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ABSTRACT 

Investigating the Interplay between Early Life Stress, Acute Secondary 
Pathogenesis, and Chronic Hippocampal Impairments in Young Mice with 

Traumatic Brain Injury 

Kaila N Parker, Ph.D. 

The University of Texas at Austin, 2023 

Supervisor:  Linda J. Noble-Haeusslein, Ph.D. 
 

While Traumatic brain injury (TBI) is the leading cause of disability in children, it is unclear 

how early life stress (ELS) may act as a determinant of long-term recovery in brain-injured 

children. A murine model of ELS preceding TBI at postnatal day (P)21 addressed the following: 

regionally specific acute pathogenesis of the hippocampus after ELS+TBI, are these early 

changes predictive of hippocampal damage and impairment at adulthood. Males and females 

were exposed to ELS (P2-9) with the limited bedding nestlet (LBN) model, randomized to TBI 

or sham, and euthanized at P22 or adulthood. At P22, ELISAs revealed an upregulation of IL-

1B, IL-6, TNFa, and IFNg in both sexes after injury. ELS+TBI elevated IL-1B, IL-10, TNFa, 

and IFNg in males compared to TBI. Iba-1 and caspase-3 were evaluated in hippocampal 

subregions. While TBI increased microglial density in both sexes, ELS+TBI increased microglial 

density in male CA2 and CA3 but only in the CA3 in females compared to TBI. Quantification 

of caspase-3 revealed apoptosis in males and females after TBI. ELS + TBI increased apoptosis 

in CA1 and CA3 in males and females compared to TBI. Adulthood learning and memory were 

assessed with the NOR and Barnes Maze. Compared to TBI, ELS+TBI reduced novelty 

preference in females and increased path length to target in both sexes. Hippocampal neuron loss 

after ELS+TBI was evaluated at adulthood. TBI significantly reduced neurons in all subregions; 

ELS+TBI reduced neurons in the CA1 region in females only. These findings highlight 
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hippocampal vulnerability after ELS+TBI and ELS prior to a TBI may enhance acute 

pathogenesis in males. Correlation matrices determined hippocampal acute pathogenesis is 

predictive of neuronal loss at adulthood and is associated with learning and memory 

impairments. Males and females were assessed for all outcomes. Both sexes showed similar 

vulnerability to secondary pathogenesis following TBI and adulthood impairments in learning 

and memory; males showed greater vulnerability to acute pathogenesis and females showed 

greater vulnerability to adulthood outcomes. These findings may advocate for opportunities to 

tailor therapies specific to each sex. Thus, developing pre-clinical biomarkers to predict long-

term recovery may continue to bolster care management. 
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Chapter 1: Introduction 
 
 
1.1 Children and Traumatic Brain Injuries 

According to the Centers for Disease Control (Centers for Disease Control, 2014), 

children (age 0-17) are more likely to sustain a traumatic brain injury (TBI), with those 4 years 

and under at highest risk. Here I focus on the developing brain, due to the high prevalence of 

TBIs in this age group. I address how early life stress (ELS) alters acute secondary pathogenesis 

and long-term recovery after an early age brain injury.  

 

1.2 Evolution of the injury  

TBI results from both a primary insult, due to the direct tearing and shearing of brain 

structures, and a secondary cascade of adverse events that begins within minutes post injury and 

includes disruption of the blood-brain barrier, vasogenic and cytotoxic edema, excitotoxicity, 

neuroinflammation, dysregulation of metabolism, and cell death (See reviews, Simon et al., 

(Simon, McGeachy et al. 2017) and Potts et al. (Potts, Koh et al. 2006)). With low antioxidant 

reserves, the developing brain is rendered more vulnerable to these adverse secondary events 

(Bayir, Kagan et al. 2002, Fan, Yamauchi et al. 2003, Bayir, Kochanek et al. 2006, Tsuru-

Aoyagi, Potts et al. 2009). Moreover, injury to the developing brain disrupts normal 

developmental processes, including myelination, synaptogenesis, synaptic pruning, and 

gliogenesis, each of which contribute to long-term brain function ((Scheff, Price et al. 2005, 

Tasker 2006, Wilde, Chu et al. 2006, Threlkeld, Rosen et al. 2007, Domowicz, Wadlington et al. 

2018) and See review, Semple et al. (Semple, Blomgren et al. 2013)). These disruptions and 

subsequent progressive neurodegeneration adversely affect normal progression of age-dependent 

behaviors, such as social cognition, social play, social interaction, working memory, and skill 
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acquisition. When these key stages are disrupted during early childhood, risk-taking tendencies, 

decreased social interactions, novelty seeking, emotional instability, and impulsivity may emerge 

during adolescence (Anderson and Catroppa 2005, Anderson, Catroppa et al. 2005, Catroppa, 

Anderson et al. 2008, Catroppa, Anderson et al. 2008, Anderson, Beauchamp et al. 2013, Ryan, 

Anderson et al. 2014). 

 

1.3 The Developing Brain and TBIs  

A child is more vulnerable to a TBI than an adult due to unique physical attributes of the 

young brain and body. With a larger head to body ratio and weak musculature of the neck 

(Young 1966), the child’s brain is more likely to be exposed to greater acceleration/deceleration 

forces, resulting in a higher incidence of diffuse axonal injury and cerebral edema (Meaney, 

Smith et al. 1995, Tong, Ashwal et al. 2003, Tong, Ashwal et al. 2004). Additionally, the young 

brain may sustain greater damage from an impact due to a thin calvarium (Hirsch and Evans 

1965, Cory, Jones et al. 2001). Beyond these general physical features, recovery after an early 

age TBI is also influenced by characteristics of the lesion, such as severity, location, focal or 

diffuse patterns of damage, and laterality of injury, each of which may impact outcomes 

(Chapman and McKinnon 2000, Anderson, Catroppa et al. 2005, Wilde, Hunter et al. 2012, 

Lindsey, Wilde et al. 2019). Children with large, more diffuse, and/or bilateral injuries show the 

poorest performance across cognitive domains (Anderson, Damasio et al. 2000, Eslinger and 

Biddle 2000, Anderson and Catroppa 2005, Catroppa, Anderson et al. 2008, Catroppa, Anderson 

et al. 2008, Lindsey, Wilde et al. 2019).  

1.3.1 Biological sex is also a determinant of recovery after an early age TBI  
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Beyond genetic and endocrine differences (De Vries, Rissman et al. 2002), sex 

differences also manifest in the timing of the closure of sensitive developmental periods, which 

occurs earlier in males than in females (Nugent, Wright et al. 2015). Clinical studies of brain-

injured children likewise identify differences between sexes. For example, females who sustain a 

TBI during childhood are more likely to internalize emotional problems such as depression and 

anxiety, whereas males may display emotional problems in the form of substance abuse and 

criminal behaviors (Gerring, Slomine et al. 2002, Moreno and McKerral 2015, Scott, McKinlay 

et al. 2015, Despins, Turkstra et al. 2016) . Similarly, other clinical studies have reported that 

females have an increased risk for developing emotional and psychiatric disorders after injury, 

while males present an increased risk for social and behavioral problems (i.e. communication, 

social cognition, attention/executive function) within the first year following an early age TBI 

(Schwartz, Taylor et al. 2003, Scott, McKinlay et al. 2015, Lindsey, Wilde et al. 2019) 

1.3.2 Critical periods of brain development  

A TBI during the early postnatal period adversely affects maturation of key 

developmental processes. Brain development spans early gestation to early adulthood (Lenroot 

and Giedd 2006). During early postnatal development, the brain’s acquisition of new functions 

and capabilities is highly dependent upon experiential and environmental influences (Lenroot 

and Giedd 2006). Critical periods of brain development are characterized by robust synaptic 

pruning, myelination, programmed cell death, alterations in density of neurotransmitters, 

gliogenesis, and white/gray matter differentiation (Crain, Cotman et al. 1973, Huttenlocher 1979, 

Lidow, Goldman-Rakic et al. 1991, Giedd, Blumenthal et al. 1999, Hu, Liu et al. 2000, 

Anderson, Catroppa et al. 2005, Tyzio, Holmes et al. 2007). While some developmental 

processes, including the maturation of the immune system and the blood-brain barrier, are mostly 
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complete by birth (Daneman, Zhou et al. 2010), others, including synaptogenesis, myelination, 

and programmed cell death extend well beyond the postnatal period and into adulthood (Giedd, 

Blumenthal et al. 1999). In the human brain, synaptogenesis begins before birth and peaks 

around the age of 3 (Huttenlocher 1979). A subsequent decrease in synaptogenesis coincides 

with increased synaptic pruning, which continues over the next several decades (Giedd, 

Blumenthal et al. 1999). Programmed cell death peaks during gestation (Huttenlocher 1979) and 

also extends into adulthood (Huttenlocher 1979). While myelination is most prominent during 

years 2-3, this process also continues into early adulthood (Huttenlocher 1979, Keshavan, 

Diwadkar et al. 2002). Importantly, each of these developmental processes are critical for normal 

brain function at adulthood (Huttenlocher 1979). 

The first several years of life are considered a sensitive period of growth, in which key 

developmental processes shape brain function and behavior at adulthood. The importance of this 

period of development has been demonstrated in studies of social behaviors, sensory experiences 

and cognition. Toddler-aged children are characterized by a high level of activity and 

sociability (Terranova and Laviola 2005). Early age brain injuries may alter the shaping and 

maturation of these behaviors. As sociability continues to develop into adolescence ((Burnett, 

Sebastian et al. 2011, Mills, Lalonde et al. 2014) and See review, Blakemore,2012 (Blakemore 

2008)), a disruption in the toddler aged child may interfere with the proper sequence of age-

appropriate social behaviors and increase the risk of psychiatric disorders (Bondar, Lepeshko et 

al. 2018). Children, during this critical period, are also particularly sensitive to sensory 

experiences as they shape neural circuits involved in basic sensory processes. For example, light 

and sound shape the formation of the visual and auditory cortices, respectively, and dictate visual 

and auditory processing (Hubel and Wiesel 1970, Jenkins and Merzenich 1984). Prolonged 
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deprivation of either stimulus during this period results in an impairment in sensory processing 

later on in life (Hubel and Wiesel 1970, Jenkins and Merzenich 1984, Fine, Wade et al. 2003, 

Lewis and Maurer 2005). Similarly, early age TBI may also result in poorer cognitive 

outcomes (Levin, Hanten et al. 2002, Anderson, Catroppa et al. 2005, Anderson, Godfrey et al. 

2012, Karver, Wade et al. 2012, Semple, Canchola et al. 2012, Anderson, Spencer-Smith et al. 

2014, Karver, Kurowski et al. 2014). This relationship between early age TBI and cognitive 

abilities is considered non-linear and is likely sensitive to injury at critical periods of plasticity 

and behavioral development (Kolb, Gibb et al. 1994, Kozlowski and Schallert 1998). The earlier 

the age of a TBI, the higher the risk for delayed or arrested development of cognitive and higher-

level executive functioning (Catroppa, Anderson et al. 2008, Anderson, Godfrey et al. 2012, 

Karver, Wade et al. 2012).  

 

1.4 Early life stress (ELS)  

Children who are exposed to early life stress are at risk for developing long-term 

psychosocial impairments and chronic illnesses at adulthood (Felitti, Anda et al. 1998, Richards 

and Wadsworth 2004, Danese, Moffitt et al. 2009, Flaherty, Thompson et al. 2013, Kelly-Irving, 

Lepage et al. 2013, Giovanelli, Reynolds et al. 2016). ELS may encompass a variety of scenarios 

including extreme poverty, parental loss, malnutrition, domestic/school/community violence, 

trauma, child neglect and/or abuse, altered parental behavior (Briere and Runtz 1988, Cavaiola 

and Schiff 1988, Chu and Dill 1990, Riggs, Alario et al. 1990, Moeller, Bachmann et al. 1993, 

Gould, Stevens et al. 1994, Rorty, Yager et al. 1994, McCauley, Kern et al. 1997, Banyard 1999, 

Bensley, Van Eenwyk et al. 1999, Merrill, Newell et al. 1999), and institutional 

rearing (Tottenham, Hare et al. 2010). ELS impacts many aspects of brain health and 
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development, including metabolism, circadian rhythms, neuroendocrine function, neuro-immune 

interactions, and oxidative stress (Vandewalle, Middleton et al. 2007, Rice, Sandman et al. 2008, 

Kalsbeek, Yi et al. 2010, van Reedt Dortland, Giltay et al. 2010, van Reedt Dortland, Giltay et al. 

2012, Wilson, Boyle et al. 2012). Children who experience ELS also have a greater risk for 

diabetes, obesity-related problems, cardiovascular diseases, autoimmune disease, cancer, and 

depression at adulthood as well as early mortality (Felitti, Anda et al. 1998, Caspi, Sugden et al. 

2003, Richards and Wadsworth 2004, Danese, Moffitt et al. 2009, Dalle Molle, Portella et al. 

2012, Flaherty, Thompson et al. 2013, Kelly-Irving, Lepage et al. 2013, Giovanelli, Reynolds et 

al. 2016). 

