
Copyright

by

Qinzhe Wu

2023

1

The Dissertation Committee for Qinzhe Wu
certifies that this is the approved version of the following dissertation:

Architectural Support for Message Queue Task Parallelism

Committee:

Lizy John, Supervisor

Jonathan Beard

Andreas Gerstlauer

Vijay Garg

Simon Peter

2

Architectural Support for Message Queue Task Parallelism

by

Qinzhe Wu

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August 2023

3

Dedication

Dedicated to my family and friends for their consistent encouragement and

support.

4

Acknowledgments

I would like to express my heartfelt gratitude to my supervisor, Professor Lizy

John, for her invaluable guidance, constant patience, and encouragement during the

course of my PhD study. Professor John imparted upon me the skills to work as a

researcher, and also taught me how to effectively present my work to others. From

the early stages of my graduate school journey, she graciously let me explore various

directions and discussed diverse research topics with me. During moments when I

faced difficulties in advancing my research and felt unsure about the way forward,

she provided unwavering support and rekindled my determination to persevere.

I want to acknowledge Jonathan Beard for his tremendous help during our

collaboration, which commenced during my internship at Arm in 2019. He has spent

countless hours on meeting with me, patiently addressing my questions, and offering

insightful suggestions. It is undeniable that he contributed a lot to my accomplish-

ments, and this dissertation, along with my other research papers, has greatly bene-

fited from his meticulous review and meticulous polishing. Furthermore, I would like

to extend my sincerest appreciation to other members of my dissertation commit-

tee: Professors Andreas Gerstlauer, Vijay Garg, and Simon Peter. Their constructive

feedback and comments have played a pivotal role in the overall refinement of my

work.

I feel so fortunate to have had the companionship and support of numerous

brilliant and amiable graduate students at UT. I first want to thank Reena Panda,

Shuang Song, and Jiajun Wang for leading me towards the path of research. Fur-

thermore, I am deeply thankful to Ruihao Li, Ashen Ekanayake, Bagus Hanindhito,

and Snehil Verma for their availability during moments when I sought discussion and

assistance with my experiments. I would also like to sincerely appreciate Zhigang

Wei, Aman Arora, Zachary Susskind, Steven Flolid, Siyuan Ma and Mugdha Jadhao

for providing feedback in my presentations at LCA group meetings. Moreover, I also

5

want to extend my gratitude to Zhuoran Zhao, Shijia Wei, Wenqi Yin, Mochamad

Asri, and Tianhao Zheng for bringing immense joy and camaraderies to our shared

days and nights at campus. Lastly, I must express my thanks to Zixuan Jiang for

alleviating the monotony of working from home during the COVID pandemic and for

including me in various engaging events with his friends.

Most of all, I am forever grateful to my dear family and girlfriend. I am

indebted to my parents for their unwavering support, continuous love, and belief in

my decision to embark on and successfully complete my PhD journey.

6

Abstract

Architectural Support for Message Queue Task Parallelism

Qinzhe Wu, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Lizy John

The scaling of threads is an attractive way to exploit task-level parallelism

and boost performance. From the perspective of software programming, many appli-

cations (e.g., network package processing, SQL queries) could be composite of a set

of small tasks. Those tasks are arranged in a data flow graph and each task is under-

taken by some threads. Message queues are often used to coordinate the tasks among

the threads. On the other side, thread scaling is in favor of the hardware advancing

trend that there are more Processing Elements (PE) in modern Chip Multiproces-

sors (CMP) than ever before. This is because single PE cannot simply run faster

due to power and thermal limitations; instead architects have to use more transistors

for increasing number of PE s, in order to improve the overall computing power of a

processor.

Unfortunately, this paradigm using message queues to drive parallel tasks

sometime leads to diminishing performance returns due to issues lying in the ar-

chitecture and system design. Particularly, the conventional coherent shared-memory

architectures let task-parallel workloads suffer from unnecessary synchronization over-

head and load-to-use latency. For instance, when passing messages through queues,

multiple threads could contend for the exclusivity of the cacheline where the shared

queue data structure stays. The more threads, the more severe the contention is,

7

because every transition upgrading a cacheline from shared to exclusive state needs

to invalidate more copies in the private caches of other cores 1, and waits for the

acknowledgements from more cores. Such a overhead hurts the scalability of threads

synchronizing via message queues. Adding to the coherence overhead, the load-to-use

latency (from a consumer requesting data until the data being moved to the consumer

to use) is often on the critical path, slowing down the computation. This is because

the cache hierarchy in modern processors creates some layers of local storage to buffer

data separately for different cores. Therefore, serving message queue data in an on-

demand manner incurs longer load-to-use latency. It is also challenging to schedule

message-driven tasks to use cores efficiently when arrival rate and service rate mis-

match. It wastes CPU cycles if a runtime system leaves tasks blocked on full/empty

message queues, while switching tasks has additional scheduling overheads. Diverse

system topologies further complicate the problem, as the scheduling also needs to

take data locality into consideration.

This dissertation explores architectural supports for enhancing the scalability

of message queue task parallelism, reducing the load-to-use latency, as well as avoid-

ing blocking. Specifically, this dissertation designs and evaluates a message queue

architecture that lowers the overhead of synchronization on shared queue states, a

speculation technique to hide the load-to-use latency, as well as a locality-aware mes-

sage queue runtime system with low overhead on scheduling and buffer resizing.

The first contribution of the dissertation is Virtual-Link scalable message

queue architecture (VL). Instead of having threads access the shared queue state

variables (i.e., head, tail, or lock) atomically, VL provides configurable hardware sup-

port, providing both data transfer and synchronization. Unlike other hardware queue

architectures with dedicated network, VL reuses the existing cache coherence network

and delivers a virtualized channel as if there were a direct link (or route) between

two arbitrary PE s. VL facilitates efficient synchronized data movement between M:N

1cores are used interchangeably as Processing Elements (PE) in this dissertation.

8

producers and consumers with several benefits: (i) the number of sharers on synchro-

nization primitives is reduced to zero, eliminating a primary bottleneck of traditional

lock-free queues, (ii) memory spills, snoops, and invalidations are reduced, (iii) data

stays on the fast path (inside the interconnect) a majority of the time.

Another contribution of the dissertation is SPAMeR speculation mechanism.

SPAMeR has the capability to speculatively push messages in anticipation of con-

sumer message requests. With the speculation, the latency of moving data from the

source to the consumer that needs the data could be partially or fully overlapped

with the message processing time. Unlike pre-fetch approaches which predict what

addresses to fetch next, with a queue we know exactly what data is needed next but

not when it is needed; SPAMeR proposes algorithms to learn from queue operation

history in order to predict this.

Finally the dissertation contributes ARMQ locality-aware runtime. ARMQ

collects a set of approaches that avoids message queue blocking, ranging from the

most general yielding, to dynamically resizing the buffer, and to spawning helper

tasks. On one hand, ARMQ minimizes the overheads (e.g., wasteful polling, context

switch, memory allocation and copying etc.) with a few techniques (e.g., userspace

threading, chunk-based ringbuffer etc.) On the other hand, ARMQ schedules the

message-driven tasks precisely and opportunely, in order to maximize the data locality

preserved (in favor of cache) and balance the resource allocation.

9

Table of Contents

List of Tables . 12

List of Figures . 13

Chapter 1: Introduction . 15

1.1 Problem Description . 17

1.2 List of Contributions . 21

1.3 Thesis Statement . 22

1.4 Dissertation Organization . 23

Chapter 2: Related Work . 24

2.1 Software Message Queues . 24

2.2 Cross-Core Communication with Hardware Queues 25

2.3 Data Movement Speculation . 25

2.4 Task Scheduling . 26

2.5 Streaming Parallel Processing . 28

Chapter 3: Evaluation Methodology . 30

3.1 Systems . 30

3.2 Benchmarks . 30

3.3 Metrics and Tools . 33

Chapter 4: Virtual-Link : A Scalable Multi-Producer Multi-Consumer Message
Queue Architecture in Multi-Core Systems 34

4.1 Virtual-Link Architecture Design . 34

4.1.1 Virtual-Link Routing Device 37

4.1.2 Instruction Set Extensions . 41

4.1.3 User-space and System Software 43

4.1.4 Enqueue and dequeue . 45

4.2 Results and Analysis . 47

4.2.1 Performance, Snoop, and Memory Transactions 47

4.2.2 Scalability . 49

4.2.3 Coherence Traffic Interference 50

4.2.4 Comparison with CAF . 51

4.3 Summary . 52

10

Chapter 5: SPAMeR: Speculative Push for Anticipated Message Requests in
Multi-Core Systems . 53

5.1 SPAMeR Architecture Design . 53

5.1.1 How SPAMeR builds on the Virtual-Link Architecture 53

5.1.2 SPAMeR Routing Device . 57

5.1.3 Instruction Set Extension . 58

5.1.4 Library Optimizations . 59

5.1.5 Speculation Algorithms . 59

5.1.6 Potential Vulnerabilities and Mitigation 65

5.2 Evaluation . 66

5.2.1 Message Transaction Tracing Analysis 66

5.2.2 SPAMeR Speedup . 69

5.2.3 Speculation Effects on Cacheline Occupancy and Transaction
Latency . 70

5.2.4 Failure Rate and Bus Utilization 75

5.2.5 Sensitivity Study . 77

5.2.6 Area and Power Estimation . 79

5.3 Summary . 80

Chapter 6: ARMQ : A Light-Weight Runtime for Message Queue Task Paral-
lelism . 81

6.1 ARMQ Runtime Design . 81

6.1.1 Application Programming Interfaces 81

6.1.2 Partitioning . 84

6.1.3 Allocation . 85

6.1.4 Scheduling . 88

6.2 Evaluation . 94

6.2.1 Zero-Copy Resizeable Ringbuffer 94

6.2.2 Nano-Second-Level Userspace Threading 96

6.2.3 Speedup . 97

6.2.4 Statistics . 99

6.2.5 Cache Performance . 102

6.2.6 Case Study . 106

6.3 Summary . 107

Chapter 7: Conclusion . 108

7.1 Summary . 109

7.2 Future Works . 110

Works Cited . 112

11

List of Tables

3.1 gem5 Simulator Hardware Configuration. 30

3.2 Specifications of Two AArch64 Servers 31

3.3 Benchmarks. 32

4.1 Address Mapping Pipeline Actions per Cycle 37

6.1 Threading Operation Latency Comparison Between pthread, qthread,
go, and libut . 97

12

List of Figures

1.1 50 Years of Microprocessor Trend . 15

1.2 Examples of Applications with Task Parallelism 16

1.3 Boost Lock-Free Queue Scaling Overhead 18

1.4 Example of Updating a Shared State Under MESI 19

1.5 Two Styles of Message Delivery . 19

1.6 An Example Message Queue Task Parallel Workload Suffering From
Blocking . 20

2.1 Taxonomy of Data Movement Speculation 25

4.1 Virtual-Link Architecture High-Level View 35

4.2 Virtual Queue (VQ) per Time Step 36

4.3 Table and Buffer Structures in the VLRD 36

4.4 Flow of VL Hardware, ISA and Software Interaction 40

4.5 Device-Memory Physical Address Bit Fields Addressing the VLRD . 44

4.6 Control Region and Data Region in a 64 B Cache Line 46

4.7 Execution Time, Snoop Traffic, and Memory Transaction Comparison
between Software Queues and Virtual-Link 48

4.8 Scalability Comparison between Software Queues and Virtual-Link . 50

4.9 Snoop and Cache Line Upgrade Events Comparison between Software
Queues and Virtual-Link as the Number of Threads Scales 50

4.10 Performance Impact on Co-Located Memory-Intensive Workloads . . 51

4.11 Performance Comparison between Virtual-Link and a State-of-the-Art
Hardware Queue . 52

5.1 Overview of SPAMeR Architecture 53

5.2 SPAMeR Routing Device (SRD) . 55

5.3 Address Mapping in SPAMeR . 56

5.4 The Example Hardware Logic Implementation of the Proposed tuned
Delay Prediction Algorithm . 64

5.5 Message Transaction Trace . 67

5.6 Performance Comparison between Virtual-Link and SPAMeR 71

5.7 Time Breakdown with the Respect to Cache Line Emptiness 71

5.8 Potential Latency Saving per Transaction over Time and the Distribution 73

13

5.9 Total Potential Latency Saving . 74

5.10 Push Failure Rate and Bus Utilization Comparison between Virtual-
Link and SPAMeR . 75

5.11 Execution Time v.s. the Number of Pushes 78

6.1 ARMQ architecture. 81

6.2 Resizing Chunk-Based Ringbuffer without Copying 87

6.3 Actions a Producer Task Might Take Facing a Full Queue 89

6.4 PollingWorker Tasks VS. OneShot Tasks 90

6.5 Resizing Latency Comparison between RaftLib and ARMQ 95

6.6 Speedup of Different Runtime Schemes over the Baseline Runtime . . 98

6.7 Statistics of Blockings, OneShot Tasks and Ringbuffer Capacity . . . 100

6.8 L1D Cache Misses of Different Runtime Schemes 102

6.9 L2 Cache Data Misses of Different Runtime Schemes 103

6.10 L1I Cache Misses Per Kilo-Instructions (MPKI) of Different Runtime
Schemes . 104

6.11 The Impact of Multiplier Ratio on Blocking and Execution Time . . . 106

14

Chapter 1: Introduction

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Transistors
(thousands)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010−2021 by K. Rupp

Year

Figure 1.1: 50 years of microprocessor trend. The number of cores rises after the
frequency reaches the upper bound.

The design of microprocessors has diverged towards more cores instead of

higher speed in past decades (as shown in Figure 1.1 [72]). Microprocessors are

getting more transistors thanks to the technology advancements, and were used to

putting the more transistors available on building stronger and faster uniprocessors.

Unfortunately, after hitting the power and thermal limitations, microprocessors can-

not gain more performance by simply rising the frequency any more. The trend

has changed to integrating more Processing Elements (PE) in Chip Multiprocessors

(CMP) to add overall computing power. Reacting to that change, people find task

parallelism in many applications in order to make use of PE s in the way that tasks are

assigned to different PE s and processed in parallel. The tasks could be as fine-grain

15

as hundreds of instructions and there are compiler techniques invented to extract

them automatically [65, 9]. Figure 1.2a and 1.2b show network package processing

and SQL query, respectively, as two examples of task parallel workloads. Each block

represents a task, and is undertaken by one or multiple threads. Some of the tasks

have no dependencies between each other and can be parallelized freely, for example,

calculating checksum, checking whitelist, and payload decryption in Figure 1.2a. For

tasks in pipelines, packaged or sliced data flows through stages, and different tasks

could be performed on different part of data concurrently (e.g., scan, filter, join, and

aggregation in Figure 1.2b). In most applications, tasks are usually pre-defined by the

programmers, while sometimes tasks could also be dynamically established according

to the user input, such as the SQL query.

while (!stream.eof()) {

 future<bool> corrupted = async checksum(pkt);

 future<bool> blocked = async whitelist(pkt);

 future<uint8_t*> payload = async decrypt(pkt);

 if (corrupted.get() || blocked.get()) {

 alert(pkt);

 } else { respond(payload.get()); }

}

 checksum

alert

 dispatcher

 whitelist decrypt

 arbitrator

respond

(a) network package processing

SELECT

 orders.id, SUM(tax)

FROM orders LEFT JOIN delivery

 ON orders.id = delivery.orderid

WHERE discount = 0

GROUP BY orders.orderid

 Scan
 [orders]

 Scan
 [delivery]

 Filter
[discount=0]

 LeftJoin [on orderid]

 Aggregation [SUM(tax)]

(b) SQL query

Figure 1.2: Examples of applications with task parallelism. Diagrams are visualiza-
tion of the pseudo-code below. Blocks in the diagrams represent tasks, and darker
curly lines as threads taking the task. Message queues connect the tasks.

Message queue is a useful data structure for task parallel computing. Messages

entering the queue could carry the data needed for computation, or wrap the infor-

16

mation that is necessary for the computation task, such as pointer to the payload. No

matter what the message contains, the delivery of the message itself serves as a sig-

nal. For example in Figure 1.2, there are message queues between producer/upstream

threads and consumer/downstream threads for data delivery as well as task synchro-

nization. The producer/upstream thread pushes the message into the queue after

finishing its task, and the consumer/downstream thread waits until popping the mes-

sage out from the queue to start its task. This dissertation refers to such program

paradigm as message queue task parallelism.

Message queues usually comprise of buffers and metadata (e.g., head, tail

pointers). The buffer capacity of a message queue could be either fixed or adjustable

on demand. There are some basic operations of message queues, such as checking

whether the queue is empty or full (if fixed capacity), push/enqueue, and pop/dequeue

a message. The push and pop operations could be either blocking, meaning waiting

until the operation is fulfilled, or non-blocking, that the program moves forward any-

ways handling both the success and failure case of the operation. Because the basic op-

erations of message queues (e.g., checking capacity, push/enqueue and pop/dequeue)

would involve access to the buffer and metadata, those underlying structures become

shared among threads (unless a single thread is both the only producer and the only

consumer of a message queue).

1.1 Problem Description

Since the emergence of CMP , shared-memory has become the de facto solution

to synchronize data across cores. It is convenient to implement message queues atop

of shared-memory, but it is difficult to scale due to the concurrent access to the shared

queue states.

For instance, Figure 1.3 shows the operation latency of popular software queue

implementation [21] with lock-free optimization increases along with the number of

17

5 10 15 20 25 30
of threads

0

10

20

30

40

ti
m

e
pe

r
qu

eu
e

op
 (

s)

Boost Lock-Free Queue
Single Cacheline Transfer

Figure 1.3: The overheads in a popular software queue implementation, Boost Lock-
Free Queue increase with number of threads. The red solid line at the bottom shows
the latency to transfer queue data without synchronization overhead.

threads that perform queue operations concurrently (black dots and the projected

dashed lined). The performance gap enlarges comparing the queue operation latency

with the latency of simply moving data across-core (red solid line). The is because

the shared queue states (i.e., head, tail pointers, lock) are stored at the same mem-

ory location for both the producers and the consumers, the coherence overhead of

the queue operation would increases with the number of threads. As Figure 1.4 il-

lustrates, when updating the shared states or data, cache coherence protocol (e.g.,

MESI) makes sure the value is updated properly across cores through a set of inval-

idation requests and acknowledgement transactions on the Network-on-Chip (NoC).

The more threads using the queue, the more coherence traffic occur and slower for

a thread to get the exclusive access of the queue states and finish the operations.

The state-of-the-art hardware queue designs[15, 69, 51, 55, 90] achieves better scala-

bility at the considerable hardware cost, and they have limited flexibility to support

multi-producer multi-consumer queues.

Another problem arises with message queue task parallelism in multi-core sys-

tems is the load-to-use latency. In modern CMP , the cores performing dependent

tasks in parallel will access their own private cache for data, which means for mes-

sage queue task parallel workloads, data would often move from one place to another

18

Core 1 Core 2 Core 3

 head=1E I I

 head=1S I head=1S

 head=1S head=1S head=1S

 head=1E I I

 head=2M I I

1

2

3

4

M: Modified
E: Exclusive
S: Shared
I: Invalid

Time

0

Figure 1.4: Example of updating a shared state under MESI cache coherence protocol.
Each row shows the states of cachelines in three cores at a moment. The arrows from
Time 2 to Time 3 represent the invalidate-acknowledge traffic that must occur before
Core 1 can update the shared state.

message ready in queue finish processing a message
(request a new message)

 consuming msg i + 1

core

 buffered producing msg i + 1

 waiting consuming message iC

P

LV

time

(a) consumer-driven on-demand

receive request new message delivered

 consuming msg i + 1

core

 producing msg i + 1

 consuming message iC

P

LS

time

(b) producer-driven speculation

Figure 1.5: Two styles of message delivery. Speculation is able to hide the load-to-use
latency as well as waive the requesting traffic while on-demand cannot.

across cores. There come two design options regarding how the data should be de-

livered: either it is driven by the consumer requests in an on-demand manner (Fig-

ure 1.5a), or the producer side could speculatively send the message (Figure 1.5b).

The latter could help a consumer to reduce the time spent on requesting and wait-

ing (i.e., load-to-use latency), and improve the overall performance especially when a

busy consumer becomes the bottleneck. However, it is unclear how the data source

could make accurate predictions on when and where to push the data to. Many

prefetching techniques [23, 30, 50, 62, 3, 47, 48, 52, 47, 48, 52] are based merely on

consumer-size information and could pollute the consumer cache with useless data.

The existing producer-driven data movement speculation mechanisms [31, 86] are

19

software-controlled, so they are not applicable to hardware queue buffers.

Core
0

Core
2-5
Core
2-5
Core
2-5
Core
1-4

Q1
Core
2-5
Core
2-5
Core
2-5
Core
5-8

Q2 Core
9Q3

Q for memory pool

(a) An Example Pipeline Workload [90]

time
0%

25%

50%

75%

100% pop
push
compute

(b) Core 3 Time Breakdown

time
0%

25%

50%

75%

100% pop
push
compute

(c) Core 7 Time Breakdown

time
0%

25%

50%

75%

100%

(d) Queue 1 Occupancy

time
0%

25%

50%

75%

100%

(e) Queue 3 Occupancy

Figure 1.6: An example message queue task parallel workload, pipeline, that suffers
from blocking. Cores are wasting a lot of time trying push/pop on full/empty queues.

Other than the scalability and latency issues mentioned above, message queue

task parallelism could suffer from blocking due to task throughput mismatch. When

there is a mismatch between the upstream arrival rate and the downstream service

rate, the queue buffer will often exist as either empty, or full (buffer has to be bounded

otherwise grows infinitely, exhausting limited hardware resources then performance

degrades, while it is not easy to determine the optimal buffer size [14, 6]). An empty

queue makes the downstream tasks starve, and a full queue throttles the upstream

tasks. Both empty queues and full queues block threads from performing useful

computation; wasting execution cycles with no progress made to advance the program.

Figure 1.6 illustrates the blocking behavior with an example pipeline workload [90].

Based on the tracing data, Figure 1.6b, 1.6c attribute cycles into queue operations and

computation, and Figure 1.6d, 1.6e visualize the queue occupancy changes over time.

20

When blocked on an empty queue, Core 3 spends nearly 90% of its time on popping

(shade in blue). Core 7, on the other hand, is pushing to Queue 3 together with three

other cores. Because Core 9 as the only consumer of Queue 3, is slower, Queue 3

quickly becomes full and blocks Core 7 from doing useful computation. This blocking

issue could be overcome by a runtime scheduler. A beneficial runtime scheduler must

take scheduling overheads and data locality into consideration. There have been a

great number of novel scheduling techniques [29, 28, 66, 45, 93, 22, 36] tested to

be effective on task parallel workloads. Message queue task parallel workloads are

more or less different from the applications for which those scheduling techniques are

designed, but are likely able to employ those scheduling techniques to address the

blocking issue.

