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Abstract: Software Product Line (SPL) developments include Variability Management (VA) as a core
activity aiming at minimizing the inherent complexity in commonality and variability manipulation.
Particularly, the (automated) analysis of variability models refers to the activities, methods and
techniques involved in the definition, design, and instantiation of variabilities modeled during SPL
development. Steps of this analysis are defined as a variability analysis process (VA process), which
is focused on assisting variability model designers in avoiding anomalies and/or inconsistencies, and
minimizing problems when products are implemented and derived. Previously, we have proposed
an approach for analyzing variability models through a well-defined VA process (named SeVaTax).
This process includes a comprehensive set of scenarios, which allows a designer to detect (and even
correct in some cases) different incompatibilities. In this work, we extend SeVaTax by classifying
the scenarios according to their dependencies, and by assessing the use of these scenarios. This
assessment introduces two experiments to evaluate accuracy and coverage. The former addresses
responses when variability models are analyzed, and the latter the completeness of our process with
respect to other proposals. Findings show that a more extensive set of scenarios might improve the
possibilities of current practices in variability analysis.

Keywords: variability modelling; automatic analysis; software product line

1. Introduction

The variability management area involves a set of methods and techniques aimed at
providing flexibility within a Software Product Line (SPL) development and supporting, at
the same time, mechanisms for defining, designing, implementing and testing variabili-
ties. In addition, since variability is defined at early stages in the software development,
promoting special management mechanisms during the whole life cycle is really important.

Within this area, the (automated) analysis of variability model research field has emerged,
focusing on a set of techniques, activities and/or methods for verifying the consistency
and correctness of the variability models and their configurations towards a consistent
product generation. This field, which is also named the (automatic) verification of product
line models [1,2], has attracted special attention from the SPL community, resulting in an
extensive number of approaches with different mechanisms for improving the analysis.

Although there is no consensus about the activities included in the (automated) anal-
ysis of variability models [3], the research community agrees on a set of base activities
included in the variability analysis process (VA process), as shown in Figure 1.

The main input (component 1 in the Figure) consists of one (or many) variability models,
depending on the variability modeling approach is being used. Following, the translator
activity (component 2) is responsible for translating the model into a formal representation
(component 3), which represents variabilities in logical terms. Then, a solver (component 4)
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is responsible for validating the formal model, after receiving a set of validation scenarios
or queries (component 5) that the solver is capable of answering. The outputs of this
activity are the results (sixth component) of the analysis process. These results can be
identifications of anomalies and/or redundancies in the variability models, and sometimes
new corrected models.

Figure 1. General Process for Automated Analysis of Variability Models.

Current proposals in the literature define different mechanisms for implementing
each component of the VA process. For example, the inputs of the process are modeled
by using Feature Models (FM) [4], Orthogonal Variability Models (OVM) [5], Common
Variability Languages (CVL) [6], and so on. At the same time, the translator and the formal
representation may be different resulting in models depicted as Constraint Satisfaction
Problem (CSP), Conjunctive Normal Form (CNF), Description Logic (DL), and so forth.
Therefore, the set of proposed solvers depends on the formal representation is being
applied; for example, CNF models are validated with SAT solvers such as Sat4j (www.
sat4j.org/, or Choco (www.choco-solver.org), meanwhile DL models are validated with
ontology reasoners such as RACER (https://franz.com/agraph/racer/) or FACT++ (http:
//owl.man.ac.uk/factplusplus/). However, although there are different mechanisms
proposed, there are still open issues and challenges that have not been addressed [7]; for
instance, a wider support for identifying and correcting variability errors, further studies
about different quality attributes (QA) and the development of standard benchmarks for
their analysis, the definition of minimal standard operations (queries) that solvers should
respond to, and so forth.

Considering this context, in this work, we extend previous works proposing the
SeVaTax process in order to automatically support the activities and provide solutions
about open research issues.

This paper is organized as follows. The next section analyzes related works focused
on the VA process. Section 4 describes our SeVaTax process showing specific activities, as
well as the extended scenarios. In Section 5, we provide two experiments for evaluating
accuracy and coverage. Conclusions and future works are discussed afterwards.

2. Previous Work and New Contributions

In order to clarify the contributions of this paper, first we introduce the scope of our
previous work as follows:

• In Reference [8], we presented the first version of the SeVaTax process. The main
aspects of this version were the SeVaTax model based on collaborative diagrams of
UML with annotated variability (in OVM notation), a formalization in CNF, and the
definition of 17 validation scenarios considering mismatches and/or anomalies on
SeVaTax models. The use of these scenarios allowed to define the set of feasible incon-
sistencies, anomalies and redundancies present in the variability models, for which
solvers provided a response, such as identification, explanation, or even correction
when it was possible. In addition, we performed an evaluation by comparing our
SeVaTax analysis process against two other approaches in the literature;

www.sat4j.org/
www.sat4j.org/
www.choco-solver.org
https://franz.com/agraph/racer/
http://owl.man.ac.uk/factplusplus/
http://owl.man.ac.uk/factplusplus/
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• In Reference [9], we presented an extension of the SeVaTax model, named scope opera-
tors, in order to include inter-related variability relations together with a proposal for
verification (through the definition of more specific validation scenarios). In addition,
we performed an evaluation of the impact of these extensions in the performance of
our supporting tool;

• In Reference [7], we presented a systematic literature review on analysis of variability
models. Specifically, we defined a classification framework, which considers the main
activities involved in the (automated) analysis of variability models (Figure 1). The
framework was applied to 43 primary studies, drawing strengths and challenges as
well as research opportunities.

Other published works, less related to the VA process but analyzing changes in some
parts or abstracting the process itself, were presented in [10,11]. In Reference [10], we
proposed a formalization of SeVaTax models expressed in first order logic, and introduced
a ALCI encoding allowing extended reasoning capabilities. The formalism was verified
by analyzing consistency and dead services. In Reference [11], we proposed a framework
for the VA process in order to combine automatic variability analysis tools, which can be
adapted to specific requirements of a variability management case.