1.4.1 The social environment and TBI  

In a seminal paper, Fletcher et al. (Fletcher, Ewing-Cobbs et al. 1990) questioned why 

antecedent psychosocial behavioral traits, such as adaptive behavior, communication, daily 

living, and socialization were not considered in studies of brain-injured children. Such 

questioning has served as a catalyst for subsequent research to examine the moderating role of 

the social environment before or shortly after an early age TBI. In long term clinical studies of 

sociocognitive functioning after childhood TBI (Catroppa, Anderson et al. 2008, Ryan, Anderson 

et al. 2014), individuals at adulthood showed poorer emotional perception, as evidenced by 

deficits in both recognizing and interpreting emotions based upon facial and vocal cues (Ryan, 

Anderson et al. 2014). These findings are thought to reflect vulnerability of the immature social 

brain to this insult, with sociocognitive deficits resulting from disrupted brain development and 

inability to acquire social skills at the appropriate developmental time (Yeates, Bigler et al. 

2007). Importantly, long term deficits in emotional perception may be linked to a child’s 

socioeconomic status and levels of family intimacy at the time of injury (Catroppa, Anderson et 
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al. 2008). Catroppa et al., reported the first prospective study that compared pre-injury and 6 

months post-injury behavioral outcomes with social participation being predicted by both the 

severity of the TBI and pre-injury deficits, including lower social participation (Catroppa et al., 

2006). Subsequent longitudinal studies support these results; children, exposed to a poor social 

environment prior to a TBI, have greater impairments in psychosocial outcomes, including social 

cognition and communication compared to brain-injured children with higher socioeconomic 

status and optimal home environments prior to their injury (Yeates, Bigler et al. 2007, Anderson, 

Beauchamp et al. 2013, McNally, Bangert et al. 2013). The results of these early studies indicate 

that pre-injury demographics such as socioeconomic status and social environment are likely 

determinants of behavioral recovery after a TBI. 

 

1.5 Pre-clinical models of early age brain injuries  

Currently, there are two models of TBIs in rodents that have been used to study the 

consequences of ELS; namely, a focal cortical injury produced by a controlled cortical impactor 

device, and a more diffuse injury, produced by a fluid percussion device (Table 1, See reviews, 

Kochanek et al (Kochanek, Wallisch et al. 2017) and Thompson et al (Thompson, Lifshitz et al. 

2005)). Each of these models involves a craniectomy and exposure of the brain. A focal cortical 

injury is produced by a pneumatically or electronically driven piston that impacts the exposed 

dura with tightly controlled velocity, depth of penetration and dwell time, producing a consistent 

injury to proximal cortical and subcortical areas. The fluid percussion model is based upon the 

delivery of a defined pulse of fluid against the intact dura, resulting in brief deformation of the 

brain and diffuse axonal injury(Thompson, Lifshitz et al. 2005). Severity of the injury is 

dependent upon the strength of the pressure wave, which is generated when a pendulum swings 
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from a variable height to strike a plunger in a saline-filled reservoir. This results in delivery of a 

pulse of saline against the intact dura. Depending upon the severity of the injury, each of these 

models may result in deficits in learning and memory, social behaviors, hyperactivity, and 

anxiety- and depression-like behaviors (Hamm, Dixon et al. 1992, Prins, Lee et al. 1996, Fox, 

Fan et al. 1998, Dixon, Kochanek et al. 1999, Fox, LeVasseur et al. 1999, Kraus, Susmaras et al. 

2007, Chauhan and Gatto 2011, Byrnes, Loane et al. 2012, Semple, Canchola et al. 2012, 

Washington, Forcelli et al. 2012, Chen, Noble-Haeusslein et al. 2013, Kamper, Pop et al. 2013, 

Osier and Dixon 2016, Kochanek, Wallisch et al. 2017, Zhao, Yu et al. 2017). 

 

Table 1. Preclinical models of traumatic injuries to the developing brain. While there are 4 
commonly used rodent models of TBI to the developing brain, only 2 (controlled cortical impact 
and fluid percussion injury) have been studied following ELS. Abbreviations:  Male = M; 
Female+ F 
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1.6 Preclinical models of ELS  

There are two common models of ELS in rodents, the maternal separation model and the 

limited bedding nestlet model. These models target early brain development in rodents that spans 

birth to postnatal day 21 with notable variations that include the timing and duration of exposure 

to an impoverished environment and/or maternal separation.   

One of the earliest accounts of the maternal separation paradigm used handling or non-

handling of rat pups to invoke an early stress (stimulation) response (Levine 1957). This 

foundational model examined how neonatal handling affected plasma corticosterone levels and 

emotionality later in life (Levine 1957, Levine 1962). The maternal separation model 

subsequently evolved into the more modern paradigm of physically separating the pups from the 

mom, resulting in a more pronounced response of the hypothalamic-pituitary-adrenal (HPA) 

axis(Levine 1957, Levine 1962, Ader 1970, Spencer-Booth and Hinde 1971, Levine, Huchton et 

al. 1991, Walker, Scribner et al. 1991, Clarke 1993, Plotsky and Meaney 1993, Schmidt, Oitzl et 

al. 2002). While maternal separation is suitable for an examination of acute or repeated stressors, 

the model is not typically applied to chronic stress, which may result in pup exhaustion due to 

malnutrition and hypothermia (Rice, Sandman et al. 2008). Additionally, the maternal separation 

model may result in inconsistent results and includes many variations of the paradigm (i.e. 

timing of separation, duration of separation, measure of stress response). The Limited Bedding 

Nestlet (LBN) model was developed to examine the effects of chronic ELS, in which rodent pups 

and the nursing dam are exposed to a metal mesh cage bottom and a reduced nestlet square 

(Rice, Sandman et al. 2008). The LBN model produces a robust activation of the HPA axis as a 

result of erratic and unpredictable maternal care with minimal observer handling (Gilles, Schultz 

et al. 1996, Avishai-Eliner, Gilles et al. 2001, Brunson, Kramar et al. 2005, Rice, Sandman et al. 
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2008, Arp, Ter Horst et al. 2016, Bath, Manzano-Nieves et al. 2016, Moussaoui, Larauche et al. 

2016).  

1.6.1 Maternal separation model (MS) 

In this rodent model of childhood neglect (Diaz-Chavez, Lajud et al. 2020, Sanchez, 

Titus et al. 2020), the mother is separated from her pups for a defined period of time each day 

during the postnatal development. The MS model is used by many groups (Levine 1957, Levine 

1962, L.J. Grota 1969, Spencer-Booth and Hinde 1971, Levine, Huchton et al. 1991, Walker, 

Scribner et al. 1991, Clarke 1993, Plotsky and Meaney 1993, Bhatnagar and Meaney 1995, 

Schmidt, Oitzl et al. 2002). It results in activation of the HPA, as evidenced, in part, by elevated 

corticosterone and altered expression of corticotropin releasing-hormone (CRH) (Levine 1957, 

Ader 1970, Plotsky and Meaney 1993, Viau, Sharma et al. 1993, Bhatnagar and Meaney 1995). 

The MS model also results in long-term changes in psychosocial behaviors, including anxiety- 

and depression-related behaviors. Importantly, there are several variations of this model, 

including the daily duration of MS (brief versus prolonged), the timing of the first day of 

separation, the number of days of separation, if the mother remains in the same room as the pups, 

and if the pups are maintained on a warming pad while separated from the mother. In some 

cases, there seems to be habituation to the handling by the observer over an extended period of 

time (Rice, Sandman et al. 2008). It should be noted that brief maternal separation is a model of 

social handling and produces positive physiological and behavioral effects later in development, 

presumably because it replicates the repeated, short periods of separation between mom and pups 

in the wild, in which the nursing dam leaves her nest to forage for food (L.J. Grota 1969, 

Weinberg 1987). The desired adverse effects of MS seem to emerge when periods of separation 

exceed 15 minutes (Ogawa, Mikuni et al. 1994, Hall, Wilkinson et al. 1999, Vazquez, Penit-
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Soria et al. 2005). While variation in MS methods may produce some variability in outcomes, 

there are some key behaviors at adulthood that are common to most models, including anxiety- 

and depression-like behaviors (Romeo, Mueller et al. 2003, Veenema, Bredewold et al. 2007, 

Mehta and Schmauss 2011, Tsuda and Ogawa 2012, Bondar, Lepeshko et al. 2018). Moreover, 

these models typically show an exaggerated response of the HPA axis, a hallmark of ELS, 

immediately after the separation period that extends well into adulthood (Biagini, Pich et al. 

1998, Levine 2000, Pryce and Feldon 2003, de Kloet, Sibug et al. 2005, Schmidt 2010, Bondar, 

Lepeshko et al. 2018). 

1.6.2 Limited bedding nestlet (LBN) model  

In the LBN model, the mother rears her pups on an altered cage bottom, typically metal 

mesh, with a reduced amount of a nesting material during the first week of postnatal life. This 

model creates a stressful environment, resulting in altered maternal behavior towards her pups 

(i.e. neglect, abuse, and hypervigilance) (Gilles, Schultz et al. 1996, Brunson, Kramar et al. 2005, 

Ivy, Brunson et al. 2008, Rice, Sandman et al. 2008, Wang, Jiao et al. 2011, Dalle Molle, 

Portella et al. 2012, Raineki, Cortes et al. 2012, Wang, Su et al. 2013, Naninck, Hoeijmakers et 

al. 2015, Raineki, Sarro et al. 2015, Arp, Ter Horst et al. 2016, Bath, Manzano-Nieves et al. 

2016, Rincon-Cortes and Sullivan 2016, Krugers, Arp et al. 2017, Gallo, Shleifer et al. 2019) and 

an exaggerated response by the HPA axis of the pups, based on changes in vasopressin (AVP), 

CRH and, elevated corticosterone levels, that extends into adulthood (Brunson, Kramar et al. 

2005, Rice, Sandman et al. 2008, Gunn, Cunningham et al. 2013, Naninck, Hoeijmakers et al. 

2015, Moussaoui, Larauche et al. 2016). This paradigm, usually applied from P2-P9, produces 

long-term behavioral impairments such as fear learning, anxiety-like, depression-like, reduced 

sociality (play behavior), and deficits in spatial learning and memory later in life (Brunson, 
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Kramar et al. 2005, Ivy, Brunson et al. 2008, Rice, Sandman et al. 2008, Wang, Jiao et al. 2011, 

Dalle Molle, Portella et al. 2012, Raineki, Cortes et al. 2012, Wang, Su et al. 2013, Naninck, 

Hoeijmakers et al. 2015, Raineki, Sarro et al. 2015, Arp, Ter Horst et al. 2016, Bath, Manzano-

Nieves et al. 2016, Rincon-Cortes and Sullivan 2016). A key strength of this model is that there 

is opportunity to continuously monitor maternal care and interaction with her pups without any 

confounding effects, resulting from handling by the experimenter.  

There is reduced pup weight during and after the period of LBN (Brunson, Kramar et al. 

2005, McLaughlin, Verlezza et al. 2016, Molet, Heins et al. 2016, Moussaoui, Larauche et al. 

2016), which in some cases persists into adulthood (Bath, Manzano-Nieves et al. 2016). 

Although the LBN model shows variability in body development, it consistently results in altered 

metabolism, as evidenced by changes in brown adipose tissue and in circulating leptin and 

glucose levels. The lasting metabolic effects of LBN may be a result of the combination of the 

quality and quantity of nutrition, stress hormones, and sensory stimuli from the mother 

(Lucassen, Naninck et al. 2013). 

 

1.7 ELS and immune Priming 

While the immune response to a TBI contributes to secondary damage (Roth, Nayak et al. 

2014, Dickens, Tovar et al. 2017, Makinde, Cuda et al. 2017, Zhao, Yu et al. 2017, Russo, 

Latour et al. 2018), we have yet to fully understand the interaction between ELS and TBI in this 

context.  ELS may prime the immune system, leaving it sensitized to inflammatory reactions 

later in life.  

1.7.1 Causes and effects of immune priming 
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Exposure to a wide variety of early-life insults may elicit a persistent immune-sensitized 

condition in the brain, such that a subsequent insult produces a heightened inflammatory 

response. This phenomenon is referred to as “immune priming”. Early life insults that have been 

shown to cause immune priming include infections (Bilbo, Biedenkapp et al. 2005, Williamson, 

Sholar et al. 2011), seizures (Somera-Molina, Nair et al. 2009), early postnatal alcohol exposure 

(Chastain, Franklin et al. 2019), in utero stress (Vanbesien-Mailliot, Wolowczuk et al. 2007), 

and, as discussed in detail below, ELS (Reus, Fernandes et al. 2017, Sagae, Zanardini et al. 2018, 

Wang, Levine et al. 2020, Saavedra, Hernandez-Velazquez et al. 2021). 

Insults in the early period of life may produce life-long sensitization, creating immune 

cells that remain primed for many months in rodents and decades in humans (Frank, Baratta et al. 

2007, Reus, Fernandes et al. 2017). Immune priming typically involves circulating immune cells, 

peripheral macrophages, astrocytes, or even neurons, but the most heavily implicated cells in 

immune priming of the Central Nervous System are the brain’s resident immune cells, microglia. 

These glia undergo a phenotypic shift, that expedites robust responses to subsequent immune 

signals (Bilbo 2010, Mattei, Ivanov et al. 2017, De Miguel, Obi et al. 2018).  

