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A B S T R A C T   

Alzheimer’s dementia (AD) is a neurodegenerative disorder that causes memory loss and dementia in older 
adults. Intracellular accumulation of Aβ causes an imbalance in the oxidative status and cognitive dysfunctions. 
Besides oxidative stress and loss of memory, Alzheimer’s patients show dysfunction of the circadian rhythms. The 
objective of this work was to evaluate the consequences of an intracerebroventricular injection of Aβ (1–42) on 
temporal patterns of cognitive performance, as well as on lipid peroxidation, protein oxidation and total anti-
oxidant capacity levels, in the rat temporal cortex. Holtzman male rats from control and Aβ-injected groups were 
used in this study. We found that MDA, protein carbonyls and total antioxidant capacity levels displayed day- 
night oscillations in the rat temporal cortex and spatial memory performance also varied rhythmically. An 
intracerebroventricular injection of Aβ (1–42) modified temporal patterns of cognitive performance as well as 
daily profiles of parameters of oxidative stress. Thus, elevated levels of Aβ aggregates induces alterations in daily 
rhythmicity of parameters of oxidative stress and, consequently, would affect cellular clock activity, affecting the 
spatial memory performance in the AD.   

1. Introduction 

Alzheimer’s dementia (AD) is a neurodegenerative disorder charac-
terized by alterations in the synaptic function, neuronal loss, and 
cognitive disturbances (Selkoe, 2002; Holtzman et al., 2011). The hall-
marks of this age-related disease include deposits of β-amyloid peptide 
and neurofibrillary tangles in brain regions related to memory (Quer-
furth and LaFerla, 2010). 

Oxidative stress has a key role in the pathogenesis and progression of 
AD (Reddy et al., 2009). It is well known that oxidative stress is 
generated by an imbalance between the production of oxidant species 
and antioxidant mechanisms. Some research has reported that Aβ pep-
tide can generate oxidative stress; particularly it induces lip-
operoxidation of membranes and oxidation of protein in the brain of 
patients with AD (Sayre et al., 1997; Butterfield and Kanski, 2002, 
Butterfield and Lauderback, 2002). In addition, increased lipid 
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peroxidation and oxidized protein levels were observed in the brain of 
subjects with Alzheimer’s disease (Aksenov et al., 2001; Markesbery and 
Lovell, 1998; Montine et al., 2002). 

It has been reported that oxidative stress causes impair learning and 
memory in AD patients (Kamat et al., 2016; Manczak et al., 2006). Also, 
AD patients exhibit disturbances in their daily rhythms, such as sleep- 
wake cycles, hormonal rhythms among others (Bliwise et al., 2011; 
Giubilei et al., 2001; Harper et al., 2005). 

The master clock that drives these rhythms is located in the supra-
chiasmatic nuclei (SCN). This clock translates the environment infor-
mation to neural and humoral codes, which control the peripheral clocks 
(Hastings et al., 2008; Hirota and Fukada, 2004). 

The molecular mechanism of the central circadian clock and pe-
ripheral circadian oscillators involves the interaction of positive and 
negative signals that regulate the rhythmic transcription of clock genes. 
The positive loop is controlled by the CLOCK and BMAL1 genes, while 
the negative loop is controlled by the PER (Period) and CRY (Crypto-
chrom) genes. Thus, BMAL1:CLOCK binds to regulatory sequences 
known as E boxes, located in the promoters of the PER and CRY genes 
and other clock-controlled genes such as arginine, vasopressin and DBP 
(D-element binding protein) genes to activate their transcription (Cheng 
et al., 2002; Hogenesch et al., 2000; Sato et al., 2006). In addition, it has 
been shown that the cellular redox state modulates the clock activity 
(Rutter et al., 2001; Yoshii et al., 2015). 

In this study, our aims were: 1) to evaluate whether lipid peroxida-
tion, protein oxidation and total antioxidant capacity levels exhibited a 
day-night variation in the rat temporal cortex 2) to corroborate whether 
spatial memory performance displayed a day-night rhythm; (3) to 
evaluate the consequences of an intracerebroventricular (ICV) injection 
of Aβ (1–42) aggregated, on these temporal patterns. 