Considering these previous works, here we extended the SevaTax process capabilities
in order to face with some challenges and open issues defined in the literature (widely
described in the related work section) [7]. Specifically, we are interested in four of these
challenges. They are:

• Challenge 1: Define the set of basic operations (queries) that the VA process must support.
This challenge is related to the queries/validation scenarios that a VA process must be able
to understand together with the type of responses generated. Here, we extend the query
component of Figure 1 by adding more than ten validation scenarios generating a
more comprehensive set of variability evaluation and identification possibilities;

• Challenge 2: Include extended variability primitives together with their specific operations.
This challenge proposes the extension of semantic representations in the variability models
to describe particularities of specific domains. The extension of variability model rep-
resentations was previously presented in [9] specifically with the addition of scope
operators. However, in this work we focus on the validation of these operators through
the definition of new validation scenarios together with correction capabilities;

• Challenge 3: Add more support for error correction. This challenge is related to challenge 1
with respect to the results provided by the proposals. There is a need of more assistance in error
correction. Particularly, the specification of more specific validation scenarios provides
us with the possibility of identifying the services in the SeVaTax model generating
incompatibilities. Thus, we can provide better correction mechanisms;

• Challenge 4: Add more rigorous evaluations. This challenge highlights the need of more
rigorous evaluations of the VA process in order to measure quality attributes, such as perfor-
mance, usability, accuracy, completeness, and so forth. Some of these evaluations have
been performed also in the previous works. For example, performance in [9] and a
preliminary comparison of completeness in [8]. Here, we extend the evaluations for
analyzing accuracy and coverage of the SeVaTax process.

3. Related Work

The variability management area has been widely researched during recent years.
This can be seen in the wide number of secondary studies addressing proposals, which im-
plement one or more variability management tasks. In Reference [7] we analyzed twelve sec-
ondary studies, considering five of them particularly related to the VA
process [3,12–14]. For example, in [13], a systematic review of domain analysis tools
analyzes validation functionalities such as support for documentation, links between features
and requirements, and the existence of support for consistency checking. In Reference [3] we
found a wide review of fifty-three proposals, which analyzes activities included in the VA
process, but applied to feature models only. Here, the authors define a classification of
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thirty feature analysis operations and apply them to the proposals. Then, in Reference [14]
the authors present a comparison of automated analysis using Alloy [15] for feature models
(FM). They analyze the support of nine proposals over ten feature analysis operations.
Finally, in Reference [12], the authors analyze ten Textual Variability Modeling Languages
(TVML) in order to show capabilities of these languages according to modeling, derivation
and verification activities.

All these secondary studies, including ours, denote the wide range of different ap-
proaches and techniques used in the VA process. In particular, in [7] we have analyzed
forty-three primary studies published during 2007–2018, addressing the way each primary
study implements each activity of the VA process. A summary of the different approaches
and techniques can be seen in Figure 2.

Figure 2. Number of different approaches addressing each component of the VA Process.

For example, in the Variability Modeling bar-chart we can see that Feature Model
(FM) [4] is the approach most commonly used (72%, that is, thirty primary studies). Fall
into this category proposals such as FAMA-FM [16], FeatureIDE [17], SPLOT [18], and
so forth. Then, 22% (five proposals) use OVM [5] or own model (OwnM) approaches.
Examples are Braun et al. [10] and FAMA-OWM [19] for OVM approaches; and COVAMOF-
VS [20] and DOPLER [21] for own models. Finally, the TVML approach is used by only
three proposals [22]. At the same time, some studies allow more than only one modeling
approach, such as Variamos [1] and Metzger et al. [23].

In the Formal Representation bar-chart we can see more than fifteen formal languages
used in the different primary studies analyzed. The logic representation most commonly
applied is OWL [24] (nine proposals). Falls into this category proposals such as Rin-
con et al. [25] and Langermeier et al. [26].

Following, in the Solvers bar-chart we can also see a wide number of different solvers
applied. We observe that Sat4j is the most frequently used; meanwhile other solvers, such
as ontological reasoners (RACER,FACT++, SPARQL (https://www.w3.org/TR/rdf-sparql-
query/) and Pellet (http://pellet.owldl.com/)) are also applied by several studies such as
Afriyanti et al. [27] and Wang et al. (2007) [2].

Finally, according to the VA process, we must consider queries the solver is capable
of answering and the provided results. In this case, in [7], we considered both aspects
together by analyzing whether proposals can identify incompatibilities in the variability
models (according to the classification proposed in [28]). Thus, in the Results bar-chart of
Figure 2, we can see the following items analyzed:

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://pellet.owldl.com/
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• Redundancy: proposals can identify whether the same semantic information is mod-
elled redundantly in multiple ways;

• Anomaly: proposals can detect whether some required configurations of variability
models are never possible but they should be. Examples of anomalies are the well-
known problems analyzed as dead features, conditional dead features, false optional, wrong
cardinalities, and so forth [3];

• Inconsistency: proposals can found contradictions represented in the variability models.
In general, this happens when the variability models cannot be ever instantiated. For
instance, the inconsistency called void feature model includes models that cannot derive
any product;

• Specific identification: proposals can identify specific dependencies or features causing
some of the previous problems;

• Explanation: once identified, proposals provide a textual explanation about the prob-
lem found;

• Correction: proposals can perform an automatic correction or provide suggestions
about the corrections needed.

The most supported response is the detection of inconsistencies in the variability
models (with more than thirty proposals); while the lesser one is the correction of models,
with proposals such as FD-Checker [29] and Wang et al. (2014) [30].

As the conclusions of this secondary study, in [7] we have defined eight specific
challenges or open issues that must be considered in future research. Specifically, in this
work we address four of them, as we described in Section 2.

