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25 Abstract

26 Lead–acid batteries are robust, low-cost, and have a large power-to-weight ratio. Recently, 

27 small amounts of carbon-based materials with a high surface area have been included in the 

28 Pb electrode as additives to improve the high-rate partial state of charge. However, carbon-

29 based materials also enhance the hydrogen evolution reaction during the charging process at 

30 the negative active material (NAM), which is undesirable and dangerous. Therefore, in the 

31 current communication, a promising differential electrochemical mass spectrometry (DEMS) 

32 set-up suitable for studying the hydrogen evolution reaction (HER) at technical NAM 

33 electrodes in lead–acid batteries (LABs) is reported for the first time. 

34

35 1- Introduction

36 Lead–acid batteries (LABs) were proposed by Gaston Planté in 1860 and the first 

37 report published 19 years later [1]. This was the first practical rechargeable battery and is 

38 now more than 150 years old. The formidable strength of lead–acid technology allowed it to 

39 survive for this length of time without significant changes to the central concept [2]. In this 

40 century, carbon-based materials with a high surface area have been employed to enhance the 

41 performance of lead–acid batteries [3].

42 The main challenge of LABs is to improve the high-rate partial-state-of-charge (HRPSoC) 

43 performance, which is important in many applications. There is strong evidence of the benefit 

44 of introducing small amounts (ca. 1–2 % w/w) of a carbon-based material with a high surface 

45 area as an additive into the lead–acid anode (Pb/C, usually called the negative active material 

46 or ‘NAM’) [4,5]. This inhibits sulfation and increases the capacitance and therefore the 

47 charge acceptance of the batteries [36]. 
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48 However, the insertion of carbon-based materials into the NAM may also enhance the 

49 hydrogen evolution reaction (HER) during the charging process, which strongly affects the 

50 battery life cycle [3,711]. Therefore, current research is focused on the development of new 

51 materials that increase the capacitance while inhibiting sulfation and the HER at lead-based 

52 electrodes [3,12].

53 A number of techniques have been employed to study the HER in LABs, including volume 

54 measurements (VM), electrochemical impedance spectroscopy (EIS), rotating ring-disk 

55 electrode (RRDE), current transients (CTs) and cyclic voltammetry (CV) [1318]. It should 

56 be noted that none of these techniques provide in situ detection and quantification of the HER 

57 at lead-based electrodes. In this context, differential electrochemical mass spectrometry 

58 (DEMS) appears to be a valuable technique capable of performing in situ measurements of 

59 the onset potential of the HER as well as quantifying the amount of hydrogen produced at 

60 lead-based electrodes [1921].

61 In this paper we demonstrate the versatility and high sensitivity of the meniscus-based 

62 approach of a novel on-line DEMS set-up by studying the HER at technical NAM electrodes. 

63 Using this approach, H2 is accurately detected for the first time on-line at lead-based 

64 electrodes.

65

66 2- Experimental

67 2.1 Electrochemical characterization

68 All electrochemical measurements were performed in a conventional three-electrode cell 

69 controlled by a PC Autolab potentiostat-galvanostat PGSTAT30. A reversible hydrogen 

70 electrode (RHE) was used as the reference and an activated carbon cloth as the counter 

71 electrode. All potentials in this work are given against the RHE. Experiments were carried 
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72 out in 5.0 M aqueous sulfuric solutions prepared from high purity reagents (Merck p.a.) and 

73 ultra-pure water (Millipore MilliQ gradient A10 system, 18.2 MΩ cm, 2 ppb total organic 

74 carbon). Argon (N50, Air Liquide) was used to deoxygenate all solutions.

75

76 2.2 New DEMS set-up

77 The electrode configuration used for the new DEMS set-up is shown in Figure 1. A small 

78 Pb cylinder with a central hole for a DEMS capillary tube (PTFE, Supelco®) was employed 

79 as a conductive holder. The tube is partially inserted into the Pb holder, and the end of the 

80 capillary tube sealed with a porous membrane (PTFE, Gore-Tex®) interface. The remaining 

81 space inside the Pb hole is used to hold the sample. DEMS experiments were performed using 

82 a commercial mass spectrometer from Pfeiffer (Omnistar®).

83

84 2.3 Working electrode preparation 

85 Carbonaceous material: Two commercial carbon materials were tested: (i) HE 631 expander 

86 (Hammond®), denoted ‘HE’; and (ii) SuperP Carbon black (Timcal®), denoted ‘SP’.

87 Carbon-based ink: The suspension was prepared by stirring 20 mg of the carbonaceous 

88 material with 30 μL of Nafion® (5%, Sigma–Aldrich) and 1.0 mL of water (Milli-Q, 

89 Millipore).

90 DEMS measurements of technical NAM electrodes: NAM electrodes were obtained by 

91 electrochemical reduction of an aqueous mixture precursor PbO (Pb, Sigma-Aldrich), PbO + 

92 HE (Pb/HE) or PbO +SP (Pb/SP) (1 wt.% of carbonaceous material) once the NAM mixture 

93 was introduced into the Pb holder (see Figure 1). Then, the precursor was exposed for 1 h at 

94 ambient temperature for drying. The electrochemical reduction was carried out by applying 

95 -0.45 V vs RHE until 2.9 °C was reached. Finally, the electrode was left in Milli-Q water for 



5

96 48 h, replacing the liquid every 2 h. The final size of the NAM (1 mm thick) is defined by 

97 the holder diameter and the distance from the surface to the porous membrane (ø ≈ 1.5 mm, 

98 1 mm high). Figure SI-1 shows representative SEM images of the NAM electrodes obtained 

99 following the procedure detailed in Figure 1. A porous structure with a layer thickness close 

100 to 1 mm can be observed, which is similar to that of technical (operative) LAB-NAM 

101 electrodes.