In short, the questions this dissertation tries to answer are: Can we improve

the scalability of message queue task parallelism on multi-core architec-

tures? Is the data flow in message queue predictable, so that we can hide

the data movement latency with speculation? Can we prevent message-

driven tasks from being blocked without causing too much scheduling over-

head or losing data locality?

1.2 List of Contributions

This dissertation proposes architecture and system designs to support message

queue task parallelism from the following three aspects:

1. Virtual-Link : A Scalable Multi-Producer Multi-Consumer Message

Queue Architecture for Cross-Core Communication: Virtual-Link [94]

proposes a configurable hardware queue architecture to support scalable cross-

core message queue synchronization. Virtual-Link embeds a routing device

(VLRD) in the cache coherence network of the multi-core processor to take

over the shared queue states, which would otherwise trigger cache coherence

overheads if reside in shared memory. VLRD also reuses the Network-on-Chip

21

(NoC) to transfer message data across core at cacheline granularity, so that

threads accomplish their queue operation by merely accessing L1 private cache

a majority of the time. On a set of diverse queuing benchmarks, Virtual-Link

demonstrates speedups over software queue, ranging from 1.10× to 11.36×.

2. SPAMeR: Speculative Push for Anticipated Message Requests in

Multi-Core Systems: SPAMeR [95] is a hareware-driven speculation mech-

anism hiding load-to-use latency. SPAMeR offers several adaptive algorithms

to predict when and where the message is needed based on the queue opera-

tion history. The message is then speculatively delivered by SPAMeR in order

to reduce the request traffic from the consumers and overlap the data move-

ment latency with message processing time. Adding SPAMeR to Virtual-Link

obtains on average 1.33× speedup.

3. ARMQ: A Locality-Aware Runtime for Message Queues in Multi-

Core Multi-Task Parallel Systems: ARMQ provides a runtime system to

avoid message queue blocking with low scheduling overhead and better locality.

ARMQ optimizes the scheduling at the blocking time by employing a few state-

of-the-art techniques, such as userspace resource management, dependent task

fusion, per-application scheduling customization and so on. ARMQ also avoids

the buffer resizing overheads with a chunk-based ringbuffer design.

1.3 Thesis Statement

The performance of message queue task parallel workloads could be improved

by scalable message queue architecture, message push speculation, and locality-aware

runtime system that addresses blocking with low overhead.

22

1.4 Dissertation Organization

The organization of the dissertation is as follows. Chapter 2 summarizes the

prior work in cross-core message queue synchronization, data movement speculation,

and low-overhead task scheduling. Chapter 3 describes the system setups, workloads

and tools used generate the experimental results throughout the dissertation. Chap-

ter 4 presents a scalable multi-producer multi-consumer message queue architecture

design (Virtual-Link). Chapter 5 explores a producer-driven data movement specula-

tion mechanism (SPAMeR) to hide load-to-use latency under computation. Chapter 6

proposes a runtime system (ARMQ), which avoids blocking in message queue task

parallelism with low scheduling overhead and achieves better data locality. Finally

Chapter 7 concludes the dissertation.

23

Chapter 2: Related Work

2.1 Software Message Queues

To serve the concurrent access from multiple threads, software message queues

would use some synchronous primitives. First option is using locks, either at coarse

grain (lock for the entire queue), or at fine grain (lock for every node in the queue).

Any thread needs to wrap the queue operations with additional locking steps (i.e.,

acquire, release). Michael and Scott et. al. [61] proposed an algorithm that uses

read-modify-write atomic instructions to directly update the queue structure. Many

lock-free queues (e.g., the lock-free queue in Boost library) adapts this algorithm. Lee

et. al. [53] noticed the cache inefficiency when queue data are enqueued/dequeued

frequently on different cores, so implemented MCRingBuffer, a single-producer single-

consumer lock-free queue, to minimize the frequency of reading and writing the shared

control variables. ZeroMQ [42] is another popular industry software queue solution,

which provides a uniform interface over many different transport protocols (e.g., IPC,

TCP) and features like asynchronous I/O. Bershad and Levy et. al. [16, 17] optimized

Remote Procedure Call (RPC) to communicate “server” and “client” with pair-wise

mapped memory. The pre-allocated memory region has one writer at a time, while

one or multiple readers poll a flag bit until the writer marks the message is complete.

The idea was then adapted to synchronize concurrent processes/threads in modern

multi-core processors [12, 66], where critical optimizations are made to handle cache

coherence protocol carefully: cacheline-aligned buffer, sequential writes, and polling

at tail. These software message queue implementations more or less would have

concurrent accesses to the shared queue states, triggering cache coherence traffic,

while the architecture proposed in this dissertation reduces the number of sharers on

synchronization primitives to zero.

24

2.2 Cross-Core Communication with Hardware Queues

Network processing processors such as TILE64 [15], and the QorIQ DPAA [69]

provide channel operators or primitives to send data from PE -to-PE through DMA

engines and dedicated NoC . Carbon [51] builds physical task queues in the cache

hierarchy to accelerate a broader set of fine-grain task parallel applications in general.

HAQu [55] introduces a new functional unit and storage per-core to accelerating

local queuing operations. HAQu also backs the cached queue states with application

memory, so that context switch could be handled easily without operating system

changes. CAF [90] and Intel DLB [59] centralize the queue management in a device

attached to coherence network in order to facilitate multi-producer multi-consumer

queues. Compared to these prior works, the hardware queue architecture designed by

this dissertation reuses some existing hardware resources in cache hierarchy for less

cost and higher efficiency.

2.3 Data Movement Speculation

compiler [50, 62, 3]
helper threads [47, 48, 52]

pre-send [31]
pre-push [86]

prefetchers [23, 30]
runahead [71, 64]

SPAMeR [95]

Consumer-Driven Producer-Driven

SW

HW

Figure 2.1: Taxonomy of data movement speculation.

Producer-Driven: Mostly, data movement is done in an on-demand manner, while

with the context of queue, there have been studies on moving data from produc-

ers without consumer requests. Fotohi et. al. [31] proposed pre-send, a software

25

controlled data forwarding technique to reduce the cache misses and latency in multi-

threaded programs. The similar software technique is also evaluated by Varoglu et.

al. [86], and they also extended the cache coherence protocol with a push exclusive

action to further reduce the coherence traffic.

Consumer-Driven: On the other side, many prefetching techniques help on getting

the data in place earlier. Prefetching could be done by purely in software (with

prefetch instructions or helper threads), or with hardware prefetchers [23, 30] usually

implemented in cache. Some compilers techniques [50, 62, 3] have been invented to

automate the insertion of prefetch instructions for variety of workloads. In order to

avoid crowding the processor pipeline and deal with irregular memory access patterns

(e.g., chasing chain, hashed index), a helper thread [47, 48, 52] could execute in

parallel to the main threads and brings in the data earlier. Similarly, the runahead

techniques [71, 64] extract the instructions related to long-latency memory accesses

from the instruction sequence of the original program, in order to issue the precise

data requests with perfect timing.

Unlike existing speculation approaches, the mechanism presented in this dis-

sertation falls into the untrodden quadrant (producer-driven hardware speculation as

Figure 2.1 shows), and the prediction is not only about where move the data to, but

also when to move.

2.4 Task Scheduling

Task scheduling is a well-studied topic. Many techniques have been invented,

more than a section can cover. This section discusses the related prior works that

influence ARMQ design (in Chapter 6) the most.

Dependent Task Scheduling: SWITCHES [29, 28] is a light-weight runtime that

optimizes the scheduling of dependent OpenMP [27] tasks across loops. SWITCHES

26

achieves lower scheduling overhead by identifying and dispatching “Cross-Loop-Task”

to distributed schedulers at compile time. It is difficult if not impossible to trans-

form message queue task parallel workload to be structured like OpenMP programs,

because the number of iterations/tasks is meant to be infinite or not statically de-

cidable for the compiler. GRAMPS [83, 73] invents per-stage work stealing to bal-

ance irregular pipelined streaming applications. Comparing to naive work stealing,

GRAMPS guides the scheduling with producer-consumer information (i.e., prioritize

downstream tasks to lower the memory consumption, prefer stealing upstream tasks

for more locality and less starvation), and also bounds the memory footprint with

fixed-size queues and back-pressure mechanism.

Userspace Resource Allocation: With a customized userspace threading library,

Shenango [66] reallocates CPU cores every 5µs to achieve higher CPU efficiency for

datacenter workloads. In Shenango, a daemon process (IOKernel) tightly monitors

the task queue of each application in order to identify which one needs more CPU

cores to keep tasks finished within the latency guarantee. Shenango is designed for

I/O heavy workloads, so IOKernel is also the proxy of all applications for the network

packet sending/receiving.

Application-Specifc Scheduling Policy: ghOSt [45] emphasizes the importance to

take scheduling hints from the application. With ghOSt , application-specific schedul-

ing policy could be deployed without rebooting the system. Google search, for ex-

ample, customizes its ghOSt policy to take advantage of data locality by guiding

the scheduler with system topology, such as CPU Core Complexes (CCX) and Non-

Uniform Memory Architecture (NUMA).

Locality-Aware Scheduling: There has been proves-of-concept for the benefits

of scheduling OpenMP [27] tasks for better locality with the respect to NUMA

nodes [93], and multi-GPU nodes [22]. SWITCHES [29, 28] supports adjusting task

granularity for better cache locality. SLAW [36, 38] points out the differences on lo-

cality and memory pressure between work-first and help-first policy in work stealing,

27

then further proposes an adaptive policy (dynamically picks work-first or help-first),

and groups worker tasks to improve locality based on the hints from programmers.

Aforementioned scheduling techniques are invented to reduce overheads as well

as improve resource utilization and data locality for many task parallel workloads.

Not all of them have been applied to message queue task parallel workloads. The

runtime system developed by this dissertation borrows many ideas and techniques

from the prior works: the dependent task concatenation [29, 28], the light-weight

userspace threading [66], the application-specific topology-aware scheduling [45], and

the locality optimization [36]. Some of the adaptions are tailored for message queue

task parallelism.

2.5 Streaming Parallel Processing

Before the era of multi-core processor, there have been studies [84, 33] on run-

ning domain-specific streaming applications on grid-based architectures. As parallel

architectures become the mainstream of modern generous-purpose processors, a few

more queue-based solutions [14, 5, 60, 7, 54, 68] have been developed to enhance

programmability and cache locality.

Steaming Template Libraries: RaftLib [14] is a template library that provides

a streaming-style programming interface: user-defined computation kernels are con-

nected to be Directed Acyclic Graph (DAG) via C++ stream operators (e.g., >>).

RaftLib runtime takes care of many execution details for users: parallelizable com-

putation kernels will be duplicated at the time constructing the DAG; RaftLib al-

locates single-producer single-consumer ringbuffers and enumerates multi-producer

multi-consumer queues with multiplexing; RaftLib has the execution options to switch

on features (e.g., ringbuffer dynamical resizing, threadpool) with no change on the

user code. FastFlow [5] practices similar ideas in a layered model: the bottom

layer implements cache-friendly lock-free single-producer single-consumer queues and

28

locality-aware threading support; the middle layer adds arbitrator threads to enable

multi-producer multi-consumer queue support; the top layer defines several paral-

lel algorithm patterns (e.g., pipeline, divide & conquer, farm, all-to-all etc.) as the

building blocks for programmers to use. WindFlow [60] build atop FastFlow to pro-

vide window-based programming interface like big-data analytic engines (e.g., Apache

Storm [7]). TaskFlow [43, 44] captures computation with C++ closures, and extends

the DAG representation with embedding conditional tasks into the graph.

Cache-Optimized Buffer Management: With the respect to a specific use case:

processing streaming network traffic at line-rate, MCRingBuffer [54] proposes a multi-

core synchronization mechanism that is based on a lock-free, cache-efficient ringbuffer

implementation. The “packet-stealing” technique in GRAMPS [73] applies thread

cache for packets and follows Last-In-First-Out order to gain more locality hence

performance on cache-based systems.

The message queue runtime developed in this dissertation shares some design

considerations with these parallel streaming data processing frameworks, like reducing

the parallel programming effort, avoiding locking in concurrent queue access, improv-

ing cache locality and so on. Other than the things in common, the runtime system

in Chapter 6 has its own focus on minimizing overheads in scheduling and memory

management.

29

Chapter 3: Evaluation Methodology

3.1 Systems

As the design of Virtual-Link and SPAMeR include extensions to AArch64

architecture, they are implemented and evaluated in a full system simulator, gem5 .

The gem5 system configurations of cores as well as memory hierarchy (including the

routing device settings of Virtual-Link and SPAMeR) are listed in Table 3.1. ARMQ

runtime is developed on two high-end AArch64 servers with different topologies.

Table 3.2 compares the most important specifications of the two systems. During

ARMQ experiments, Dynamic Voltage Frequency Scaling (DVFS) on both systems

are turned off to ensure all CPU cores are running at their maximum speed.

Table 3.1: gem5 Simulator Hardware Configuration.

Cores 16×AArch64 OoO CPU @ 2GHz

Caches
32KiB private 2-way L1D, 48KiB private 3-way L1I

1MiB shared 16-way mostly-inclusive L2

DRAM 8GiB 2400MHz DDR4

VLRD 64 entries per prodBuf , consBuf , and linkTab

SRD in addition to VLRD , 64 entries per specBuf

3.2 Benchmarks

Table 3.3 lists the benchmarks used in the experiments. bitonic is a sorting

30

Table 3.2: Specifications of Two AArch64 Servers

Core-Coupled System A

Cores 32× ARMv8 X-Gene CPU @ 3.3GHz

Caches

32KiB 8-way L1D, 32KiB 8-way L1I

256KiB 32-way L2 per 2 cores

32MiB shared SLC

DRAM 128GiB 2666MT/s DDR4

kernel Linux 5.4.0-80-generic

compile g++ 10.3.0, -O3, -ltcmalloc minimal

Two-Socket System B

Cores 2 sockets × 80× ARMv8.2+ Neoverse-N1 @ 3.0GHz

Caches

64KiB 4-way L1D, 64KiB 4-way L1I

1MiB 8-way private L2

32MiB 16-way mostly-exclusive SLC per socket

DRAM 256GiB 3200MT/s DDR4, 2 NUMA nodes

kernel Linux 5.14.0-69-generic

compile g++ 11.3.0, -O3, -ltcmalloc minimal

algorithm with plenty of parallelism for hardware to exploit. ping-pong , halo, sweep,

and incast are the common communication patterns that Ember benchmark suite [80]

derives from high-performance computing workloads. pipeline, and firewall represent

the styles of many network packet processing workloads [90]. FIR from digital signal

processing is an important way processing streaming data. outcast is another common

communication pattern in message queue parallel workloads. chasing does extensive

chasing pointer style access (a well-known challenging memory access pattern) on

the passing message buffer. search dispatches file chunks to perform word search

in parallel then aggregates the results [14]. tc, dc, and bc are the graph analytic

31

Table 3.3: Benchmarks.

Benchmark Description, (#producer:#consumer) × #queue

bitonic [11] bitonic sort with varying number of threads (1:N)×1+(M:1)×1

ping-pong [80] data back and forth between two threads (1:1)×2

halo [80] exchange data with neighboring threads (1:1)×48

sweep [80] data sweeps through a grid of threads corner to corner (1:1)×48

incast [80] all threads sending data to the master thread (M:1)×1

pipeline [90]
4-stage pipeline with middle stages multi-threaded
(1:4)×1+(4:4)×1+(4:1)×1+ (1:1)×1

firewall [90] filter and dispatch packages (1:1)×3+(2:1)×1

FIR data streams through N-stage FIR filter (1:1)×N

outcast all threads receiving data from the master thread, (1:N)×1

chasing
pointer-chasing buffer access pattern on messages passed filter,
(1:4)×1+(4:1)×1+(1:1)× Q

search [14] search a given word in a file, (1:4)×1+(4:1)×1

tc [63] triangle count on a graph, (1:1)×1+(1:4)×1+(4:1)×1

dc [63] degree count on a graph, (1:4)×1

bc [63] calculate betweeness centrality of a graph, (1:4)×1+(4:1)×1

STREAM [58] issues many memory accesses to measure memory bandwidth

benchmarks from GraphBIG [63]. The graph computing tasks are mainly divided by

vertices as well as steps in the algorithms (e.g., searching within an adjacency list,

counting intersections of two lists, and accumulating the triangle counts as a vertex

property). As marked at the end of each row in Table 3.3, (M:N)×k denotes the

number of producers (M) and consumers (N) as well as the number of queues instance

(k) in each benchmarks. The set of benchmarks cover all message queue types (i.e.,

four combinations of single/multiple producer/consumer), and have varying number

of queues. STREAM benchmark [58] measures memory bandwidth with intensive

32

memory accesses, so the bus stress experiment in Chapter 4 runs it along with other

benchmarks. Because the experiments in Chapter 4, 5 are simulation-based and

very time-consuming, only the short benchmarks (from bitonic to FIR) are used.

When used in the experiments of Chapter 6, those short benchmarks (except the

first four) take more iterations and run for longer duration, in order to reduce the

system noise impact. Because ARMQ requires the applications to be represented as

Directed Acyclic Graph (DAG), bitonic, ping-pong , halo, and sweep are not used in

the experiments of Chapter 6.

3.3 Metrics and Tools

The simulation experiments in Chapter 4, 5 use the statistics reported by

gem5 full system simulator [20]. The primary performance metric is the execution

time of Region of Interest (ROI). The unit is tick, and is sometime converted to

cycles, millisecond when presented. Virtual-Link and SPAMeR work inside the cache

hierarchy, so their evaluations look at a few statistics in the memory system for

in-depth analysis, such as snoop traffic, memory transactions, and coherence bus

utilization and so on.

The area and energy estimations in Chapter 4, 5 use the Synopsys Design

Compiler with the FreePDK 45 nm library [82] to synthesize the functional RTL

code, then scale the design to 16 nm [81] for comparison.

The experiments in Chapter 6 are conducted on real machines (Table 3.2),

so the execution time of ROI is measured by high resolution clock::now function

from std::chrono library. As the data locality improved by ARMQ should affect

the performance of cache, Linux perf [67] is used to measure the cache misses.

33

Chapter 4: Virtual-Link : A Scalable

Multi-Producer Multi-Consumer Message Queue

Architecture in Multi-Core Systems

4.1 Virtual-Link Architecture Design

Virtual-Link (VL) accomplishes the movement of cache lines from producers

to consumers by attaching a routing device (VLRD) to the coherence network as il-

lustrated in Figure 4.1. The VLRD is attached to the coherence network like a tightly

coupled accelerator or system cache slice, from a port on the coherence network.

This VLRD enables VL to “link” unique “endpoints” together via a shared

queue identifier (SQI). Endpoints subscribe to a SQI to form a M:N message chan-

nel Each SQI can support M producer endpoints and N consumer endpoints. Each

unique endpoint for a SQI maintains its own local user-space buffer composed of

multiple coherence granules or cache lines. Messages from each endpoint are received

by the VLRD at a coherence granularity, in a lock-free manner. In abstract, VL en-

ables a virtual linking of cache lines from each unique endpoint subscribing

to a SQI so that a producer can copy-over data from its own cache lines

directly into a requesting consumer through a single level of indirection.

Multiple endpoints on a single SQI come together to form a Virtual Queue

(VQ). Figure 4.2 illustrates the ordering of operations between two producer end-

points and a consumer endpoint sharing a SQI . The VQ size is shown after each

time step. In Figure 4.2, the cache lines are moved atomically, that is at time step

2, the blue producer cache line data appears to be copied-over atomically (through

the interconnect, not main memory) to the consumer endpoint buffer. This copy-over

operation leaves the producer cache line zeroed and in an exclusive state, which can

be used for subsequent enqueue operations. After the copy-over operation, the data

34

Core

Coherence Network

Mem Ctl.

LLC

Virtual Link

Routing Device

ConsumerProducer

L1

L2

Endpoint

L2

L1

DRAM

Core

5

4

1

2

3

Endpoint

Figure 4.1: Virtual-Link architecture high-level view. A cache line moves from the
producer at (1), at its own unique address location, to an indirection layer in hardware
at (2). That indirection layer, the Routing Device, matches the SQI at (3) based on
consumer endpoint demand which is registered by (4). The Routing Device forwards
data to the target consumer buffer on a totally different address at (5).

35

Time

0

1

2

3

P
ro

d
u
ce

r

E
n
d
p
o
in

t(
s)

C
o
n
su

m
er

E
n
d
p
o
in

t(
s)Key

Thread 1

Thread 2

Thread 3

deq

deq

enq enq

Thread

enq

enq

deq

V
ir

tu
al

Q
u
eu

e
S

iz
e

(a
ft

er
 t

im
e

st
ep

)

each of these is a cache line

Figure 4.2: Virtual Queue (VQ) per time step. 2 producer endpoints (Threads 1, 2),
1 consumer endpoint (Thread 3), shares a SQI .

Figure 4.3: Table and buffer structures in the VLRD . Cells having the same back-
ground color belong to the same SQI .

are shipped to the consumer to dequeue, also in an exclusive state. At no point does

the consumer or producer access a shared Physical Address (PA) or Virtual Address

(VA) that could cause coherence traffic (snoops). Instead, threads check the end-

points owned by themselves and interact with the VLRD for synchronization. The

rest of this section presents the major components of VL, namely, the VLRD , ISA

extensions and system software support.

36

Table 4.1: Address mapping pipeline actions per cycle. xxxn ≜ the latch for xxx in
Stage n

Stage 1 Stage 2 Stage 3
C. reads linkTab makes mapping decision updates tables and buffers

1

prodHead1, consTail1 ← NULL,
NULL
/* linkTab[consBuf[1].linkId],
CIHR ← 2 */

2

prodHead1, consTail1 ← NULL,
NULL
/* linkTab[consBuf[2].linkId],
CIHR ← NULL */

miss: append to the linked list in
consBuf
/* because prodHead1=NULL,
no blue data */

3

consHead1, prodTail1 ← 1, 1 /*
RAW */
/* linkTab[prodBuf[1].linkId],
PIHR ← 2 */

miss: append to the linked list in
consBuf
/* because prodHead1=NULL,
no orange data */

linkTab[1].cons{Head, Tail} ← 1,
1 /* linkId2=1, CIHR2=1, new
consHead read by Stage 1 */

4

consHead1, prodTail1 ← NULL,
NULL
/* linkTab[prodBuf[2].linkId],
PIHR ← 3 */

hit: read consBuf[1] for consTgt,
nextL
/* consHead1=1 */

linkTab[0].cons{Head, Tail} ← 2,
2
/* linkId2=0, CIHR2=2 */

5

consHead1 ← NULL /*nextL2

forwarded*/
prodTail1 ←NULL
/*linkTab[prodBuf[3].linkId]*/

miss: append to the linked list in
prodBuf
/* because consHead1=NULL,
no green request */

linkTab[1].consHead ← NULL
/* nextL2 */
set prodBuf[1].OUT POHR,
POTR ← 1, 1

4.1.1 Virtual-Link Routing Device

The VLRD is tasked with matching incoming messages to a SQI and stashing

those messages to the subscribed consumers. As Figure 4.3 shows, the VLRD is

largely composed of three structures, the Link Table (linkTab), the Producer Buffer

(prodBuf), and the Consumer Buffer (consBuf) (some control logic is omitted for

brevity). The linkTab keeps metadata (i.e., head, tail) for each SQI , one per row.