In addition, we can cite other more recent related works, such as [31–33]. For example
in [31] authors define restrictions on the use of SysML (https://sysml.org/) for annotated
product line models. These constraints are then used for checking dead and false optional
features. In [32], the authors propose the use of Monte Carlo tree search [34] for feature
model analyses. The activities performed are related to feature selection during product
derivation, also analyzing the performance of the selection. The framework proposed
allows to find an empty configuration, an empty feature model, and also valid configura-
tions proposing one of them as the best one. Finally, in [33] authors present a research tool
for model checking variability. The tool uses a labeled transition system with variability
constraints in order to analyze and configure feature models. In particular, the tool allows
to analyze and correct ambiguities, remove false optional and dead services by interacting
with nodes and edges of the transition model.

Although all these related works propose novel ways for representing variability mod-
els and improving the analyses and configurations, none of them provide new capabilities
for incompatibility detection (component 5 of Figure 1).

4. Materials and Methods

The SeVaTax process is composed of four modules with their input/output flows.
Figure 3 shows those modules, according to the general analysis process defined in Figure 1.
Let us further describe each component of Figure 3 in the next subsections.

4.1. SeVaTax Models (Component 1)

The SeVaTax model emerges as a design model defined for an SPL methodology
applied to several geographic subdomains. In previous works [35,36] we defined this
model based on a functionality-oriented design. That is, each functionality of the SPL is
documented by a functional datasheet representing the set of services, commons (Common
services are services that will be part of every product derived from the SPL) and variants,
which interact to reach the desired functionality.

https://sysml.org/
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Figure 3. SeVaTax analysis process.

Each datasheet is documented by using a template composed of six items containing
an identification, such as a number or code; a textual name, describing the main function; the
domain in which this functionality is included; the list of services required for fulfilling this
functionality; a graphical notation, which is a set of graphical artifacts showing the service
interactions (as common and variant services); and a JSON (https://www.json.org/json-
es.html) file specifying the services and their interactions. Within the graphical notation
item (of the datasheets) any graphical artifact might be used; and particularly, we use an
artifact based on variability annotation of collaboration diagrams (of UML). The required
variability, according to the functionality to be represented, is attached to the diagrams by
using the OVM notation [5].

The complete set of interactions in our variability models is specified in Table 1. As we
can see, they are divided into variability types, for denoting the variant interactions among
services; dependencies, for denoting interactions between services; and scope, for specifying
the scope of each variant point. SeVaTax models introduce three novel interactions: the use
dependency and two scope operators. The former specifies a dependence between common
services, which are not necessarily associated with a variation point; meanwhile the latter
are related to the scope defined for a variation point when it must be instantiated [37].
There are two possibilities here: (1) a Global Variation Point (GVP) specifies that, if the
variation point is instantiated in a specific way, it will be applied in that way for all
functionality, including that variation point; and (2) a Specific Variation Point (SVP) specifies
that the instantiation of the variation point is particular for each functionality, including
that variation point.

The scope operators have been added to the SeVaTax models [9] in order to design
functionalities with the possibility of reusing variation points and their instantiations. As
an example for clarifying these operators, we can see Figures 4A,B containing a Variant
Variation Point, named A, with three variants (A1, A2 and A3) and two different services (X
and Y) in different variability models of two datasheets (1 and 2 respectively). Considering
the two scope operators, we have the following two possibilities:

• GVP operator: if a GVP is attached to the variation point A in both models, there will
be an only one possibility to instantiate it. That is, it will be valid to have instantiations
such as Figure 4C or D but not both of them. Only one instantiation will be valid for
the whole SPL platform for A;

• SVP operator: if an SVP is attached to the variation point A in both models, each
model will be able to choose its own instantiation. For example, an instantiation of
Figure 4A can be Figure 4C and for B can be D. Even, both instantiations are valid in
the SPL platform for A.

https://www.json.org/json-es.html
https://www.json.org/json-es.html
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Table 1. Interactions defined for modeling SeVaTax models.

Interactions JSON Property Graphical Notation
Mandatory variation point MandatoryVP

Optional variation point OptionalVP

Alternative variation point AlternativeVP

Variant variation point VariantVP

Use use
Requires requires
Excludes excludes

Global variation point GlobalVariationPoint
Specific variation point Speci f icGlobalVariationPoint

Figure 4. An example of the use of scope operators in two datasheets.

In previous works, we have modeled SeVaTax models and their datasheets for two
geographical subdomains—marine ecology [35,36] and paleontology [38]. As an example,
Table 2 shows a variability model for the Add New Excavations datasheet (paleontology
subdomain).

For example, in the SPL of the paleontology subdomain [38], we can reuse the same
variation point in two functionalities. One of them is Add New Excavations (showed in
Table 2), and the other one is Add New Paleontologist, showed in Figure 5. As this last
functionality lets the user to add a new excavation for indicating the excavation in which
he/she was involved, the variation point Load excavation data is reused in the same way for
both functionalities (Here, only a part of the Add New Excavations is reused, specifically the
service PS-T4.20). The variation point is also defined as SVP because it can be instantiated,
in a different way, for each of those functionalities.

Table 2. An example of the functional datasheet for Add New Excavations (extracted from [38]).

Id FD2
Name Add New Excavations
Domain Palentology subdomain
Services MMS-FA1.6, HI-LM1.31, PS-T4.20, HI-SLD2.3, ...

Variability Models
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Figure 5. SeVaTax Model for Add New Paleontologist functionality.

Finally, the last item of the datasheet is a JSON file built according to the JSON prop-
erties (showed in the second column of Table 1). This file is generated to allow automatic
processing of SeVaTax models.

In Listing 1 we can see the JSON file for the SeVaTax model shown in Table 2 for the
variation point.

Listing 1. Part of the JSON file for representing the SeVaTax model shown in Table 2.

1 {
2 "Add New Excavations ": {
3 "id": "FD2",
4 ....
5 "service ": {
6 ...
7 "use":{
8 "Service ":
9 {"name": "PS -T4.20",

10 "SpecificVariationPoint ": {
11 "MandatoryVP ": {
12 "service ":
13 [{" name": "HI-SLD2 .12", ..}}
14 "OptionalVP ": {
15 "service ":
16 [ { "name": "HI -SLD1.9", ..},
17 { "name": "HI-SLD5 " ,..}]}
18 }
19 }}
20 ....