1.7.2 The HPA axis and inflammation  

In response to a stressor, there is activation of the HPA axis. The hypothalamus, initially 

stimulated by the sympathetic nervous system, releases corticotropin-releasing hormone into the 

nearby pituitary gland, which in turn releases adrenocorticotropic hormone (ACTH) into the 

blood stream. Upon reaching the adrenal glands, ACTH stimulates release of glucocorticoids 

(GC), namely, corticosterone in rodents and cortisol in humans. GCs then act on glucocorticoid 

receptors that are distributed throughout the body, including the brain. In this way the stress 

signal is amplified and extended to enable a whole-animal response in the minutes and hours 
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following a stressor. In general, GCs have an anti-inflammatory effect, inhibiting lymphocyte 

proliferation and production of anti-inflammatory cytokines, and reducing expression of pro-

inflammatory cytokines (Cox 1995, Liu, Cousin et al. 1999, Piemonti, Monti et al. 1999, van der 

Goes, Hoekstra et al. 2000, Galon, Franchimont et al. 2002). This is especially true when GC 

levels are high, since, of the two GC receptors, the one that predominates in response to elevated 

levels of GC has a distinctly more anti-inflammatory signaling profile (Bernhagen, Calandra et 

al. 1993, Calandra, Bernhagen et al. 1995). How then, does ELS lead to chronic inflammation 

and immune priming? One part of the puzzle may be that GCs elicit responses in the brain that 

are quite different than the primarily anti-inflammatory effect in the periphery. In addition to 

microglia, neurons and astrocytes in the brain also express GC receptors and elevated GCs can 

weaken these cells, compromising their ability to withstand further insult (Kolber, Roberts et al. 

2008, Barik, Marti et al. 2013, Fitzsimons, van Hooijdonk et al. 2013, Hartmann, Dedic et al. 

2017, Tertil, Skupio et al. 2018). Frank et al. have recently demonstrated that either stress or 

exogenous GCs produces immune-primed hippocampal microglia that, when challenged with 

lipopolysaccharide (LPS) ex vivo, secrete increased proinflammatory cytokines (Frank, Weber et 

al. 2016, Frank, Fonken et al. 2020). Furthermore, this effect is long-lasting; microglia exhibit a 

primed phenotype 28 days after exposure to a single stressor. One intriguing potential 

mechanism for GC-mediated priming of microglia is the nod-like receptor protein 3 (NLRP3) 

inflammasome. This protein complex is induced by GCs, is capable of regulating 

proinflammatory cytokine release, and has been implicated in microglial immune priming 

(Busillo, Azzam et al. 2011, Frank, Weber et al. 2016, Trojan, Chamera et al. 2019, Frank, 

Fonken et al. 2020, Niu, Luo et al. 2020).  

1.7.3 The HPA Axis and TBI  
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TBI results in a suppression of the HPA axis (See review, Tapp et al., 2019,(Tapp, 

Godbout et al. 2019)). As described above, the HPA axis responds to stressors by releasing 

ACTH into the bloodstream and the subsequent release of glucocorticoids, including 

corticosterone (CORT). Under normal conditions, HPA axis activity is regulated by 

glucocorticoid receptors (GR) in the hypothalamus, pituitary, and adrenal glands. In addition to 

damage to subcortical areas (Rowe, Rumney et al. 2016), TBI causes a release of CORT in the 

brain. GR involved in the HPA axis negative feedback loop also become damaged from TBI, 

resulting in an excess of CORT. The pituitary is particularly vulnerable to injury-induced 

dysfunction, which results in a decreased release of ACTH and cannot stimulate the adrenal 

glands. The lack of stimulation leads to a decrease in the release in CORT, resulting in an 

aberrant altered stress response. Experimental models of TBI have examined HPA axis 

suppression in rats, where CORT was diminished in brain-injured mice at 7 and 21 days after 

injury (Taylor, Rahman et al. 2006, Taylor, Rahman et al. 2008). Excessive glucocorticoid 

release and a suppressed HPA axis response after TBI is associated with microglial priming and 

an increase in inflammatory cytokines, which may contribute to neuronal death (Roe, McGowan 

et al. 1998, Grundy, Harbuz et al. 2001). This maladaptive chronic inflammatory response 

contributes to the development or worsening of psychiatric disorders later in life, such as 

depression (Murphy, Michael et al. 2003, Keller, Gomez et al. 2017). The aberrant interaction 

between the persistent neuroendocrine responses and compromised psychiatric behavior 

illustrates the importance of HPA axis dysfunction and long-term TBI recovery.  

1.7.4  ELS animal models and immune priming 

To date, only a handful of studies have examined immune priming or markers of chronic 

inflammation in the context of either the MS or LBN model of ELS (Table 2). Most of these 
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studies have reported robust and long-lasting effects of ELS on cytokine expression. Reus et al. 

used an MS model in rats (P1-P10, 3 hr/day), and quantified multiple cytokines at P20, P30, P40, 

and P60 in 3 different brain regions (Reus, Fernandes et al. 2017). They found persistently 

increased levels of proinflammatory cytokines IL-1B, IL-6, and TNFa, as well as decreased 

levels of the anti-inflammatory cytokine IL-10 (see Table 2 for details). Wang et al. employed a 

rat MS model (P2-P20, 4 hr/day) and reported elevated pro-inflammatory IL-1B, IL-6, and 

TNFa protein in the hippocampus and elevated TNFa protein in the prefrontal cortex at P60 

(Wang, Levine et al. 2020). Three studies, all from the same group and using an MS model in 

mice (P2-P14), reported similar results between P50 and P60; that is, elevated hippocampal 

mRNA for pro-inflammatory cytokines IL-1B and TNFa, as well as for the inflammasome 

protein NLRP3(Amini-Khoei, Haghani-Samani et al. 2019, Nouri, Hashemzadeh et al. 2020, 

Lorigooini, Boroujeni et al. 2021). Saavedra et al., using a rat MS model (P1-P14, 3hr/day) did 

not examine cytokines but found an increased proportion of hippocampal microglia that 

maintained an activated phenotype when examined between P140 and P170, long after ELS, 

(Saavedra, Hernandez-Velazquez et al. 2021). Sagae et al., utilizing an LBN model (P3-P9) in 

rats, also reported elevation in circulating pro-inflammatory cytokines TNFa and IL-6 at P98 

(Sagae, Zanardini et al. 2018).  

Other studies have reported more subtle and variable impacts of ELS models on 

cytokines. Hoejimakers et al. used a LBN model from P2-P9 in mice and reported increased 

hippocampal expression of IL-1B at P9, immediately after stress, but decreased hippocampal IL-

6 mRNA at 4 months and no differences in any pro-inflammatory cytokines at 10 months 

(Hoeijmakers, Ruigrok et al. 2017). Additionally, these investigators reported an increase in 

CD68 immunoreactivity, characteristic of activated microglia, at 4 months after stress, but not at 
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10 months. Delpech et al. (Delpech, Wei et al. 2016) used a brief MS model (P1-P21, 15 

min/day) in mice, following a single stressor event at P21 and at P28 and demonstrated an 

elevation of serum c-reactive protein, a marker of immune activation. At P28 however, there was 

no effect of ELS on the number and morphology of hippocampal microglia, that had been seen at 

P21. They also reported elevated IL-6 mRNA from microglia isolated from the hippocampus at 

P28.  

Perhaps the variability of results from ELS models is not surprising given the differences 

in the paradigms to produce stress and in the methodology employed to measure cytokines and 

other features of immune priming. In explaining the differences between the MS studies (Reus, 

Fernandes et al. 2017, Amini-Khoei, Haghani-Samani et al. 2019, Nouri, Hashemzadeh et al. 

2020, Wang, Levine et al. 2020, Lorigooini, Boroujeni et al. 2021, Saavedra, Hernandez-

Velazquez et al. 2021), it seems that the duration of the separation may underly the stark 

differences in results between Delpech et al. (15 min/day) and the rest (3-4 hr/day). In the case of 

the two LBN studies (Hoeijmakers, Ruigrok et al. 2017, Sagae, Zanardini et al. 2018), 

differences may arise from the quite disparate means of cytokine quantification (protein in serum 

for Sagae et al. versus hippocampal mRNA for Hoeijmakers et al.). There may also be species 

differences in how the immune systems of mice and rats respond to ELS, as several of the studies 

that found the most robust signs of immune priming were in rats (Reus, Fernandes et al. 2017, 

Sagae, Zanardini et al. 2018, Wang, Levine et al. 2020, Saavedra, Hernandez-Velazquez et al. 

2021), while other studies in mice reported weak evidence of immune priming (Delpech, Wei et 

al. 2016, Hoeijmakers, Ruigrok et al. 2017). 
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Table 2. Pro-inflammatory cytokines after ELS in rodents. Abbreviations: HPC= Hippocampus; 
P= Postnatal day; PFC= Prefrontal Cortex; P=Postnatal day; IL-1b= Interleukin-1b; IL-6= 
Interleukin-6; TNFa= Tumor necrosis factor alpha. 
 
1.7.5 Immune priming by ELS in humans 

In humans, childhood adversity has been linked to a chronic inflammatory state (Pace, 

Mletzko et al. 2006, Danese, Pariante et al. 2007, Carpenter, Gawuga et al. 2010, Ehrlich, Ross 

et al. 2016), as well as to diseases associated with inflammation, such as cancer, cardiovascular 
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disease, diabetes, and arthritis (Felitti, Anda et al. 1998, Caspi, Sugden et al. 2003, Richards and 

Wadsworth 2004, Danese, Moffitt et al. 2009, Dalle Molle, Portella et al. 2012, Flaherty, 

Thompson et al. 2013, Kelly-Irving, Lepage et al. 2013, Giovanelli, Reynolds et al. 2016). Many 

studies have examined the relationship between socioeconomic status during childhood and 

inflammation, typically measured by plasma c-reactive protein (Milaniak and Jaffee 2019). Such 

studies may be complicated by controlling for covariates, such as adult socioeconomic status. A 

recent meta-analysis examined 35 such studies and found a significant relationship between 

childhood socioeconomic status and the profile of inflammation at adulthood, but this 

relationship was not evident when adjusted to factor out adult socioeconomic status (i.e. the time 

of data collection) (Milaniak and Jaffee 2019). Ehrlich et al. (Ehrlich, Ross et al. 2016) examined 

whether scores for early-life adversity in teens, based upon interviews, were associated with 

differences in their inflammatory profiles. Rather than rely on cytokine or c-reactive protein 

expression, inflammation was quantified by ex vivo challenge of monocytes, obtained from blood 

samples, with either lipopolysaccharide alone or with lipopolysaccharide in combination with 

varying concentrations of GC. IL-6 secreted into the culture media was quantified, and a cluster 

analysis was performed. ELS was associated with higher clusters related to inflammation, 

suggesting persistent immune priming in this population. 

 

1.8 ELS and Brain Injury  

Despite the clinical relevance, there are few preclinical studies that have examined brain 

injuries after exposure to LBN, brief maternal stress (BMS) or prolonged maternal stress (PMS) 

(Table 3 (Craft, Zhang et al. 2006, McPherson, Mascher-Denen et al. 2009, Tata, Markostamou 

et al. 2015, Markostamou, Ioannidis et al. 2016, Diaz-Chavez, Lajud et al. 2020, Lajud, Roque et 
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al. 2020, Sanchez, Titus et al. 2020)). Thus, there is substantial opportunity to build upon what 

has been reported, focusing on the unanswered questions, with the end goal of optimizing 

recovery in brain-injured children who have experienced ELS. 

1.8.1 ELS + Stroke. 

Although risk of stroke increases with age, incidence of stroke may occur at any age, 

including children (Hall, Levant et al. 2012). To date there is only one preclinical study that has 

examined the relationship between ELS and stroke (table 3, (Craft, Zhang et al. 2006)). In this 

study, brief maternal separation (BMS) was conducted on a daily basis from P1-P14, a sensitive 

period of brain development. After reaching adulthood, animals were subjected to an occlusion 

of the middle cerebral artery followed by reperfusion. There were several findings that 

distinguished BMS in combination with stroke from controls. These animals showed a 

pronounced elevation of proinflammatory cytokines IL-1B and TNFa, vasogenic edema, and 

higher mortality compared to BMS alone. Such findings build upon other studies reporting 

enhanced expression of pro-inflammatory cytokines IL-1B, TNFa, and IL-6 as a result of ELS 

exposure (Delpech, Wei et al. 2016, Hoeijmakers, Ruigrok et al. 2017, Reus, Fernandes et al. 

2017, Sagae, Zanardini et al. 2018). BMS in combination with stroke also resulted in an 

impairment of sensorimotor function compared to controls, based upon paw preference using the 

cylinder test (Schallert, Fleming et al. 2000, Magno, Collodetti et al. 2019). It is noteworthy that 

there were no changes in corticosterone, either pre- or post-injury compared to relevant controls. 

While others have reported elevated levels of corticosterone at adulthood after BMS alone (Rice, 

Sandman et al. 2008, Delpech, Wei et al. 2016, Hoeijmakers, Ruigrok et al. 2017, Reus, 

Fernandes et al. 2017, Sagae, Zanardini et al. 2018), the duration of maternal separation may, at 

least in part, account for these differences. In this stroke study, the duration of BMS was 15 
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min/day over a period of 2 weeks. In contrast, those studies that detected elevated levels of 

corticosterone at adulthood after BMS alone (Biagini, Pich et al. 1998, McIntosh, Anisman et al. 

1999, Wigger and Neumann 1999, Dent, Smith et al. 2000, Levine 2000, Penke, Felszeghy et al. 

2001, Suarez, Rivarola et al. 2001, Kalinichev, Easterling et al. 2002, Pryce and Feldon 2003, de 

Kloet, Sibug et al. 2005, Yamazaki, Ohtsuki et al. 2005, Schmidt 2010, Bodnar, Roberts et al. 