The prodBuf and consBuf are shared across multiple SQI entries, and buffer producer

data and consumer requests, respectively. Buffer slots are taken in turn and shared

by multiple SQI s, therefore these structures cannot be used as contiguous FIFOs but

instead are managed as linked-lists (LL)s.

linkTab: The head/tail pointers in linkTab each point to the first and last entries

in a hardware-managed inter-leaved LL data structure, which enables hardware to

determine whether there is consumer demand on a specific SQI or data available

from a producer to send. The producer head (prodHead) is updated if the current

head is mapped and ready to be sent to a consumer. For example in Figure 4.3 the

37

green row, prodHead points to index 2 (Row 2 in prodBuf). Once index 2 is mapped

with a green consumer request coming later, prodHead is set to the next green entry (4

in this example). The linkTab is addressed by the SQI field in prodBuf and consBuf .

consBuf: Whenever a consumer request arrives in the VLRD , the port’s control

logic checks Consumer Input Free Register (CIFR) for a free buffer slot in order to

buffer the consumer request. A buffer slot is free if the valid bit is unset, and CIFR

always moves to the next free slot after a slot is taken, starting over from the first free

consBuf slot again after touching the bottom. The consumer request is composed

of two parts: 1) the address of the target consumer cache line (the local user-space

buffer of a consumer endpoint) buffered in consTgt as shown in Figure 4.3; and 2)

the SQI of the VQ from which data is requested. The former is the payload of the

incoming packet, and latter is encoded in the device-memory physical address received

through the coherence network (details in § 4.1.3.2). The nextL field together with

the consHead, consTail in linkTab make LLs for SQI s. As mentioned before, the

slots in consBuf is not always used in order when multiple SQI s are active. The

nextIn field together with Consumer Input Head Register (CIHR) and Consumer

Input Tail Register (CITR) forming a LL, so that consBuf can track the order to

feed the address mapping pipeline. Address mapping pipeline stages are illustrated

in Table 4.1 (explained later).

prodBuf: The Producer Buffer has three partitions, namely, IN, LINK, OUT as

shown in Figure 4.3. On cache line arrival to the VLRD , the Producer Input Free

Register (PIFR) is checked for a free buffer entry. The Producer Input Head Register

(PIHR), and Producer Input Tail Register (PITR) point to the next, and the last

buffered producer push waiting for address mapping, respectively. The IN partition

plus the LINK partition are very similar to the consBuf , except that the data field

stores the data enqueued by producers (§ 4.1.4). The LINK partition is a LL whose

head is the oldest entry ready to be sent to a consumer; the order in which producer

data was received is tracked by the LL; so data are sent to consumers in the same

order. The OUT partition is for registering mapped entries, i.e., entries that have

38

been assigned to a consumer target from the process in Table 4.1. For example, the

first blue entry in the prodBuf is mapped to consBuf entry 1 as indicated by Fig-

ure 4.3. The consTgt field in the OUT partition stores the result of address mapping

(i.e., a target consumer cache line address), and mapped field recording an index to

the mapped consBuf slot. There are also two registers associated with this partition,

the Producer Output Head Register (POHR), and the Producer Output Tail Register

(POTR) to track the next, and the last entry ready to send out, respectively. Each of

the three partitions is a separate SRAM block with its own read/write ports, making

each partition accessed independently.

Address mapping: A prodBuf entry with valid data or a consBuf entry occupied

by a consumer request will go through a 3-stage pipeline illustrated in Table 4.1,

to map a producer push with a consumer pull. At the first stage the control logic

takes SQI from the “head entry” (the entry pointed by either PIHR or CIHR) to

access the linkTab and get the head, tail pointers of a corresponding queue. In Stage

2, a decision is made on whether to map the “head entry” to a consumer request

or producer data buffered earlier. For example, in Cycle 1 the first blue consumer

request reads blue prodHead, which is then checked in Cycle 2 Stage 2 in Table 4.1.

The blue request has to append to blue consumer LL upon a miss. A hit occurs in

Cycle 4 Stage 2, when a blue data enters the pipeline and hits the blue consumer

request. The third stage performs writes, updating table and buffers according to the

mapping decision.

There are a few trade-offs making the VLRD design simpler or more complex:

1) The multiple buffer partitions decouple the address mapping pipeline and bus I/O,

so a burst of packets can be buffered first then fed into the pipeline, otherwise the

VLRD just accepts one packet per clock cycle; 2) LL is chosen over a bitvector to deal

with the sparse buffer entry usage, that is not only due to the consideration of FIFO

property, but also because the authors feel LL is more scalable for large VLRDs.

Additional trade-offs are discussed in § 4.1.3.2.

39

Core

Coherence Network

Virtual Link

Routing Device

ConsumerProducer

L1

L2 L2

L1

Core

Tag Tag

P1 H1

H T i
0
i

j+1

i
j+k

i
N-1

selected line

vl_select(Y)

 vl_push(X)

P2

ld <usr buff control region>

C1
H T i

0
i

j+1

i
j+k

i
N-1

selected line

vl_select(Y)

 vl_fetch(X)

C4

C5

C3

Tag

C3

C2

(a) Hardware view

Supervisor
User Binary

1

SQI
2

Open Q

Input Q

(MMIO)
Routing

Device

3

Kernel

Module

User Buffer

for i < N do:

 q.enqueue(i)

P1

4

5a

P2

Cmd Q

(MMIO)

C2

C1
C4

ConsumerProducer

5b

P3
C3

5c

for i < N do:

 i ⃪ q.dequeue()
User Buffer

(b) Software view

Figure 4.4: Flow of VL hardware, ISA and software interaction. Details in § 4.1.2 to
§ 4.1.4.

40

4.1.2 Instruction Set Extensions

To allow software to express the role of producer/consumer explicitly, VL adds

three new instructions for vl select, vl push and vl fetch operations. Technically

they are “data cache” maintenance instructions with a dc nomenclature; we simply

refer to them by their named function.

vl select Rt: The vl select identifies a specific cache line by a VA in the operand

register Rt. As the name suggests, vl select “selects” a cache line addressed by VA,

so that a follow-on vl push or vl fetch instruction can perform its operation on the

“selected” cache line. Through vl select, the VA of the cache line is translated, and

the PA gets latched into a system register (not part of context state) only accessible

by vl push or vl fetch. Similar to load-linked store-conditional (LLSC), where

a load-link always precedes a store-conditional, there is a dependency between a

vl select instruction and a vl push or vl fetch instruction, although vl fetch

itself can be executed speculatively and out-of-order with respect to instructions other

than vl push or vl fetch. In the case the cache line to select has been evicted into

memory, vl select generates a cache miss and brings the cache line back to L1 data

cache (L1D), just as any store would, in an “exclusive” cache state. On context swap

or page migration, the latched PA is cleared.

vl push Rs, Rt: The vl push instruction takes the cache line from vl select and

conditionally writes it from cacheable memory to a VLRD memory target Rt (pro-

vided as a VA). This VA in Rt is assigned to the VLRD by the scheme described in

§ 4.1.3.2. The operand register Rs receives the result of zero for success or nonzero

upon failure of a vl push operation. On completion, the selection of the cache line

ends (i.e., PA in the system register set by vl select is zeroed). There are a few

scenarios the vl push operation could fail. First, a vl push being called without

a previous vl select call results in a non-zero value written back to Rs. The sec-

ond, is the most expected failure case where the VLRD has no buffering capacity or

consumer demand which also returns a non-zero to Rs. A system register counting

41

vl push instructions on-the-fly ensures no context swap or interrupt can occur before

a Rs receives a result. The VLRD must make forward progress in a fixed interval, i.e.

bounded by the time it takes to get to the VLRD , which is approximately 14 cycles

in our implementation. vl push is a device memory write on the coherence network,

as such, the write is non-snooping and it cannot be merged with other writes.

vl fetch Rs, Rt: The vl fetch has the effect of pulling data from a VLRD memory

location (the VA from Rt) into the calling core’s private cache at the location specified

by the paired vl select call. Like vl push, vl fetch clears cache line selection on

execution. If data is available on a given SQI (see § 4.1.3.2 for VA to VLRD and

SQI mapping), then the VLRD sends a data injection to the user buffer location

specified by vl select immediately. If data is not available, the request is condition-

ally registered with the VLRD , conditional on buffering capacity for requests in the

VLRD . A successful request results in a zero value being stored in Rs. Once data is

available for the requested SQI then data is conditionally injected. vl fetch sets a

“pushable” bit within the calling core’s private caches, this facilitates asynchronous

(and speculative) conditional data injection by the VLRD while ensuring data still

in-use is not overwritten by the VLRD . If there is a context swap, thread migration

following a vl fetch, or the line is evicted, the injection attempt is rejected, because

the “pushable” cache flag is unset before any of those scenarios occur, and the data

remain with the VLRD . The system register set by vl select is cleared by vl fetch

as well. On being scheduled the programmer is expected to check the line to see

if new data has arrived (e.g. examine control region from § 4.1.4), to re-issue the

request which sets the cache tag as “pusheable” again.

The ISA described adds a single bit to the cache tag array of each private

cache, and adds conditional write and push commands to support the signalling.

VL uses an otherwise standard coherence network with non-snooping directed data

transfer, the width of that network remains unchanged.

42

4.1.3 User-space and System Software

Using an existing queuing framework such as BLFQ or ZMQ with VL is sim-

ply a matter of mapping the ISA from § 4.1.2 corresponding to enqueue/dequeue

semantics to the existing software queue application program interface. There are

a few additional allocation constraints, such as specific alignment requirements and

VLRD setup. Hence, we develop a library to ease the programmer burden.

In Figure 4.4b, a user binary starts by requesting a SQI (equivalent to a file

handle) at (1) and (2). At (3) the programmer maps this SQI into a process accessible

VA through a system call at (4), that sets up the VLRD with the SQI at (5c) and

returns a mapped VA into user-space at (5a) and (5b).

4.1.3.1 SQI allocation & release

M:N endpoints assigned to a SQI are allowed to communicate. This is akin

to “shared memory” Inter-Process-Communication (IPC) with the SQI being anal-

ogous to a file descriptor and following similar rules with similar supervisor/OS pro-

tections [79]. The SQI can be used to open endpoints from user-space, granting the

calling thread access to map this SQI channel into its address space. Listing 1 is

what is executed at (1) of Figure 4.4b, resulting in the SQI at (2). SQI closing and

ordering semantics are identical to those of “shared” memory POSIX file handles,

simplifying the programming interface.

Listing 1 Example of calling a POSIX compliant shm open with the string han-
dle “queue name”, with a read and write mode, and a VL QUEUE flag that tells the
supervisor that this is to be a VL shared memory operation.

const int SQI = shm_open("queue_name",

O_RDWR,

VL_QUEUE /** flag for queue **/)

43

4.1.3.2 Endpoint creation

As shown in Figure 4.4b, once a SQI is obtained, the programmer must “open”

the queue (3) then map that descriptor to a VA to address the assigned VLRD . This

SQI is mapped to a VA using mmap [79] (via a kernel module wrapper at (5a) and

(5b)) as shown in Code snippet 2 using the addressing scheme described shortly.

Listing 2 Example of obtaining a VA mapping for the SQI from user-space. The VA
returned is to a device memory location which maps the VA to the PA of the VLRD .

void *X = mmap(nullptr,

QPAGE_SIZE,

PROT,

VL_QUEUE /** flag for queue **/ ,

SQI,

0x0)

Pages/SQI

51 JJ+1 N+1 18N 17 12 11 0

VLRD SQIPA Space

J:0

64B offsets

Figure 4.5: Device-memory physical address bit fields addressing the VLRD

A user-space library can subdivide the device-memory-mapped VA page fur-

ther to make multiple non-overlapping (64B-aligned) addresses for the same SQI

within a single address space. Our implementation maps a 4KiB page to each page-

aligned MMIO address on the VLRD . A bit-vector within the user-space wrapper

around mmap is maintained to quickly find an unused, 64B-aligned offset to return.

If PROT WRITE is given the library call returns a producer page mapping, likewise if

PROT READ is given, a consumer page returned. Removing a user-space VA mapping

for an endpoint is through the munmap command [79].

The allocated endpoint VA from mmap is the means by which vl push is able

to target the VLRD , and the PA (translated from the VA) is the means by which the

VLRD can determine the SQI . Figure 4.5, describes the bit fields of the PA with VL

information encoded. A VLRD simply takes N : 18 as the SQI , while bits J : N + 1

44

could distinguish different VLRDs if more than one VLRD are implemented to serve

different VQs independently. Multiple pages may be used, e.g. to map into differing

address spaces, or more than 64 endpoints are needed. This is what bits 17 : 12 used

for, allowing up to thirty two 4KiB pages. This memory mapping process is repeated

for the consumer endpoints. A downside of this process is physical address space is

used, e.g. with 1-VLRD, and 16-SQI s then N ← 22 and J ← 26 which would use up

67MiB of address space (not physical memory). An alternative addressing scheme

that we explored adds an address table to the VLRD (populated on mmap) to map to

arbitrary addresses, however, at the cost of an extra cycle to the pipeline § 4.1.1 and

content addressable memory for the routing table.

4.1.3.3 User-space buffer creation

VL enables both producers and consumers to use any page-aligned cacheable

memory as the user-space buffer for local endpoints (e.g. the data source at (1) from

Figure 4.1). The memory could be obtained from any generic memory allocation

functions (e.g. posix memalign). The capacity of these buffers can be adjusted in

user-space without impacting VL to accommodate bursty behavior or non-stationary

queue traffic distributions. It is these user-space memory buffers that are used in

subsequent enqueue and dequeue operations (§ 4.1.4). The user-space buffer for each

endpoint is used as a circular buffer for sending lines to the VLRD , as such it will

typically be kept cache-local. Once a line from the user-space buffer is pushed to the

VLRD , it is marked as cleaned, (e.g. reset control region as discribed in § 4.1.4), so

that it is ready for follow-on enqueue operations.

4.1.4 Enqueue and dequeue

Figure 4.2 shows the queue order per single SQI atomically pushing a 64B

cache line size messages from M:N producer/consumer pairs. Messages larger than

45

a cache line can be incorporated via indirect buffers as pointers. While not demon-

strated in this dissertation, it is trivial to incorporate an existing indirect buffer format

such as VirtIO 1.1 [87], injection could be accelerated in this case by [8]. To facilitate

small message transfer, we embed cache line local queue state into the line itself (see

Figure 4.6). This consists of a 2B control region at the Most Significant Byte (MSB)

of each VL transported cache line. the remaining 62B are user-data/payload. Valid

data fills the data region from higher address towards Least Significant Byte (LSB).

Within the control region, 2b encodes for size, e.g., byte, half word, word, double

word. 6b encodes a cache line relative offset/head pointer. The remaining 1B is

reserved.

Figure 4.6: Control region and data region in a 64B cache line.

enqueue: With respect to Figure 4.4a, the enqueue operation calls vl select at

(P1) on an allocated user-space buffer (Y). The user-space cacheable memory tran-

sitions to a “selected” state at (H1) that causes this cache line’s VA to be translated

and latched. The follow-on vl push instruction at (P2) causes the cache line at the

aforementioned latched PA from vl select (Y) to be stored to the mapped VLRD

device-memory address (X). Assuming the conditional store was successful, the orig-

inal cache-able user-space memory from Y is owned by the VLRD . This order of

events is necessary to prevent a single instruction from requiring two address gener-

ations simultaneously. If the enqueue succeeds, the cache line is zeroed, otherwise

the return register (see § 4.1.2) is set appropriately so that the programmer can retry

pushing the same data at some future point.

dequeue: Dequeue operations for VL are essentially operations that set a cache line

as “pushable” while also notifying the VLRD that 64B of data is requested at a

46

specific cacheable-memory VA. With respect to Figure 4.4a, the dequeue operation

calls vl select at (C2) on an allocated user-space consumer buffer, after determining

at (C1) that no more data is available (e.g. by inspecting the control region). Calling

vl select at (C2) sets that VA and latches the PA of that line for a follow-on

vl fetch instruction (§ 4.1.2). As described in § 4.1.2, vl fetch sets a “pushable” flag

at (C3) for the cache line addressed by the previous vl select statement. Following

the setting of the “pushable” flag, vl fetch causes the target PA and core-id to be

registered with the VLRD at (C4). That registered PA is used when data becomes

available for a given SQI for a follow-on injection of data to the requester at (C5).

4.2 Results and Analysis

4.2.1 Performance, Snoop, and Memory Transactions

In Figure 4.7, we compare VL with two state-of-the-art software queues, BLFQ

as baseline and ZMQ . In addition to this, we add VL(ideal) which has infinity queue

capacity and zero-latency cache line transfers in order to show that those hardware

limitations do not put much overhead on VL. Each VL run is given with 64 buffer

entries, and denoted as VL64.

In Figure 4.7a we see that VL is on average 2.09× faster than software so-

lutions, ranging from 11.36× faster for ping-pong to 1.10× faster for sweep. ZMQ

falls somewhere in between on all benchmarks, though notably being slower on halo

and bitonic, which both favor low-latency small message traffic. However, on incast

and FIR, BLFQ builds up a long queue spilling to memory (many more memory

transactions in Figure 4.7c), ZMQ and VL both have a back-pressure mechanism so

get better performance. Figure 4.7b shows the relative magnitude of snoop transac-

tions initiated per benchmark and with queue schemes. VL has fewer snoops than

either of the two software queues (BLFQ and ZMQ). The only exception FIR has two

threads per core creating many context switches, which lead to more frequent failures

for VLRD’s attempts to deliver cache lines. Software queues suffer from more snoop

47

pingpong halo sweep incast fir bitonic
0.0

0.2

0.4

0.6

0.8

1.0

1.2

32
7,

64
4,

06
2.

0

76
,7

10
,8

58
.5

1.8

99
6,

66
4,

93
3.

5

88
,4

20
,1

72
.0

14
5,

08
1,

89
0.

0

14
,3

34
,9

60
.0

1.5

BLFQ
ZMQ
VL(ideal)
VL64

(a) Execution time (ns) normalized to BLFQ

pingpong halo sweep incast fir bitonic
0.0

0.2

0.4

0.6

0.8

1.0

1.2

8,
93

0,
25

3

1.8

40
,9

20
,7

45

2.2

17
5,

59
7,

45
6

2.5

35
,6

06
,1

14

26
,6

64
,2

69

4.9 1.7

17
,2

42
,1

53

1.3

(b) Snoop traffic normalized to BLFQ

pingpong halo sweep incast fir bitonic
0.0

0.5

1.0

1.5

6,
20

3

18
,6

29

10.6

13
,6

06

25.6

28
8,

86
6

71
6,

68
2

3.0

5,
05

3

13.9

(c) Memory transactions normalized to BLFQ

Figure 4.7: Execution time, snoop traffic, and memory transaction comparison be-
tween software queues and Virtual-Link .

48

transactions due to cache coherence, while Virtual-Link reduces the snoop traffic to

a minimum as it reduces the cache coherent state shared between communicating

threads. Figure 4.7c compares the amount of memory transactions between queues.

Overall, VL has the fewest memory transactions among the queuing schemes. VL and

ZMQ are significantly lower on incast and FIR with the help of the back-pressure

mechanism. On ping-pong and bitonic, VL also achieves about 20% reduction com-

pared to BLFQ , while ZMQ has more memory transactions. VL has more memory

transactions on halo, and sweep, because the benchmarks double buffer the communi-

cation channels and not all the buffers are managed by our provided queuing libraries,

but by the application.

4.2.2 Scalability

Bitonic has a fixed workload divided among a varying number of worker

threads. Figure 4.8 presents the scalability of bitonic with various queue imple-

mentations as the number of worker threads are changed (1, 3, 7, and 15 worker

threads plus one master thread dispatching tasks to worker threads). Initially, ZMQ

performs better than BLFQ with small numbers of threads (i.e., 2, 4), but ZMQ ’s

performance drops after 8 threads. The high overhead to maintain cache coherence

(as shown in Figure 4.9) degrades the performance of ZMQ . Because BLFQ does

CAS operations, it scales slightly better than ZMQ , however, neither scale as well as

VL. BLFQ stops scaling by 4 threads. In contrast, VL is still able to gain speedup

moving from 4 threads to 8 threads. At 8 threads, the computation part of the single

master thread dominates the execution time and become the bottleneck; that is why

none of the queuing mechanisms can help any more. In Figure 4.9, we present one

big difference between VL and the other software queues at a microarchitecture level,

to better understand why they scale differently. Both the BLFQ and ZMQ software

implementations have more cache line upgrade events than VL, and the rate of snoop

traffic synchronization goes more rapidly. VL has very few upgrades and snoops,

therefore it is able to scale better than BLFQ and ZMQ .

49

7RWDO�1XPEHU�RI�7KUHDGV

6
S
H
H
G
X
S

�

�

�

�

�

�

� � � � �� ��

%/)4 =04 9/��LGHDO� 9/��

Figure 4.8: Scalability comparison between software queues and Virtual-Link . As the
number of worker threads in bitonic is scaled from 2 to 16, Virtual-Link shows better
scalability.

Figure 4.9: Snoop and cache line upgrade events comparison between software queues
and Virtual-Link as the number of threads scales. Virtual-Link keeps snoop and
update events at low level when the number number of bitonic worker threads is
increased from 2 to 16, while software queues have high snoop and significantly in-
creasing upgrade events.

4.2.3 Coherence Traffic Interference

VL channels use the coherence network to move data between cores. This could

impact the coherence traffic patterns and hurt the performance of other applications

that do not use VL. To study the impact, we ran the STREAM benchmark [58]

concurrently with ping-pong using each queue implementation (BLFQ , ZMQ , VL).