4.2. Translator (Component 2)

The translator is responsible for parsing the JSON files (from the datasheets) and
generating two outputs, a formal representation in CNF (Component 2.1 of Figure 3)
and an instantiation of the underlying structures (Component 2.2 of Figure 3). The CNF
representation was presented in [8,9] for each interaction defined in Table 1. As an example
of the translation activity, in Table 3 we show examples of parts of SeVaTax models together
with the logic model, CNF translation, and the numeric representation of the CNF. This last
column represents the inputs for the solver in the next activity.
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Table 3. Translation of parts of SeVaTax models.

SeVaTax Model Logic Model CNF Translation CNF Numeric Translation
S3⇐⇒ A (¬S3∨ A) ∧ (S3∨ ¬A) −2 3 0

A =⇒ B (¬A ∨ B) −3 4 0

A =⇒ C (¬A ∨ C) −3 5 0

C ⇒ C1⊗ C2⊗ C3 (¬C ∨ C1∨ C2∨ C3) −5 7 8 9 0
(¬C ∨ C1∨ ¬C2∨ ¬C3) −5 7 −8 −9 0
(¬C ∨ ¬C1∨ C2∨ ¬C3) −5 −7 8 −9 0
(¬C ∨ ¬C1∨ ¬C2∨ C3) −5 −7 −8 9 0

(¬C1∨ ¬C2) ∧ (¬C1∨ ¬C3) −7 −8 0
(¬C2∨ ¬C3) −8 −9 0

−9 −7 0

B =⇒ F (¬B ∨ F) −4 6 0

F =⇒ A (¬F ∨ A) −6 3 0

For supporting the validation activities, we defined underlying structures that instan-
tiate each service and interaction of each variability model. These underlying structures
have been restructured from previous work [9] in order to improve the way scenarios
are detected and identified. In Figure 6 we can see the metamodel for representing each
variability model of the datasheets. To represent the variation points, we register the vari-
ation point scope (which is unique) together with the variation point list. Each variation
point contains a variability type and a variant list, where each variant corresponds to a
service. Then, as each service belongs to one or more variability models (of each involved
datasheet), it is possible to represent cross-dependencies and analyze the scopes of the
variation points.

Figure 6. Metamodel for representing underlying structures.

4.3. Validator (Component 3.1) and Results (Component 4)

The validator is responsible for identifying possible problems in the variability models
when developing an SPL. Generally, the design of variability models is an error-prone task,
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that is, the development of an SPL involves functionalities and their associated variability
models, which can show a conflict among functionalities. For example, in [38], we applied
SeVaTax models (represented as functional datasheets) for designing functionalities in the
paleontology subdomain; however, these functionalities could have contained incompati-
bilities that must be analyzed in order to avoid problems during implementation and/or
product derivation. To illustrate this, in Figure 7 we introduce an anomaly as a require
dependency in the variability model showed in Table 2—a mandatory service (HI-SLD2.12)
requires an optional one (HI-SLD1.9), making it also present in all products. This is an
example of the kind of problems that the validator must detect.

Possible problems of the variability models are seen as queries that solvers are capable
of answering. In this way, before configuring a solver, it is important to define the specific
queries supported by the analysis process, that is, the set of questions that solvers are
capable of answering. In previous works [8–10], we have defined a set of questions
classified as validation scenarios. They represent possible problems of the variability models
to be analyzed for providing more specific responses.

In the related work section (Section 3), we showed the most common responses
provided by proposals in the literature. They were classified as results, indicating the
support for incompatibilities (redundancies, anomalies and inconsistencies) and the level of
detection, that is, from a simple identification to a correction of the specific problem. These
incompatibilities have been classified in the literature as independent problems, that is, not
associated to specific domains. In our work we also define them as generic or independent,
which means they can be found in different variability models of different domains, but
always representing classified incompatibilities.

Figure 7. Variability model for Add New Excavations with an anomaly.

After analyzing our previous works and the most common responses in the literature,
here we extend and reorganize our previous validation scenarios in order to consider
incompatibilities with respect to two main parameters: (1) the variability interactions used in
the models; and (2) the severity of the incompatibilities (according to the proposal by Massen
& Lichter [28]).

For the first parameter, as we have showed in Table 1, the interactions are divided
into (1) variability types, for denoting mandatory, optional, alternative and variant variation
points; (2) dependencies, for the use of uses, requires, and excludes restrictions among services;
and (3) scope, for specifying the scope of each variation point at the moment of being
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instantiated. In this way, the variability models are firstly classified into validation scenarios
by considering incompatibilities among the variability interactions involved.

Considering the second parameter, the variability models are also classified to ex-
plicitly incorporate the severity of an incompatibility. Thus, a variability model can present
redundancies, when the model includes the same semantic restriction at least twice; anomalies,
when the model is representing something irregular (According to Massen & Lichter an
anomaly exists when potential configurations would be lost, though these configurations should
be possible) that requires special attention; and inconsistencies, when the model presents
contradictions making the analysis and derivations (in instantiated products) impossible.
Obviously, the last one represents the most severe problem.

This new classification into the two parameters generates a comprehensive suite of
validation scenarios defining possible incompatibility patterns among services. At the same
time, the severity of an incompatibility helps on the identification and reparation actions
when these patterns are found. In this way, from our classification of validation scenarios,
we can specify specific responses provided by our validator, and take the required actions.

For each scenario, responses might be:

• Warning (W) : an alert is generated describing a possible problem together with the
involved services;

• General Identification (GI) : the services generating the conflict are identified, but it
is not possible to identify a specific scenario;

• Specific Identification (SI) : the scenario generating the conflict is identified. The
causes of this conflict and the services involved for assisting the solution should be
identified;

• Repair (R) : the scenario that generates the conflict is identified and a pre-
established solution is applied/suggested. The required action can be modification or
elimination.