2019), reported a duration of 180 min/day or longer. Collectively, these findings provide the first 

evidence that ELS in combination with stroke at adulthood elicits a pronounced immune 

response and adversely affects post-stroke sensorimotor recovery.  

1.8.2 ELS +Perinatal Brain Injury 

Neonatal hypoxia ischemia (HI), the most common form of perinatal brain injury, results 

in neonatal encephalopathy and long-term disabilities (Hagberg, David Edwards et al. 2016).  

Several preclinical studies have examined the consequences of ELS in combination with 

HI (Table 3, (McPherson, Mascher-Denen et al. 2009, Tata, Markostamou et al. 2015, 

Markostamou, Ioannidis et al. 2016)). Early studies evaluated ELS using BMS (15 min/day) or 

PMS (180 min/day) during P3-P7, followed immediately by HI, and then studied outcomes 

shortly after HI or at adulthood (McPherson, Mascher-Denen et al. 2009). Prior exposure to PMS 

and neonatal HI resulted in elevated levels of corticosterone shortly after the time of injury. 

Histological findings, based upon pathological scoring of hematoxylin-stained sections, 

suggested enhanced damage to white matter in the thalamus and internal capsule. Studies of HI 

at adulthood reported altered metabolism, as evidenced by elevated levels of glucose and insulin 

compared to BMS or PMS alone.  

 A later study focused on the long-term consequences of BMS or PMS in combination 

with HI on hippocampal functioning at adulthood (Table 3 (Tata, Markostamou et al. 2015)). 
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After BMS or PMS from P1-P6, animals were exposed to HI shortly thereafter and then were 

evaluated at adulthood. While ELS in combination with HI showed no differences in non-spatial 

recognition (novel object recognition and novel placement test), there were impairments in 

spatial learning and memory, as measured by the Morris Water Maze, compared to either insult 

alone. 

 Lastly, a follow up study focused on the interaction of ELS and HI in the context of 

synaptic integrity in the hippocampus and metrics of emotionality (Table 3, (Markostamou, 

Ioannidis et al. 2016)). Animals were exposed to PMS and subsequent HI and evaluated at 

adulthood for anxiety- and depressive-like behaviors, based on performance in the elevated plus 

maze and the forced swim test, respectively. While HI followed by PMS resulted in a more 

pronounced anxiety-like phenotype, compared to either insult alone, there was no evidence of 

depressive-like behavior across any groups. Subsequent histological analyses of the dentate 

gyrus revealed altered long-term synaptic plasticity as evidenced by a reduction in levels of 

brain-derived neurotrophic factor and synaptophysin in the hippocampus compared to either 

PMS or HI alone. These results suggest that cell survival and synaptic density in the 

hippocampus are particularly vulnerable to the additive effect of MS and HI (Markostamou, 

Ioannidis et al. 2016). 

1.8.3 ELS + TBI 

ELS has been evaluated in pre-clinical models of TBI with variables that include the type 

of injury (focal versus diffuse), the age at time of injury, and the timing of outcomes. Sanchez et 

al. (Table 3, (Sanchez, Titus et al. 2020))\ examined how prolonged ELS influences 

hippocampal-related function after a TBI at adulthood. Animals were exposed to daily PMS (180 

min/day) from P2-P14 followed by a mild fluid percussion injury at adulthood. Behavioral 
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assessments were conducted 2, 3, and 4 weeks after injury. Based on contextual fear learning (2 

weeks post injury), brain-injured animals, reared in PMS, showed less freezing after the cue 

compared to controls. Animals were subsequently tested using the Morris Water Maze at 3-4 

weeks post injury. The group with PMS in combination with TBI showed deficits in spatial 

learning as well as greater cortical and hippocampal atrophy compared to other conditions. At 8 

weeks post injury, corticosterone levels were highest in PMS in combination with TBI.  

 An alternative approach examined how PMS (P1-P21) is influenced by a mild TBI at P21 

(Table 3, (Diaz-Chavez, Lajud et al. 2020)). In these experiments, a mild focal injury was 

produced by a controlled cortical impact. Deficits in spatial learning and memory were most 

pronounced in brain-injured adolescent rodents exposed to both PMS and TBI. Although there 

was no difference in the lesion volumes across all groups, PMS prior to TBI resulted in an 

increase in activated microglia and a reduction in proliferation of the markers 

bromodexoyuridine and the nuclear protein Ki67 in the hippocampus. Taken together, these 

findings suggest that PMS prior to an early age mild TBI, results in more profound activation of 

microglia, which, in turn, adversely affects neurogenesis and hippocampal-dependent behaviors 

(Johnson and Kaffman 2018).  

A follow-up study, using the same model of PMS and TBI, examined cognitive flexibility 

and then measured pro-inflammatory cytokines, IL-1B, TNFa, and IL-6 in the prefrontal cortex 

and hippocampus. Cognitive flexibility was measured using the attentional shift task in early 

adolescence, whereby mice learned how to discriminate between positive odors and associate 

this experience with a cue (Birrell and Brown 2000, Bondi, Jett et al. 2010, Lajud, Roque et al. 

2020). Mild injury had a significant impact on the first reversal of the attentional shift task. 

However, this was not worsened by prior exposure to MS. IL-1B, elevated in the hippocampus, 
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was highest in those animals exposed to both PMS and TBI compared to controls. These findings 

suggest that PMS in combination with a mild TBI results in a heightened inflammatory response 

compared to either condition alone. Although there was no additive effect seen on cognitive 

flexibility or in IL-1B in the prefrontal cortex, the authors suggest that IL-1B may be involved in 

crosstalk between hippocampal and cortical-related cognitive impairments seen after an early 

age, mild TBI. 

Table 3. ELS prior to neonatal hypoxia-ischemia, stroke or TBI. Abbreviations: AVP= 
Vasopressin; P=Postnatal day; CC= Corpus Callosum; HPC= Hippocampus; BDNF= Brain-
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derived neurotrophic factor, CBF=Cerebral blood flow; CORT= Corticosterone, HI- Hypoxia 
Ischemia M= Males, F+ Females, TBI= Traumatic Brain Injury; BMS= brief maternal 
separation, PMS= prolonged maternal separation 
 

1.9 Where do we go from here? 

There are a number of research opportunities that could contribute to our current 

knowledge of the interactions between ELS and recovery after a brain injury. Here we address 

several basic directions.  

1.9.1 Consider alternative models of ELS 

ELS has profound adverse effects on brain development and results in both physical and 

psychological sequelae at adulthood. Few preclinical studies have addressed how ELS may 

influence recovery after brain injury. And, of these studies, ELS has only been studied in the 

context of MS (Craft, Zhang et al. 2006, McPherson, Mascher-Denen et al. 2009, Tata, 

Markostamou et al. 2015, Markostamou, Ioannidis et al. 2016, Diaz-Chavez, Lajud et al. 2020, 

Lajud, Roque et al. 2020, Sanchez, Titus et al. 2020). As ELS represents a broad spectrum of 

adverse conditions including physical, sexual and emotional forms of abuse and neglect 

(Fogelman and Canli 2019), there is a need to address alternative models of ELS, including 

LBN, as well as others that capture a broader range of adverse exposures. 

1.9.2 Injury severity as a modifier of recovery after ELS 

Two of the most commonly used rodent models of TBI, controlled cortical impact and 

fluid percussion injury, have been studied in the context of ELS (Diaz-Chavez, Lajud et al. 2020, 

Lajud, Roque et al. 2020, Sanchez, Titus et al. 2020). The severity of the injury likely influences 

recovery after ELS. This raises the possibility that very mild forms of TBIs, such as concussions, 

which present with nominal changes at structural and behavioral levels, may, in fact, be sensitive 

to prior ELS and, as such, result in broader pathological and behavioral findings. Understanding 
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the relationships between ELS and mild TBIs has broad implications, including how we manage 

concussions in youth sports.  

1.9.3 Sex as a biological variable 

  There are few studies of ELS in combination with TBI that include both males and 

females in the experimental design (Table 3). There is evidence that speaks to the complexities 

of TBIs, where variables such as the severity and type of insult may be differential modifiers 

between sexes. Thus, from simply the perspective of TBI alone, sex as a biological variable 

should be a key element in the experimental design (See Review, Gupte et al., 2019 (Gupte, 

Brooks et al. 2019)). Importantly, in a scoping review of both clinical and preclinical studies, 

Gupte et al. (Gupte, Brooks et al. 2019) have indicated that variables such as injury severity and 

nature of the injury interact differently based upon sex and that these differences influence long-

term outcomes.   

1.9.4 Genetics and epigenetics 

Genetics, including both gene variants and epigenetics, play a central role in how a brain 

recovers after ELS (See review, Fogelman and Canli, 2019 (Fogelman and Canli 2019)). 

Similarly, genetics, and in particular epigenetics, also contribute to heterogeneity in recovery 

after a TBI, as evidenced in both preclinical models and in human studies (See reviews, Bennett 

et al., 2016; Cortes and Pera, 2021(Bennett, Reuter-Rice et al. 2016, Cortes and Pera 2021)) 

(Kurowski, Treble-Barna et al. 2019, Treble-Barna, Patronick et al. 2020).  

1.9.5 Immune function 

ELS results in persistent immune priming (Ehrlich, Ross et al. 2016) (and see reviews, 

Neher et al., 2019 (Neher and Cunningham 2019); Fagundes et al., 2013 (Fagundes, Glaser et al. 

2013); von Leden et al., 2019 (von Leden, Parker et al. 2019)). We have yet to address how this 
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priming may alter the immune response after a TBI. We and others have reported that the 

developing brain is sensitive to early cytokine exposure and, in fact, an early age TBI results in 

an enhanced immune response that is, in part, related to the prolonged recruitment of leukocytes 

to the injured brain (von Leden, Parker et al. 2019). Thus, these collective findings support a 

further investigation into inflammatory responses, mediated by ELS, that may be magnified after 

a subsequent TBI.  

1.9.6 ELS, TBI, and plasticity 

There are varying thoughts regarding plasticity after an early age lesion (See review, Giza 

and Prins, 2006, (Giza and Prins 2006)). One viewpoint is that a younger brain is able to undergo 

significant reorganization and recovery after an injury and that ongoing brain development may 

support recovery processes. This contrasts with others who consider the vulnerability of the 

young brain, where growth and formation of circuitry may be compromised by injury during 

critical periods of brain development. To address these differing viewpoints, further studies are 

needed to address factors that may influence outcomes, including age at time of injury in the 

context of brain development, severity and location of the injury, and the type of injury (focal 

and/or diffuse), as well as a broader viewpoint on plasticity that takes into account both its 

beneficial and adverse consequences. 

 

1.10 Conclusion 

This introduction summarizes scientific efforts to better understand how ELS interacts 

with early age brain injuries, ranging from neonatal hypoxia ischemia, to stroke and traumatic 

brain injuries. The consistent finding across these diverse injuries is that ELS in combination 
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with a brain injury at different developmental stages or at adulthood, may potentiate progressive 

neurodegeneration and result in long-term neurological deficits. 

The following studies contribute to gaps in knowledge that have yet to be addressed. I 

provide the first documentation of how ELS and TBI may differentially influence the CA1, CA2, 

and CA3 subfields of the pyramidal layer of the hippocampus. I focus on both the acute phase, 

where microglial activation is a key feature in hippocampal pathogenesis, and at adulthood, 

where I identify volumetric and neuronal loss. I consider how ELS in combination with an early 

age TBI may be influenced by sex in the context of regionally specific vulnerability of the 

hippocampus, defined by microglial activation and cell damage. The extent to which these events 

follow prior studies contribute to the breadth of the literature by examining the acute timepoints 

after TBI, inclusion of sex as a biological variable, hippocampal mapping, highlighting 

hippocampal changes after ELS and TBI, and long-term functional outcomes that target 

hippocampal-dependent behavior and adjacent cognitive behaviors.  
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Chapter 2.  Materials and methods 
 
 
2.1 Animals  

     C57BL/6 mice were purchased from Jackson Laboratories (Sacramento, CA). All animals 

were housed in a species-specific pathogen-free facility at the University of Texas at Austin.  

Standard rodent chow and water were available ad libitum, and housing was maintained on an 

automated 12 h light/dark cycle at approximately 20°C. All procedures involving animals were 

conducted in accordance with the National Institutes of Health, Guidelines for the Care and Use 

of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at the 

University of Texas at Austin. A total of 85 breeder mice (29 males and 56 females), were used 

for this study, resulting in 36 litters with approximately 6-10 mice /litter. Overall mortality was 

8.68% of the 288 animals raised to adulthood. There was no maternal mortality. 

     Triad breeding was used to generate litters. Each male, 6-8 weeks of age, was housed, 

undisturbed with 2 females, 6-10 weeks of age, for 16 days and then singly housed. The females 

were observed daily, and litters were left undisturbed until offspring were postnatal (P) day 2. 

     Both blinding and randomization were used to minimize bias and both sexes were studied. 

Controls were included with each outcome, and biochemical assays were conducted in either 

duplicates or triplicate samples.   