STREAM was chosen as it is known to stress the memory hierarchy. Figure 4.10

shows that the execution time for each queue implementation (BLFQ , ZMQ , VL)

50

time(ns) snoop mem cpy_bw(MB/s)
0.9

1.0

1.1

1.2

1.3

1.4

1.5

70
5,

03
5,

39
5

64
,9

94
,5

23

17
5,

46
2,

64
4

10
,9

39

alone
BLFQ
ZMQ
VL64

Figure 4.10: Performance impact on co-located memory-intensive workloads. A mem-
ory intensive benchmark (STREAM [58]) measures memory bandwidth standalone
and with background queue workload.

varied by 2% or less when compared to STREAM executing alone. The other three

bar groups report the system snoop and memory traffic. The snoop traffic introduced

by VL is comparable to that of BLFQ , and significantly lower than that of ZMQ .

Area estimation: We developed RTL code for the VLRD (control logic + buffers),

synthesized it using the Synopsys Design Compiler with the FreePDK 45nm li-

brary [82], and scaled the design to 16 nm [81] for comparison. The resulting VLRD

area is 0.142mm2 for buffers and 0.155mm2 in total including control logic. To put

this into perspective, an Arm A-72 core at 16FF is ∼1.15mm2 [91]; our design is 13%

of the single-core area, however, each VLRD is meant to serve N cores. A 16-core

Arm A-72 configuration (like our simulation), excluding L2 caches and wire overhead,

would be approximately 18.4mm2. Based on this estimation, our VLRD shared by

16 cores, would occupy less than 1% of overall SoC area (adding L2 and wire area

would only improve this ratio).

4.2.4 Comparison with CAF

CAF [90] is a state-of-the-art hardware queue proposal similar to VL with a

couple of differences: i. CAF divides buffers between queues and applies advanced

credit management for QoS, while buffers in VLRD are shared by all queues; ii. CAF

transferes 64-bit values between registers and Queue Management Device, whereas

51

pingpong pipeline
0.0
0.2
0.4
0.6
0.8
1.0
1.2

69,263,134 4,323,366CAF
VL64

Figure 4.11: Performance comparison between Virtual-Link and a state-of-the-art
hardware queue [90].

VL exploits cache lines as local buffer and as such lowers the frequency of performing

relatively more costly data movement through the cache hierarchy. We compare VL

with CAF on two benchmarks used in CAF paper, ping-pong and pipeline: ping-pong

passes data through the queue, while pipeline uses the queue for pointers to 2KiB

network packet payloads. As shown in Figure 4.11, VL achieves 2.40× speedup over

CAF on ping-pong , and 1.22× speedup on pipeline.

4.3 Summary

This chapter presents Virtual-Link (VL) a cross-core communication mecha-

nism for fine-grained multi-threaded applications. VL is immune to cache contention

for synchronization, provides back-pressure to reduce memory spills, and achieves

low-latency cache injection by directly stashing the line into consumer L1D cache.

This novel cross-core synchronization mechanism is similar to software queue mecha-

nisms in flexibility but has the performance and efficiency of hardware solutions. Our

full-system gem5 simulation illustrated that we can obtain a 2.09× speedup and 61%

average reduction in memory traffic over state-of-the-art software solutions across a

variety of communications patterns and benchmarks.

52

Chapter 5: SPAMeR: Speculative Push for

Anticipated Message Requests in Multi-Core

Systems

5.1 SPAMeR Architecture Design

The SPAMeR design extends the Virtual-Link [94] architecture. This section

first describes how Virtual-Link architecture is extended to give the functionality

of SPAMeR (§ 5.1.1), then describes the specific micro-architecture (§ 5.1.2), ISA

(§ 5.1.3), and library (§ 5.1.4) contributions. Section 5.1.5 explores the design space

in terms of speculation algorithms; and Section 5.1.6 discusses potential security

vulnerabilities and their mitigation.

5.1.1 How SPAMeR builds on the Virtual-Link Architecture

Coherence Network

Core

L1

L2

Core

L1

L2

endpoint endpoint

1

2

SPAMeR
Routing
Device
 (SRD)

4

Producer

3

Consumer

spec
Buf

5

6
spec-push

Figure 5.1: Overview of SPAMeR architecture. The specBuf added by SPAMeR in
the routing device enables (6), speculative pushes. Speculative pushes can replace
(4) and (5) in the baseline design and deliver the data with reduced latency.

Figure 5.1 provides an overview of the SPAMeR design, highlighting the

53

changes from Virtual-Link architecture (VL), in red. As mentioned before, there

is a routing device (VLRD) attached to the coherence network in order to move data

from core to core. The routing device is treated like a slice of the system cache or a

tightly-coupled accelerator (as such a system could have more than one router) and

could fit in any topology arrangement (the impact of topology and of multiple routers

are not the focus of this dissertation). Each “endpoint”, either producer or consumer,

is a distinct address whose offsets serve as buffering points for data (e.g., a producer

may have a 4KiB page, the consumer a completely different page). With VL there is

no shared coherent state despite giving the illusion of a shared memory connection,

only a shared resource, the VLRD . Multiple endpoints from different cores can be

associated with the same Shared Queue Identifier (SQI) and serve as one M:N queue.

When a producer gets some data ready to push into the queue ((1) in Figure 5.1),

the producer first selects the cacheline with the data using the vl select instruction

introduced in VL, then uses a vl push instruction (2nd new instruction from VL) to

copy the content of the selected cacheline to the routing device ((2) in Figure 5.1).

The vl push instruction makes use of the existing cache data bus and is similar to

cacheline flush or writeback. The differences lie in that vl push does not change

the coherence state of the cacheline, and the destination is a device memory address

assigned to the routing device, rather than the memory controller. Once the routing

device accepts the vl push packet ((3) in Figure 5.1), the ownership of the data is

transferred to the routing device, while the producer could start writing new data

into the cacheline, which stays in the writable (e.g., exclusive) state before and after

the vl push. On the other side, the consumer issues a request for empty consumer

endpoint via the vl fetch instruction (at (4) in Figure 5.1, but could happen in any

order with respect to (1, 2, 3)). The routing device matches the incoming producer

data with a consumer request on the same SQI then copies the data over to the

consumer cacheline at (5) via a stash operation.

The SPAMeR Routing Device (SRD) as shown in Figure 5.2 is analogous

to the VLRD with several exceptions highlighted in red part (will be explained in

54

SRD

consBuflinkTab

specHead base

specBuflinkTabSpec

1
2

3

SQI

tgt

specTgt

len offset next

consHead M
U
X

consTgt

VLRD

M
U
X

NULLprodBuf

Figure 5.2: SPAMeR Routing Device (SRD). SRD includes the VLRD components
from Virtual-Link Routing Device design (with the grey background), which we shrink
for brevity, and some newly-added structures (highlighted in red) to enable speculative
push. Cell filling colors indicate different SQI occupancy. Numbers in circle mark
the three stages of the address mapping process.

Section 5.1.2). The SRD has a prodBuf to buffer the data copied from the producer

endpoints, and consBuf to buffer the requests from the consumer endpoints. Each

data/request takes up one entry. As the SRD serves multiple queues and consBuf

entries are shared dynamically (e.g., the top prodBuf entry in Figure 5.2 is given

to the blue SQI , but once the blue data gone, the entry could be filled with data

for another SQI , say green). In addition to prodBuf and consBuf , the SRD has a

linkTab, which stores the SQI -related metadata (i.e., head, tail to track consumer

requests of each SQI) for all the queues, one per row. The aforementioned SRD

action to pair producer data with corresponding consumer request is called address

mapping. As labeled in Figure 5.2, the SRD builds a three-stage pipeline for address

mapping: Stage 1 takes the SQI from prodBuf to lookup linkTab, getting consHead;

consHead is used in Stage 2 to index consBuf and get the consumer cacheline address,

consTgt; last stage is the only stage that writes back address mapping results and

updates prodBuf and linkTab. It is worth mentioning that when a prodBuf entry

enters the address mapping pipeline, there may or may not be a consumer request

for the same SQI available, so a multiplexer in Stage 3 takes consHead (0 for no

consumer request) as the select signal to pick between consTgt or NULL.

Figure 5.3 (except the red parts) shows what happens after address mapping

in the original Virtual-Link architecture (the same process is used in the SRD).

55

address mapping
pipeline

PIHRPITR

PSHRPSTR

POHRPOTR

linkTab[1].prodHead

linkTab[1].prodTail

linkTab[2].prodHead
linkTab[2].prodTail

C

B
A

buffering
specTgt

cachelines specTgt
consTgt

consTgt

 hit invalidates prodBuf entry

miss reenters prodBuf entry signal

Figure 5.3: Address mapping in SPAMeR. There are three different possible outcomes
from the address mapping pipeline (marked with letter A, B, C in circles), and the
consumer cachelines give hit/miss response signals for every push (on-demand or
speculative). Path and structures related to speculative push are highlighted in red,
while the blue, green and orange colors indicate the affinity with different SQI . Please
note that the multiple queues here are logical, physically each packet sticks to a
prodBuf entry.

There are two possible outcomes: the data finds a target and gets into the sending

queue (Path (C) of Figure 5.3); or it is temporarily buffered into a queue of the

corresponding SQI (e.g., orange packets go into the orange queue as shown in (B) of

Figure 5.3). Please note that the queues shown in Figure 5.3 are all logical queues,

and the producer packet never left the prodBuf entry initially allocated to it. The

logical queues are managed by the SRD via several pairs of head and tail pointers. For

example, PIHR and PITR in Figure 5.3 stand for Producer Input Head and Tail Register

respectively, holding the indices to the first and the last prodBuf entry that is going

to enter the address mapping pipeline. After the address mapping, the prodBuf entry

might be appended to a buffering queue (due to no consumer request on the same

SQI). The corresponding head and tail pointers of the buffering queue are updated

and stored in prodHead and prodTail fields of linkTab (e.g., the head, tail pointers

for the orange buffering queue is in the first row of linkTab). When a producer

packet reaches the front of the sending queue, the SRD sends the data through the

coherence network to the consumer cacheline, then it receives the response signal from

the targeted cache controller. If the data fills in the cacheline successfully, the SRD

56

frees the prodBuf entry; otherwise in the case when the target cacheline happens

to be evicted or still holding valid data that cannot be overwritten, then the SRD

would append the prodBuf entry after PITR, so that it would go through the address

mapping pipeline again. These steps of the routing and mapping process are identical

in both the VLRD and SRD . What makes SRD different is described next.

5.1.2 SPAMeR Routing Device

SPAMeR adds an additional speculative push path ((6) in Figure 5.1), which

routes from the SRD to the consumer endpoint. The speculative push does not

wait for the consumer request to arrive at the SRD , instead the SRD attempts to

anticipate the request, speculatively sending the data to a consumer endpoint. In

order to push speculatively, SPAMeR introduces a new data path in the routing

device (the red part in Figure 5.2) that enables searching for a speculation target in

parallel with the basic address mapping path. The buffer storage, specBuf , holds the

target memory addresses and associated cachelines where the SRD could speculatively

push data to. The specBuf is set by the application as Section 5.1.3 will explain. The

linkTabSpec extends linkTab with the field specHead in order to store the index to

a specBuf entry for the corresponding SQI . Therefore, from the linkTab lookup in

Stage 1, we additionally get an index, specHead, to lookup specBuf in Stage 2 at

the same time of looking up consBuf . Every valid entry in the specBuf represents

a segment of memory (specBuf.base + specBuf.len × cacheline size) that SRD

can speculatively push data to. The specBuf.offset field works like a counter for

successful pushes: incrementing every time data is pushed to a consumer cacheline

successfully, advancing by one till it reaches the limit (specBuf.len), at which point

it is set to zero. We use specBuf.offset to derive target addresses for speculative

pushes (i.e., specTgt = specBuf.base + specBuf.offset × cacheline size). This

way, all consumer cachelines registered at that entry have a chance to receive data

from speculative pushes. As mentioned before, more than one consumer endpoint

57

could be associated with the same SQI (e.g., 4 endpoints of blue SQI takes up 4

entries in specBuf). To link them up, there is a specBuf.next field per specBuf

entry, which has the index to the next entry of the same SQI . When the address

mapping result is written back in Stage 3, the specBuf.next field is used to update

the specHead field in linkTab, so that for the next prediction, it would be a different

specBuf entry that supplies specTgt. All the specBuf entry of a SQI form a loop

and are used in turn. The speculative push address generated by specBuf is only

taken as the target if there is no consumer request for this SQI in consBuf , otherwise

the non-zero consHead value tells the multiplexer to pick consTgt. If the specTgt

is selected, then the producer data logically enters the speculative push queue (Path

(A) in Figure 5.3). After some delay, the SRD sends the data to the target cacheline.

The delay is key for efficient speculation (further discussion in § 5.1.5 and § 5.2.2).

5.1.3 Instruction Set Extension

We need to update the specBuf in order to let the SRD know the addresses

of cachelines that could potentially accept a speculative push. This task is funda-

mentally the same as entering a consumer request (SQI plus cacheline address) into

consBuf . Two VL instructions already exist for this purpose: vl select translates

the virtual address of a consumer cacheline to the physical address and writes back

to a system register (only readable by vl fetch, vl push instructions, the physical

address is not user-space accessible) vl fetch reads the physical address from the sys-

tem register then writes it to a device memory address which belongs to the routing

device. In SPAMeR, we allocate another range of device memory address for specBuf .

A vl fetch instruction writing to specBuf is under the alias spamer register. When

the SRD receives a spamer register, the routing device updates specBuf rather than

consBuf .

58

5.1.4 Library Optimizations

To enable software to make use of SPAMeR’s speculative push functionality,

we first need to configure the SRD with the spamer register instruction introduced

in Section 5.1.3. This is configured in the same library function where VL creates con-

sumer endpoints (the consumer cachelines associated with each endpoint are allocated

in that function too). The original VL library is revised to register consumer cache-

lines with the spamer register instruction before returning the endpoint to the user

application. These consumer endpoints are spec-push-enabled and their cacheline ad-

dresses are recorded in specBuf after the spamer register instructions, at this point

the SRD can speculatively push data into these endpoints when appropriate. As a

legacy option, user applications could request the library to provide non-speculative

endpoints (i.e., when the spamer register instructions are skipped). As we show in

Figure 5.1, consumer requests (step 4) could be replaced by speculative pushes (step

6) for spec-push-enabled endpoints, thus SPAMeR further optimizes the dequeue li-

brary function by eliminating the part of the code issuing vl select and vl fetch at

compile time. We also make the most frequently invoked queue functions as macros,

so they are inlined at the compiler preprocessing phase, potentially avoiding some

function calling overheads during execution.

5.1.5 Speculation Algorithms

SPAMeR speculation consists of two predictions: which cacheline and asso-

ciated endpoint to speculative push to (e.g., 1 of M endpoints subscribed to a SQI

that are speculation-enabled), and what is the perfect timing to push.

For the speculative push target selection, we let all valid specBuf entries par-

ticipate in the address mapping in turn (§ 5.1.2), and rotate the target cacheline

addresses in each entry (via specBuf.offset). This design collaborates with the li-

brary, which would use the cachelines of an endpoint in a round-robin fashion. Across

59

specBuf entries, the strategy sounds like round-robin, while it is actually weighted

in two ways. First is that we can intentionally control the number of targets in the

entries, and effectively adjust the speculative push rate for each target. For example,

if we have one entry with 2 targets α and β, while another entry of the same SQI has

only one target γ; Assuming the two entries receive the equal chance to be looked up

during address mapping, the ratio between the three targets for receiving speculative

pushes is 1 : 1 : 2. In other words, the number of speculative pushes on target γ is

doubled compared to target α, or β. Secondly, there is a throttling mechanism that

sets an “on fly” bit per specBuf entry when there exists a target from this entry in

the speculative push queue. Until the previous speculative push finishes, this specBuf

entry stops giving speculation target. Then the probability of selecting a target is

effectively influenced by the delay prediction algorithms.

We first introduce two simplest delay prediction algorithms of the many we

have evaluated. The first one is called 0delay, which does not add any additional

delay, but lets the speculative push go as soon as possible. The 0delay algorithm

can maximize the performance, because as long as there are available producer data

in SRD , it keeps trying speculative pushes. This lets the 0delay algorithm never

miss the earliest chance to push the data into a consumer cacheline. The down side

is that it could eat up bus/port bandwidth and affect other workloads. The second

delay prediction algorithm adjusts the delay based on the speculative push results,

so we refer it as the adapt delay algorithm. The adapt delay algorithm saves the

delay values in registers (one per linkTab entry or per specBuf entry), and reduces

the delay by half (right shift by 1-bit) upon a successful speculative push, otherwise

double the delay for a failed speculative push. The adapt delay algorithm helps the

SRD to build a profile of the consumer data ingest rate and pushes data according

to their perceived ability to consume it. However, the adapt algorithm approach is

too simple to fully model the consumer behavior (as the evaluation in Section 5.2.2

will show).

SPAMeR comes up with a tuned delay prediction algorithm that is tuned for

60

Listing 3 tuned algorithm updateResponse() function updates history based on
prediction results.

updateResponse(link_id, is_hit) {

spec_entry = specTab[link_id];

if (is_hit) {

// use the interval of the most recent hit responses as the

// reference, [ref-τ, ref+ζ] is the scanning range

spec_entry.delay = tsc - tau - spec_entry.last;

spec_entry.ddl = tsc + zeta - spec_entry.last;

spec_entry.nfills++;

spec_entry.last = tsc;

} else {

elapse = tsc - spec_entry.last;

stepped = spec_entry.delay + delta;

doubled = spec_entry.delay << alpha;

if (spec_entry.delay < spec_entry.ddl) {

// before deadline, retry after δ
spec_entry.delay = stepped;

} else {

// passed deadline, left shift α bits

spec_entry.delay = doubled;

}

}

spec_entry.failed = !is_hit;

}

61

Listing 4 tuned algorithm lookupSpecTab() function predicts delay.

lookupSpecTab(link_id) {

spec_entry = specTab[link_id];

halved = spec_entry.delay >> bithash(spec_entry.delay, tsc);

elapse = tsc - spec_entry.last;

if (is_init(spec_entry.nfills)) {

// initializing phase

return tsc + spec_entry.failed ? delta : 0;

} else if (elapse < halved) {

// early enough to try halved delay

return spec_entry.last + halved;

} else if (elapse < spec_entry.delay) {

// early enough for planned delay

return spec_entry.last + spec_entry.delay;

} else if (!spec_entry.failed) {

// data available later than planned and have not tried yet

return tsc;

} else if (elapse < spec_entry.ddl) {

// planned delay falls behind, but not cross deadline yet

return tsc + delta;

} else {

return tsc + spec_entry.delay;

}

}

62

the benchmark which analysis suggests has the greatest potential (§ 5.2). The tuned

algorithm takes interval between the most recent two successful pushes at the same

endpoint as the reference to predict the delay for the next push to this endpoint.

Because the intervals could fluctuate more or less, the tuned algorithm adjusts the

delay from the reference in both multiplicative (i.e., shifting bits left or right), and

additive (i.e., adding a constant delta) ways, creating a set of delays. This set of delays

is then tried in chronological order. The yellow blocks in Figure 5.4 are the additional

information latched in specBuf for the tuned algorithm to make its predictions. From

the top to the bottom: specBuf.nfills counts the number of successful pushes;

specBuf.last records the timestamp when the last push succeeds; specBuf.ddl sets

the threshold (deadline) for the delay to multiplicatively increase once the deadline is

exceeded; specBuf.failed is a one-bit flag indicating if the last push was successful;

specBuf.delay holds the delay to be used in the current prediction. In Listing 3,

the function updateResponse() shows how the values of each field get updated upon

receiving a push response, and the corresponding logic circuit is shown on the right

side of Figure 5.4. Function lookupSpecTab() in Listing 4, along with the left part of

Figure 5.4, elaborates how the algorithm generates the delay time to send data. The

orange Greek letters in Figure 5.4 are the parameters of the algorithm. Parameters ζ

and τ outline a range around the interval reference (i.e., the duration between the 2

most recent successful pushes), and in the range, delay is increased by δ. Therefore,

larger ζ and τ mean a wider range and more tolerance to the interval variation, and

a smaller δ means denser steps, higher probability to deliver the data at the first

moment. However, larger ζ, τ and smaller δ would contribute to more failures (we

can see the trade-off in § 5.2.5). Parameter α decides how fast the delay would be

increased after the deadline. Parameter β controls the phase of initialization phase

(when delay is always increased by step δ). After tuning the parameters on a hard-to-

predict benchmark, we pick a set of values (ζ = 128, τ = 48, δ = 32, α = 1, β = 2),

then as a cross-validation, apply the parameterized algorithm to all the benchmarks

in the evaluation. As future work, SPAMeR could be dynamically reconfigured with

63

an optimal set of parameters for each benchmark.

bitwise
hash()

dd
l[0

:1
5]

nf
ill

s[
0:

15
]

de
la

y[
0:

15
]

la
st

[0
:6

3]

fa
ile

d

+1

timer

hit

latch

-
timer

+𝛿 <<𝛼

el
ap

se

[0:𝛽]

[𝛽+1:15]

0

timer<

send_tick

- timer+𝜁

timer-𝜏

<

-

+ timer

>>

<

<

ad
d2

la
st

𝛿

ad
d2

ts
c

in
it

Figure 5.4: The example hardware logic implementation of the proposed tuned delay
prediction algorithm. All “timer” label in the diagram refer to the time stamp counter
(tsc), while “timer+ζ” and “timer-τ” input ports on the right could be from two other
time stamp counters configured to have constant offsets (i.e., ζ, −τ) from tsc.

64

5.1.6 Potential Vulnerabilities and Mitigation

It may be thought that speculative pushes could be like prefetching that is

vulnerable to side-channel attacks. However, a few differences between SPAMeR and

cache prefetchers make SPAMeR more secure. The 3 most popular ways to attack

prefetching via side-channel would not work on SPAMeR: 1) HW-prefetcher metadata,

such as stride, leaks secrets [78, 19]. The latency counters in SPAMeR might also

have the secrets but there are isolation (counters are per-endpoint, and each endpoint

is assigned uniquely to a thread) and obfuscation (augmented by random chance)

to prevent secrets from leaking. 2) Content-based prefetcher might take the secret

(brought by transient instructions sometimes) as a hint of prefetching address [4],

while SPAMeR does not use content for prediction. 3) Attacker could derive memory

layout from prefetching latency [35]. In contract, the destination of the speculative

pushes must be “push-enabled” (registered, marked) by the target core, effectively

white-listing specific cache lines of an endpoint as being amenable to a speculative

push. Therefore, attacker cannot gather any useful information from SPAMeR for the

memory layout. Regardless the style of side-channel attacks, it is also more difficult to

probe SPAMeR than prefetching, because the prefetching changes cacheline coherence

state [37], while speculative push does not.