2. Results 

2.1. Effects of Aβ (1–42) aggregates on daily profiles of MDA and protein 
carbonyls levels in the temporal cortex rat 

The results showed that MDA levels exhibit a diurnal variation in the 
temporal cortex of control and Aβ-injected animals (F(3,12) = 15.86, p 
≤ 0.001; Chronos-Fit: p ≤ 0.001 and p < 0.001, F(3,12) = 7.41, p ≤
0.01; Chronos-Fit: p ≤ 0.01, respectively). MDA maximal levels occur at 
ZT 09:30 ± 00:30 in the control group. Injection of Aβ (1–42) phase 
shifted diurnal rhythms of MDA levels (from ZT 09:30 ± 00:30 to ZT 

01:15 ± 01:08, t (6) = − 12.55, p ≤ 0.001; Fig. 2A and Table 1). Our 
results revealed that protein carbonyls levels oscillate rhythmically, in 
the rat temporal cortex (F(3,8) = 5.40, p ≤ 0.05; Chronos-Fit: p ≤ 0.001) 
with the maximal level occurring at the end of the night (ZT 22:57 ±
01:13). An injection of Aβ (1–42) caused an advance in the acrophase of 
the rhythm, from ZT 22:57 ± 01:13 to ZT 02:13 ± 00:27, t (4) = − 15.97, 
p ≤ 0.001, Fig. 2B and Table 1). 

2.2. Temporal pattern of total antioxidant capacity in the temporal cortex 
of Aβ-injected rats 

Total antioxidant capacity exhibits a rhythmic daily in this brain area 
(F(3,8) = 6.59, p ≤ 0.05; Chronos-Fit: p ≤ 0.001), with a peak at the 
beginning of the night (ZT 12:42 ± 01:21). We observed a phase-shift in 
the daily rhythm of total antioxidant capacity in the temporal cortex of 
Aβ-injected rats (ZT 12:42 ± 01:21 to ZT 19:03 ± 00:38, t(4) = − 4.21, p 
≤ 0.05) (Fig. 3 and Table 2). 

2.3. Effects of an ICV injection of Aβ (1–42) aggregates on temporal 
patterns of spatial memory performance 

To evaluate the effect of an ICV injection of aggregated β-amyloid 
peptide (1–42) on the temporal variation of cognitive functions, we 
investigated whether memory performance fluctuates throughout the 
day-night. Our results showed that in PT2 during day, Aβ-injected rats 
explored the target sector less frequently compared to the control group 
(2.3 ± 0.47 vs 1.0 ± 0.28; t (41) = 2.28, p ≤ 0.05, Fig. 4A). At night 
during PT1 and 2, the Aβ-injected group showed a significantly lower 
exploratory activity than the control group (2.2 ± 0.29 vs 0.7 ± 0.16; 
3.8 ± 0.57 vs 1.0 ± 0.21; t (41) = 4.40 and t (41) = 4.27, respectively p 
≤ 0.001; Fig. 4A). In relation to total exploratory activity, we found that 
the Aβ-injected group explored less frequently in PT2 during the night 
compared to the control group (8.3 ± 0.88 vs 4.3 ± 0.52; t (38) = 3.61 p 
≤ 0.001; Fig. 4B). The total distance walked was affected by the ICV 
injection of the amyloid aggregates. Indeed, Aβ-injected group walked a 
greater distance in PT1 during the day (711.2 ± 35.88 vs 918.8 ± 88.29; 
t (38) = − 2.18, p ≤ 0.05) and the night (612.2 ± 59.93 vs 838.9 ±
80.15; t (38) = − 2.26, p ≤ 0.05) as well as in PT 2 at night (602.4 ± 36.7 
vs 817 ± 52.92; t (38) = − 3.33; p ≤ 0.05) when compared to the control 
group (Fig. 4C). 