 

2.2 Limited bedding nestlet (LBN) paradigm and controls   

     ELS was induced by the LBN model, as originally described by Rice et al. 2008 (Rice, 

Sandman et al. 2008). A nursing dam and her pups at P2 were a priori randomly assigned to a 

cage (12 x 7.5in, One Cage™ Micro-Isolator®, Lab Products, LLC., Aberdeen, MD) with a wire 

mesh floor insert (12 x 7.5in, ASC Stainless Steel Mesh 304, #4, Sycamore, IL) that was 
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positioned on top of standard corn cob bedding, and provided with enrichment that was limited 

to 1/3 of a nestlet square (5cm x 1.5cm). Control animals were housed in cages with corn cob 

bedding and a full sized nestlet square (5cm x 5cm). The nursing dam and her pups were left 

undisturbed for 7 days (Figure 1a). On P9, all dams and pups were returned to standard housing.  

Pups were weighed (American Weigh Scales LB-501 Digital Scale; Lot No: 00-A20-173; 

Cumming, GA) on P2, P9, P16, and P21.  

     Maternal behavior was recorded for all groups using a built-in camera system (Amcrest 

1080P Outdoor PoE Camera, Amazon: Amcrest, Houston, TX; catalog #: B07PYGNDG9) that 

was positioned in the cage topper (One Cage™ Micro-Isolator®). Video recordings, collected at 

were conducted during the light and dark cycle [0:00, 6:00, 11:00, 12:00 18:00, and 23:00 

Zeitgeber time (ZT)]. These recordings were hand scored every other 10 minutes within each ZT 

block, resulting in 30-min epoch. Data collection included entries by the dam to the nest and 

duration of dam-pup interactions (Gunn, Cunningham et al. 2013, Gallo, Shleifer et al. 2019). 

These values were totaled across ZT scoring hours for both cage conditions.  

 

2.3 Controlled cortical impact (CCI) model and controls 

     TBIs were generated by the CCI model, as we have previously described (Pullela, Raber et al. 

2006, Semple, Noble-Haeusslein et al. 2015, Semple, O'Brien et al. 2017). At P21, male and 

female pups from LBN and control conditions were weaned and anesthetized with 4% isoflurane 

in an anesthesia chamber. The mouse was positioned in ear bars on the stereotaxic apparatus 

(Figure 1b). Buprenorphine (0.05 mg/kg) was administered subcutaneously (s.q.) and Neosporin 

was applied to each eye. After exposure of the skull, 0.25% bupivacaine was administered (s.q.). 

After a midline incision, a 3.0 mm circular craniotomy was made mid-way between bregma and 
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lambda, with the medial edge positioned 0.5mm lateral to the midline. Male and female mice 

from ELS and control conditions were a priori randomly assigned to TBI or sham-surgery 

(craniectomy only). A 2.0mm convex impactor tip was used to produce the injury. The 

parameters of the injury were the following: 4.5m/s, depth of penetration of 1.9mm, and a 150ms 

dwell time. A priori exclusion criteria were <5g weight at P21, or abnormal post-operative 

behavior indicative of morbidity (i.e. lethargy, inflammation around the site of incision, poor 

grooming, damp fur, and /or failure to gain weight over the first 7 days post-surgery).  

 

2.4 Hypothalamic pituitary adrenal axis (HPA) activity 

     To address hypothalamic expression of genes involved in in the HPA stress response, freshly 

dissected hypothalamus samples were collected at P9 via rapid decapitation and stored at 4C in 

RNAlater solution (Invitrogen, Waltham, MA). Each hypothalmus was homogenized in 0.9ml 

Trizol (Invitrogen) using a bead-based homogenizer (Beadbug, Benchmark Scientific, Sayreville, 

NJ) with a single 5mm stainless steel bead, for a total of 4min at 4000RPM. RNA was extracted 

according to the RNeasy lipid tissue protocol (Qiagen, Hilden, Germany). Briefly, 0.18ml 

chloroform was added and samples were mixed and spun at 12000xg for 15min at 4C. 

Approximately 0.45ml of the upper phase was transferred to a fresh tube, mixed with an equal 

volume of 70% ethanol, and pipetted onto a mini spin column. Samples were spun through 

columns and washed with Qiagen wash buffers. Purified RNA was eluted with 2 x 30μL water, 

RNA concentration measured via Nanodrop (Thermo Fisher, Waltham, MA), and stored at -

80°C. Complimentary DNA (cDNA) was reverse transcribed from 2μg RNA in 20μL reactions 

using random hexamers with the Applied Biosystems High-Capacity cDNA Reverse 

Transcription Kit (Waltham, MA). Quantitative PCR was performed on an Applied Biosystems 
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ViiA 7 instrument, using Power SYBR Green PCR Master Mix (Thermo Fisher). All primers 

were obtained from IDT (Corelville, IA), and each sample (1:30 dilution of RT reaction) was 

evaluated in triplicate 10μL PCR reactions for two experimental genes, corticotropin-releasing 

hormone (CRH; F: GAGGCATCCTGAGAGAAGTCC, R: GGGCGCTCTCTTCTCCTC) and 

vasopressin (AVP; F: CTGCAGCGACGAGAGCTG, R: CCAGCTGTACCAGCCTTAGC), as 

well as 3 control genes, ribosomal protein L13a (F: AGCAGATCTTGAGGTTACGGA, R: 

AGGAGTCCGTTGGTCTTGAG), cytochrome C-1 (F: GCTGAGGAGGTGGAGGTC, R: 

TCGAACGATGTAGCTGAGGT), and phosphoglycerate kinase 1 (F: 

TGCCAAAATGTCGCTTTCCA, R: GAAGTCCACCCTCATCACGA). Relative gene 

expression for CRH and AVP was determined by the 2-∆∆Ct method (Kozera and Rapacz 2013) 

and normalized to a geometric average of the three control genes. 

 

2.5 Histology 

2.5.1 Tissue collection  

      Mice were anesthetized at 1d post injury or sham surgery and transcardially perfused with 

ice-cold 0.01M phosphate-buffered saline (PBS), followed by 4% paraformaldehyde (PFA). 

Brains were removed and post-fixed overnight in 4% PFA and then transferred to 30% sucrose in 

deionized water for 72h. Coronal sections, 40μm in thickness were cut with a sliding microtome 

(Leica SM2010R), from interaural 6.60mm to bregma 2.80mm (Paxinos and Franklin), were 

serially collected in 12-well plates (Sigma-Aldrich, St. Louis, MO) and stored at 4°C in a 

cryoprotectant solution (0.067M sodium phosphate, 0.03M sodium biphosphate, Mili-Q®, water, 

sucrose, polyvinylpyrrolidone, and ethylene glycol). This resulted in 8-10 sections per well, 

representing the entire hippocampus. 
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2.5.2 Immunohistochemistry  

      Sections were selected based on hippocampal coronal sections spanning interaural 1.86-

1.50mm and bregma -1.94—2.30mm (Paxinos and Franklin), yielding 2-3 sections per well. In 

preparation for immunocytochemistry, free floating sections in 0.01MPBS were incubated in 1% 

hydrogen peroxide for 15 minutes at room temperature, followed by 10% normal donkey serum 

(Jackson ImmunoResearch Laboratories, Pittsburgh, PA). All antibodies were visualized in 

sections using Vectastain ABC kits (Vector Laboratories Inc., Newark, CA). Sections were 

incubated for 1 hour at room temperature, followed by 3 rinses in 0.175M sodium acetate for 5 

minutes each and nickel-enhanced 3,3’-diaminobenzidine tetrahydrochloride (DAB) for 20 

minutes at room temperature. Sections were mounted on glass slides (Superfrost Plus charged 

slides). Sections were counterstained with 0.05% methyl green (Sigma-Aldrich). 

 

2.5.3 Localization of ionized calcium-binding adaptor molecule 1 (IBA-1)  

     Sections were incubated in anti-goat transmembrane protein Iba-1 (1:750; Abcam, Waltham, 

MA), for 1 hour at room temperature and 48 hours at 4°C. Sections were rinsed in 0.01M PBS 

and incubated with donkey anti-goat Biotin (1:600; Jackson ImmunoResearch Laboratories) for 

1 hour at room temperature.  

 

2.5.4 Localization of caspase-3  

     Sections were incubated with anti-rabbit transmembrane protein Caspase-3 (1:400; Cell 

Signal Technology, Danvers, MA), for 24 hours at room temperature. Sections were rinsed in 

0.01M PBS and incubated in goat anti-rabbit biotin (1:600; Jackson ImmunoResearch 

Laboratories) for 1 hour.  
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2.5.5 Localization of Purkinje cell protein (PCP4) 

     Sections of the hippocampus were stained with PCP4 antibody to identify the CA2 area of the 

pyramidal cell layer. The adjacent section was used to immunolocalize either Iba-1 or Caspase-3. 

Sections were incubated in anti-rabbit transmembrane protein PCP4 (1:1000; Sigma Aldrich), for 

1 hour at room temperature, rinsed in 0.01M PBS and then incubated in goat anti-rabbit biotin 

(1:600; Jackson ImmunoResearch Laboratories) for 1 hour.  

 

2.5.6 Localization of neuronal nuclei (NeuN) 

     Sections were incubated in anti-mouse monoclonal transmembrane NeuN (1:1000, Abcam) 

for 24 hours at room temperature. Sections were rinsed 0.01M PBS and then incubated in goat 

anti-mouse biotin (1:600; Jackson ImmunoResearch Laboratories) for 1 hour. 

 

2.5.7 Unbiased stereology  

     The unbiased optical fractionator method (Gunderson 1999, Olesen 2017) was used to 

estimate microglia and cell death in coronal sections of the ipsilateral dentate gyrus and 

pyramidal cell layer of the hippocampus that had been immunolabeled with either Iba-1+ and 

caspase-3+. Using StereoInvestigator (MicroBrightField Inc., Williston, VT), a sample interval 

of 2 was selected for quantification and regions of interest were contoured using a 4x objective.  

Cells were counted using a 60x oil immersion objective on a Nikon Eclipse E600 microscope 

(Nikon Instruments Inc., Melville, NY). Systematic random sampling was achieved by 

determining the number of cells within an 80 x 80μm grid and a 160 x 160μm dissector counting 

frame (20% of the desired structure), with a 10um dissector height and top guard zone of 1um to 

allow for three-dimensional quantification. The Gunderson mean coefficient of error (m=1) for 
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individual estimates was maintained at <0.10 for the blades of the dentate gyrus and <0.20 for 

the hilus. The total number of cells per contoured region was estimated by the following 

equation: N=EQ x (t/h)(1/asf)(1/ssf); where E is the sum, Q is the number of cells counted, t is 

the measured section thickness, h is the dissector height, asf is the area sampling fraction, and ssf 

is the section sampling fraction. 

     As CA2 is not easily distinguished from CA1 and CA3 (San Antonio (San Antonio, Liban et 

al. 2014, Paul and Limaiem 2023), coronal sections, containing the hippocampus, were 

immunolabeled with Iba-1, Caspase-3 or PCP4, a marker that is unique to CA2 (San Antonio, 

Liban et al. 2014). StereoInvestigator (MBF Biosciences, Williston, VT) was used to trace the 

CA2 region on sections stained with PCP4 and the trace settings were saved as a template. The 

template was positioned on a section stained with Iba-1, caspase-3, or NeuN. The CA1 and CA3 

subzones were defined as those areas bordering CA2+ PCP4 cells.  

 

2.5.8 Cortical and hippocampal volumes 

     The volume of the ipsilateral cortex and hippocampus, determined at 67-70 dpi, was 

determined based upon 40μm coronal sections that were stained with 0.05% methyl green. 

Images, spanning Bregma 1.5 to -3.8 mm, were captured with a Nikon Ni-E microscope (Nikon 

Instruments Inc.). This yielded 5 sections per brain, using a sampling interval of 12, a 4x 

objective and a grid size of 500μm. Cortical measurements were performed by an observer 

blinded to the experimental conditions. Cortical and hippocampal volumes were estimated as the 

product of the summed areas of sections and the distance between sections. 

 

2.6 Multiplex cytokine assays  
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     TBI and sham-operated pups from ELS and control conditions were euthanized by rapid 

decapitation. The ipsilateral and contralateral cortices were dissected, placed in 150μL of RIPA 

Buffer (ThermoFisher Pierce, Waltham, MA) and subjected to sonification (Branson Digital 

Sonifier Model 250, Cleanosonic, Richmond, VA). The homogenates were then centrifuged at 

4oC at 15,000 RPM (Multi RF Centrifuge, Thermo IEC, Needham Heights, MA) for 15 minutes. 

Supernatants were aliquoted and stored at -80oC.  

      Q-Plex Array Mouse 6-Plex Cytokine Panel (Quansys Biosciences, Logan, UT) was used to 

detect the cytokines IL-1B, IL-6, TNFa, IL-10, IFNy, IL-1a. The manufacturer’s standard 

protocol was followed. Briefly, an 8-point calibration curve was prepared, and homogenates 

were diluted 1:1.5 with the provided sample diluent. All samples and calibrators were added to 

the plate in duplicate and incubated for 180 minutes. This was followed by two 20-minute 

incubations, beginning with the detection mix containing biotinylated antibodies followed by the 

streptavidin-HRP solution. All steps in incubation were carried out on a shaker at 500RPM 

(VWR Advanced Microplate Vortex Mixer, Radnor, PA), with 3 washes between incubations 

and 6 washes after the last incubation. Immediately following addition of the provided substrate 

mixture, the Q-View Imager Pro (Quansys Biosciences) was used to capture digital images of the 

plate (270s exposure time). The Q-Plex image was analyzed on Q-View Software (Quansys 

Biosciences) and cytokine values were exported to Excel (Microsoft Inc., Redmond, WA) for 

quantitative? analysis.  Values for cytokines were normalized to total protein in the homogenate, 

using a Rapid Gold® BCA assay (ThermoScientific Pierce). 