Another security concern is that a malicious producer could aggressively oc-

cupy many SRD and network resources for DoS, or inject malicious data messages

into the channels of other processes (e.g., if this mechanism was used to push lambda

threads, then an attacker could potentially execute arbitrary code with privilege).

However, attackers would have to first bypass all existing mitigation provided by the

virtual memory system architecture. As in VL, SPAMeR allocates or frees resources

via system calls similar to memory management (no new system calls are added by

either SPAMeR or VL), so DoS can be mitigated by setting limits (e.g., ulimit for

soft limits, and AArch64 MPAM extension allows the microarchitecture to enforce

resource utilization like bandwidth per partition-id).

65

Lastly, the speculative push feature of SPAMeR is enabled per endpoint. If

a program (or a thread) has a specific security concern or higher confidentiality re-

quirements, it could disable speculation per-endpoint or totally per SQI . Based on

the discussion above, we believe SPAMeR design is vulnerability-free as for now.

5.2 Evaluation

This section first analysis the trace of message queue transactions to reveal the

potential latency saving by speculation (§ 5.2.1). Then SPAMeR is evaluated from

the perspectives of performance (§ 5.2.2), micro-architecture impacts (§ 5.2.3, 5.2.4),

sensitivity (§ 5.2.5), and the area and power cost (§ 5.2.6).

5.2.1 Message Transaction Tracing Analysis

In order to get an intuitive sense on how speculation would hide the cross-

core data movement latency, this section develops a trace-based analysis. Figure 5.5

illustrates this analysis with the message transaction trace from incast . Please note

incast is chosen because incast can have the simplest queue setting (single producer,

single consumer, single queue, single cache line), so that it would be relatively easy

for reasoning. As shown on the y-axis of the bottom chart in Figure 5.5, there are

a few events specifically to look at in the trace. From the bottom to the top, the

diamond marker at the lowest row indicates data arrival from the producer to the

SRD , and the dot marker on the second lowest row is for the request arrival from the

consumer to the SRD . The square marker above that indicates when the consumer

cacheline is ready to receive new data, and the marker on the second top row is for

when the producer data fill into the consumer cache target, followed by the topmost

marker (×) for the consumer’s first use of the data. For each marker, its x -axis value

is the timestamp.

66

Figure 5.5: Message transaction trace. One of the simplest traces showing different
message queue transactions in incast benchmark (single SQI) with single consumer
cacheline, single producer thread. For each marker, its x axis value is the timestamp,
and it is vertically located according to the event type. Red dashed lines indicate
speculative pushes (no request arrival), while solid lines are on-demand pushes to
fulfill consumer requests. Darker lines are those transactions that could have shorter
latency with speculation.

67

From the overview chart at the top of Figure 5.5, we can see two phases as

designed by the benchmark to explore different scenarios: when the consumer runs

faster at the beginning, transactions happen in a stable fashion, and the throughput is

bounded by the slower producer; after about 50 000 ns, the producer starts to generate

a burst of data and the consumer becomes the bottleneck.

The bottom chart of Figure 5.5 zooms in to reveal more details at the transi-

tion of these two phases. The markers joined by lines are the different events of the

same transaction. For on-demand pushes (solid lines in the chart), data arrival, re-

quest arrival, and cacheline vacating must precede the cacheline fill, while speculative

pushes (red dashed lines) have no request arrival event associated to the transaction.

Request arrival is a false dependence, while data arrival and cacheline vacating are

necessary either way of doing pushes. Figure 5.5 highlights some of the on-demand

push transactions in dark black, because in these transactions, filling the consumer

target with data is hindered by the request arrival, the last one among the three

events that an on-demand transaction requires. If a speculative push was triggered,

the delivery of the data could have happened earlier as soon as both data arrival and

cacheline vacate events happen. Therefore, the potential speculative push saving in

a transaction is calculated as the difference between the cacheline fill timestamp and

the timestamp of data arrival or cacheline vacating (whichever comes later).

s = f −max(v, a) (5.1)

Equation 5.1 shows the calculation of potential speculative push saving (denoted as

s) in a transaction. In Equation 5.1 f stands for the timestamp when filling cacheline

happens, and v, a are for cacheline vacate, data arrive, respectively. The same calcu-

lation could apply to all transactions. Let S be the total potential speculation saving

in the execution of a program, then it could be calculated as shown in Equation 5.2,

where the subscript i means the i-th transaction in the program:

S =
∑
i

si =
∑
i

(fi −max(vi, ai)) (5.2)

68

Not all transactions in Figure 5.5 are highlighted. Those dim on-demand

transactions in Figure 5.5 have zero potential latency saving via speculation. That is

because in these dim transactions, either the data is not available or the cacheline is

not ready until the cacheline filling actually happens.

It is noticed that a “prerequest” behavior exists in the trace. For example the

leftmost transaction in the zoom-in section, has the request arrival earlier than the

cacheline actually becomes empty. It is because when the consumer is looping to pop

a queue, it is highly likely a vl fetch instruction is going through the cache hierarchy

when data is filled into cache. That leads to the “prerequest” phenomena. The “pre-

request” is not guided, and its random impact on the performance of VL is observed

later (§ 5.2.2). SPAMeR replaces such “prerequest” with educated speculation.

5.2.2 SPAMeR Speedup

As mentioned in Section 5.1.4, we optimize the library by applying function

inlining and fetch skipping. Experiments reveals the inline function has limited im-

provement (1.02× speedup on average). Nevertheless, in the following evaluation, we

apply the function inlining optimization to the baseline Virtual-Link setting as well,

in order to show the benefits brought purely by speculation.

Figure 5.6 compares the performance of SPAMeR against the baseline, Virtual-

Link , as well as another state-of-the-art hardware queue, CAF [90]. As we can see,

with the aggressive 0delay algorithm, SPAMeR is able to achieve more than 1.24×

speedup over the baseline on 5 of the benchmarks. The highest speedup, 2.59× occurs

on FIR, where the filtering stage workers stay on the fast path all the time with

the shorter latency. There is almost no performance gain on ping-pong and sweep,

because the consumers in those benchmarks are always ready ahead while the data

production is on the critical path. Without available producer data, SPAMeR is not

able to try speculative push for the first place. The two queues in bitonic are biased,

69

and the starvation of producer data also happens to the (1:N) queue. For all the

benchmarks except FIR, the adapt delay algorithm obtains performance improvement

fairly close to the 0delay algorithm. This is because the FIR worker threads could

switch between fast path and slow path, and the adapt algorithm adjusts the delay too

dramatically, then easily it learns the period of slow path instead of the fast path. In

contrast, because the tuned algorithm would carefully increase the delay additively to

approach the fast path period, it is able to lock the worker threads on the fast path for

the most of time. On average across all the benchmarks (geometric mean), SPAMeR

with 0delay algorithm, the adapt and the tuned delay algorithm get 1.45×, 1.25×

and 1.33× speedup, respectively. Another state-of-the-art hardware queue, CAF ,

has the option to prepush (by producer instructions) the payload to where is closer

to the consumers. We enable the basic prepush scheme described in CAF design in

order to make the comparison fairer. As shown in Figure 5.6, SPAMeR beats CAF

on all the benchmarks. On ping-pong , pipeline, and firewall , both Virtual-Link and

SPAMeR enjoy the advantages of batching messages in the cachelines, which CAF

is unable to do as it uses registers instead of cachelines. On the other benchmarks,

SPAMeR speculation is more effective than the software-guided prepush in CAF ,

because SRD has accurate hardware timing information and precise target addresses.

Overall, SPAMeR with tuned algorithm achieves about 1.82× speedup over CAF .

5.2.3 Speculation Effects on Cacheline Occupancy and Transaction La-
tency

Figure 5.7 breaks down the execution time into two: when the consumer cache-

line is empty and the rest. This provides the insight of where does SPAMeR saves

time. For VL, the cycles when a consumer cacheline is empty could include the time

spent on requesting data and waiting for the data to arrive. As Figure 5.7 indicates

that on most benchmarks, SPAMeR cuts off some empty cycles to reduce the total ex-

ecution time; while SPAMeR might also transfer some empty cycles into non-empty

70

bitonic sweep
pingpong incast halo

pipeline
firewall fir

GEOMEAN
0.0

0.5

1.0

1.5

2.0

2.
91

6.
29

4.
32

6.
74

4.
48

4.
98

5.
83

2.5

3.
18

2.6

1.
00

1.33

1.25
1.45

VL(baseline)
CAF

SPAMeR(0delay)
SPAMeR(adapt)

SPAMeR(tuned)

Figure 5.6: Performance comparison between Virtual-Link and SPAMeR. The bars
show the speedup SPAMeR gains over Virtual-Link , the higher the more performant.
Execution time is normalized to the baseline (labeled on the left of the black solid
bar in millisecond).

bitonic sweep
pingpong incast halo

pipeline
firewall fir

0.0

2.0

4.0

6.0

#
cy

cl
es

 (
m

ill
io

n)

VL(baseline)
SPAMeR(0delay)
SPAMeR(adapt)
SPAMeR(tuned)

Figure 5.7: Time breakdown with the respect to cache line emptiness. The top section
of the bars stands for average consumer cacheline empty cycles, and the bottom
section of the bars is for non-empty.

71

once hit peak consumer throughput, for example, bitonic and 0delay on pipeline.

This observation validates the philosophy of SPAMeR design that speculation could

get the data into consumer cachelines earlier and take chances to reduce load-to-use

latency. There are 32 consumer cachelines in incast , and 0delay might quickly fill up

all 32 cachelines then blocked on one (round-robin as designed in § 5.1.5), until the

consumer thread uses up all data in other cachelines. This pattern causes half of the

cycles in incast with 0delay algorithm are empty cycles. For FIR, with data ready

earlier, SPAMeR reduces the number of times for the FIR threads going through the

slow path, where the consumer cachelines are likely filled when half way through.

Therefore, SPAMeR is able to reduce the non-empty cycles in FIR considerably as

well by avoiding the slow path.

Other than the CPU cycle breakdown analysis, the trace analysis (§ 5.2.1) pro-

vides more insights on how SPAMeR affects the transaction latency. As illustrated

in Section 5.2.1, there could be potential latency (more or less) to overlap in each

transaction of moving data from the routing device to the consumer cacheline. Fig-

ure 5.8 presents the potential latency saving for the bottlenecked queues (consumer is

slower) in pipeline and FIR. In Figure 5.8a, a large cluster of transactions having rel-

atively long latency (around 380 cycles) is spotted. This is because Virtual-Link does

no speculation, and if the consumer requests come lately, considerable load-to-use la-

tency is involved in the transaction. In contrast, Figure 5.8b shows many transactions

skew towards 0-cycle delay, and the majority are now limited within about 160 cycles

(which is determined by the selected parameters, ζ + δ). Similarly, the comparison

between Figure 5.8c and Figure 5.8d suggests SPAMeR tuned algorithm brings lower

latency to many transactions. However, the occasional switching to the slow path in

FIR disturbs the algorithm, leading to about 17% transactions predicted too late by

mistake.

For each benchmark, Figure 5.9 aggregates the latency over all transactions,

and shows how much potential latency saving that SPAMeR tuned algorithm has

achieved with the respect to VL. As we can see, the tuned algorithm lowers the total

72

0 2 4 6 8 10 12
time (million cycle)

0

200

400

600

800

1000

de
la

y
(#

cy
cl

es
)

0% 11% 21%

(a) pipeline Queue 3, VL (baseline)

0 2 4 6 8 10 12
time (million cycle)

0

200

400

600

800

1000

de
la

y
(#

cy
cl

es
)

0% 11% 21%

(b) pipeline Queue 3, SPAMeR (tuned)

0 1 2 3 4 5 6
time (million cycle)

0

200

400

600

800

1000

de
la

y
(#

cy
cl

es
)

0% 9% 17% 26% 34%

(c) FIR Queue 1, VL (baseline)

0 1 2 3 4 5 6
time (million cycle)

0

200

400

600

800

1000

de
la

y
(#

cy
cl

es
)

0% 9% 17% 26% 34%

(d) FIR Queue 1, SPAMeR (tuned)

Figure 5.8: Potential latency saving per transaction over time and the distribution.
Each dots marks a transaction. Higher potential latency saving/delay means worse.

73

bitonic sweep
pingpong incast halo

pipeline
firewall fir

GEOMEAN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

52
,6

42
,5

41

2,
13

6,
00

2

28
4,

76
9

5,
43

7,
95

1

5.0

12
4,

35
4,

70
5

48
,8

27
,2

08

6,
28

1,
30

4

1,
92

7,
31

7

2.4

1

0.51

VL(baseline) SPAMeR(tuned)

Figure 5.9: Total potential latency saving. SPAMeR (tuned) have less potential
latency saving compared with Virtual-Link , because SPAMeR has already overlapped
some data movement latency. The absolute numbers on the left of the black solid
bars are the total cycles of potential speculation saving (Equation 5.2).

potential speculation saving in 6 out of the 8 benchmarks, and the geometric average

(GEOMEAN) across benchmarks suggests an about half latency reduction. There

are two exceptions, that SPAMeR has higher latency on incast and FIR. In incast ,

SPAMeR algorithm is able to figure out among the multiple consumer cachelines,

which is the one that the consumer needs the data the soonest and what is the

pace for other ones, so it essentially saves the most critical latency but allows some

laziness to populate every consumer cachelines. If the number of consumer cachelines

in incast is reduced to 1, our experiment tells SPAMeR (tuned) has about only

0.82× latency of VL. In FIR, the baseline VL successfully matches the speed of each

stage by letting the worker threads always go through the slow path every iteration.

Whereas SPAMeR tries to accelerate the data passing in order to get the worker

threads on the fast path. When using the tuned algorithm, most of the iterations are

tuned into fast path, but there exists transitions back and forth fast path and slow

path sometimes. It is those occasional mismatches increases the overall latency for

SPAMeR (tuned). When 0delay algorithm is applied, every iteration in FIR is fast

path, and the potential speculation saving is reduced to about 9% of the baseline.

74

5.2.4 Failure Rate and Bus Utilization

bitonic sweep
pingpong incast halo

pipeline
firewall fir

0%

10%

20%

30%

40%

50% 100%77% 97% 81% 94% 95% 98% 69%
VL(baseline)
SPAMeR(0delay)
SPAMeR(adapt)
SPAMeR(tuned)

(a) push failure rate

bitonic sweep
pingpong incast halo

pipeline
firewall fir

0%

10%

20%

30%

40%

50% 68% 88%
VL(baseline)
SPAMeR(0delay)
SPAMeR(adapt)
SPAMeR(tuned)

(b) bus utilization

Figure 5.10: Push failure rate and bus utilization comparison between Virtual-Link
and SPAMeR. The higher the less efficient.

Despite of achieving better performance, SPAMeR raises the worry that the

retries after failures could costs more bus utilization and energy than the baseline,

especially for the 0delay algorithm. It is such a concern that motivates the devel-

opment of the adapt and the tuned delay prediction algorithms. We evaluate their

effectiveness in this section. In Figure 5.10a, we compare how many pushes (count-

ing both on-demand pushes and speculative ones) fail out of total across baseline and

SPAMeR with 3 different algorithms. There is no push failure for VL on almost all the

benchmarks, except halo. There is grid of multiple threads in halo, and the threads

75

might frequently request data again and over again from their neighbors, leading to

a higher chance for the unintended “prefetches”. Also a single thread in halo might

need to handle 2 to 4 queues, so a data in the consumer cacheline is not guaranteed

to be taken timely, then some of the “prefetches” would fail. However, due to the

plenty speculation opportunities exist in halo, SPAMeR gets 1.33× speedup on halo,

and such “prefetches” is actually beneficial to the the overall performance of the VL

baseline as well (without “prefetches” VL would be 0.94× slower on halo). SPAMeR

with 0delay algorithm shows super high failure rates on most of the benchmarks as

expected. ping-pong and sweep share a pattern in common that the data packets go

back and forth between two ends periodically and by the the time the data packet

is back visiting a node again, there is sufficient time to have the consumer cacheline

ready to accept new data. Therefore, ping-pong and sweep are the only two where

0delay algorithm would not make many failures. The adapt delay algorithm man-

ages to lower the failure rate under 50% on all the benchmarks. Because SPAMeR

changes the two-way traffic (request and data push) in VL to one-way, 50% failure

rate means SPAMeR would have equal or fewer packets going through the bus (ver-

ified in Figure 5.10b). The failure rate for the tuned algorithm is slightly higher

than the adapt algorithm. Achieving near-zero speculative push failure rate for arbi-

trary workload is not easier than improving the prefetching accuracy to almost 100%,

however, the most common prefetchers (stride prefetcher and Markov prefetcher) can

only get accuracy on around 50% [88].

The higher the push failure rate, the more wasted traffic on the bus. Fig-

ure 5.10b reports the bus utilization, which is the percentage of cycles that have

at least one packet (request or data) reaches the bus. As we can see, SPAMeR

with 0delay algorithm consumes much more bandwidth than others on most of the

benchmarks. SPAMeR with the adapt or the tuned algorithm has comparable or

even lower bus utilization than the baseline. The reason is that for each successful

on-demand push in VL, there must be a consumer request going through the bus be-

fore, so the total number of transactions is twice as the number of successful pushes.

76

Since the adapt delay algorithm is able to bring the failure rate under 50% for most

benchmarks, there are chances for it to spare more bus cycles than the baseline.

5.2.5 Sensitivity Study

There are several parameters (i.e., ζ, τ , δ, α, β) in the tuned algorithm design,

so this section explores the sensitivity to the parameter combinations as shown in

Figure 5.11. Every marker represents a speculation algorithm (or tuned algorithm

with different parameters). Their x-axis and y-axis values are benchmark end-to-end

execution time (denoted as delay) and the number of pushes, respectively. As the

more pushes the routing device does (no matter on-demand or speculative push), the

more energy it would consume, so the number of pushes is taken to reflect the dynamic

part of energy in this analysis. Different benchmarks have different communication

patterns therefore react differently to the varying parameters. In order to gain a

consistent feeling about the parameter sensitivity across benchmarks, the scale is

kept the same for all benchmarks after normalizing both delay and energy to the

baseline (the black dot). Apparently, the closer to the origin point, the better an

algorithm is (meaning running faster with less energy cost). As Figure 5.11a reveals,

FIR is hard-to-predict as the adaptive algorithm (the triangle marker) only wastes

energy on improperly-timed pushes and cannot reduce the execution time; the 0-delay

algorithm (the star marker) gets good speedup on FIR at the cost of too much higher

energy to be realistic. The parameters of the tuned algorithm allow us to balance the

trade-off in between as those small blue dots in Figure 5.11a illustrate. Because the

set of parameters (ζ = 128, τ = 48, δ = 32, α = 1, β = 2, the cross marker) we choose

is based on the tuning on FIR, it is one of the settings that are on the side closer

to the origin point. As Figure 5.11b to Figure 5.11h show, the chosen parameter

setting might be sub-optimal on other benchmarks, for example, there are parameter

combinations run slightly faster on firewall , or cost marginally less energy on incast .

Nevertheless, the tuned algorithm parameters have very limited impact if not none

77

55.0
56.0

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

#
pu

sh
es

VL (baseline)
SPAMeR (0delay)
SPAMeR (adapt)
SPAMeR (tuned)
SPAMeR (other)

(a) FIR

10.5
11.0
11.5

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

#
pu

sh
es

(b) firewall

61.0
62.0

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

#
pu

sh
es

(c) pipeline

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

10.0

#
pu

sh
es

(d) halo

34.0
35.0

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

#
pu

sh
es

(e) incast

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

10.0

#
pu

sh
es

(f) ping-pong

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

10.0

#
pu

sh
es

(g) sweep

491.5
492.0
492.5

0.4 0.6 0.8 1.0
delay

0.0

2.0

4.0

6.0

8.0

#
pu

sh
es

(h) bitonic

Figure 5.11: Execution time v.s. the number of pushes (including on-demand pushes
and speculative pushes, serves as an estimation for the dynamic part of energy con-
sumption). Both axis are normalized to VL baseline. Other combinations of the
tuned algorithm parameters are included to show how is the algorithm sensitive to
the parameters.

78

on the performance of other benchmarks. With this validation, we believe if only

one fixed set of parameters must be hardened for the tuned algorithm, we can tune

it for the hard-to-predict workloads and it should work well with other insensitive

applications.

5.2.6 Area and Power Estimation

The Virtual-Link [94] work estimated the area cost of the VLRD by developing

RTL code and scaled the synthesis result on the FreePDK 45nm library [82] to 16 nm

technology node [81]. Given the fact that SRD shares its major structures and data

paths with VLRD , we follow the same methodology as Virtual-Link to estimate the

area cost. RTL synthesis and scaling shows that with the additional specBuf , SRD

uses 0.156mm2 for all the buffers, and the overall area is 0.170mm2 (within 15%

increase from the area of VLRD). As a single Arm A-72 core at 16FF is reported

to be ˜1.15mm2 [91], the 16-core Arm A-72 configuration we simulate should be at

least 18.4mm2 (excluding L2 caches and wire overhead), making SRD cost less than

1% of the overall SoC area. This estimation is based on the basic setting with 64

specBuf entries using the 0delay algorithm. Different delay prediction algorithms

(e.g., adapt delay algorithm) might require additional storage and control logic. 64

specBuf entries are more than the benchmarks need (at most 48), while if there is

a situation where the workloads register more specBuf entries, the operating system

needs to manage the specBuf as other limited resources (e.g., physical memory).

With 16FF and 0.86V supply voltage, the power of the baseline, VL is esti-

mated to be 9.33mW (dynamic) and 0.82mW (leakage). As considering SRD pushes

more frequently than VLRD does, we multiply the dynamic power by the factor of

push frequency. It turns out the 0delay algorithm would yield too much higher power

to be realistic, while the adapt and the tuned algorithm are bounded to be at most

2.45×, 5.03× more than VL, respectively. That is 47.75mW for SRD power in total

at most. The power of a 20 Cortex-A72 processor with 28MB cache is reported to

be around 30W [91], so assuming a 16-core SoC system consumes about 21W power,

79

SRD would only contribute to about 0.23% of the total power. Since the power ratio

is at the same magnitude of its area share, so SRD is unlikely to be the peak thermal

component.

5.3 Summary

This chapter presents a novel mechanism, SPAMeR, to reduce the cross-core

communication latency in multi-core systems. In SPAMeR, there is a routing de-

vice that anticipates the incoming requests, then speculatively pushes the data into

a target consumer cacheline. Our full system simulation using the gem5 infrastruc-

ture illustrates that SPAMeR is able to obtain 1.33× speedup over a state-of-the-art

hardware message queue architecture on 8 task-parallel benchmarks, as well as out-

performs another state-of-the-art hardware queue design that does data movement

speculation by 1.82×. This chapter also uses gem5 to study the benchmarks, and

perform a detailed analysis on the message queue communication overhead. The

proposed architecture would assist the effectiveness of multi-core systems handling

message queue task parallel workloads.