3. Discussion 

Here, we report that temporal patterns of cognitive performance, and 
the daily profiles of oxidative stress parameters, in the temporal cortex 
of rat, were affected by an ICV injection of Aβ (1–42) aggregates. 

We found MDA and protein carbonyls levels display a day-night 
variation, peaking at the second half of the day and the end of the 
night, respectively, in the temporal cortex of rat (Fig. 2 and Table 1). 

Table 1 
Rhythms’ parameters of MDA and protein carbonyls levels in temporal cortex 
samples of control and Aβ-injected groups.  

MDA LEVELS 

Rhythm 
Parameters 

Control group 
(mean ± SEM) 

Aβ injected group 
(mean ± SEM) 

p 

MESOR 0.66 ± 0.06 0.78 ± 0.02 N/S 
AMPLITUDE 0.33 ± 0.05 0.35 ± 0.05 N/S 
ACROPHASE 09:30 ± 00:30 01:15 ± 01:08 < 0.001  

PROTEIN CARBONYLS LEVELS 
MESOR 7.10 ± 0.46 6.80 ± 0.90 N/S 
AMPLITUDE 3.82 ± 0.10 5.01 ± 0.15 N/S 
ACROPHASE 22:57 ± 01:13 02:13 ± 00:27 < 0.001 

Note: Data are presented as mean ± SEM (n = 3 per group). p-levels were ob-
tained for the corresponding control vs Aβ-injected groups comparison using 
Student’s t-test. 
N/S = not significant. 
MDA levels (% rhythm Control group: 64.28 Aβ-injected group: 61.04). 
F test values (Control group: 11.70 Aβ-injected group: 10.19). 
Protein oxidation levels (% rhythm Control group: 66.34 Aβ-injected group: 
68.10). 
F test values (Control group: 8.87 Aβ-injected group: 9.61). 

Table 2 
Rhythms’ parameters of TAC levels in temporal cortex samples of control and 
Aβ-injected groups.  

TAC Levels 

Rhythm 
Parameters 

Control group 
(mean ± SEM) 

Aβ injected group 
(mean ± SEM) 

p 

MESOR 13.5 ± 0.74 13.7 ± 0.63 N/S 
AMPLITUDE 6.8 ± 0.57 5.5 ± 0.90 N/S 
ACROPHASE 12:42 ± 01:21 19:03 ± 00:38 < 0.05 

Note: Data are presented as mean ± SEM (n = 3 per group). p-levels were ob-
tained for the corresponding control vs Aβ-injected groups comparison using 
Student’s t-test. 
N/S = not significant. 
TAC levels (% rhythm Control group: 49.53 Aβ-injected group: 52.97). 
F test values (Control group: 4.42 Aβ-injected group: 4.50). 
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These results are consistent with daily profiles of MDA and protein 
carbonyls observed by us and others in the rodents� brain (Asmari 
et al., 2006; Fonzo et al., 2009; Ledezma et al., 2020; Navigatore-Fonzo 
et al., 2017; Pandi-Perumal et al., 2008). In addition, we also found that 
total antioxidant capacity exhibits a rhythmic pattern in the temporal 
cortex of the rat, with maximal TAC levels occurring at the end of the 
day (Fig. 3 and Table 2). Day-night variations of TAC have also been 
observed in other mammals’ tissues (Benot et al., 1998; Singh et al., 
2014). 

Interestingly, the decrease in the levels of lipoperoxidation observed 
in the night would generate a less oxidant environment and promote 
learning and memory tests, as seen by Winocur and Hasher (2004) in 
young rats. Also, the lowest levels of MDA concurs with the peaks of 
cognition-related factors such as Brain-derived neurotrophic factor 
(BDNF) and its receptor (TrkB) as previously observed by our research 
team in this same brain area, which could suggest its role in synaptic 
plasticity during wakefulness (Coria-Lucero et al., 2021). 

It is well known that oligomers of Aβ induce neuronal oxidative stress 
(Mattson, 2004; Tabner et al., 2005). Interestingly, in this study, we 
found, that Aβ aggregates modify the day-night oscillation of MDA, 
protein carbonyls and TAC in the rat�s temporal cortex. 