These validators’ responses are obtained by using the SAT solver (Sat4j) and/or the
underlying structures to identify and correct the incompatibility, whenever it is possible.
In general, the underlying structures are used as a support when the SAT solver is not
enough to specifically identify the services generating the incompatibility. Similarly, for
the repair response, the underlying structures are essential for suggesting the actions that
could be carried out. To understand the use of these structures, in Figure 8 we show part
of the instantiation of the variability model for the Add New Excavations functionality of
Figure 7. Specifically, we represent the variation point PS-T4.20 with one mandatory and
two optional services. We can also see the requires dependency representing that HI-SLD2.12
requires the HI-SLD1.9 service. In this case, when the anomaly is detected, the instantiation
is used to identify the specific services involved and provide a solution.

In Figure 9, we can see the classification of validation scenarios considering the use
of the requires dependency. Columns are labeled according to the three different types
of severity; meanwhile the rows represent the type of variability. For instance, a service
with a requires dependency presents anomalies when the dependency is directed towards
another optional, variant or alternative service, making it present on every instantiated
product. An inconsistency appears when a requires dependency is directed towards another
alternative service from the same variation point, that is, the variability model cannot be ever
instantiated. Finally, in the figure we can see also variability models with redundancies,
as the last ones. These scenarios, are independent from the variability types involved and
they are present when a requires dependency is directed towards a parent, the same service,
or a set of services transitively.
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Figure 8. Part of the instantiation of Add New Excavations functionality of Figure 7.

Figure 9. Validation scenarios involving requires incompatibilities.
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Figure 9 also shows the responses provided by our validator to each validation scenario
defined. In five of them, our validator suggests correcting the incompatibility and in the rest
ones, it provides a specific identification of the incompatibility and the involved services.
For example, for the anomaly of the FV-O scenario (in the Figure), each configurable service
is evaluated individually by the SAT solver. To do so, it is necessary to pre-setup the service
as false and the variation point (containing this service) as true in the CNF. If the generated
CNF is inconsistent, then the service is a false optional.

Following, Figure 10 shows incompatibilities when excludes dependencies are involved.
Here, we have three possible inconsistencies in the scenarios—mandatory exclusion, self
dependency and parent exclusion. At the same time, we can see that the responses of the
validator are mostly warnings for alerting the exclusion of services on all instantiated
products. For example, for the ME-A scenario, the validator uses the Mandatory_exclude(Z,D)
function, which, given two services Z and D (where Z excludes D), checks if D belongs to
a mandatory variation point (Listing 2).

As mentioned above, the result of the evaluation is a warning about the presence of
the scenario together with the involved services (Z and D).

Figure 10. Validation scenarios involving excludes incompatibilities.
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Listing 2. Mandatory_exclude(Z,D) function

1 Mandatory_exclude(Z,D):
2 For each A belong_to Datasheets
3 VPList = A.getMandatoryVariations
4 if Z belong_to VPList
5 return Mandatory Exclude

Figure 11 shows the validation scenarios involving both requires and excludes depen-
dencies. In this case, all the scenarios present inconsistencies because they are involving
services that are requiring and excluding the same services. Except for the C-C scenario, in
which the validator can identify the specific services in conflict, the other two scenarios
are only identified generally. For example, the TI-T scenario is evaluated by means of a
Services_Excludes(A,C) function, which, given two services A and C (where A excludes C),
generates a list (Includes_List) of all services that require C; recursively adding services,
which in turn require services that belong to the list (Includes_List). Then, if the service A
belongs to Includes_List, there is a transitive inconsistency between A and C (Listing 3).

Listing 3. Services_Excludes(A,C) function

1 Services_Excludes(A,C):
2 Include_List =[C]
3 Repeat S in Include_List
4 For All A
5 if (S_aux Includes C)
6 Include_List.add(S_aux)
7 until Include_List unchange
8 If A belong_to Include_list
9 return transitive Inconsistency

Figure 11. Validation scenarios involving requires-excludes incompatibilities.

The response of this evaluation is a general identification. The validator can only identify
the involved services, but not the specific scenario.

In Figure 12, we can see the validation scenarios involving combinations of variability
types. These scenarios only generate anomalies, making services with specific associated
variability cannot be really instantiated.

To evaluate these scenarios, we use the Variant_Child(B,Dts) function, which, given
a variant B and a variability model Dts, checks the number of variation points that the
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variant B contains. If the number of variation points is greater than one, there is a variation
point violation (Listing 4).

Listing 4. Variant_Child(B,Dts) function

1 Variation_Child(B,Dts):
2 VP.list = Dts.VP
3 numberVP =0
4 For each VP belong_to VP.list
5 if B is variant of VP
6 numberVP ++
7 If numberVP >1
8 return VP Violations

Figure 12. Validation scenarios involving variability types incompatibilities.

The response of the evaluation of these scenarios is a specific identification of the
involved services in the anomaly.

Finally, Figure 13 shows the validation scenarios involving scope operators. In these
cases, there are possible redundancies involving the scope operators; therefore, it would be
useful to know how to proceed with their instantiation. For instance, the M-SVP scenario is
redundant because, regardless the instantiation you want to apply, the VP can never contain
different configurations, so the validator suggests modifying the scope operator to GVP.

Other redundancies occur in the CR-G and CR-S scenarios. For example, variability
models in the figure are redundant considering the variation point C, because it is designed
in the same way in both variability models. It is important to highlight here that these
scenarios are not representing necessarily a problem, but it is useful for the designer that



Information 2022, 13, 149 16 of 27

they are detected. Thus, the result of the evaluation is a warning about the presence of the
scenario together with the involved services.

Following, an anomaly occurs in the FSVP-V scenario when a specific variation point
SVP is related to an only one variant service depending on a GVP. When this happens, the
scope will be always GVP because it is independent from the way the service is configured.
This scenario is validated by using the Services_Consume_Variation_Point(VP) function,
which given a variation point VP returns the number of services that use it; and when this
number is one, we are in the presence of a False Specific (Listing 5).