80

Chapter 6: ARMQ: A Light-Weight Runtime for

Message Queue Task Parallelism

6.1 ARMQ Runtime Design

 app0

A B C
 app1d

b

e

a c

 app2

β

δ

α γ

Scheduler
Allocator

Partitioner

Scheduler
Allocator

Partitioner

Scheduler
Allocator

Partitioner

Daemon

Figure 6.1: ARMQ architecture.

Figure 6.1 visualizes ARMQ design at a high-level abstraction. At the top

there are the applications written as a Directed Acyclic Graph (DAG, a graph cycle

otherwise inherently introduces complexity and risks [83]) of computation kernels

(§ 6.1.1). Programmers are expected to merely focus on the computation logic and

the dependencies between the kernels. The execution of the applications are delegated

to the runtime modules. It is allowed to exercise a variety of runtime schemes suiting

to the characteristics of different applications alongside. The runtime scheme is the

combination of the following three modules: 1) partitioner analyzes the application

DAG and groups kernels (§ 6.1.2); 2) allocator is responsible to manage the queue

buffers where the data resides (§ 6.1.3); and 3) scheduler creates tasks (and maps to

threads) to fulfill the computation of each kernel (§ 6.1.4). As a part of ARMQ , there

is a system-wide daemon that balances the CPU core allocation across all applications.

6.1.1 Application Programming Interfaces

81

ARMQ aims to keep the interface exposed to programmer simple and intuitive,

with the goal of minimizing programmer effort to use. ARMQ borrows the streaming

programming style from the C++ template streaming library RaftLib [14], and extends

it (§ 6.1.1.1). The ARMQ application programming interface enables passage of two

essential pieces of information from programmers to the underlying runtime: the first

(and most obvious) is the computation to perform in each compute kernel (Listing 5),

the second, which is critical for ARMQ , is connectivity information with critical meta-

data to describe how messages are passed between kernels (Listing 6).

Listing 5 An example ARMQ computation kernel that does filtering.

1 class Filter : public armq::Kernel {

2 public:

3 Filter() : armq::Kernel() {

4 add_input<int>("0"_port); /* add an input port */

5 add_output<int>("0"_port); /* add an output port */

6 }

7 virtual armq::kstatus::value_t

8 compute(armq::StreamingData &dataIn,

9 armq::StreamingData &bufOut) {

10 auto val(dataIn.pop<int>()); /* pop input message */

11 if (0 != val) { /* filter away zero values */

12 bufOut.push(val); /* push out non-zero values */

13 }

14 return armq::kstatus::proceed;

15 /* proceed to next invocation */

16 }

17 };

Listing 5 gives an example of computation kernel (referred to simply as kernel

from this point forward) described using ARMQ . The user-defined kernel, Filter,

inherits from the armq::Kernel base class which has a set of structures and methods

that are designed to be used by the runtime. The computation of a kernel is described

through the implementation of a compute() function. The compute() function re-

ceives input data, applies the computation written by the programmer, then sends

output data (e.g., the kernel receives data streams, acts on it, then if there is an out-

put, streams output data). This compute() function is only invoked when conditions

82

set by the runtime are met (e.g., it could be called constantly, or only when data is

available on input streams).

Listing 6 An example 3-stage pipeline application in ARMQ .

1 int main() {

2 Generater gen; /* a random number generate kernel */

3 Filter f; /* the filter kernel */

4 Print p; /* a kernel printing received values */

5 armq::DAG dag; /* the Direct Acyclic Graph */

6 /* add a 3-stage pipeline to DAG */

7 dag += gen >> f >> p; /* streaming style */

8 /* then execute the DAG with specific runtime scheme */

9 dag.exe< armq::RuntimeBasic >();

10 return 0;

11 }

Listing 6 is an example three stage application pipeline composed usingARMQ .

The three kernels that make up this pipeline are: 1) Generator generates and sends

out random values, 2) Filter passes only the non-zero values received to the next

stage, 3) Print prints out every received value. The RaftLib template library specified

several C++ operator overloads to define its Domain Specific Language (DSL). Within

that DSL, connections between each kernel are specified by a stream operator (>>),

the underlying transport layer of each connection is semantically undefined; at this

point only the topology is specified. ARMQ extends the usage of operator reloading

in RaftLib to capture extra heuristic information (§ 6.1.1.1) from the right-hand-side

of the add-increment operator (+=) into the internal ARMQ representation of the

compute Directed Acyclic Graph (DAG). Upon calling the exe() function of ARMQ ,

a runtime execution scheme is selected (i.e., in Listing 6, by default it is a preset

runtime scheme defined by armq::RuntimeBasic).

6.1.1.1 Hints for the Runtime

83

Listing 7 An example of ARMQ hints. This line of code replaces Line 7 in the earlier
3-stage pipeline example.

1 dag += (gen >> f * 4) >> p * 0;

ARMQ extends RaftLib with a number of runtime hints. These hints provide

metadata that assists ARMQ with optimizing allocation and scheduling of the appli-

cation DAG . The actual usage of the hints is determined by the underlying execution

scheme; hints are safely ignored if they are not of usage to a given scheme. Listing 7

shows the aforementioned simple application example (see Listing 6) augmented with

two types of hints used by ARMQ . These hints are used to indicate to the runtime a

kernel rate multiplier (using the * operator overload) and for grouping heavily com-

municating/related kernels using parenthesis. The rate multiplier is an estimation of

how many parallel workers may be needed to match the throughput of the upstream

paths. As an example, f * 4 means the Filter kernel runs likely 4× slower than

the Generator kernel. On the other end of the spectrum a multiplier of zero would

indicate an upstream filtering effect where we would expect this kernel to run fewer

times for a given rate and therefore likely need a lower priority. The grouping hint

informs the runtime that traffic between the indicated DAG partition is considered

heavier (i.e., larger and/or higher frequency messages).

6.1.2 Partitioning

Before the application DAG is executed by ARMQ , it is analyzed by a par-

titioner. Two aspects considered in ARMQ partitioning are data locality and load

balance. If the traffic (a product of message size and frequency) between two kernels

is heavy, then it would likely be better to group the two so that they could be assigned

to the same or clustered cores (i.e., sharing cache at some layers of the hierarchy). The

application thereby increases the potential sharing of data within the cache memory

84

hierarchy, taking advantage of data locality. Managing shared resource utilization is

synonymous with load balancing. If two kernels are heavy users of a shared resource

(e.g., CPU core, cache and memory bandwidth), then it would likely be better to

distance these kernels in order to avoid contention and the potential for hardware

resource starvation.

Because ARMQ partitions DAG statically at the time of execution, there is

only the topology and the message size information available. When confronted with

pointers within the message queue, the true size of this indirect buffer is often hard to

determine without further information (indirect buffers could even have further nested

indirect buffers), which is one place where the hints provided by ARMQ (§ 6.1.1.1)

can have an impact. When statically partitioning for load-balance, ARMQ makes the

assumption that parallel tasks of the same kernel type will likely require the same

resource types, and therefore ARMQ implicitly tries to distribute tasks of the same

kernel to different cores.

6.1.3 Allocation

The ARMQ runtime allocator manages the memory where buffers are stored.

An obvious approach to implementing an allocator is to allocate buffer from

heap whenever a message needs to be stored. This approach is flexible and portable.

An added advantage is that message to cache line alignment can be customized on

a per-message basis, reducing the potential of false sharing. This approach simply

wraps the system-provided memory allocation library to serve the message queue

interface. The downside is that the system allocator does not know the message

queue usage pattern, and therefore some optimizations opportunities could be lost.

One common optimization is to pre-allocate a chunk of large enough memory

and use it as a ringbuffer. New messages would enqueue into a slot in the ringbuffer

where pointed by the head pointer and move the head pointer forward. On the other

85

side, consumers dequeue messages from the tail of the ringbuffer. With this approach,

the same buffer space would be repeated used in the sequential order, so the better

spatial locality would improve cache performance. However, there are two challenges:

1) Multiple producers or multiple consumers might have contention on updating the

queue status concurrently; 2) when running out of buffer space, resizing the ringbuffer

size could be a costly operation.

RaftLib [14] implements a single-producer-single-consumer (SPSC) ringbuffer

to lower the contention. Multi-producer or multi-consumer message queues are em-

ulated by letting the threads select data from the set of SPSC queues connected to

it in round-robin order. RaftLib also has an option to launch a buffer monitoring

thread. This thread monitors each ringbuffer to check for blocking over a window of

time, doubling the capacity of the buffer (with limits) when needed (e.g., if kernels

are blocked on the buffer for 75% of the time over the sampling window). Resizing

in RaftLib could suffer from several overheads: 1) the monitoring thread needs to

acquire exclusive access before resizing; 2) the monitoring thread have to copy the

content in the old buffer (likely full) over to the new buffer. One could argue that

the runtime should simply pick an arbitrarily large buffer, however, doing so (or also

growing the ringbuffer indefinitely) can exhaust valuable system resources, lead to

more paging and cache misses, and overall performance regression [14]. It can also be

shown that choosing the exact ringbuffer size for a streaming system is a NP-Hard

problem, this is known as the Buffer Allocation Problem [6]. Therefore, ARMQ ex-

tends the iterative approach to dynamic allocation adopted by RaftLib, and make it

far more efficient.

6.1.3.1 Chunk-Based Zero-Copy Ringbuffer Resizing

ARMQ redesigns the ringbuffer to support zero-copy resizing. The ringbuffer

that ARMQ uses is chunk-based, with each chunk holding up to N messages (where

N is configurable) (see Figure 6.2 for an example). To facilitate resizing of the buffer,

additional chunks can be added via memory pointers, forming a linked-list of chunks.

86

N

pbase

cbase

head % N

tail % N
(a) almost full, before resizing

N

pbase

cbase

head % N

tail % N
(b) new chunk, after resizing

Figure 6.2: Resizing chunk-based ringbuffer without copying. pbase/cbase is the
pointer pointing to the chunk currently used by the producer/consumer, and head/tail
is the monotonically increasing counter to index the slot where the producer/consumer
enqueues/dequeues a message. Chunks are linked to form a ringbuffer.

The linked-list of chunks forms a loop where the last chunks points back to the start of

the new chunk, making a resizble ringbuffer. For both producer and consumer, when

they reach the end of a chunk, their base pointers (i.e., pbase, cbase in Figure 6.2)

would be advanced to the next chunk using this link pointer. Because all chunks

together forms a loop, the producer and consumer would repeatedly access the chunks

as it is a ringbuffer.

Before a producer advances to the next chunk after filling up the current

one, it also checks whether the ringbuffer is almost full (i.e., the tail is pointing to

somewhere in the immediate next chunk, as shown in Figure 6.2a). To resize a almost

full ringbuffer, the producer simply allocates a new chunk and updates the linking

pointer (analogous to a linked-list, mid-link, insertion) then advances to the new

chunk as shown in Figure 6.2b. This ringbuffer is meant to serve single producer and

single consumer, and it synchronizes the local head/tail counters in batch/chunk to

reduce cache bouncing [54]. Unlike the dynamically-resizeable ringbuffer in RaftLib,

the ARMQ design avoids copying when resizing and this resizing strategy is applicable

to non-trivially-copyable data types [2] (e.g., std::string).

87

Other than those memory-heap-based queuing options, ARMQ is also exten-

sible to use shared memory or hardware queues.

6.1.4 Scheduling

As observed in Figure 1.6, enqueue and dequeue operations block on a full or

empty queue. Blocking can arise from two conditions. The first condition (that of

buffer sizing), was covered in § 6.1.3. The second condition is that of a rate mis-

match between producer and consumer kernels. Queuing theory [49] states that the

consumer must have a throughput greater than the producer (or equal to if all rates

are perfectly deterministic) to ensure a bounded queue depth (e.g., that the queue is

not always full). Many real software-based dataflow systems have unbalanced flows;

indeed, even when programmers attempt to design perfectly deterministic systems

they find that execution varies in unexpected ways [13]. ARMQ uses scheduling op-

timizations to modulate the throughput of a computation kernel, thereby mitigating

cycle-wasting blocking behavior induced by rate-mismatch.

When enqueuing to a full queue, a condition that would result in blocking

(and wasted cycles), the kernel/task producing data can take one (or more) of the

actions shown in Figure 6.3. Actions poll and yield are the most general actions, and

the most seen. When the hardware running the tasks is over-subscribed (often the

case for data-center systems) poll alone could cause deadlock [40]. To prevent this,

it is often necessary to yield after poll to allow other tasks to make forward progress.

Nevertheless, yield does not convey a very strong signal to the scheduler that this task

is blocked. A downside of this approach is that the task could cycle through poll and

yield conditions indefinitely, without performing useful computation. A technique

to prevent this from happening is to use a condition variable so that the scheduler

has enough information to know when conditions are correct for this task to perform

useful work, enabling the scheduler to safely exclude this task from running (e.g., it

88

poll

queue
overflow

yield

ZZ
Z

sleep
new

help

most
general

 most
opportune

producer
task

Figure 6.3: Actions a producer task might take when enqueuing to a full queue: 1)
poll : continuously check whether the queue has free space or not; 2) yield : lower the
priority been scheduled; 3) sleep: not been considered in scheduling until waking up
upon condition change; 4) new : enlarge the buffer to fit in the overflowed message;
5) help: schedule a helper task to perform the computation defined by the consumer
kernel.

is sleep, until conditions are correct to make forward progress). Such a exclusion

method relies on passing information to the scheduler from the application, making

scheduling more precise. Condition variables are the first example we provide of

proactive steps the kernel can take to improve scheduling.

There are two additional proactive steps to reduce cycle-wastage when block-

ing on enqueue: new and help. Instead of rescheduling the compute kernel when an

equeue is blocked due to buffer exhaustion, the new action allocates a larger buffer to

hold the overflowing message, thereby preventing blockage and reducing the probabil-

ity of blocking in the future. RaftLib implemented buffer resizing, however, ARMQ

provides much more efficient zero-copy resizing (see § 6.1.3). On the other hand,

the action help unblocks the producer via changing the running task itself to be the

consumer, on the same core that was previously executing the producer. This has

the advantage of consuming queue elements (thereby emptying it) plus it takes ad-

vantage of data-locality (e.g., recently produced elements are assumed to be closer to

89

the producing core within a cache hierarchy).

While this section has focused on the producer side, the consumer task could

block when the queue is empty on dequeue. The consumer task can take similar

actions to the producer such as poll , yield , or sleep to make scheduling more precise.

6.1.4.1 Tasks

A B C

Core 0 Core 1 Core 2

A B C

Core 0 Core 1 Core 2

A B C

Core 0 Core 1 Core 2

Time 0

Time 1

Time 2

(a) PollingWorker Task

A B CCore 0

Core 1

Core 2

B C

C

Time 0

Time 1

Time 2

A B C

Core 0

Core 1

Core 2

B C

C

A B C

Core 0

Core 1

Core 2 B C

C

(b) OneShot Task

Figure 6.4: PollingWorker tasks vs. OneShot tasks.

Kernels are defined by users (§ 6.1.1) and focus purely on the computation,

while ARMQ will internally creates tasks (computation plus data/messages, Listing 8

Line 1–4) to carry out the computations. There are different tasks types in ARMQ ,

each are distinguished by their computation and scheduling patterns. All tasks, do

have one thing in common, they each have an associated computation kernel (§ 6.1.1)

90

and streaming data (either the actual data or a queue). The distinction between

task types are their execution logic. The PollingWorker task is the long-last task

that performs the same series of computations on a sliding window of streaming

data, and yields after certain number of iterations (to avoid deadlock as discussed

earlier). A OneShot task is initially designed to compute just once on a set of data

and vanish, hence the name OneShot. An improved version of OneShot task reloads

the task structure with a downstream consumer kernel, so that it can operate on

the data that was just produced. The reloading continues until the OneShot task

reaches a sink node in the computation graph (i.e., no output), then the OneShot

task would be destroyed. This “run-to-completion” optimization reduces the number

of task creation. As illustrated by Figure 6.4, a PollingWorker task repeats the

same computation on different messages, while a OneShot tasks performs different

computation on the “same” data buffer. Listing 8 presents the simplified version of

task definitions in ARMQ .

6.1.4.2 Mix Scheduling

ARMQ starts with a basic scheduler design where each kernel in the program-

mer specified application topology is set as a basic PollingWorker task (the baseline

runtime RaftLib [14] follows this same pattern). ARMQ augments this basic pat-

tern with hints to assist the basic scheduler in assigning computation (see § 6.1.1.1).

Assuming programmer estimates the throughput ratio accurately, all PollingWorker

tasks get data to compute almost every iteration. Otherwise if blocking occurs, the

PollingWorker schedule suffers from blocking overheads.

Alternatively, a OneShot scheduler creates OneShot tasks for the source ker-

nels, and lets them run to completion. There would be no blocked producer during

the execution, however, it would be too frequent to create an OneShot task for every

message and the scheduling overhead on task creation becomes a concern.

91

Listing 8 Different ARMQ tasks.

1 class Task { /* is defined by computation/kernel & data */

2 Kernel *kernel;

3 StreamingData dataIn, bufOut;

4 }; /* end of Task definition */

5 class PollingWorker : public Task {

6 void exe() {

7 while (! shouldExit()) { /* when tearing down DAG */

8 if (dataReady()) { /* input queue has data */

9 kernel->compute(dataIn, bufOut);

10 }

11 if (loopedNTimes()) { yield(); } /* no dead lock */

12 }

13 }

14 };

15 class OneShot : public Task {

16 void exe() {

17 while (! isSink(kernel)) { /* run-to-completion */

18 kernel->compute(dataIn, bufOut);

19 reload(); /* update kernel, move output as input */

20 }

21 }

22 };

92

In order to avoid blocking or paying too much scheduling cost, ARMQ proposes

a mix scheduling strategy. The mix scheduling begins with PollingWorker tasks only.

The multiplier hints (§ 6.1.1.1) guide the mix scheduler as to how many PollingWorker

tasks to create per kernel. Please note a difference between the basic scheduler and the

mix one is that mix scheduling does not spawn a PollingWorker task for kernels having

zero multiplier hint, while the basic scheduler will still create one PollingWorker

task. Zero multiplier indicates likely there is no data in the incoming queue, so mix

scheduling skips the kernel to reduce the blocking on empty queues. During the

execution, if a PollingWorker task generates an outgoing message but is blocked on

enqueue, the mix scheduler creates a OneShot task instead, enabling the scheduler

to switch to the consumer OneShot immediately on blocking. Given the producer

and consumer task are now run consecutively, and on the same core, there should be

fewer data cache misses when accessing messages from the producer.

6.1.4.3 Userspace Threading Library: libut

Unlike the basic scheduling that spends one-time cost on creating Polling-

Worker tasks and switches tasks only after certain rounds of polls, the mix schedul-

ing (§ 6.1.4.2) invokes task creation and switching more frequently, so it is especially

important to keep the task management as low-latency as possible. In addition to

the “run-to-completion” optimization (§ 6.1.4.1) that reduces the number of OneShot

tasks created, ARMQ also applies lightweight user-space threading for fast task cre-

ation and context switching. To that end, a user-space threading library called libut

is developed on top of the customized threading library from Shenango [66]. The

Shenango threading implementation employs many techniques to push the threading

overhead down to nanosecond-level on a 2.2GHz machine:

1. Shenango makes use of Thread-Local-Storage (TLS) to manage pre-allocated

thread cache for userspace task stacks that are allocated and free frequently;

93

2. Huge pages are used to reduce Translation-Lookaside-Buffer (TLB) misses;

3. It does not waste time on saving those registers that are safely clobbered;

4. It avoids atomic memory accesses for wake-ups;

5. Local task queue per kernel-level-thread (e.g., pthread) to avoid contention;

6. It employs work stealing to balance the tasks among pthreads.

We port Shenango threading library from x86 to AArch64 after writing the coun-

terparts of some low-level code, making libut able to run on both x86 and AArch64

servers. Additionally, libut adds several features specific to the needs of ARMQ :

1. locality awareness : the capability to understand cache and memory hierarchy

for more efficient work stealing and locality aware scheduling;

2. affinity : setting task affinity to support the task grouping (§ 6.1.2);

3. consumer-first : Hoare-style condition variables and low-overhead task spawn

followed by immediate execution to preserve more data locality (§ 6.1.4.2).

6.2 Evaluation

6.2.1 Zero-Copy Resizeable Ringbuffer

This section evaluates the ringbuffer resizing overheads with a microbench-

mark. Please note that the microbenchmark is single-threaded and does no push or

pop operation, while in real applications, the monitoring thread (which resizes full

queues) in the baseline would suffer from extra overhead caused by the concurrent

94

push/pop operations. It is also worth mentioning that the chunk-based ringbuffer re-

sizing latency reported in this section likely will overlap with the dequeue operations

on the consumer side, thanks to the relaxed requirement on exclusiveness, whereas

the baseline (RaftLib ringbuffer) pauses both the producer and consumer, and has to

pay the the full overhead.

The microbenchmark tests ringbuffers of three different messages: the small

message is a plain type with a data width of 1B; the medium message is a class

type with a data width of 64B (i.e., cacheline size of the servers); and the large

message is a C++ class type with a data width of of 128B. When initializing, the

microbenchmark creates 106 ringbuffers of a message type, with the initial capacity set

to 64 entries. Then the microbenchmark resizes the ringbuffers, doubling the capacity

iteratively until 1024. For every step doubling the capacity, the 106 ringbuffers of the

same message type are resized all together for timing. The per-step per-ringbuffer

resizing time is reported in Figure 6.5.

small(1byte) large(128bytes) medium(64bytes)
0

5

10

15

s

R C R

18

C

15

R C 0

14

28

42

(a) Core-Coupled System A

small(1byte) large(128bytes) medium(64bytes)
0

5

10

15

s

R C R C R C

29 > 210

28 > 29

27 > 28

26 > 27

0

14

28

42

(b) Two-Socket System B

Figure 6.5: Resizing latency comparison between baseline (i.e., the original RaftLib
ringbuffer, marked by “R”) and the chunk-based ringbuffer design in ARMQ (marked
by “C”). Large message ringbuffers store message pointers (8B).

Because the large message (128B) does not fit into a cacheline, both the base-

line runtime and ARMQ adaptively put the message pointers (8B) in the ringbuffer

instead of the messages. Therefore, the effective message size for the large message

is in between the size of small and medium messages. The latency for large message

95

ringbuffer resizing turns to be closer to the small message ringbuffer, so they share

the same left y-axis in Figure 6.5, while the medium bars use the secondary y-axis.