Particularly, Aβ aggregates phase advanced the MDA and protein 
carbonyls rhythm’s acrophase, but delayed the TAC rhythm’s acrophase 
(Figs. 2 and 3, Tables 1 and 2). Also, we observed that the peaks of MDA 
and protein carbonyls occur at the beginning of the day, the rest period 
in rats, following Aβ acrophase (ZT 15:27 ± 00:34, data previously 
showed in Coria-Lucero et al., 2021) in the context of reactive homeo-
stasis. These results suggested that such increase in MDA and protein 
carbonyls levels would generate neuronal damage, caused by oxidative 
stress, which could affect memory consolidation-related processes dur-
ing sleep. It is well established that sleep plays a crucial role in memory 
consolidation through the reactivation of different forms of synaptic 
plasticity (Puentes-Mestril and Aton, 2017). Particularly, the NREM 
sleep plays a key role in reactivation and maintenance of long-term 
potentiation (LTP), while REM sleep is implicated in LTP reprocessing 
(Peigneux and Smith, 2010). It has been reported that the sleep can 
eliminate the reactive oxygen species (ROS) generated during wake-
fulness through increased antioxidants (Deveci and Tek, 2019). In 
addition, sleep disturbances is correlated with a variety of diseases such 
as Alzheimer, Parkinson, and Huntington’s diseases, which are also 
associated with oxidative stress (Prince and Abel, 2013; Sterniczuk 
et al., 2013). Numerous studies have shown that there is a strong asso-
ciation between amyloid-β oligomers and sleep disorders (Duncan et al., 
2012; Garcia-Alloza et al., 2006; Gurevicius et al., 2013; Roh et al., 
2012). Thus, an increase in free radicals, MDA and carbonyls induced by 
the Aβ oligomers during the rest of the rats observed in this study could 
generate sleep disturbances and consequently alter the processes of 
memory consolidation”. Moreover, we also found that the Aβ protein 
peak (ZT 15:27 ± 00:34) concurs with the lowest level of TAC, which 
could explain, the alterations in cellular redox state observed in the 
temporal cortex of animals injected with Aβ aggregates. Although we did 
not find studies that investigated the effects of Aβ aggregates on the daily 
rhythmicity of oxidative stress parameters in this brain area, daily pat-
terns of MDA, protein carbonyls and TAC, were observed by us in the 
prefrontal cortex in the same animal model (Ledezma et al., 2020). 

A variety of studies suggest that oxidative stress causes cognitive 
deficiency as seen in AD pathology (Ansari and Scheff, 2010; Kamat 
et al., 2013). In addition, it has been observed that cognitive dysfunction 
and memory loss in AD were caused by Aβ aggregates (Klein et al., 2001; 
Lambert et al., 1998). On the other hand, several studies proposed that 
learning and memory processes are sensitive to alterations in circadian 
rhythms as seen in AD (Ellenbogen et al., 2006; Jilg et al., 2010; 
Peigneux et al., 2004). 

The hole exploration frequency in the goal sector is the most suitable 
parameter to calculate the spatial memory retention (Villar et al., 2018). 
Our results showed that in PT2 during the day, Aβ-injected rats explored 

less frequently the target sector compared to the control group (Fig. 4A). 
At night during PT1 and 2, the Aβ-injected group showed a significantly 
lower exploratory activity than the control group, indicating a pro-
gressive deterioration of recent and longer-term spatial memory 
(Fig. 4A). 

Interestingly, in our experimental model, an ICV injection of aggre-
gated beta-amyloid (1–42) caused a decrease in total exploratory ac-
tivity in PT 2 during the night, whereas the total distance traveled was 
larger in the Aβ-injected group in PT1 and PT2 during the day-night. 
These findings lead us to propose that the impulse to find the goal 
sector is affected by the Aβ aggregates (Fig. 4B and 4C). The need to find 
the escape hole depends mainly on motivation. Our results could suggest 
that Aβ aggregates generate motivational alterations, this is, consistent 
with the investigations carried out by Rostami et al. (2017) and Amiri 
et al. (2017) in other murine models of Alzheimer’s disease. 