Listing 5. Services_Consume_Variation_Point(VP) function

1 Services_Consume_Variantion_Point(VP):
2 For all S in (Dendencies_List
3 U Variant_List)
4 If ( VP==S )Count ++
5 If Count <= 1
6 return False Specific

Figure 13. Validation scenarios involving scope incompatibilities.

So, this variation point is suggested to be converted into a GVP. Finally, we can see
the C-S scenario representing an inconsistency when the same VP has different scopes
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in different variability models. To evaluate this scenario, for each service that represents
a variation point, we register its scope into the underlying structures. Therefore, in the
Service_Scope(S) function, when registering the scope, we check if the service has the same
scope; in any other case, we are in the presence of a scope inconsistency (Listing 6).

Listing 6. Service_Scope(S) function

1 Service_Scope(S):
2 For each S1 in Datasheets_List
3 If (S1.name == S.name and S1.scope != s.name)
4 Return Contradictory Scope

The result of the evaluation of this scenario suggests modifying the scope operator to SVP.
As a summary of the validation scenarios and the responses of our validator, Figure 14

shows, for each incompatibility, the number of scenarios according to each type of response.

Figure 14. Summary of number of validation scenarios according to the response of the validator.

Configurator (Component 3.2)

The configurator allows developers to build a specific product by means of instanti-
ating the functional datasheets included in an SPL platform. Therefore, this component
presents a user interface (UI) that allows developers to select the different variant services
(associated with variation points). To perform that, a developer receives as input the vali-
dated functional datasheets (without anomalies), instantiates them, and generates a new
set of datasheets without variability. This new set must be evaluated again.

4.4. The SeVaTax Web tool

The SeVaTax process is supported by a Web tool that follows a layered model imple-
mented as a client-server architecture. It is developed with the Angular (https://angular.
io/) framework, and it is open-source (https://github.com/IngSisFAI/sevataxtool.git).

5. Validating the SeVaTax Process

In this section, we introduce two evaluations of the SeVaTax process aimed at vali-
dating accuracy and coverage of the scenarios. Figure 15 shows the process for designing
the validation experiments, which is based on rules as activities defined in [39]. Once the
hypotheses are defined (activity A), we carefully select the set of variability models to be
analyzed, the solvers to be used, and the expected results. Finally, the experiments are run
and the results analyzed.

https://angular.io/
https://angular.io/
https://github.com/IngSisFAI/sevataxtool.git
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Figure 15. Process for designing the validation experiments.

For the activity B1 (selection of variability models/test cases) we develop a tool that
automatically generates variability models, taking into account the interactions defined in
Table 1. This tool allows the designer to set up the number of variability models to be
created, together with the number of services, variability points, dependencies, and levels
for each of these models. Designers can also specify the number of inconsistencies or it can
be set up as automatic. This tool is available to be downloaded from https://github.com/
IngSisFAI/variabilityModelGenerator, and the test cases used in the next experiments are
available from https://github.com/IngSisFAI/variabilityModelGenerator/tree/master/
testCases.

5.1. Experiment 1: Accuracy

This evaluation analyzes accuracy when identifying specific incompatibilities through
the use of scenarios. In this case, we compare our validator (component 3) to a basic
implementation of an SAT solver (Sat4j).

A. Hypotheses Definition

We define the following hypotheses:

Hypothesis 1 (H1). A basic SAT solver is not enough for identifying specific incompatibilities of
the variability models.

Hypothesis 2 (H2). The SeVaTax validator improves incompatibility identification. This means
that an incompatibility is not only identified but also the validator can identify the involved services
and interactions.

B. Experiment Design

Figure 16 shows the workflow for the experiment design. In the following, we describe
each activity performed for validating accuracy.

B1. Selection of variability models: Here, we use our automatic variability model generation
tool to create 30 test cases (variability models) containing 170 incompatibilities distributed
into redundancies, anomalies and inconsistencies.

B2. Selection of validators: Each branch of the workflow, shown in Figure 16, represents
a different validator. Thus, in the Figure, we can see three branches: (1) the branch for the
basic SAT solver, (2) the branch for validating our proposal, and (3) the manual validation
in which the expected results are defined.

We choose a basic implementation of an SAT solver (Sat4j) because it is the same solver
used by our approach. Similarly, in the figure we can see that the CNF translation is used
as input of these two validators; but differently, our validation adds the inputs generated
by the underlying structures used in the SeVaTax process.

https://github.com/IngSisFAI/variabilityModelGenerator
https://github.com/IngSisFAI/variabilityModelGenerator
 https://github.com/IngSisFAI/variabilityModelGenerator/tree/master/testCases
 https://github.com/IngSisFAI/variabilityModelGenerator/tree/master/testCases
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Figure 16. Experiment 1—Workflow for accuracy validation.

B3. Selection of the result types: The validation of the 30 test cases is performed by
considering the next result types:

(i) The validator identifies each validation scenario correctly.
(ii) The validator finds some scenarios, but at least one of them is not correctly identified.
(iii) The validator finds an error or problem but cannot identify the scenario.
(iv) The validator cannot identify any scenario.

C. Execution of the experiment and results

Figure 17 shows the expected results (third branch of Figure 16) in terms of the percent-
age of the number of scenarios (according to our test data) falling into each category. For
example, for the 170 incompatibilities, 20% (34 incompatibilities) fall into requires incompat-
ibilities (Figure 9), 30% (51 incompatibilities) are exclude incompatibilities (Figure 10), and
so on.

Figure 17. Expected Results—Percentage of incompatibilities for each category.

In Figures 18 and 19, we show the results for the basic SAT solver (first branch of
Figure 16) and for the SeVaTax process (second branch of Figure 16), respectively, with
respect to the expected values and the result types generated.