As Figure 6.5a shows, the baseline (stacked bars in black and grey) always spend

more time on doubling the capacity due to the copying overhead. Notably, ARMQ

speeds up the resizing more when the size is smaller: increasing from 64 → 128 has

the most speedup; small message ringbuffers shows the most speedup. This is because

ARMQ has to make more invocations of the memory allocation functions to reach

the designated capacity with fixed-length chunks, while the baseline only needs to

allocate memory once per resizing.

6.2.2 Nano-Second-Level Userspace Threading

This section evaluates the performance of libut with some microbenchmarks

from Shenango [66]. In each microbenchmark, a common threading operation is

performed repeatedly for 107 iterations on a single CPU core. Please note the exper-

iment does not scale up to multiple cores because in ARMQ task queues are local

and the work stealing rarely, if not never, happens. The experiments measure how

many nano-seconds elapse to finish those threading operations and calculate the per-

operation average. Table 6.1 reports the results of libut and compares with three other

threading options: 1) pthread is the de facto kernel-level threading library Linux pro-

vides; 2) qthread [92] is a light-wight locality-aware userspace threading library used

by RaftLib; 3) the Go programming language [1] is designed to have built-in con-

current threading support. The original Shenango implementation is not included in

the comparison because it does not support the AArch64 instruction set architecture,

extending the library to do so in the form of libut is one of ARMQ ’s contributions.

As we can see from Table 6.1, libut has the lowest latency for three out of

four threading operations: yielding a thread for a voluntary context switch; waking

up a thread waiting for a condition variable; spawning threads to join. Go has lower

96

Table 6.1: Threading operation latency comparison between pthraed, qthread, go
and libut . Numbers are nanoseconds per operations. libut is the only one finishing
all different common threading operations within 1 µs.

pthread qthread Go libut

Uncontended Mutex 56 334 35 63

Yield Ping Pong 948 2,239 240 127

Condvar Ping Pong 4,184 N/A 512 243

Spawn-Join 38,984 5,075 1,098 415

latency mutex operations thanks to the inline optimization done by the compiler [66].

Overall, only libut is able to keep all threading operations below 1 µs.

The low-overhead threading support from libut allowARMQ to explore schedul-

ing options at blocking, such as spawning OneShot tasks to help draining the pipeline

and obtain performance gains. Without the userspace threading design, the schedul-

ing optimizations of ARMQ would be offsetted.

6.2.3 Speedup

Figure 6.6 presents the speedup achieved by different runtime schemes over the

baseline (i.e., original RaftLib with fixed-size queue, black bars labelled as “raft”).

Another variant of RaftLib that provides dynamically resizing ringbuffer support (grey

bars labelled as “raft dyn”) is plotted in the same figure in order to demonstrate

relative performance of ARMQ ’s dynamically resizable ringbuffer implementation

(§ 6.2.1). Three other schemes from ARMQ are PollingWorker scheduling with dy-

namically ringbuffer resizing (blue bars labelled as “pw dyn”), PollingWorker mixed

with OneShot scheduling (orange bards labelled as “mix”), and mix scheduling with

dynamic ringbuffer resizing (green bars labelled as “mix dyn”).

As we can see in Figure 6.6a, the dynamic ringbuffer allocator in the original

RaftLib has very limited performance improvement on few benchmarks (i.e., firewall ,

chasing , and bc). As described in § 6.2.1, the RaftLib ringbuffer must acquire exclusive

97

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
GEOMEAN

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

X-Gene

34
.1

4

49
.8

9

40
.3

6

65
.4

7

88
.4

6

3.73.3

27
5.

04

15
8.

29

59
.3

6

48
.3

7

26
.3

0

1.
00

1.34

1.29
1.52

raft (baseline)
raft_dyn

pw_dyn
mix

mix_dyn

(a) Core-Coupled System A

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
GEOMEAN

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

Neoverse-N1

27
.9

9

41
.0

9

23
.8

5

38
.3

0

39
.1

0

3.83.3

45
.4

8

94
.3

8

34
.0

3

16
.5

5

12
.3

7

1.
00

1.50
1.14

1.61

raft (baseline)
raft_dyn

pw_dyn
mix

mix_dyn

(b) Two-Socket System B

Figure 6.6: Speedup of different runtime schemes over the baseline runtime (i.e., the
original RaftLib). Each baseline bar is labeled with execution time in seconds for
reference.

98

access over the target ringbuffer; a condition that rarely occurs in practice (although

for very long-running applications, this may not be a huge deficit). In contrast,

ARMQ ’s implementation removes the need for this, instead having the producer

thread to add an additional buffer chunk to the linked-list ringbuffer when the queue

would otherwise be full (instead of blocking). For our benchmarks, ARMQ achieves

an appreciable performance gain when resizing is enabled. On average, the speedup

for pw dyn, and mix dyn is about 1.52× and 1.34×, respectively.

Mix scheduling, even with no dynamical resizing, is able to help address-

ing blocking as well. Figure 6.6a shows that benchmarks benefiting from from mix

scheduling usually have structures like incast (i.e., incast) or long pipelines (i.e.,

FIR) or both (i.e., chasing). The rationales behind this are that: 1) the incast/fan-in

pattern has more producers than consumers and it is more likely to have producer

blocking and OneShot tasks would help; 2) long pipeline creates more starving Polling-

Worker tasks that waste time on polling, while OneShot tasks always occupy cores

with useful computation and have better data locality (as all the stages of the long

pipeline are executed in one place). On other hand, creating too many OneShot tasks

may lead to load imbalance and hurt the performance, which is observed in bc. The

geometric mean of speedup achieved by “mix” over the baseline across all benchmarks

is about 1.29×. Figure 6.6b shows on System B, ARMQ dynamic-resizing enabled

schemes (i.e., “pw dyn”, and “mix dyn”) achieve even higher speedups on some of the

benchmarks, while the benefit of mix scheduling is weaken a bit. One more observa-

tion from Figure 6.6 is that the combining of mix scheduling with dynamic ringbuffer

(i.e., “mix dyn”) resizing does not yield a speedup higher than dynamic ringbuffer

resizing alone (i.e., “pw dyn”). This is likely because with dynamic ringbuffer resizing,

blocking on full queue would never happen (Figure 6.7b) while “mix dyn” still pays

the cost to check the condition whether spawn oneshot tasks or not.

6.2.4 Statistics

99

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc

0.1

1.0

10.0

100.0

1000.0

#
bl

oc
ki

ng
s/

ki
lo

-m
es

sa
ge

s
5734 6934

producer
consumer

(a) Blockings per 1000 Message in raft (baseline)

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc

0.01

0.10

1.00

10.00

#
sh

ot
s/

ki
lo

-m
es

sa
ge

s

387 231 861
mix
mix_dyn

(b) OneShot Tasks per 1000 Messages

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
1

10

100

1000

10000

ca
pa

ci
ty

 o
ve

r
in

it
ia

l

29K 29K 76K 36K 53K 53K 38K 38K
raft_dyn
pw_dyn
mix_dyn

(c) Ringbuffer Capacity over Initial Allocation

Figure 6.7: Statistics of blockings, OneShot tasks and ringbuffer capacity.

100

Figure 6.7a reports the statistics of how often producer tasks and consumer

tasks are blocked in the baseline runtime. As we can see, blocking on producer

enqueue and consumer dequeue exist in most benchmarks. On average, every message

passed would experience blocked at least once. This frequency of blockage implies that

considerable execution cycles are wasted (recall from § 6.1.4 that existing strategies

to deal with stalls often do not contribute to forward progress of the application).

Mix scheduling avoids blocking via spawning OneShot tasks. Figure 6.7b shows

how many OneShot tasks mix scheduling (i.e., mix, mix dyn) issues out of every

1000 messages. The difference between mix and mix dyn is that queues in mix dyn

never get filled up, so mix dyn will only spawn OneShot tasks for kernels having no

PollingWorker tasks (i.e., marked by zero-multiplier hint). For instance, the print

stage after the search stage in search have relatively low chance to execute, but

contributes many consumer blockings (Figure 6.7a), so zero-multiplier is added to

the print kernel, then mix dyn spawns OneShot tasks in search. It is similar for

chasing (the pipeline stages after filter are marked by zero-multiplier hints) except

the fan-in structure in chasing occasionally triggers producer blockings, so mix would

spawn more OneShot tasks than mix dyn on chasing . Although libut makes the cost

of task creation very low (§ 6.2.2), it is also observed that spawning OneShot tasks

too frequently leads to performance degradation: about 86% of the message in bc is

processed by OneShot tasks (Figure 6.7b), and bc is the only one that mix runtime

scheme is slower than the baseline (Figure 6.6).

Dynamically resizing ringbuffer is another approach that ARMQ takes to avoid

blocking. Figure 6.7c presents the ratio of resized ringbuffer capacity when bench-

marks finish over the initial buffer allocation. Unlike the baseline (i.e., raft dyn) that

is only able to perform resizing on tc and bc (where tasks are relatively more coarse-

grain), ARMQ gets ringbuffers resized in every benchmark. Benchmarks such as

pipeline and firewall have inline (vs. in-buffer pointers), non-trivially-copyable mes-

sage types, so raft dyn is not able to resize the ringbuffers; this is not an issue for

the ARMQ link-list-based ringbuffer. Resizing allows producer PollingWorker tasks

101

to get rid of blocking and finish earlier. If the cores freed up by earlier-terminated

producer tasks are utilized to process remaining messages, the overall performance

will be improved (e.g., pipeline, firewall , FIR), otherwise the performance remains the

same (like incast) but the CPU utilization would go down; thereby allowing external

global schedulers (e.g., those like GhOSt [45]) to schedule other applications.

6.2.5 Cache Performance

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
0B

1B

2B

3B

#
L1

D
 m

is
se

s
(b

ill
io

n)

0.
69

B

1.
53

B

3.
20

B

3.1B

5.
36

B

4.6B

5.
46

B

5.5B
raft (baseline)
raft_dyn
pw_dyn
mix
mix_dyn

0B

10B

20B

30B

31
.3

3B

31.7B

9.
58

B

6.
62

B

4.
85

B

3.
88

B

(a) Core-Coupled System A

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
0B

1B

2B

3B

#
L1

D
 m

is
se

s
(b

ill
io

n)

0.
61

B 1.
22

B

2.
27

B

3.
70

B

3.1B

2.
78

B raft (baseline)
raft_dyn
pw_dyn
mix
mix_dyn

0B

10B

20B

30B

17
.1

6B

4.
71

B

4.
00

B

3.
65

B

2.
83

B

(b) Two-Socket System B

Figure 6.8: L1D cache misses of different runtime schemes. For the purpose of visi-
bility, the left 5 benchmarks and the right 5 benchmarks use different scales.

Modern cache-heavy memory hierarchies are optimized for data reuse [89, 74,

77]. To take advantage of these hardware structures often means not only within

thread reuse but data sharing between cooperative threads, e.g., data locality. ARMQ

aims to improve data locality between kernels in the execution DAG , this section

102

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
0B

1B

2B

3B

#
L2

 d
at

a
m

is
se

s
(b

ill
io

n)

0.
17

B

0.
35

B

0.
67

B 1.
24

B

0.
83

B

raft (baseline)
raft_dyn
pw_dyn
mix
mix_dyn

0B

10B

20B

30B

30
.0

5B

1.
75

B

5.
31

B

5.
04

B

3.
53

B

(a) Core-Coupled System A

incast
outcast

pipeline
firewall fir

chasingsearch tc dc bc
0B

1B

2B

3B

#
L2

 d
at

a
m

is
se

s
(b

ill
io

n)

0.
51

B 1.
05

B 1.
57

B

2.
78

B

1.
79

B

raft (baseline)
raft_dyn
pw_dyn
mix
mix_dyn

0B

10B

20B

30B

8.
86

B

3.
65

B

3.
09

B

3.
12

B

1.
04

B

(b) Two-Socket System B

Figure 6.9: L2 cache data misses of different runtime schemes. For the purpose of
visibility, the left 5 benchmarks and the right 5 benchmarks use different scales.

103

incast
outcast

pipeline
firewall fir

chasing search tc dc bc
0.0

0.5

1.0

1.5

2.0

L1
I M

PK
I

0.
02

0.
02

0.
34

0.
22

0.
08

0.
28

0.
94

1.
33

1.
73

0.
23

raft (baseline) raft_dyn pw_dyn mix mix_dyn

(a) Core-Coupled System A

incast
outcast

 pipeline
firewall fir

chasing search tc dc bc
0.0

0.5

1.0

1.5

2.0

L1
I M

PK
I

0.
02

0.
03

0.
15

0.
12

0.
14

0.
10

0.
14

0.
23

0.
34

0.
09

raft (baseline) raft_dyn pw_dyn mix mix_dyn

(b) Two-Socket System B

Figure 6.10: L1I cache Misses Per Kilo-Instructions (MPKI) of different runtime
schemes.

104

evaluates if ARMQ hits the mark.

The data shown in Figure 6.8 and 6.9 suggest that ARMQ significantly reduces

the count of overall L1D and L2D misses across many benchmarks. On average (ge-

ometric mean), the L1D , L2D cache miss reduction obtained by pw dyn on System A

are about 40%, and 17%, respectively. It is likely that ARMQ ’s locality enhancement

techniques are responsible for this decrease, a correlation that we will investigate fur-

ther in § 6.2.6 in order to attribute causation. Regardless of the cause, fewer cache

misses correlate with the performance speedup of ARMQ (§ 6.2.3). For example,

FIR, pipeline, and firewall demonstrate the greatest execution time reduction with

ARMQ (pw dyn) while also exhibiting significant overall cache misses reduction.

When spawning and executing OneShot tasks, the same kernel-level thread

(kthread) in ARMQ switches from executing the producer compute() function to the

consumer ones. This “moving compute to data” approach trades instruction locality

for data locality. One question that naturally arises is that whether the more fre-

quent task switching in the mix scheduling causes negative impact, and if so, how

severe it is? To address this concern, Figure 6.10 reports L1I cache Misses Per Kilo-

Instructions (MPKI). On system A (Figure 6.10a), most benchmarks have instruction

cache MPKI lower than 0.5 in the baseline (raft), except search, tc, and dc. Surpris-

ingly, only on incast and bc, ARMQ gets higher L1I cache MPKI than the baseline,

and ARMQ lets none of the benchmarks’ L1I cache MPKI exceed 1.5. This is likely

because the branch predictors and instruction preftechers [30] in modern processors

are sophisticated enough to deal with those tasks having static dependencies. On Sys-

tem B (Figure 6.10b), all benchmarks have very low instruction cache MPKI (under

0.5) regardless runtime scheme. Therefore, although mix scheduling involves more

frequent task switching in scheduling, the performance impact on instruction cache

is likely negligible.

105

6.2.6 Case Study

1 2 4 8 16
multiplier ratio

0.0K

0.2K

0.4K

bl
oc

ki
ng

s/
m

es
sa

ge
s 0.6K 1.6K

prod/cons 5 Core
prod/cons N+1 Core

(a) Blocking

1 2 4 8 16
multiplier ratio

0

20

40

ti
m

e
(s

)

5 Core
N+1 Core

(b) Time

Figure 6.11: The impact of multiplier ratio on blocking and execution time. Blocking
bars are broken down between producer (bottom) and consumer (top). The little
black sticks on the bars in the time chart indicates standard deviation. From both
blocking and time perspectives, 4 is the best multiplier ratio because the throughput
ratio of the two stages in the microbenchmark is close to 4.

Multiplier Hint: To demonstrate how multiplier hints affect the performance, we

conduct a case study with a 2-stage microbenchmark similar to outcast . The firing

rate of the first stage (the producer) is about 4 times as the firing rate of the second

stage (the consumers). On the second stage, we apply a multiplier hint, which varies

from 1 to 16. Only PollingWorker tasks are used, otherwise OneShot tasks could

augment the multiplier ratio. There are two settings of CPU cores in the case study:

either with limited core count (i.e., 5 cores, bluish bars in Figure 6.11) or unlimited

(i.e., N+1 cores) cores, making sure every task running on its own core. As shown in

Figure 6.11a, the producer blocks less frequently when the multiplier ratio increases,

because there are more consumers matching up the throughput of the producer.

However, if the number of the consumers is increased over 4, starving consumers starts

competing for limited CPU cores with others. The contention causes performance

regression in Figure 6.11b. When allowing core count scales along with the number

of consumers, we observe the execution time remains stably low after multiplier ratio

is increased over 4, but there are many more consumer blockings, indicating the CPU

cores are actually utilized in a wasteful way.

106

6.3 Summary

In conclusion, this chapter presents ARMQ , a message queue runtime system,

where applications could test different strategies to handle message queue blocking

and find the most suitable one. ARMQ reduces the overhead of resizing ringbuffers

with a chunk-based ringbuffer design, and lowers the scheduling overhead via a cus-

tomized userspace threading library. By taking advantages of application hints and

system topology info, ARMQ groups tasks to keep the locality of heavy message

traffic. ARMQ proposes a scheduling policy that mixes polling with OneShot helper

threads to avoid blocking on full queues and to improve the data locality. The eval-

uation shows ARMQ outperforms the baseline up to 3.8×.

107

Chapter 7: Conclusion

Over the decades, the massive deployment has proven the success of multi-

core systems. In the foreseeable future, computing systems are likely going to con-

tinue the trend of adding more Processing Elements (PE). Meanwhile, many emerg-

ing workloads (e.g., data analytics, machine learning) are both data-intensive and

computation-intensive. How to accelerate these workloads with growing multi-core

systems is a challenging problem. Message queue task parallelism (or task data flow)

computing paradigm serves as a great harness that allows us to drive parallelizable

computation tasks in those emerging workloads on different PE s simultaneously. Mes-

sage queue task parallelism is also good at dealing with huge volume of data, which

could be sliced, packaged in message to go through a pipeline-style processing.

However, message queue task parallelism is not always able to achieve an ideal

speedup as stated by Amdahl’s Law [39] due to some inefficiencies at architecture and

system level. The first issue is the concurrent accesses to the shared queue states incur

coherence overhead, and the coherence traffic will increase along with the number of

cores, limiting the scalability. Second, there would be delay from requesting a message

to getting access when messages are buffered in multiple local storage. For example,

the private L1 cache in modern multi-level cache hierarchy is local to each core. In

addition, message-driven tasks could be blocked when queues run out of buffer or get

drained entirely. Leaving the tasks blocked wastes CPU cycles, while schedule other

task might have to pay extra overheads and disturb data locality. This dissertation

focuses on these issues in message queue task parallelism, and makes contributions

as summarized in the following section.

108

7.1 Summary

The dissertation proposes architectural supports to enhance the scalability of

message queue task parallelism, and to reduce latency as well as blocking on queue

operations.

The first contribution of the dissertation is Virtual-Link [94] scalable message

queue architecture. Virtual-Link augments multi-core architecture with an in-network

routing device. The routing device manages the shared queue states (like head, tail)

for threads using message queues, so that there is no concurrent access to a cacheline

for queue operations any more. In this way, Virtual-Link reduces the cache coherence

traffic, and enhances the scalability of message queue task parallelism. Additionally,

Virtual-Link utilizes the on-chip resources (i.e., interconnect and storage) to acceler-

ate the cross-core communication.

Another contribution of the dissertation is SPAMeR [95] producer-driven data

movement speculation mechanism. SPAMeR comes up with a prediction algorithm

that is easy to be integrated with message queue architectures. SPAMeR can adap-

tively learn how soon a consumer will request messages based on the history. This

enables the buffer having the messages to speculatively pushes a message to the

consumer ahead of time. The producer-driven speculation also helps to reduce the

consumer request traffic, letting the consumers spend more time on processing the

messages. The technique provided by SPAMeR overlaps data movement latency with

message processing time, considerably improves the performance of message queue

task parallel workloads, especially those workloads limited by consumer tasks.

Finally, the dissertation contributes ARMQ locality-aware runtime for mes-

sage queue task parallelism. ARMQ integrates several scheduling strategies handling

message queue blocking. To lower the overhead of creating and switching tasks,

ARMQ employs a state-of-the-art userspace threading implementation, and opti-

mizes it to preserve data locality between dependent tasks. To lower the overhead

of resizing, ARMQ designs a chunk-based ringbuffer, which avoids copying and con-

109

tention. ARMQ is designed as a streaming-style template library, making it easier to

be adapted by message queue task parallel workloads. There are also interfaces for

programmers to provide ARMQ runtime with hints, which is combined with system

topology information to take advantage of cache locality.

7.2 Future Works

This section explores some potential research directions to further support

message queue task parallelism in the future.

Computing systems are not only increasing the number of cores, but also

becoming more heterogeneous. Asymmetric multiprocessor (powerful big cores com-

bined with power-efficient small cores) is commonly seen in modern SoC design [34,

56, 70]. Moreover, there are domain-specific accelerators/processing units, recon-

figurable cores, gotten integrated into the processors [41, 75, 76, 26]. The initia-

tives [85, 24] to establish a standard of coherent interconnect between accelerators

and CPUs make it possible to extend Virtual-Link for heterogeneous systems. While

the question arises with this is how should cross-core synchronization accommodate

the differences between cores, so that slower cores would not hinder faster cores.

There have been proposals that apply machine learning in hardware specu-

lation, such as cache prefetcher [18, 88, 57], branch predictor [96, 46]. Given the

accuracy achieved by these machine learning approaches, it worth trying to improve

the producer-driven speculation mechanism in SPAMeR with similar machine learn-

ing models.

The scaling of message queue task parallelism is not limited within chip multi-

core processors. There are many task data flow applications deployed on large scale

distributed systems [10]. Some of those systems are managed with hardware visual-

izations (e.g., virtual machine and container), which provides more elasticity in terms

of giving more servers to applications when their load surges. This exposes more

opportunities and challenges to schedule message queue task parallel workloads while

110

preserving locality [25, 32].

111

Works Cited

[1] The go programming language. URL https://golang.org.

[2] CPP copy constructor, 2023. URL https://en.cppreference.com/w/cpp/

language/copy_constructor.

[3] Sam Ainsworth and Timothy M. Jones. Software prefetching for indirect mem-

ory accesses: A microarchitectural perspective. ACM Trans. Comput. Syst.,

36(3), jun 2019. ISSN 0734-2071. doi: 10.1145/3319393. URL https:

//doi.org/10.1145/3319393.

[4] Sam Ainsworth and Timothy M. Jones. Muontrap: Preventing cross-domain

spectre-like attacks by capturing speculative state. In Proceedings of the ACM/IEEE

47th Annual International Symposium on Computer Architecture, ISCA ’20, page

132–144. IEEE Press, 2020. ISBN 9781728146614. doi: 10.1109/ISCA45697.

2020.00022. URL https://doi.org/10.1109/ISCA45697.2020.00022.

[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: high-

level and efficient streaming on multi-core (A FastFlow short tutorial) . In

Programming Multi-core and Many-core Computing Systems, chapter 13. Wiley,

2011.