The Aβ (1–42) aggregates generated biochemical and behavioral 
alterations, similar to depression and anxiety (Colaianna et al., 2010; 
Cioanca et al., 2014). In addition, it has been reported that reduced 
levels of BDNF are associated with symptoms of anxiety (Rosa et al., 
2016; Ping et al., 2014). Our previous results demonstrated that Aβ 
(1–42) injection induced alterations in the daily rhythms of BDNF and 
TrkB, probably due to changes in the daily rhythmicity of the clock 
factors such as BMAL1 and RORα, which would explain the behavioral 
alterations observed on those Aβ-injected animals. 

Our investigations demonstrated that spatial recent and longer-term 
memory is affected by aggregates Aβ during the day-night, particularly 
when the test requires high precision (for example the hole exploration 
frequency in the goal sector). Thus, the cognitive changes observed in 
Aβ-injected rats could be a consequence of changes in genes related to 
synaptic plasticity in the temporal cortex, as observed by us in this brain 
area of the same animal (Coria-Lucero et al., 2021). This is consistent 
with results obtained by Du et al. (2020) who demonstrated that the 
expression levels of BDNF and TrkB in the brain of Aβ(25–35)-injected 
rats, were significantly decreased and the escape latency in Morris water 
maze test was longer than those of the Sham group. Thus, the memory 
impairment in Alzheimer’s disease rat could be due to downregulation 
of Bdnf/trkb signaling pathway. 

Although other authors have studied the effects of oligomers of Aβ on 
cognitive functions in animal models of Alzheimer’s dementia (Hadi-
pour et al., 2018; Ghumatkar et al., 2019; Li et al., 2020), this would be, 
at least at our knowledge, the first study on the effects of an ICV injection 
of aggregated beta-amyloid (1–42) on the temporal patterns of spatial 
memory performance. 

In conclusion, the results presented here show that MDA, protein 
carbonyls and total antioxidant capacity levels exhibits a daily rhyth-
micity in the rat temporal cortex. These temporal patterns were affected 
by an ICV injection of Aβ (1–42) aggregates. In addition, an intra-
cerebroventricular injection of Aβ aggregates altered the temporal pro-
files of cognitive performance. Thus, elevated levels of Aβ aggregates 
induces alterations in daily rhythmicity of parameters of oxidative stress 
and, consequently, would affect cellular clock activity, affecting the 
spatial memory performance in the AD. 

4. Experimental procedures 

4.1. Experimental animal model 

Male Holtzman rats (Laboratories of the National University of San 
Luis) were used in this study. The rats were maintained at an ambient 
temperature of 21–23 ◦C under a 12 h light (7:00 am-7:00 pm):12 h dark 
(7:00 pm-7:00 am) cycle (LD conditions) and received water and food ad 
libitum. The animals were randomly divided into two groups: (1) the 
control group and (2) the Aβ-injected group (n = 23/group). The first 
group received an intracerebroventricular (ICV) injection of sterile sa-
line solution (5 μL) and the second group received an ICV injection of the 
solution of Aβ (1–42) aggregated (5 μL). ICV injection of Aβ was carried 
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out according to previous studies (Navigatore-Fonzo et al., 2017; Zhang 
et al., 2013). Briefly, Aβ (1–42) powder (Sigma-Aldrich, St Louis, MO, 
USA) was dissolved in sterile saline solution, and diluted to a concen-
tration of 2 g/L. To obtain the neurotoxic (aggregated) form of Aβ1-42, 
the Aβ solution was incubated at 37 ◦C for a week (Cetin and Dincer, 
2007). On the day of surgery, rats were anesthetized with an intraper-
itoneal injection of 0.2 ml of a mixture of ketamine hydrochloride and 
xylazine (80 mg and 10 mg/kg, respectively) and mounted in a stereo-
taxic apparatus. Animals were then stereotaxically injected directly into 
the lateral ventricle at coordinates (AP:-1 mm, L: 1.5 mm, and DV: − 3.5 
mm) according to Paxinos and Watson (1998). A week after the surgery, 
Barnes� test was performed to test cognitive functions of the rats 
(Vargas-Lopez et al., 2011). The Barnes’ maze test includes the acqui-
sition phase on 4 days, followed by a probe trial at 24 h for 6–8 days 
without the escape box (Barnes, 1979). Three rats from each group were 
sacrificed every 6 h during a 24-hour period, at the zeitgeber times (ZT) 
ZT2, ZT8, ZT14 and ZT20, ZT0 = lights on at 07:00, ZT12 = lights off. 
Rats were killed under dim red light to avoid the acute effects of light. 
Temporal cortex (TC) samples were isolated starting at ZT2 from control 
and Aβ-injected groups. The timeline of research is showed in Fig. 1. All 
experiments were conducted following the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals (NIH Publications No. 
80-23) and the National University of San Luis Committee’s Guidelines 
for the Care and Use of Experimental Animals (approved protocol N◦ B- 
263/18). 