Thus, Figure 18 shows the percentage of each result type answered when test cases
are analyzed with a basic SAT solver. For example, we can see that redundancies and scopes
scenarios are not identified at all, that is 100% of (iv) responses (in red) (In case of require-
excludes and variability types incompatibilities the bar of redundancies is 0% because these
categories do not present any scenario of this type). These non-identified scenarios represent
56% of the total of scenarios according to the expected results (Redundancies scenarios are
distributed among the categories (in Figure 17) containing this type of incompatibility).
The scenario with the best result is FV (False Variability, which includes FV-O, FV-V and
FV-A) representing anomalies within requires incompatibilities (Figure 9). In the figure we
can see that this bar shows 100% of scenarios being identified correctly (response (i), in
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blue), and at the same time represents exactly 20% of the scenarios of test cases (according
to Figure 17).

Figure 18. Results obtained by the basic SAT solver implementation.

With respect to the SeVaTax validator, in Figure 19 we only show incompatibilities
for which we obtained negative results, that is, when the scenarios fall into (ii), (iii) or
(iv) results. This happens only in the TI scenarios (transitive inconsistency, which includes TI-
T and TI-D scenarios) within requires-excludes incompatibilities (Figure 11). Here, SeVaTax
cannot determine these specific incompatibilities, that is, it cannot identify the specific
scenario generating the inconsistency. Sixty percent (in yellow in Figure 19) represent
these cases, and the other 40% represent the C-C scenarios (within the requires-excludes
incompatibilities according to Figure 11), in which SeVaTax identifies every incompatibility
correctly. These scenarios represent 6% of the total of the analyzed scenarios (according to
Figure 17, requires-excludes incompatibilities represent 10% of the scenarios, in which 6%
are TI-T and TI-D, and the rest are C-C scenarios in which SeVaTax obtained an (i) result).



Information 2022, 13, 149 21 of 27

Figure 19. Results obtained by the SeVaTax validator.

In summary, from the analysis of Figures 18 and 19 we can see that the hypothesis H1 is
confirmed with 45% of the non-identified scenarios for the basic SAT solver ((iv) responses).
This percentage is comparable to the 6% of non-identified scenarios by the SeVaTax validator.
Similarly, the hypothesis H2 is confirmed and reflected in the accuracy of the responses
given by SeVaTax, that is, most of the responses fall into the (i) result.

5.2. Experiment 2: Coverage

This evaluation analyzes the coverage of the inconsistencies, anomalies and redun-
dancies represented through the validation scenarios. We compare here SeVaTax against
two other approaches: SPLOT and VariaMos. We choose these approaches based on two
main aspects. Firstly, they are widely referenced in the literature with visible results, and
secondly they provide configurable and available tools in which inputs and processing are
well-defined.

A. Hypotheses Definition

We define the following hypotheses:

Hypothesis 3 (H3). The SeVaTax validator provides a specific answer for each validation scenario,
that is, the validator has the ability to find the specific incompatibility (redundancy, anomaly and/or
inconsistency) and classify it as a scenario.

Hypothesis 4 (H4). The SeVaTax validator improves the identification of validation scenarios,
providing better descriptions and solutions.

Both hypotheses are addressed to show that SeVaTax provides an improvement with
respect to the correct identification of the validation scenarios and to the generation of
specific responses.

B. Experiment Design

Figure 20 shows the workflow for the experiment design. Following we describe each
activity performed by the coverage validation.
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Figure 20. Experiment 2—Workflow for coverage validation

B1. Selection of variability models: Here, we use the automatic variability model generation
tool to create 14 test cases with one validation scenario for each one. The scenarios associ-
ated to scope incompatibilities (Figure 13) are not considered here because scope operators
are only proposed by our approach.

B2. Selection of validators: As we can see in Figure 20, we have three branches, one for
each validator. Firstly, we translate the 14 variability models to the specific format expected
by SPLOT and VariaMos. Both approaches use feature models as inputs, but also add
specific characteristics. So, we manually translate the SeVaTax models to each notation.

B3. Selection of the result types: The validation of the 14 test cases is performed by
considering the result types defined in the component Results of Figure 3: warning (W),
identification (I), general identification (GI), and repair (R). We also add new responses for
the analysis: (1) Not-Allowed (NA), when the inconsistency is not possible to be modeled
by the approach, and (2) Not-Detected (ND) when neither the scenario or the problem is
identified.

C. Execution of the experiment and results

For the execution of this experiment, the 14 test cases, with the specific format of each
approach, are run on each tool. Then, we analyze each result manually.

In Figure 21, we can observe that SPLOT identifies 35.71% (7.14% I and 28.57% GI)
of the 14 scenarios. On the other hand, VariaMos has a coverage of 50% (7% I, 36% GI
and 7% NA) of the 14 scenarios proposed, without considering the scope operators. Like
SPLOT, VariaMos identifies inconsistencies in a general way (GI) and identifies (I) the false
variability scenarios (included in requires incompatibilities). Furthermore, VariaMos does
not allow us to model (NA) the SD-E scenario included in the excludes incompatibilities.

The high percentages of unidentified scenarios (ND) in SPLOT (62.9%) and VariaMos
(50%) are due in part to the little support that both approaches provide to scenarios with
redundancies for all categories. As we have described previously, redundancies do not
necessarily imply a logical inconsistency; however, they can present problems in the design
and maintenance of the functionalities.

With respect to our approach, 92.79% of the 14 scenarios involved in the validation
are identified, and even 35.7% are corrected (R). Only 7.14% of these 14 scenarios are
generally identified and 14.29% generate an alert (W). This fact confirm the H3 hypothesis
because our approach identifies and provides more specific responses, and even suggests
corrections.
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Figure 21. Coverage percentage for each validation scenario according to the three validators.

The results from Figure 21 validate the hypothesis H4, since the percentage of cov-
erage is higher in SeVaTax compared to the other two approaches. In concordance, these
approaches show a high percentage of validation scenarios that are not identified. This
percentage is 64.29% in S.P.L.O.T, and 50% in VariaMos.