 

 

2.7 Behavioral assays 
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     Assays were conducted at 9-10 weeks of age, or 60-67 days post injury in mice exposed to 

ELS, TBI, and the respective controls. Behaviors were conducted in a private behavioral suite in 

the animal vivarium with a regulated temperature and 24.5 lux. All animals were transported 

from the housing room to the behavioral suite and were habituated for 30 minutes prior to staring 

behavioral testing. Behavioral assays were conducted in the following order: open field, novel 

object recognition, three chamber task, elevated zero, and the Barnes maze.  

 

2.7.1 Open field 

     Performance in an open field was used to assess exploration and anxiety-like behavior (Pena, 

Smith et al. 2019, Popovitz, Mysore et al. 2019). An animal was placed in a black-walled arena 

(16 x 24 x 24in, Laird Plastics, Pflugerville, TX) with a grey bottom to minimize the glare from 

overhead lights in the testing room (Seibenhener and Wooten 2015).  The mouse was allowed to 

explore the field for 10 minutes. EthoVision (Noldus, Leesburg, VA) was used to track time 

spent in the center and peripheral area of the open field and total distance moved.  

 

2.7.2 Novel Object Recognition (NOR) 

     The NOR assay was used to assess object novelty preference and object recall (Leger, 

Quiedeville et al. 2013). Each mouse was placed in a custom-made open field (16 x 24 x 24in, 

Laird Plastics). Testing was conducted immediately after the open field test, and therefore 

habituation to the field was unnecessary. During trial 1, two identical, yellow Duplo® blocks 

(5.08 x 7.62 x 5.08cm, LEGO®, item no: 2301) were placed 59 cm, diagonally away from each 

other: the furthest points of the field. The mouse was placed in the center of the two objects and 

allowed to freely explore for 5 minutes. During trial 2, object 2 was replaced with a brass 



 56 

dishwasher elbow (5.08 x 7.62cm, Ace Hardware, Oak Brook, IL item #4520961). The mouse 

was returned to the center of the field and allowed to freely explore for 5 minutes. Ethovision 

was used to track the time spent with each object in trials one and two. A discrimination 

(preference) index was calculated for trial two to determine if a mouse preferred the familiar 

(Duplo block) or novel (dishwasher elbow) object: 

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝐼𝑛𝑑𝑒𝑥 = ,
𝑏
𝑒2/ ∗ 100 

e2= Total exploration time between object 1 and 2 during trial 2 

b= time spent with novel object 2 during trial 2  

 

2.7.3 Three-chamber task 

   Social Recognition and social novelty were examined using the three-chamber task (Yang, 

Silverman et al. 2011). A custom-made plexiglass box (61.2 x 30.5cm; Tap Plastics, San 

Francisco, CA) was divided into three chambers using two plexiglass dividers, each with an 

opening, (30.5 x 20.4cm). Stimulus mice for the three-chamber task were purchased as virgin 

adults (Jackson Laboratories). Each stimulus mouse was sex matched to the test mouse and was 

rotated throughout testing day. The left and right chambers each contained a metal cup with 

vertical bars, spaced approximately 2mm apart, that were attached to a metal top (7.3cm 

diameter x 20.4cm x 15.5cm). Each mouse was habituated to the entire box for 5 minutes. 

During trial 1 a stimulus mouse (s1) was placed in a metal cup, that centered in the left chamber. 

The test mouse was placed in the middle chamber and allowed to explore the for the enclosure 

for 10 minutes. The test mouse and stimulus mouse were removed from the chamber, and the 

apparatus was cleaned with 70% ethanol. S1 was again placed in the metal cup located in the 

center of the left chamber, and a stimulus mouse 2 (s2) was placed under the metal cup in the 
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center of the right chamber. The test mouse was returned to the middle chamber and allowed to 

explore the apparatus for 10 minutes. The test mice, S1, and S2, were removed, and the chamber 

and cups were again cleaned with ethanol. EthoVision was used to track the time spent in each 

chamber and total distance moved. Analyses included time the mouse spent with the familiar 

mouse (s1), middle chamber, and the novel mouse (s2).  

    

2.7.4 Elevated zero maze (EZM) 

     The EZM was chosen to assess anxiety-like behavior and impulsivity (Popovitz, Mysore et al. 

2019). The EZM was selected over the elevated plus due to its high sensitivity to manipulations 

and treatments (Popovitz, Mysore et al. 2019). Each mouse was placed in a “0” shaped apparatus 

with two open arms and two closed arms (diameter: 60.96cm, leg height: 60.96cm, San Diego 

Instruments, San Diego, CA). A mouse was positioned in an open arm facing a closed arm and 

allowed to explore for 10 minutes. EthoVision was used to track how much time was spent in the 

open and closed arms and total distance moved. Analyses determined a preference for the closed 

versus open arms.  

 

2.7.5  Barne’s Maze 

     The Barnes maze was used to measure spatial learning and memory (Fonken, Gaudet et al. 

2016). This maze consisted of 20 holes evenly distributed along the perimeter of a circular plane 

100 cm in diameter (Laird Plastics). Testing consisted of 3 components: a training day, 

acquisition days, and a probe trial. Black and white shapes, 18 cm in size, (triangle with diagonal 

lines, a square with black dots, a circle with checkered squares, and a solid black “X”) were 

placed on the walls or surrounding surfaces 70 cm away from the maze and aligned with each 
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quadrant of the maze for spatial location. On the training day, a bottomless metal box was 

positioned in the middle of the field and a buzzer played in the background for the duration of 

this test that was approximately 5 minutes in length. Each mouse was placed under the metal box 

for 10 sec. This box was then lifted, and the observer guided the mouse into the escape (target) 

hole. The hole was subsequently covered, and the buzzer was turned off.  The mouse remained in 

the covered target hole for 120 seconds. 

      For acquisition, the above process was repeated with the exception that the mouse was free to 

explore the maze for 180 seconds. The trial ended when the mouse found the target or failed to 

do so after 180 seconds. Once the animal found the target or was guided to the target, the hole 

was covered, the buzzer was turned off and the mouse was left undisturbed in the target hole for 

60 seconds. Acquisition days consisted of three trials over 4 consecutive days. The mean latency 

to target hole was analyzed across acquisition days.  

    The final component was the probe trial. At 24 hours after the last acquisition day, the target 

hole was occluded with a white paper towel that was flush with platform. A mouse was placed 

under the box, located in middle of the Barnes Maze, for 10 seconds. A buzzer was audible as 

the mouse explored the Barnes maze with the target hole for 90 seconds. The latency to find the 

target hole, number of visits to holes relative to the target hole, and path length to the target hole 

were then analyzed.  

 

2.8    Statistical Analyses 

2.8.1 Study design 

We calculated our effect sizes based on the open data provided by studies examining the 

same as ours (ELS + TBI and then some of the same outcomes). Each experiment can be 
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grouped as morphology, protein expression, and behavior. All data and stats values were 

included in these prior studies. I used these values to find their effect sized based on their 

determined group sizes. The morphology and protein expression studies were N=5 and the 

behavior were N=8. The effect size for the former was a medium effect. The effect size for 

behavior was small to medium. We wanted a medium to large effect for all outcomes. After 

theoretical simulation of plugging in values for the following equation (below) and from some 

past experience with animal numbers and variability in our lab, we decided on N=6/group for all 

morphology and cytokine groups. For behavior the equation landed us at 12/group but with more 

thought on how individual differences may influence behavioral output compared to a more 

concrete and less varying measure like protein expression, we decided to include 15/group for 

behavior assays.  

𝑑 = 	
(𝐹𝑣𝑎𝑙𝑢𝑒 ∗ 𝑑𝑓1)

((𝐹𝑣𝑎𝑙𝑢𝑒 ∗ 𝑑𝑓1) + 𝑑𝑓2) 

(Lakens 2013) 

In which, 

d= effect size in Cohen’s d  

F-value= Reported F-value  

df1= degrees of freedom between groups 

df2= degrees of freedom in between groups 

    In experiments that examined maternal observation of her pups, “N” was defined as a 

litter because the outcome was focused on the dam rather than the pups. The group sizes for 

these experiments were defined as N=3-4 dam/group.  

     Using the above strategy, the effect of rearing condition and injury on outcome measures 

were determined. Unpaired t-tests were used to analyze collapsed maternal behaviors and HPA-
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Axis fold change in gene expression. Mixed effect analyses were used to evaluate differences in 

time, condition, and sex. Two-way ANOVAs were used to compare 2 or more groups or factors 

(cage condition, injury, and/or time). A significance level of 0.05 was set for all analyses. If a 

significant interaction was detected, main effects were evaluated where appropriate. A Pearson’s 

r Correlation was used to analyze the following relationships: hippocampal behavior outcomes, 

anxiety-related and overall activity outcomes, hippocampal behaviors and 

stereological/volumetric analysis, microglial density/cell death and stereology at adulthood.  
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Figure 1. Experimental Design and Timeline. Mice were bred in house. On P2, litters were culled 
to 6-8 pups. Nursing dam and litters were randomized into LBN or Control cages until P9. 
Continuous home cage monitoring was used to track maternal behavior. A subset of animals was 
used for qTPCR to analyze collected for immunohistochemistry and protein expression. On P21, 
pups were weaned and randomized into TBI or Sham surgery. Brain tissue was collected for 
immunohistochemistry and protein expression. On 60-70, animals were analyzed for 
hippocampal structure and function.  
 

 
Figure 2. Standard murine models of ELS (limiting bedding nestlet, LBN) and TBI (controlled 
cortical impact) were used in this study. 
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Chapter 3: Results 

3.1 Characterization of the LBN model  

The rodent model has served as a foundation for understanding the impact of stress on 

children who experience poor maternal care that is often coupled with limited resources 

(Walker). As a first step in this study, the LBN model was validated in males and females by 

assessing maternal behaviors, activation of the hypothalamus-pituitary adrenal (HPA) axis, and 

body weights. After birth, dams and pups were transferred to cages with either standard bedding 

and a full nestlet or standard bedding that was covered by a wire grid, including 1/3 of a nestlet 

(Fig. 3). The behavior of the dam was recorded from on P2 to P9. The videos were then scored 

by a single observer. A priori outcomes included number of entries to the nest and time spent on 

the nest (Fig. 3). Time spent on the nest and dam entries to the nest were totaled across all 

scoring hours (0:00, 6:00, 11:00, 12:00, 18:00, 23:00ZT). While dams, exposed to an 

impoverished environment (termed ELS dams), spent more total time on the nest (Fig. 3A), they 

also made more entries to the nest (Figure 3B), an indicator of fragmented care, compared to the 

dams in standard caging (termed control dams). Collectively, these findings are in line with other 

studies that have characterized maternal behavior in the LBN model (Rice, Sandman et al. 2008, 

Walker, Bath et al. 2017, Gallo, Shleifer et al. 2019). 
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Figure 3. Maternal behaviors, measured at P3, revealed disrupted maternal behavior. 
Time spent on the nest and entries of dams to the nest were scored and averaged across 0:00, 
6:00, 11:00, 12:00, 18:00, and 23:00 Zeitgeber time hours. A.) ELS dams spent more time on 
their nests (unpaired t-test, t=2.718, *p<0.05) and B.) made more entries to the nest as compared 
to controls (unpaired t-test, t=7.592 ***p<0.0001). 

 

To determine if ELS influenced gain in weight, each pup was weighed daily from P2-P21 

(Fig. 4). While all pups gained weight, ELS pups did not gain weight at the same rate as control 

pups, based on a mixed effect analysis. When separated by sex, female ELS pups showed a 

lower gain in weight from P9-21, compared to ELS males.  
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Figure 4.  Arginine vasopressin (AVP) was increased in the hypothalamus after exposure to ELS.  
AVP and corticotropin-releasing hormone (CRH) were quantified in the hypothalamus at P9, a 
time point corresponding to the final day of exposure to ELS. While there was an increase in 
AVP (N=4-5, multiple t-test, Bonferroni Correction, t= 2.625, *p<0.05), there was no change in 
CRH (N=4-5, multiple t-test, Bonferroni Correction, t= 0.6694, p=0.08). 

 

At euthanasia at P9, homogenates, prepared from the hypothalamus, were used to assess 

gene expression of arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH).  

While AVP showed a significant increase compared to controls, CRH was marginally changed 

(p= 0.08, Figure 5). [(ANOVA tables for all outcomes are included in the supplemental data 

(Supplemental Tables 1-60)] 
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Figure 5. Body weights were tracked during and after exposure to ELS.  
ELS was associated with a lower gain in weight than that of control pups (N=23-37, mixed effect 
analysis, F3, 128=101.80, ***p<0.001). ELS females showed lower gains in body weights 
compared to ELS males (males, N=12-26, females, N=11-16; two-way ANOVA, F1,129=10.30, 
**p<0.01). 