4.2. Barnes maze task 

Learning and memory in rodents were assessed using the Barnes test. 
The device was a circular platform of 122 cm diameter with eighteen 
holes around the periphery. An escape box was located under only one of 
the holes. Animals were trained on the Barnes test at day and night. A 
buzzer provided a sound of 80 dB as an aversive stimulus to provoke the 
escape. All animals were trained for two days to find the “escape box”, 
followed by two probe trials (PT),1 and 5 days after training (PT1 and 2) 
during day and night (each trial was performed in triplicate). Spatial 
memory performance was recorded by a video camera and analyzed 
with Format Factory and Tracker version 5.0.3 software. The parameters 
assessed were as follows: a) Hole exploration frequency in the goal 
sector (GS) (n◦ explorations/s b) Total exploratory activity (sum of ex-
plorations) c) Path length (cm). In the behavioral studies we used 23 
animals from each control and Aβ-injected groups. 

4.3. Preparation of tissue homogenate 

Tissue samples isolated from the rats of the control and Aβ-injected 
groups at ZT2, ZT8, ZT14 and ZT20 (n = 12/group), were homogenized 

in 1/5 (w/v) dilution of phosphate saline buffer (30 mM phosphate 
buffer with 120 mM KCl) pH 7.2. The homogenates were centrifuged at 
800g for 10 min at 4 ◦C and the supernatants were used for the 
biochemical determinations. 

4.4. Protein concentration 

The measurement of total protein concentration was determined by 
the method of Lowry et al. (1951), with bovine serum albumin (BSA) as 
a standard. 

4.5. Lipid peroxidation estimation 

The level of lipid peroxidation (LPO) measured as malondialdehyde 
(MDA) was determined according to the method of Draper (1990). 
Briefly, tissue samples (n = 12/ group) were homogenized in PBS buffer 
and centrifuged at 800 g for 10 min at 4 ◦C. Then 1 ml of supernatant 
was deproteinized with 1 ml of 20 % trichloroacetic acid (TCA) and 
incubated on ice for 30 min. After centrifugation at 3000 rpm for 10 min, 
1 ml of supernatant was mixed with 1 ml of 0.7 % thiobarbituric acid 
(TBA) and incubated for 60 min at 100 ◦C. Samples’ absorbance were 
measured spectrophotometrically at 535 nm. The results were expressed 
as μmol MDA/mg of total proteins (μmol/mg), using a calibration curve 
of MDA prepared with 1,1,3,3-tetramethoxypropane. 

