56
Corr 0.92 0.94 0.48 0.72
Indexagr2 0.96 0.96 0.59 0.77

Table VI. Statistics for Ws, Wd, T and Qv calculated for 
the Ezeiza station during both weeks.

Winter week Spring Week

Ws (m/s)

Statistics p8u1 l4 p8u1 l4

Bias 0.57 0.24 0.059 0.07
Mae 1.08 1.01 0.89 0.93
Rmse 1.89 1.55 1.10 0.99
Corr 0.80 0.80 0.66 0.64
Indexagr2 0.87 0.87 0.78 0.76

Wd (º)

Statistics p8u1 l4 p8u1 l4

Bias –13.05 3.35 –9.18 –4.58
Mae 47.42 43.33 22.91 15.46
Rmse 69.02 73.92 41.25 33.23
Corr 0.54 0.61 0.69 0.66
Indexagr2 0.72 0.78 0.81 0.80

T (K)

Statistics p8u1 l4 p8u1 l4

Bias 0.90 –0.27 –0.11 –1.76
Mae 1.48 1.48 0.80 1.77
Rmse 3.73 2.98 4.10 4.43
Corr 0.91 0.91 0.97 0.97
Indexagr2 0.93 0.92 0.98 0.95

Qv (g/kg)

Statistics p8u1 l4 p8u1 l4

Bias –0.13 0.07 –0.46 0.06
Mae 0.41 0.49 0.69 0.64
Rmse 1.73 1.52 1.41 1.3
Corr 0.96 0.95 0.83 0.79
Indexagr2 0.97 0.96 0.87 0.88

Fig. S14. Modeled upward latent (full line) and sensible (dotted line) surface heat fluxes in Aero-
parque station (a) winter week, (b) spring week.
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Table VII. Statistics for Ws, Wd, T and Qv calculated for 
the Moron station during both weeks.

Winter week Spring Week

Ws (m/s)

Statistics p8u1 l4 p8u1 l4

Bias –0.06 –0.84 –0.10 –1.01
Mae 1.21 1.17 1.02 1.45
Rmse 1.87 1.71 1.24 1.40
Corr 0.73 0.78 0.74 0.64
Indexagr2 0.84 0.80 0.79 0.65

Wd (º)

Statistics p8u1 l4 p8u1 l4

Bias –15.24 –6.92 –20.39 –7.38
Mae 51.53 37.63 38.74 40.36
Rmse 80.23 66.44 37.66 29.23
Corr 0.26 0.56 –0.01 0.05
Indexagr2 0.58 0.74 0.35 0.32

T (K)

Statistics p8u1 l4 p8u1 l4

Bias 1.00 –0.57 0.06 –1.73
Mae 1.61 1.28 0.52 1.75
Rmse 3.12 2.21 2.64 3.17
Corr 0.81 0.87 0.97 0.83
Indexagr2 0.87 0.89 0.98 0.81

Qv (g/kg)

Statistics p8u1 l4 p8u1 l4

Bias –0.42 –0.25 –1.53 –0.83
Mae 0.63 0.51 1.52 1.01
Rmse 1.73 1.54 1.97 1.52
Corr 0.94 0.93 0.63 0.62
Indexagr2 0.95 0.96 0.54 0.67

Table VIII. Statistics for Ws, Wd, T and Qv calculated 
for the Observatorio de Buenos Aires station during both 
weeks.

Winter week Spring Week

Ws (m/s)

Statistics p8u1 l4 p8u1 l4

Bias 1.87 1.26 2.30 1.23
Mae 1.93 1.39 2.36 1.59
Rmse 2.71 2.07 2.59 1.71
Corr 0.70 0.73 0.27 0.25
Indexagr2 0.64 0.73 0.45 0.51

Wd (º)

Statistics p8u1 l4 p8u1 l4

Bias 2.34 18.33 –20.05 –5.15
Mae 67.03 50.99 47.53 52.13
Rmse 61.30 63.59 40.68 37.81
Corr –0.10 0.45 –0.08 –0.01
Indexagr2 0.34 0.66 0.34 0.34

T (K)

Statistics p8u1 l4 p8u1 l4

Bias 0.44 –0.69 –0.13 –1.23
Mae 1.23 1.27 0.62 1.33
Rmse 2.83 2.22 2.96 3.20
Corr 0.87 0.90 0.97 0.95
Indexagr2 0.92 0.90 0.98 0.93

Qv (g/kg)