102

103 Figure 1. (1) (A) Pb holder, (B) Au wire, (C) PTFE membrane, (D) PTFE capillary; and a scheme 

104 showing the set-up in operation (right). (2) (E) Loading the NAM precursor (PbO or PbO/C), (F) 

105 layer formation, (G) electrochemical reduction of the precursor to give NAM (Pb or Pb/C) and 

106 subsequent electrochemical/DEMS analysis, (H) transfer of the NAM layer for further 

107 characterization.
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108

109 3- Results and discussion

110

111 3.1- HER at NAM electrodes

112 DEMS analysis at a NAM surface is quite different from any other system examined by 

113 DEMS to date. A conventional DEMS analysis implies a thin layer porous electrode, which 

114 ensures fast tracking of any volatile species produced at any point of the electrode surface, 

115 with the behavior of current and mass signals followed on-line [20,2224].

116 On the other hand, a real (operative) NAM layer requires a thickness in the order of ~1 mm, 

117 which is quite a lot thicker than the typical electrodes studied by DEMS [19,22,23]. The latter 

118 size is in agreement with the electrodes synthesized in the current work (see Figure SI-1). 

119 Moreover, Figure SI-2 reveals that all the electrodes tested in the current work have a 

120 specific capacity close to 100 mAh g-1, which is a typical value for a conventional NAM [25].

121 Figure 2 shows a cyclic voltammogram (CV) and the corresponding mass spectrometry 

122 cyclic voltammogram (MSCV) for the m/z = 2 signal recorded simultaneously at the Pb/SP 

123 electrode with a short delay of ca. 5 s, which should be ascribed to the porous structure and 

124 consequent facile diffusion of species at NAM electrodes [15,22]. It is remarkable that the 

125 ionic currents are on-line with the faradaic ones. Indeed, the MSCV for the m/z = 2 signal 

126 (H2
+), which is associated with H2 formation, accurately reveals the onset potential for the 

127 HER at NAM electrodes.

128
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129

130 Figure 2. (A) CV and (B) MSCVs (m/z = 2) recorded at Pb/SP electrode. V = 1 mV s-1; 5 M H2SO4. 

131 T = 25 ºC.

132

133 Figure 3 compares linear sweep voltammograms (LSVs) and the corresponding mass linear 

134 sweep voltammograms (MSLSVs) for the mass signal = 2 recorded at Pb/SP, Pb/HE and Pb 

135 electrodes. As expected, the introduction of carbon materials into the NAM enhances the 

136 HER. Indeed, the onset overpotentials for the HER increase as follows: Pb/SP < Pb/HE < Pb.  

137 On the other hand, Figure SI-3 reveals that HE has a higher capacitance value (6.72 F g-1) 

138 than SP (1.01 F g-1).

139 Unlike the well-characterized SP carbon, HE carbon is a commercial expander provided 

140 especially for NAM applications in LABs, and contains several additives such as carbon 

141 black, lignosulfonate and barium sulfate among others, and therefore it is not possible to 

142 obtain a full physicochemical characterization of this material. Nevertheless, Figure SI-3 and 
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143 Figure 3 indicate that the HER contribution of a specific carbon surface is strongly dependent 

144 on the nature of the carbon.

145 It is important to recall that a high capacitance value and low HER contribution are of 

146 paramount importance in enhancing the performance of NAM electrodes, i.e. a low-cost 

147 additive with high surface area, capacitance, electrical conductivity and onset overpotential 

148 toward the HER is desirable to enhance the performance of NAM electrodes, and therefore 

149 HE appears to be a promising additive.

150

151

152 Figure 3. (A) LSVs and (B) MSLSVs (m/z = 2) recorded at Pb (grey line), Pb/SP (blue line) and 

153 Pb/HE (red line) electrodes. V = 1 mV s-1; 5 M H2SO4. T = 25 ºC.

154

155 Finally, Tafel plots were constructed with the aim of analyzing the reaction mechanism of 

156 the HER at Pb/SP, Pb/HE and Pb electrodes. Figure 4 shows Tafel slopes calculated from 

157 LSV and MSLSV for each sample. Interestingly, both signals (ionic and faradaic currents) 

158 reveal a Tafel slope of 0.120 V dec-1 which indicates that the Volmer reaction is the rate-
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159 determining step (RDS), as would be expected for sp metals [26]. The last implies a similar 

160 reaction mechanism for the HER at all materials and suggests that the exchange current 

161 density (i0) is the main parameter affected by the nature of the additive.

162  

163

164 Figure 4. Tafel plots achieved with faradaic (left panel) and ionic (m/z = 2, right panel) for Pb (grey), 

165 Pb/SP (blue) and Pb/HE (red) electrodes. The green lines have a slope of 120 mV dec-1. V = 1 mV s-

166 1; 5 M H2SO4. T = 25 ºC.

167

168 4- Conclusion

169 A novel electrochemical mass spectrometry was developed and applied to follow the 

170 hydrogen evolution reaction (HER) in situ at technical negative active materials (NAMs) 

171 employed in lead–acid batteries (LABs). Using this approach, accurate onset potentials and 

172 reaction mechanisms for the HER at NAM electrodes were determined for the first time. The 

173 novel DEMS set-up appears to be a valuable technique for studying the HER at NAM 

174 electrodes in operando during the charging process of LABs.

175
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