5.3. Threats to Validity

In [40], threats to validity are divided into four main categories for quantitative
experimentation: conclusion validity for analyzing whether the experimental process is
related to the outcomes found, internal validity for analyzing whether the experimental
process really arrives to the outcomes found (there are no other factor that can affect
the results), external validity for considering whether the results can be generalized, and
construct validity for considering the relation between the theory behind the experimental
process and the observations.

Looking at our experiments in the light of these threats, we found that each hypothesis
was analyzed by using a well-defined and controlled validation process. Firstly, we have
specially created an automatic variability model generation tool that randomly generates
models with a specific number of inconsistencies and anomalies falling into the types of
validation scenarios.

Then, in the case of our first experiment about accuracy, we used the same inputs,
that is, the same variability models with the same CNF translation for both validators
(Figure 16). So, we consider that there is no threat to internal or construct validity. As these
variability models were generated by a software tool, there is no possibility of biases.

The conclusions of the experiment were based on a classification of result types accord-
ing to each of the incompatibilities and expected responses. At this point, it is important
to analyze the threats of conclusion validity in terms of the first three validations described
(from (i) to (iii)). For example, we should analyze if these types of results are complete in
terms of all possible answers, or if, in the case of the SAT solver, there are other types of
answers that were not considered. As the validation scenarios were defined by ourselves,
the experiment was guided towards these incompatibilities, even known that an SAT solver
is not specifically designed to find such scenarios, so the answers depended on unexpected
implementations. However, these implementations are valid situations of inconsistencies,
anomalies or redundancies within variability models, so these problems must be detected.
Another threat of conclusion validity is that the experiment was not applied and tested in a
real context, but simulated with variability models.

Finally, we analyze the inputs of the expected results in the manual validation branch
of Figure 16. As they were determined manually, it is possible for different people to
determine different results. However, we had considered this situation, and the results
were independently requested to different members of our research group, and analyzed
together. In general, the results had very little variation and they were considered for
generating the expected results we used.
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Considering the second experiment, coverage, we can also analyze some threats to
validity, in particular with respect to the inputs. Here, although the variability models were
the same, we had to translate them to the specific format expected by each approach (SPLOT
and VariaMos), and the translations were made manually. As each approach can slightly
vary on modeling some variability primitives, we can have some differences among the
inputs, which can affect the results. Thus, this fact can generate threats to conclusion validity.

Finally, considering the external validity of both experiments, we can analyze whether
they can be generalized. In particular, as we have proposed a well-defined validation
process (Figure 15) and conducting the experiments through controlled steps, we can
change, for example, the set of validators applied on each experiment and run the same
steps, even under the same hypotheses and result types. At the same time, as the automatic
variability model generation tool is available to be downloaded, anyone can generate new
inputs with new or the same validators.

6. Results

By considering the challenges and open issues obtained from the literature (Section 3),
the SeVaTax process included artifacts and resources aimed at improving the activities
involved in a VA process. Coming back to the challenges specifically addressed in this
work, we discuss the way we proposed to deal with them as follows:

• Challenge 1: Define the set of basic operations (queries) that the VA process must support.
Here, we have defined an extensive set of validation scenarios (31 scenarios) including
a wide number of incompatibilities, which consider redundancies, anomalies and
inconsistencies that can be present in the variability models. These scenarios have
been obtained from the literature and from our experiences in the development of
two SPLs for the marine ecology [35,36] and paleontology [38] domains. Specifically,
from these developments we included the scope operators for reusing variation points
and their instantiations. At the same time, we added specific support for each defined
scenario, not only for a general identification, but also as a specific description of the
services involved; and in the cases in which it is possible, we suggested corrections;

• Challenge 2: Include extended variability primitives together with their specific operations.
At this point, as we use the OVM notation together with UML artifacts oriented
to functional-based design models, we have extended the variability primitives of
these models with scope operators. These operators emerged from an application of
the SeVaTax models in GIS systems [37], where we needed ways to relate the same
variability points distributed in several variability models. These operators let us to
represent the real semantic of the domains;

• Challenge 3: Addition of more support for error correction. The SeVaTax process contains
a set of different responses (warnings, identifications, and/or reparations) when
analyzing the variability models. As a summary, in Figure 14 we showed the responses
generated by SeVaTax with respect to each incompatibility. In Figure 22 we also can see
a summary of responses with respect to the severity level (redundancies, anomalies
and inconsistencies) of the incompatibility. We can see that our validator repairs 50.5%
of redundancies, 30.7% of anomalies, and 22.2% of inconsistencies. The response most
regularly generated is the specific identification with 38% of the incompatibilities. The
second one is repair (error correction), representing 35% of the incompatibilities.

• Challenge 4: Addition of most rigorous evaluations. Here, we have performed two experi-
ments for validating accuracy and coverage. In the first one, we evaluated the quality
of the responses in the SeVaTax process with respect to a manual response and a basic
SAT solver. In the second experiment, we evaluated the coverage of the validation
scenarios, that is, the capacity of different solvers to detect and respond to specific
anomalies, incompatibilities, and redundancies.
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Figure 22. Summary of responses with respect to the severity level.

7. Conclusions

In this work, we have briefly described our approach for the automated analysis of
variability models, called SeVaTax. Then, we have extended the SeVaTax process, presented
in previous works, in order to face some challenges defined in this field. As extensions,
we have focused on improving validation scenario definitions (queries) and validation
support (by solvers and underlying structures) in order to provide more concise results. In
addition, we have performed two evaluations for analyzing the accuracy and coverage of
the SeVaTax process.

However, there are still challenges that have not been addressed by our approach
and must be taken into account in future work. One of them is the need for industrial
validations, which empirically evaluate the cost and effort of using our tool. In this sense,
we are currently working on running experiments in the paleontology domain, focusing on
analyzing acceptance and effort.
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The following abbreviations are used in this manuscript:

VA Variability Analysis
SPL Software Product Line
FM Feature Models
OVM Orthogonal Variability Model
CVL Common Variability Language
CSP Constraint Satisfaction Problem
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