[6] Venkat Anantharam. The optimal buffer allocation problem. IEEE Transac-

tions on Information Theory, 35(4):721–725, 1989.

[7] Apache. Apache storm, 2023. URL https://storm.apache.org/index.html.

[Online; accessed 07-May-2023].

[8] Revere-AMU System Architecture. Arm Limited, September 2019. URL https:

//bit.ly/3kajJuQ.

112

[9] Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T. Foster.

Compiler techniques for massively scalable implicit task parallelism. In SC ’14:

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 299–310, 2014. doi: 10.1109/SC.2014.

30.

[10] Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad Van Moorsel,

and Rajiv Ranjan. Orchestrating big data analysis workflows in the cloud:

Research challenges, survey, and future directions. ACM Comput. Surv., 52(5),

sep 2019. ISSN 0360-0300. doi: 10.1145/3332301. URL https://doi.org/10.

1145/3332301.

[11] Kenneth E Batcher. Sorting networks and their applications. In Proceedings

of the April 30–May 2, 1968, spring joint computer conference, pages 307–314,

1968.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-

hania. The multikernel: A new os architecture for scalable multicore systems.

In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, SOSP ’09, page 29–44, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605587523. doi: 10.1145/1629575.1629579.

URL https://doi.org/10.1145/1629575.1629579.

[13] Jonathan C. Beard and Roger D. Chamberlain. Use of a Levy distribution for

modeling best case execution time variation. In A. Horváth and K. Wolter, edi-

tors, Computer Performance Engineering, volume 8721 of Lecture Notes in Com-

puter Science, pages 74–88. Springer International Publishing, September 2014.

ISBN 978-3-319-10884-1. doi: http://dx.doi.org/10.1007/978-3-319-10885-8 6.

[14] Jonathan C Beard, Peng Li, and Roger D Chamberlain. Raftlib: A c++

template library for high performance stream parallel processing. Interna-

113

tional Journal of High Performance Computing Applications, 2016. doi: http:

//dx.doi.org/10.1177/1094342016672542.

[15] S. Bell, B. Edwards, J. Amann, R. Conlin, Joyce, V. Leung, J. MacKay, M. Reif,

L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,

E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook.

Tile64 - processor: A 64-core soc with mesh interconnect. In 2008 IEEE In-

ternational Solid-State Circuits Conference - Digest of Technical Papers, pages

88–598, Feb 2008. doi: 10.1109/ISSCC.2008.4523070.

[16] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote proce-

dure call. SIGOPS Oper. Syst. Rev., 23(5):102–113, nov 1989. ISSN 0163-5980.

doi: 10.1145/74851.74861. URL https://doi.org/10.1145/74851.74861.

[17] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.

Levy. User-level interprocess communication for shared memory multiproces-

sors. ACM Trans. Comput. Syst., 9(2):175–198, may 1991. ISSN 0734-

2071. doi: 10.1145/103720.114701. URL https://doi.org/10.1145/103720.

114701.

[18] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and

Daniel A. Jiménez. Perceptron-based prefetch filtering. In 2019 ACM/IEEE

46th Annual International Symposium on Computer Architecture (ISCA), pages

1–13, 2019.

[19] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay. A formal

security analysis of even-odd sequential prefetching in profiled cache-timing at-

tacks. In Proceedings of the Hardware and Architectural Support for Security and

Privacy 2016, HASP 2016, New York, NY, USA, 2016. Association for Com-

puting Machinery. ISBN 9781450347693. doi: 10.1145/2948618.2948624. URL

https://doi.org/10.1145/2948618.2948624.

114

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit.

News, 39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718.

URL https://doi.org/10.1145/2024716.2024718.

[21] boost. Class template queue. https://bit.ly/37hAMHJ, 2020. Accessed:

2020-08-19.

[22] Bérenger Bramas. Impact study of data locality on task-based applications

through the heteroprio scheduler. PeerJ. Computer science, 5:e190, 05 2019.

doi: 10.7717/peerj-cs.190.

[23] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking

and prefetching caches. In Proceedings of the Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS V, page 51–61, New York, NY, USA, 1992. Association for Computing

Machinery. ISBN 0897915348. doi: 10.1145/143365.143486. URL https:

//doi.org/10.1145/143365.143486.

[24] CCIX Consortium. CCIX™ Consortium Enables Next Generation Compute Ar-

chitectures with the Availability of Base Specification 1.0 [Press release]. URL

https://tinyurl.com/2tdd9z96, 2018. URL https://tinyurl.com/2tdd9z96.

[25] Andrei-Alin Corodescu, Nikolay Nikolov, Akif Quddus Khan, Ahmet Soylu, Mih-

hail Matskin, Amir H. Payberah, and Dumitru Roman. Locality-aware workflow

orchestration for big data. In Proceedings of the 13th International Conference

on Management of Digital EcoSystems, MEDES ’21, page 62–70, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383141.

doi: 10.1145/3444757.3485106. URL https://doi.org/10.1145/3444757.

3485106.

115

[26] Vidushi Dadu and Tony Nowatzki. Taskstream: Accelerating task-parallel work-

loads by recovering program structure. In Proceedings of the 27th ACM Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’22, page 1–13, New York, NY, USA, 2022. Asso-

ciation for Computing Machinery. ISBN 9781450392051. doi: 10.1145/3503222.

3507706. URL https://doi.org/10.1145/3503222.3507706.

[27] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory

programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

doi: 10.1109/99.660313.

[28] Andreas Diavastos and Pedro Trancoso. Auto-tuning static schedules for task

data-flow applications. In Proceedings of the 1st Workshop on AutotuniNg

and ADaptivity AppRoaches for Energy Efficient HPC Systems, ANDARE ’17,

New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450353632. doi: 10.1145/3152821.3152879. URL https://doi.org/10.

1145/3152821.3152879.

[29] Andreas Diavastos and Pedro Trancoso. Switches: A lightweight runtime for

dataflow execution of tasks on many-cores. ACM Trans. Archit. Code Optim.,

14(3), sep 2017. ISSN 1544-3566. doi: 10.1145/3127068. URL https://doi.

org/10.1145/3127068.

[30] Babak Falsafi and Thomas F. Wenisch. A Primer on Hardware Prefetching.

Morgan and Claypool Publishers, 2014. ISBN 1608459527.

[31] Reza Fotohi, Mehdi Effatparvar, Fateme Sarkohaki, Shahram Behzad, et al.

An improvement over threads communications on multi-core processors. arXiv

preprint arXiv:1909.11644, 2019.

[32] Alexander Fuerst and Prateek Sharma. Locality-aware load-balancing for server-

less clusters. In Proceedings of the 31st International Symposium on High-

Performance Parallel and Distributed Computing, HPDC ’22, page 227–239,

116

New York, NY, USA, 2022. Association for Computing Machinery. ISBN

9781450391993. doi: 10.1145/3502181.3531459. URL https://doi.org/10.

1145/3502181.3531459.

[33] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,

and Saman Amarasinghe. A stream compiler for communication-exposed ar-

chitectures. In Proceedings of the 10th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS X,

page 291–303, New York, NY, USA, 2002. Association for Computing Ma-

chinery. ISBN 1581135742. doi: 10.1145/605397.605428. URL https:

//doi.org/10.1145/605397.605428.

[34] P. Greenhalgh. big.little processing with arm cortex-a15 & cortext-a7. ARM

White Paper, 2011.

[35] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-

gard. Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’16, page 368–379, New York, NY, USA, 2016. Associa-

tion for Computing Machinery. ISBN 9781450341394. doi: 10.1145/2976749.

2978356. URL https://doi.org/10.1145/2976749.2978356.

[36] Y. Guo, V. Cave, V. Sarkar, and J. Zhao. Slaw: A scalable locality-aware

adaptive work-stealing scheduler. In 2010 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS), pages 1–12, Los Alamitos, CA, USA,

apr 2010. IEEE Computer Society. doi: 10.1109/IPDPS.2010.5470425. URL

https://doi.ieeecomputersociety.org/10.1109/IPDPS.2010.5470425.

[37] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang. Adversarial prefetch: New cross-

core cache side channel attacks. In 2022 2022 IEEE Symposium on Security

and Privacy (SP) (SP), pages 1550–1550, Los Alamitos, CA, USA, may 2022.

117

IEEE Computer Society. doi: 10.1109/SP46214.2022.00121. URL https:

//doi.ieeecomputersociety.org/10.1109/SP46214.2022.00121.

[38] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: A scalable

locality-aware adaptive work-stealing scheduler for multi-core systems. In Pro-

ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’10, page 341–342, New York, NY, USA, 2010.

Association for Computing Machinery. ISBN 9781605588773. doi: 10.1145/

1693453.1693504. URL https://doi.org/10.1145/1693453.1693504.

[39] John L. Gustafson. Amdahl’s Law, pages 53–60. Springer US, Boston, MA,

2011. ISBN 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4 77. URL

https://doi.org/10.1007/978-0-387-09766-4_77.

[40] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear. The Art of Multiprocessor

Programming. Elsevier Science, 2020. ISBN 9780123914064. URL https:

//books.google.com/books?id=7MqcBAAAQBAJ.

[41] Mark D. Hill and Vijay Janapa Reddi. Accelerator-level parallelism, 2019.

[42] Pieter Hintjens. Zeromq: the guide. URL http://zeromq.org, 2010.

[43] Tsung-Wei Huang, Yibo Lin, Chun-Xun Lin, Guannan Guo, and Martin D. F.

Wong. Cpp-taskflow: A general-purpose parallel task programming system at

scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 40(8):1687–1700, 2021. doi: 10.1109/TCAD.2020.3025075.

[44] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. Taskflow: A

lightweight parallel and heterogeneous task graph computing system. IEEE

Trans. Parallel Distrib. Syst., 33(6):1303–1320, jun 2022. ISSN 1045-9219. doi:

10.1109/TPDS.2021.3104255. URL https://doi.org/10.1109/TPDS.2021.

3104255.

118

[45] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rho-

den, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Jack Turner, and Christos

Kozyrakis. ghost: Fast and flexible user-space delegation of linux schedul-

ing. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-

tems Principles CD-ROM, page 588–604, New York, NY, USA, 2021. URL

https://doi.org/10.1145/3477132.3483542.

[46] Siavash Z. Kamali. Using Convolutional Neural Networks to Improve Branch

Prediction. PhD thesis, The University of Texas at Austin, Austin TX, 2022.

[47] Dongkeun Kim and Donald Yeung. Design and evaluation of compiler algo-

rithms for pre-execution. In Proceedings of the 10th International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS X, page 159–170, New York, NY, USA, 2002. Association for Com-

puting Machinery. ISBN 1581135742. doi: 10.1145/605397.605415. URL

https://doi.org/10.1145/605397.605415.

[48] Dongkeun Kim and Donald Yeung. A study of source-level compiler algorithms

for automatic construction of pre-execution code. ACM Trans. Comput. Syst.,

22(3):326–379, aug 2004. ISSN 0734-2071. doi: 10.1145/1012268.1012270.

URL https://doi.org/10.1145/1012268.1012270.

[49] L. Kleinrock. Queueing Systems. Volume 1: Theory. Wiley-Interscience, 1975.

[50] Rakesh Krishnaiyer, Emre Kultursay, Pankaj Chawla, Serguei Preis, Anatoly

Zvezdin, and Hideki Saito. Compiler-based data prefetching and streaming non-

temporal store generation for the intel(r) xeon phi(tm) coprocessor. In 2013

IEEE International Symposium on Parallel and Distributed Processing, Work-

shops and Phd Forum, pages 1575–1586, 2013. doi: 10.1109/IPDPSW.2013.231.

[51] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: Ar-

chitectural support for fine-grained parallelism on chip multiprocessors. In Pro-

ceedings of the 34th Annual International Symposium on Computer Architecture,

119

ISCA ’07, page 162–173, New York, NY, USA, 2007. Association for Comput-

ing Machinery. ISBN 9781595937063. doi: 10.1145/1250662.1250683. URL

https://doi.org/10.1145/1250662.1250683.

[52] Eric Lau, Jason E Miller, Inseok Choi, Donald Yeung, Saman Amarasinghe,

and Anant Agarwal. Multicore performance optimization using partner cores.

In 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar 11), Berke-

ley, CA, May 2011. USENIX Association. URL https://www.usenix.org/

conference/hotpar11/multicore-performance-optimization-using-partner-cores.

[53] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A lock-free, cache-

efficient multi-core synchronization mechanism for line-rate network traffic mon-

itoring. In 2010 IEEE International Symposium on Parallel and Distributed

Processing (IPDPS), pages 1–12, 2010. doi: 10.1109/IPDPS.2010.5470368.

[54] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A lock-free, cache-

efficient multi-core synchronization mechanism for line-rate network traffic mon-

itoring. In 2010 IEEE International Symposium on Parallel & Distributed Pro-

cessing (IPDPS), pages 1–12, 2010. doi: 10.1109/IPDPS.2010.5470368.

[55] Sanghoon Lee, Devesh Tiwari, Yan Solihin, and James Tuck. Haqu: Hardware-

accelerated queueing for fine-grained threading on a chip multiprocessor. In

2011 IEEE 17th International Symposium on High Performance Computer Ar-

chitecture, pages 99–110. IEEE, 2011.

[56] Taehee Lee, Dongkeun Kim, and Joonseok Kim. Exynos 1080 high-performance,

low-power cpu and gpu with amigo. In 2021 IEEE Hot Chips 33 Symposium

(HCS), pages 1–14, 2021. doi: 10.1109/HCS52781.2021.9567394.

[57] Manel Lurbe, Josué Feliu, Salvador Petit, Maria E. Gómez, and Julio Sahuquillo.

Deepp: Deep learning multi-program prefetch configuration for the ibm power

8. IEEE Transactions on Computers, 71(10):2646–2658, 2022. doi: 10.1109/

TC.2021.3139997.

120

[58] John D McCalpin et al. Memory bandwidth and machine balance in current

high performance computers. IEEE computer society technical committee on

computer architecture newsletter, 2(19–25), 1995.

[59] Niall McDonnell and Gage Eads. Queue Management and Load Balancing on

Intel® Architecture. https://intel.ly/3hY0Zy8, 2020. Accessed: 2021-01-09.

[60] Gabriele Mencagli, Massimo Torquati, Dalvan Griebler, Marco Danelutto, and

Luiz Gustavo L. Fernandes. Raising the parallel abstraction level for streaming

analytics applications. IEEE Access, 7:131944–131961, 2019. doi: 10.1109/

ACCESS.2019.2941183.

[61] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-

blocking and blocking concurrent queue algorithms. In Proceedings of the Fif-

teenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’96, page 267–275, New York, NY, USA, 1996. Association for Computing

Machinery. ISBN 0897918002. doi: 10.1145/248052.248106. URL https:

//doi.org/10.1145/248052.248106.

[62] Todd C. Mowry. Tolerating latency through software-controlled data prefetching.

PhD thesis, Stanford University, Stanford CA, 1994.

[63] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin.

Graphbig: understanding graph computing in the context of industrial solutions.

In SC ’15: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–12, 2015. doi: 10.1145/

2807591.2807626.

[64] Ajeya Naithani, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout. Vec-

tor runahead. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA), pages 195–208, 2021. doi: 10.1109/ISCA52012.

2021.00024.

121

[65] G. Ottoni, R. Rangan, A. Stoler, and D.I. August. Automatic thread extraction

with decoupled software pipelining. In 38th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’05), pages 12 pp.–118, 2005. doi:

10.1109/MICRO.2005.13.

[66] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-

akrishnan. Shenango: Achieving high CPU efficiency for latency-sensitive dat-

acenter workloads. In 16th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19), pages 361–378, Boston, MA, February 2019.

USENIX Association. ISBN 978-1-931971-49-2. URL https://www.usenix.

org/conference/nsdi19/presentation/ousterhout.

[67] perf. perf: Linux profiling with performance counters. https://perf.wiki.

kernel.org/index.php/Main_Page, 2023. Accessed: 2023-05-09.

[68] Steven J. Plimpton and Tim Shead. Streaming data analytics via message

passing with application to graph algorithms. Journal of Parallel and Distributed

Computing, 74(8):2687–2698, 2014. ISSN 0743-7315. doi: https://doi.org/

10.1016/j.jpdc.2014.04.001. URL https://www.sciencedirect.com/science/

article/pii/S0743731514000884.

[69] DPAA QorIQ. Primer for software architecture. Technical report, Technical

report, Freescale Semiconductor Inc, 2012.

[70] Qualcomm. Snapdragon 888+5g mobile platform, 2021.

[71] T. Ramı́rez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero. Efficient runa-

head threads. In 2010 19th International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2010.

[72] Karl Rupp. Microprocessor trend data, 2022. URL https://github.com/

karlrupp/microprocessor-trend-data.

122

[73] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos

Kozyrakis. Dynamic fine-grain scheduling of pipeline parallelism. In Proceedings

of the 2011 International Conference on Parallel Architectures and Compilation

Techniques, PACT ’11, page 22–32, USA, 2011. IEEE Computer Society. ISBN

9780769545660. doi: 10.1109/PACT.2011.9. URL https://doi.org/10.1109/

PACT.2011.9.

[74] Andreas Sembrant, Erik Hagersten, and David Black-Schaffer. Data place-

ment across the cache hierarchy: Minimizing data movement with reuse-aware

placement. In 2016 IEEE 34th International Conference on Computer Design

(ICCD), pages 117–124, 2016. doi: 10.1109/ICCD.2016.7753269.

[75] Yakun Sophia Shao and David Brooks. Morgan & Claypool, 2015. ISBN 978-1-

627-05832-2. URL https://ieeexplore.ieee.org/servlet/opac?bknumber=

7347037.

[76] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,

Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,

Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,

C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. Simba: Scaling

deep-learning inference with multi-chip-module-based architecture. In Proceed-

ings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO ’52, page 14–27, New York, NY, USA, 2019. Association for

Computing Machinery. ISBN 9781450369381. doi: 10.1145/3352460.3358302.

URL https://doi.org/10.1145/3352460.3358302.

[77] Fanfan Shen, Yanxiang He, Jun Zhang, Qingan Li, Jianhua Li, and Chao Xu.

Reuse locality aware cache partitioning for last-level cache. Computers & Elec-

trical Engineering, 74:319–330, 2019. ISSN 0045-7906. doi: https://doi.org/

10.1016/j.compeleceng.2019.01.020. URL https://www.sciencedirect.com/

science/article/pii/S0045790618307572.

123

[78] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom

Hur. Unveiling hardware-based data prefetcher, a hidden source of information

leakage. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, page 131–145, New York, NY, USA, 2018.

Association for Computing Machinery. ISBN 9781450356930. doi: 10.1145/

3243734.3243736. URL https://doi.org/10.1145/3243734.3243736.

[79] SHM. The open group base specifications issue 7, 2018 edition ieee std 1003.1-

2017 (revision of ieee std 1003.1-2008). https://bit.ly/2Hfww0w. Accessed

October 2020.

[80] sstsimulator. Ember communication pattern library, 2020. URL https://

github.com/sstsimulator/ember.

[81] Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate prediction

of cmos device performance from 180nm to 7nm. Integration, 58:74 – 81, 2017.

ISSN 0167-9260. doi: https://doi.org/10.1016/j.vlsi.2017.02.002. URL http:

//www.sciencedirect.com/science/article/pii/S0167926017300755.

[82] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.

Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. Freepdk: An

open-source variation-aware design kit. In 2007 IEEE International Conference

on Microelectronic Systems Education (MSE’07), pages 173–174, 2007. doi:

10.1109/MSE.2007.44.

[83] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, and Pat

Hanrahan. Gramps: A programming model for graphics pipelines. ACM Trans.

Graph., 28(1), feb 2009. ISSN 0730-0301. doi: 10.1145/1477926.1477930. URL

https://doi.org/10.1145/1477926.1477930.

[84] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A

language for streaming applications. In R. Nigel Horspool, editor, Compiler

124

Construction, pages 179–196, Berlin, Heidelberg, 2002. Springer Berlin Heidel-

berg. ISBN 978-3-540-45937-8.

[85] S. Van Doren. Abstract - hoti 2019: Compute express link. In 2019 IEEE

Symposium on High-Performance Interconnects (HOTI), pages 18–18, 2019. doi:

10.1109/HOTI.2019.00017.

[86] Sevin Varoglu and Stephen Jenks. Architectural support for thread communi-

cations in multi-core processors. Parallel Computing, 37(1):26–41, 2011.

[87] VIRTIO. Virtual I/O Device (VIRTIO) Version 1.1. https://bit.ly/3jaEqWf.

Accessed October 2019.

[88] Haoyuan Wang and Zhiwei Luo. Data cache prefetching with perceptron learn-

ing, 2017.

[89] Jiajun Wang. Reuse Aware Data Placement Schemes for Multilevel Cache Hi-

erarchies. PhD thesis, The University of Texas at Austin, Austin TX, 2019.

[90] Yipeng Wang, Ren Wang, Andrew Herdrich, James Tsai, and Yan Solihin. Caf:

Core to core communication acceleration framework. In 2016 International

Conference on Parallel Architecture and Compilation Techniques, pages 351–362.

IEEE, 2016.

[91] Scott Wasson. Inside ARM’s Cortex-A72 microarchitecture. https://bit.ly/

3sf0a9h, 2015. Accessed: 2021-01-09.

[92] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An api for

programming with millions of lightweight threads. In 2008 IEEE International

Symposium on Parallel and Distributed Processing, pages 1–8, 2008. doi: 10.

1109/IPDPS.2008.4536359.

[93] Markus Wittmann and Georg Hager. A proof of concept for optimizing task

parallelism by locality queues, 2009.

125

[94] Qinzhe Wu, Jonathan C. Beard, Ashen Ekanayake, Andreas Gerstlauer, and

Lizy K. John. Virtual-link: A scalable multi-producer multi-consumer mes-

sage queue architecture for cross-core communication. 2021 IEEE International

Parallel and Distributed Processing Symposium, pages 182–191, 2021.

[95] Qinzhe Wu, Ashen Ekanayake, Ruihao Li, Jonathan Beard, and Lizy John.

Spamer: Speculative push for anticipated message requests in multi-core sys-

tems. In Proceedings of the 51st International Conference on Parallel Pro-

cessing, ICPP ’22, New York, NY, USA, 2023. Association for Computing

Machinery. ISBN 9781450397339. doi: 10.1145/3545008.3545044. URL

https://doi.org/10.1145/3545008.3545044.

[96] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N. Patt. Branch-

net: A convolutional neural network to predict hard-to-predict branches. In

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 118–130, 2020. doi: 10.1109/MICRO50266.2020.00022.

126