 

 

3.2 Cytokines and the injured cortex 

 As both ELS and TBI are associated with inflammation (Potts, Koh et al. 2006, Danese, 

Pariante et al. 2007, Semple, Blomgren et al. 2013, Agorastos, Pervanidou et al. 2019, von 

Leden, Parker et al. 2019, Parker, Donovan et al. 2021), both pro- and anti-inflammatory 

cytokines were quantified in both males and females at P22 from homogenates prepared from the 

ipsilateral cortex for each condition (Figs. 6 and 7). The objectives were to determine the 

magnitude of the response to ELS when compared to TBI, and if ELS in combination with TBI 

(termed ELS+TBI), altered expression of these cytokines. TBI resulted in an increase in the pro-

inflammatory cytokines IL-1B, IL-6, TNFa, and IFNg in both males and females, compared to 

their respective sham controls. While IL-1a was increased in females, this anti-inflammatory 

cytokine was decreased in males. In response to ELS, there was a more limited profile of 
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cytokines as evidenced by an increase in IL-1B only, compared to shams in both males and 

females, and a decrease in IL-1a that was limited to male mice. When mice were exposed to 

ELS + TBI there was an amplified response, restricted to males, as evidenced by an increase in 

IL-1B, IL-10, and TNFa, compared to TBI. Cytokine expression following ELS and TBI show 

that pro-inflammatory cytokines are more sensitive to ELS, TBI, and ELS and that males show a 

greater vulnerability to cytokine expression than females.  
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Figure 6. Cytokines, quantified in cortical homogenates at P22, revealed limited variation across 
experimental conditions.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats were compared to the sham 
controls, unless otherwise stated.  
 
(A-F) In males, TBI resulted in an increase in A.) IL-1B (**p<0.01), B.) IL-6 (*p<0.05), C.) 
TNFa (**p<0.01), and D.) IFNg (**p<0.01); there was a reduction in F.) IL-1a (****p<0.0001). 
Similarly, ELS resulted in increased A.) IL-1B (*p<0.05) and B.) TNFa (***p<0.001), but F.) 
reduced IL-1a (***p<0.001). ELS + TBI resulted in an increase in A.) IL-1B (****p<0.0001), 
B.) IL-6 (***p<0.001), C.) TNFa (****p<0.0001), D.) IFNg (**p<0.01), and F.) IL-1a 
(***p<0.001). When compared to TBI, ELS + TBI resulted in increased A.) IL-1B (**p<0.01) 
and E.) IL-10 (*p<0.05). 
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(E-F) In TBI resulted in G.) increased IL-1B (****p<0.0001), H.) IL-6 (****p<0.0001), I.) 
TNFa (***p<0.001), J) IFNg (**p<0.001), and L.) IL-1a (*p<0.05). ELS resulted in G). an 
increase that was limited to IL-1B (****p<0.0001). ELS+ TBI produced increased G.) IL-1B 
(****p<0.0001), H.) IL-6 (****p<0.0001), I.) TNFa (*p<0.05), and J.) IFNg (*p<0.05). When 
compared to TBI, ELS + TBI resulted in decreased G.) IL-1B (*p<0.05). 
 
 

 
Figure 7. Summary of the differential response of cytokines in cortical homogenates at 1day post 
injury.     
A.) With the exception of IL-10, cytokines were significantly elevated in the injured cortex, in 
both males and females, compared to shams. 
B.) ELS resulted in a more limited increased expression of cytokines (IL-1B and TNFa only) 
compared to shams.  
C.) Only male pups, when exposed to ELS+TBI, showed an elevation in cytokines, compared to 
TBI. 
D.) With the exception of IL-10, cytokines were significantly elevated in the injured cortex for 
males and females, compared to shams. 
 

3.3 Vulnerability of the hippocampus after ELS and/or TBI: Microglial density and 
apoptosis 
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While we have previously reported acute cell death in the hippocampus after an early age 

TBI (Tsuru-Aoyagi, Potts et al. 2009), no distinctions were made within hippocampal 

subregions. Taking advantage of an antibody that distinguishes CA2 from CA1 and CA3 (San 

Antonio, Liban et al. 2014), microglial density and caspase-3 were quantified within each 

subregion at 1 day post injury in mice exposed to ELS, TBI or ELS+ TBI (Fig. 8). There was a 

pronounced microglial response in all subregions after TBI in both males and females. In 

contrast, ELS resulted in an increase in microglial density in all subregions in males, but only 

CA3 in females. When ELS+TBI was compared to TBI, the findings were more variable; while 

both males and females showed an increase in CA3, there was no change in CA1 and an increase 

in microglial activation in CA2 was limited males. These findings emphasize the profound effect 

of TBI on CA1, CA2 and CA3 in both males and females when compared to sham controls. 

While ELS has a broad effect in males across all subregions, microglial activation is limited to 

CA3 in females.   

Previous work has reported apoptosis in the corpus callosum and dorsal striatum in the 

acutely injured young brain (Chen, Noble-Haeusslein et al. 2013, Hanlon, Raghupathi et al. 

2019). Caspase-3 was used to define apoptotic cell death in the ipsilateral hippocampal 

subregions (Fig. 9). While there was pronounced increase in caspase-3+ cells after TBI in CA1, 

CA2, CA3 in both males and females compared to sham controls, there was no evidence of 

apoptotic cell death in any subregion in either sex when exposed to ELS. However, ELS in 

combination with TBI resulted in increased cell death in CA1 and CA3 for each sex when 

compared to TBI only. The combined results indicate that the CA3 region is most vulnerable to 

the inflammation and cell death following ELS and TBI. 
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Figure 8. At 1 day post injury, there were regional differences in microglial density in the 
hippocampus in mice exposed to either ELS or TBI.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
(A-D) In males, there were significant changes in cytokines when compared across all groups 
(Supplemental tables 13-16; N= 6/group, One-Way ANOVA). TBI resulted in an increase in Iba-
1+ cells in A) CA1 (***p<0.001), B) CA2 (***p<0.001), C), CA3 (****p<0.0001), and D) the 
dentate gyrus (**p<0.01). ELS resulted in an increase in Iba-1+ cells in A) CA1 (***p<0.001), 
B) CA2 (****p<0.0001), C) CA3 (**p<0.01), and D) the dentate gyrus (****p<0.0001). ELS+ 
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TBI revealed similar findings to that of TBI alone. There was an increase in the number of Iba-
1+ cells in the CA1 (****p<0.0001), CA2 (p****<0.0001), CA3 (****p<0.0001), and dentate 
gyrus (**p<0.01). ELS+ TBI in males, when compared to TBI, resulted in an increase in Iba-1+ 
cells in B.) CA2(*p<0.05) and C.) CA3(****p<0.0001) E-H.) 
 
In females, TBI resulted in E.) an increase in Iba-1+ cells in CA1 (**p<0.01), F.) CA2 
(**p<0.01), and G.) CA3 (**p<0.01). Exposure to ELS resulted in an increase in Iba-1+ cells in 
G.) CA3 (*p<0.05) and H.) dentate gyrus (*p<0.05). ELS + TBI resulted in an increase in Iba-1+ 
cells in E.) CA1 (***p<0.001), F.) CA2 (***p<0.001), G.) CA3 (****p<0.0001), and H.) dentate 
gyrus (****p<0.0001). ELS + TBI, when compared to TBI, resulted in an increase in Iba-1+ 
cells in G.) CA3 (****p<0.0001). 
 
Distinct microglial phenotypes, randomly assessed throughout the hippocampus, were evident at 
1-day post injury in the hippocampus. Representative images (I-K) were taken in the injured 
male hippocampus at P22.  
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Figure 9. Caspase-3+ cells were quantified in hippocampal subfields. ELS + TBI was associated 
with increased numbers of caspase-3+ cells in both males (A-D) and females (E-H).  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
In males, TBI resulted in an increase in caspase-3+ cells in A.) CA1 (****p<0.0001), B.) CA2 
(***p<0.001), C.) CA3 (****p<0.0001), and D.) dentate gyrus (****p<0.0001). ELS resulted in 
a similar number of caspase-3 cells in A.) CA1 (n.s.), B.) CA2 (n.s.), C.) CA3 (n.s.), and D.) 
dentate gyrus (n.s.). ELS + TBI resulted in a greater number of caspase-3+ cells in A.) CA1 
(****p<0.0001), B.) CA2 (***p<0.001), C.) CA3 (****p<0.0001), and D.) dentate gyrus 
(****p<0.0001). ELS + TBI resulted in the number of caspase-3 + cells in A.) CA1 
(****p<0.0001) and C.) CA3 (****p<0.0001) compared to TBI. 
 
In females, TBI yielded greater caspase-3+ cells in the E.) CA1 (***p<0.001), F.) CA2 
(***p<0.001), G.) CA3 (****p<0.0001), and H.) dentate gyrus (****p<0.0001). ELS showed no 
differences in the number of caspase-3+ cells in E.) CA1 (n.s.), F.) CA2 (n.s.), G.) CA3 (n.s.), 
and H.) dentate gyrus (n.s.). ELS + TBI resulted in an increase in caspase-3+ cells in E.) CA1 
(****p<0.0001), F.) CA2 (****p<0.0001), G.) CA3 (****p<0.0001), and H.) dentate gyrus 
(****p<0.0001). ELS + TBI, when compared to TBI, resulted in increased numbers of caspase-
3+ cells in E.) CA1 (***p<0.001) and G.) CA3 (***p<0.001). 
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3.4 Anxiety, hyperactivity, learning and memory   

Behavioral assessments were conducted at adulthood in mice exposed to ELS or TBI 

compared to sham controls. Additionally, ELS+TBI was compared to TBI, to determine if ELS 

altered recovery after brain injury.    

3.4.1 The Open Field Test (OFT) and Elevated Zero Maze (EZM) 

The OFT and EZM were selected to assess anxiety-like behavior, based upon 

thigmotaxis, greater time spent in the center versus time spent in the periphery (OFT, Fig. 10), 

and preference for the open versus closed arms (EZM, Fig.11). When exposed to ELS, males 

spent more time in the inner zone of the OFT (Fig. 10A) and open arms of the EZM (Fig. 11A). 

While TBI resulted in less time spent in the inner zone of the OFT (Fig. 10A), TBI resulted in 

more time spent in the EZM open arms (Fig. 11A). While males in the ELS + TBI group, 

compared to TBI, did not show a difference in time spent in the OFT (Fig. 10A), ELS + TBI 

spent more time in the open arms in the EZM compared to TBI (Fig 11A). In females, these 

outcomes were a bit more complex. In the OFT, mice in the ELS condition spent less time in the 

inner zone (Fig. 10B) but spent more time in the open arms in the EZM (Fig. 11B). Similarly, 

TBI females spent less time in the OFT inner zone (Fig.10B), but more time in the EZM open 

arms (Fig. 11B). ELS+TBI in the OFT (Fig. 10B) and EZM (Fig. 11B) did not show a difference 

in time spent in the measured areas compared to TBI alone.  

 We have previously shown that early age TBIs in mice result in hyperactivity at 

adulthood (Chen, Noble-Haeusslein et al. 2013). Here, the OFT and EZM were also used to 

assess distance moved in controls and experimental groups. (Fig. 10 and Fig. 11). In females, 

ELS resulted in an increase in distance moved when compared to shams, but a similar distinction 

was not noted in males. Conversely, TBI resulted in an increase in distance moved in the OFT 
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compared to shams that was limited to males. TBI in combination with ELS in females resulted 

in an increase in distance moved when compared to TBI alone, but this same comparison in 

males resulted in a decrease in thigmotaxis. These findings reveal that males and females show 

different response to measures of anxiety and hyperactivity after ELS and TBI are variable and 

may indicate that factors outside of ELS and incidence of head injury may influence these 

measures.  

 
Figure 10.  The open field test was used to assess anxiety-like behavior and hyperactivity.  Mice 
were evaluated for their preference to the center of the field (inner zone) versus the perimeter 
(outer zone) and the distance traveled over a period of 10 minutes. 
 



 75 

Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
A.) Brain-injured male mice spent less time in the outer zone (****p<0.0001). In contrast, ELS 
showed no differences in time spent in the outer zone. While ELS + TBI resulted in increased 
time spent in the outer zone (***p<0.001), ELS + TBI spent less time in the outer zone 
compared to TBI (****p<0.0001).  
B.)  In males, TBI resulted in greater distance moved (****p<0.0001). ELS and ELS +TBI did 
not show a difference in the distance moved. ELS + TBI resulted in reduced activity compared to 
TBI (**p<0.01).  
C.) In females, TBI and ELS spent less time in the outer zone (****p<0.0001) and 
(****p<0.0001), respectively. ELS + TBI when compared to shams or TBI, resulted in reduced 
time spent time in the outer zone. (****p<0.0001, for both comparisons.) 
D.) Female TBI mice spent a similar time in the outer zone (n.s.). ELS resulted in a reduction in 
time spent in the outer zone (**p<0.01). ELS + TBI resulted in an increase in the total distance 
moved compared to sham (**p<0.01) or TBI (*p<0.05).  
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Figure 11. The elevated zero maze was used to assess anxiety-like behavior.  ELS and TBI 
resulted in altered preference for open versus closed arms.  
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
A.) In males, TBI showed no difference in time spent in the open arms (**p<0.01). ELS resulted 
in more time spent in the open arms (***p<0.001). ELS + TBI showed more time spent in the 
open arms (****p<0.0001). Compared to TBI, ELS + TBI in males resulted in more time spent 
in the open arms (****p<0.0001).  
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B.) There was no difference in total distance moved between male TBI and sham animals (n.s.). 
ELS showed a similar distance moved (n.s.). ELS did not show a difference in distance traveled 
compared to sham (n.s.). ELS + TBI resulted in greater distance moved (*p<0.05). There was no 
difference in total distance traveled between ELS + TBI and TBI (n.s.). 
C.) In females, TBI resulted in more time spent in the open arms (****p<0.0001). ELS showed 
more time spent in the open arms (****p<0.0001). ELS + TBI showed greater time spent in the 
open arms (***p<0.001). ELS + TBI spent a similar time in the open arms compared to TBI 
(n.s.).  
D.) TBI females showed a similar distance moved. ELS resulted in greater distance moved 
(****p<0.0001). ELS + TBI showed a greater distance moved (****p<0.0001). ELS + TBI 
resulted in more total distance moved compared to TBI (**p<0.01). 
 