Statistics p8u1 l4 p8u1 l4

Bias –0.52 –0.33 –0.85 –0.31
Mae 0.65 0.61 0.92 0.63
Rmse 1.84 1.52 1.73 1.64
Corr 0.96 0.95 0.81 0.86
Indexagr2 0.96 0.95 0.82 0.90

S4. Surface heat fluxes
The land surface model is the scheme responsible for the dynamics of land masses beneath the atmosphere 
and is a fundamental part, along with the surface layer scheme, of the calculation of heat and moisture fluxes 
that are then provided to the PBL scheme. Four of the six selected configurations (those with l4) are based on 
the Noah-Mp land surface model scheme and the other two (p1 and p8u1) share the Noah scheme. Figure 1 
presents latent and sensible heat fluxes modeled at the receptor in AEP station. Both heat fluxes are positive 
throughout most part of both weeks, which means that the surface does not cool down during the night. This 
is expected in urban areas and is an indication of the existence of an urban heat island effect (Oke, 1982).

Configurations l4, l4m10, l4m52 and l4u1 present similar heat flux values; therefore, the activation of an urban 
scheme (l4u1) does not appear to affect these variables in a significant way. On the other hand, configurations 
p8u1 and p1 present greater (between 10-35%) latent heat fluxes than Noah-Mp configurations during some 
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periods. This is expected when air moisture is low as the atmosphere’s moisture demand grows, which is 
the case for p1 that predicts lower Qv values for those same periods (see Fig 5g, h in the main manuscript). 
While this is not observed for p8u1, the higher Ws values (see Fig. 5a, b in the main manuscript) simulated 
by this configuration could explain the difference, as surface heat fluxes also depend on Ws. 

Even though configurations p1 and p8u1 share the same land surface model scheme they still present 
differences. These configurations differ in their PBL scheme and the activation of the urban scheme. As-
suming the urban scheme does not affect heat fluxes in a significant way (as it does in l4 configurations), the 
differences between p1 and p8u1 could be attributed to the PBL scheme. This is reasonable, as land surface 
model and PBL schemes closely interact with each other, but it must be borne in mind that this impact is 
sensible to the land surface scheme being used.

Table IX. Statistics for Ws, Wd, T and Qv calculated for 
the Palomar station during both weeks

Winter week Spring Week

Ws (m/s)

Statistics p8u1 l4 p8u1 l4

Bias 0.99 0.31 1.08 0.16
Mae 1.43 1.04 1.26 0.86
Rmse 2.18 1.61 1.77 1.14
Corr 0.76 0.84 0.75 0.65
Indexagr2 0.82 0.88 0.76 0.79

Wd (º)

Statistics p8u1 l4 p8u1 l4

Bias 23.43 25.21 -3.34 15.45
Mae 51.56 49.84 21.77 29.79
Rmse 80.21 64.17 33.23 33.23
Corr 0.41 0.55 0.39 0.49
Indexagr2 0.66 0.71 0.60 0.60

T (K)

Statistics p8u1 l4 p8u1 l4

Bias 1.09 -0.37 0.07 -1.25
Mae 1.93 1.83 0.54 1.36
Rmse 3.15 2.22 3.09 3.25
Corr 0.72 0.82 0.97 0.93
Indexagr2 0.84 0.82 0.99 0.92

Qv (g/kg)

Statistics p8u1 l4 p8u1 l4

Bias -0.47 -0.21 -1.33 -0.86
Mae 0.67 0.62 1.73 1.23
Rmse 1.75 1.58 2.32 1.76
Corr 0.93 0.92 0.71 0.71
Indexagr2 0.94 0.94 0.63 0.76
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All configurations present similar values of sensible heat flux, but configurations with Noah-Mp pres-
ent slightly higher (around 10%) values than p1 and p8u1. Configuration l4u1 presents higher values for T, 
especially during the spring week (starting the week with 2 K over the rest and ending it with differences 
of 4 K) (see Fig. 5e, f in the main manuscript), and so a lower sensible heat flux could be expected during 
the day, but this is not observed. In order to understand this, soil temperature is also analyzed (not shown), 
as this heat flux is proportional to the difference in temperatures between the surface and the air above. It 
was found that l4u1 presents higher values for soil temperature in the first two levels, which could explain 
why this configuration presents similar sensible heat flux to the other l4 configurations and still have higher 
T values. This is most likely due to the activation of the urban scheme.

S5. Model performance metrics at other meteorological sites
Tables V-IX present the performance statistics for the other five meteorological stations in the MABA (V: 
San Miguel, VI: Ezeiza, VII: Moron, VIII: Observatorio de Buenos Aires, and IX: Palomar) for the best two 
best performing configurations regarding wind variables in AEP. 
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