4.6. Protein oxidation estimation 

Protein carbonyls levels were measured in tissue homogenates (n =
12/ group) using the procedure described by Winterbourn and Buss 
(1999) with modifications. Briefly, 50 ul of tissue homogenates were 
mixed with 150 μl of 2,4-dinitrophenylhydrazine in 2 M HCl and incu-
bated for 45 min at room temperature. In microplates ten microliters of 
sample were added to 190 ml of bicarbonate buffer (0.1 M pH 9.6) and 
incubated overnight at 4 ◦C. Thereafter, microplates were blocked with 
fish gelatin (2.5 %) in PBS at 37 ◦C for 1 h and incubated with the rabbit 
polyclonal anti-dinitrophenyl antibody (1:2000 dilution) for 1 h at 37◦. 
Then the microplates were rinsed in TBS containing 0.05 % Tween-20, 
and were incubated for 1 h at 37 ◦C, with a goat anti-rabbit IgG-HRP 
conjugate (1:5000 dilution, Jackson Immuno Research Laboratories, 
West Grove, PA, USA) as secondary antibody. The absorbance was read 
at 450 nm. Results were expressed as nmoles of carbonyl/mg of proteins. 

4.7. Total antioxidant capacity estimation 

The total antioxidant capacity (TAC) was evaluated using ABTS•+

assay (Re et al., 1999). The radical cation of 2,2′-azino-bis-(3-ethyl-
benzothiazoline-6-sulfonic acid; (ABTS•+) was produced by mixing 

Fig. 1. Timeline of the study.  
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ABTS stock solution (7 mM) with potassium persulfate (2.45 mM). 2 ml 
of ABTS•+ solution was added to 20 µL of tissue homogenates (n = 12/ 
group) and incubated for 6 min at 30 ◦C. Then the decrease of the 
absorbance was read at 734 nm. 

The TAC was estimated as the percentage of inhibition of ABTS•+ and 
was calculated according to the formula: 

%inhibition = [(A0 − Af)/A0] × 100,

where A0 is the absorbance value at 734 nm of the reaction mixtures at t 
= 0 

Af is the absorbance value at 734 nm of the reaction mixtures and 
sample at t = 5 min. 

4.8. Statistical analysis 

Statistical analysis was performed using SPSS Statistics version 22 
(IBM, Armonk, NY, USA). Data were expressed as mean ± standard error 
of the mean (SEM). Shapiro-Wilk and Levene tests were used for the 
analysis of normality and variance homogeneity (p values ≥ 0.05 indi-
cated a normal distribution and equal variances). Time series were 
analyzed by one-way ANOVA (analysis of variance) followed by Tukey’s 
post-hoc tests (p < 0.05 was considered to be significant). In addition to 
the conventional statistical analysis, a statistical analysis was performed 
chronobiological to validate temporal changes. Thus, each data series 
was analyzed using the Chronos-Fit software (Zuther et al., 1996) for a 
24 h period. This is a method that adjusts the experimental points to a 
sinusoidal function (cosine) by the method of minima squares where, a 
p ≤ 0.05, was taken as indicative of the presence of rhythm. Next, we 

continue the analysis using the Cosinor method (S.E.P.T.M.R) that al-
lows to quantify the parameters of a rhythm such as Mesor (arithmetic 
mean of all the values of the variable obtained within a cycle), Ampli-
tude (difference between the mesor and the maximum value reached by 
the variable during the period) and the Phase (value of the variable at a 
given moment), from the experimental data. The percentage of rhythm 
(an index of the amount of variance accounted for) of the fitted curve, 
testing the null hypothesis of the amplitude = 0, was performed using an 
F test (>3.5; p < 0.05). The data obtained from the circadian rhyth-
micity studies were graphed using the nonlinear regression method from 
GraphPad Prism v. 5.04 software (CA, USA). Student’s t test was used to 
compare the parameters mesor, amplitude and acrophase, between 
control and Aβ-injected groups, with p < 0.05 for significant differences. 
For the Barnes maze test, the experimental findings were evaluated by 
analysis of ANOVA with repeated measures followed by Bonferroni’s 
post-hoc test for specific comparisons; a p < 0.05 was considered to be 
significant. Twelve rats from each group were used in the molecular 
analyses and twenty-three animals/group were required in behavioral 
studies (Deery et al., 2009, Faraco et al., 2019, Iwanaga et al. 2005, 
Teegarden, 2012). 
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