 3.4.2 Novel Object Recognition Test: Novelty Preference is impaired after TBI 

Next, novelty processing and working memory was assessed using the novel object 

recognition test. A novelty preference index was used to determine the proportion of time each 

mouse spent with a novel object versus a familiar object (Fig. 12 A-B). TBI in males and females 

resulted in decreased preference for the novel object compared to sham controls (Fig. 12 C-D). 

Whereas female mice, exposed to ELS, showed less preference for the novel object compared to 

sham controls, there was no difference in novelty preference in males (Fig. 12 C-D). While, 

female mice, exposed to ELS+ TBI, showed less preference for novelty compared to TBI, a 

similar distinction was not evident in males (Fig. 12 C-D). These findings suggest that while TBI 

impairs novelty preference in both sexes, females are more vulnerable to deficits in novelty 

preference when ELS is introduced to the model. 



 78 

 
Figure 12. The novel object recognition test was used to evaluate learning and memory.   A 
preference index, the time spent with a novel object versus a familiar object, was determined for 
each group.  
 
A., B.) In trial 1, a mouse was exposed to 2 identical Duplo® blocks for 5 minutes (A). In trial 2, 
1 block was replaced with a similar sized gold dishwasher elbow (B). 
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
C.) In males, TBI resulted in a reduced time spent with the novel object (****p<0.0001). ELS 
did not show a difference in time spent with the novel object (n.s.). ELS + TBI resulted in 
decreased time spent with the novel object (***p<0.001). There was no difference in time spent 
with the novel object between ELS + TBI and TBI (n.s.).  
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D.) In females, TBI showed decreased time with the novel object (****p<0.0001). ELS resulted 
in less time spent with the novel object (***p<0.001). ELS + TBI decreased the time spent with 
the novel object (**** p<0.0001). ELS + TBI reduced time spent with the novel object compared 
to TBI (*p<0.05). 

 

3.4.3 Three-Chamber Task: Social recognition is disrupted after TBI 

The three-chamber task was used to test social recognition. We have previously shown 

decreased social novelty at long-term timepoints following a P21 TBI (Semple, Blomgren et al. 

2013). The familiar chamber contained the familiar mouse (stimulus mouse 1), the novel 

chamber contained a new stimulus mouse, the middle chamber was the starting position for the 

assay and the mouse could freely cross the middle chamber during each trial. Raw data, based 

upon trials 1 and 2, summarize the amount of time spent in each chamber (Fig. 13A-B). Trial 2 

determined if the test mouse can discriminate between the familiar mouse (familiar chamber) and 

the novel mouse (novel chamber). While TBI in males and females resulted in decreased social 

recognition compared to shams (Fig. 13 C-D), ELS did not impact social recognition in either 

males or females (Fig. 13 C-D). ELS prior to TBI in male and female mice did not show a 

difference in social recognition compared to TBI. Collectively, these findings suggest that social 

recognition is impaired by TBI but not ELS and when these insults are combined, the overall 

deficit is not further amplified.  
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Figure 13. Social recognition was evaluated using the 3-chamber task  
A-B.) A summary of the raw data from the 3-chamber task represents the time spent in each 
chamber during trial 1 (T1) and trial 2. (T2).  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
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C.) In males, TBI reduced the amount of time spent in the novel chamber (*p<0.05). ELS 
showed similar time spent in the novel chamber (n.s.). ELS + TBI resulted in less time in the 
novel chamber (***p<0.001). There was no difference between time spent in the novel chamber 
between ELS + TBI and TBI (n.s.). D.) In females, TBI resulted in less time spent in the novel 
chamber (*p<0.05). ELS and ELS + TBI did not show a difference in time spent in the novel 
chamber (n.s.). There was no difference in time spent in the novel chamber between ELS + TBI 
and TBI (n.s.).  
 

3.4.4 ELS and TBI impair spatial and contextual memory 

Spatial and contextual learning and memory were assessed by the Barnes Maze. In each 

group, males and females learned the location of the target hole by the last acquisition day (Fig. 

14 A, E). On the probe trial day, TBI in males and females resulted in a longer latency to locate 

the target hole compared to shams (Fig. 14 B, F). A similar finding was seen in females when 

exposed to ELS (Fig. 14 B, F). However, when ELS preceded TBI there were no differences, 

when compared to TBI in either sex (Fig. 13 B,F). 

Time spent at the target hole was also used to measure spatial memory (Supplemental 

Figure 1). TBI alone and ELS alone resulted in a reduced time spent at the target hole in both 

sexes, compared to shams (Fig. S1A, B). Interestingly, only male mice, exposed to ELS + TBI 

spent more time at the target hole when compared to TBI alone (Fig. Supplemental 1B). 

Visits to the target hole were also quantified on the probe trial day. While males did not 

show any differences in visits to the target hole between any condition, females, when exposed 

to ELS, visited the target hole significantly less than shams (Fig. 13 C, G). 

Path length to the target hole was also quantified on the probe trial day. ELS showed no 

difference in the path length to the target hole compared to shams in males and females (Fig. 13 

D, H). TBI in males resulted in a longer path length to the target hole compared to shams, but 
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females did not show this difference (Fig. 13 D, H). ELS prior to TBI in males and females took 

longer path lengths to the target hole compared to TBI (Fig. 13 D, H). 

Path length to the target hole was complimented by the total distance traveled to assess 

overall activity on the probe trial day (Supplemental Figure 2). Exposure to ELS resulted in a 

greater total distance traveled compared to sham in both sexes (Fig. S2A, B). This same effect 

was seen in TBI, in which TBI males and females traveled around the maze more than sham 

(Fig. S1A, B). ELS prior to TBI did not contribute to the distance traveled in TBI males and 

females (Fig. S1A, B). Overall, these results indicate that ELS and TBI result in a memory but 

not learning deficit and ELS prior to TBI contributes to this impairment.  
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Figure 14. The Barne’s maze was used to test spatial and contextual learning and memory.  
A.) All male mice learned the location of the target hole by the last acquisition day (N=15/group, 
simple linear regression).  
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
B.) On probe trial day, TBI resulted in a greater latency to the target (****p<0.0001). ELS 
showed a similar latency to the target hole (n.s.). ELS + TBI showed a longer latency to find the 
target (****p<0.0001). ELS + TBI did not show a difference in latency to find the target hole 
compared to TBI (n.s.). C.) No differences in number of visits to the nest was seen in male mice. 
D.) In females, TBI resulted in greater path length (*p<0.05). ELS showed a similar path length 
to the target (n.s.). ELS + TBI showed a greater path length to the target hole (****p<0.0001). 
ELS + TBI resulted in greater path length compared to TBI (**p<0.01). 
E.) Female mice from all groups learned the location of the target hole by the last acquisition day 
N=15 females/group, simple linear regression). 
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F.) On probe trial day, TBI in females resulted in greater latency to the target (**p<0.01). ELS 
showed longer latency to the target hole (****p<0.0001). ELS + TBI resulted in higher latency 
to the target hole (****p<0.0001). ELS + TBI in females did not contribute to a longer latency to 
target hole compared to TBI (n.s.). 
G.) In females, TBI made a similar number of visits to the target hole. ELS made less visits to 
the target hole (**p<0.01). ELS + TBI did not show a difference in the number of visits made to 
the target hole (n.s.). ELS + TBI made a similar number of visits to the target hole compared to 
TBI.  
H.) TBI and ELS in females showed no difference in path length to find the target hole compared 
to sham (n.s., for both comparisons). ELS + TBI showed a longer path length to the target hole 
(***p<0.001) and ELS + TBI resulted in longer path lengths to find the target hole compared to 
TBI (*p<0.05). 
 
 

 
Table 4. Summary of behaviors at adulthood. Behaviors measured at adulthood are summarized 
above. Outcome comparisons are the following: ELS = ELS vs sham; TBI = TBI vs sham; ELS 
+ TBI = ELS + TBI vs TBI. The arrows in the OFT and EZM indicate an increase or decrease in 
the time spent or distance moved. For the NOR and 3-chamber task a down arrow indicates 
decreased performance in each task. In the Barnes Maze, an up arrow indicates decreased 
performance. 
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3.4.5 Groups of behavior that go together, stay together 

 Correlation Matrices were used to compare learning and memory outcomes (Fig. 14 A, 

C) and anxiety-like behaviors/overall activity (Fig. 14 B, D). In both males and females, the 

learning and memory-related outcomes/scores are related to the other. For example, in the male 

learning and memory matrix (Fig. 14 A), the lower the novel object preference index score, the 

greater the latency to find the target hole. Anxiety-like behaviors show an interesting correlation 

and it a bit more complex. For example, in the female anxiety-related behavior matrix (Fig. 14 

D), the more time spent in the outer zone in the Open Field correlates with more time in the open 

arm of the Elevated Zero Maze. But more distance traveled in the Open Field was positively 

correlated with the distance traveled in the Elevated Zero Maze. Although complex, these 

particular matrices accurately describe the trends in males and females for each set of behaviors.  
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Figure 15. Learning and memory and anxiety-like behaviors were evaluated at adulthood.  
 
Correlation matrices were used to summarize learning and memory related behaviors in A.) 
Males and C.) Females and measures of anxiety and overall activity in B.) Males and D.) 
Females. Outcomes from each category of behavior are correlated with one another. Pearson’s r 
correlation coefficients are reported in each square (-1.0 to +1.0). The shades of red indicate a 
significant negative correlation (-1.0, p<0.05), shades of blue indicate a significant positive 
correlation (+1.0, p<0.05). A black dot in a square indicates non-significance and a down arrow 
indicates a decreased performance in both groups.  
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3.5 The hippocampus at adulthood 

EPCP4, used to visualize CA2, and NeuN antibodies were used to quantify neuronal 

density in the subzones of the injured hippocampus. TBI resulted in a reduction of neurons in the 

CA1, CA2, and CA3, compared to the sham control for males and females (Fig. 15 A-F). ELS 

caused a loss of neurons in CA1, CA2, and CA3 compared to sham for females (Fig. 15 D-E), 

but only CA1 and CA3 in males (Fig. 15 A, C). Prior exposure of ELS to TBI caused a loss of 

neurons only in the CA1 in females compared to TBI (Fig. 15 D), and no additional loss of 

neurons in the other areas for males and females compared to TBI. 

 These results indicate that while TBI contributes to neuronal loss in the pyramidal cell 

subzones, ELS overall does not amplify this deficit. 

Volumetric loss was evaluated in the ipsilateral cortex and hippocampus in mice exposed 

to ELS, TBI, and ELS in combination with TBI. TBI resulted in a volumetric loss in the cortex 

and hippocampus compared to sham controls in males and females (Fig. 16 A-D). While ELS 

resulted in hippocampal and cortical volumetric loss compared to shams, this was limited to in 

females. (Fig. 16 A-D). ELS in combination with TBI, compared to TBI, did not result in volume 

loss in the cortex and hippocampus for both males and females. (Fig. 16 A-D). These results 

indicate that TBI results in ipsilateral cortical and hippocampal atrophy but when combined with 

TBI, ELS does not worsen this effect. 
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Figure 16. Stereological techniques were used to quantify neurons in CA1, CA2, and CA3.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
In males, TBI resulted in decreased labeling of NeuN+ in the A.) CA1 (****p<0.0001), 
decreased PCP4+ cells in the B.) CA2 (*p<0.05), and decreased NeuN+ cells in the C.) CA3 
(****p<0.0001). ELS decreased labeling of NeuN+ cells in the A.) CA1 (****p<0.0001) and C.) 
CA3(*p<0.05). ELS + TBI showed less NeuN+ labeling in the A.) CA1 (****p<0.0001), PCP4+ 
cells in the B.) CA2 (**p<0.01), and NeuN+ cells in the C.) CA3 (****p<0.0001). ELS + TBI 
did not show differences in labeling in the A.) CA1 (n.s.), B.) CA2 (n.s.), and C.) CA3 (n.s.) 
compared to TBI. In females, TBI showed less NeuN+ labeling in the D.) CA1(****p<0.0001), 
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PCP4+ labeling in the E.) CA2 (***p<0.001), and NeuN+ cells in the F.) CA3 (****p<0.0001). 
ELS decreased NeuN+ cells in the D.) CA1 (*p<0.05), PCP4+ cells in the E.) CA2. (*p<0.05), 
and NeuN+ cells in the F.) CA3 (****p<0.0001). ELS + TBI resulted in decreased NeuN+ 
labeling in the D.) CA1 (****p<0.0001), PCP4+ labeling in the E.) CA2 (***p<0.001), and 
NeuN+ cells in the F.) CA3 (****p<0.0001). ELS + TBI decreased NeuN+ in the D.) CA1 
(****p<0.0001), compared to TBI. 
 
 

 
Figure 17. At adulthood, ELS+TBI resulted in similar cortical and hippocampal volumetric loss 
when compared to TBI alone.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
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threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
A.) In males, TBI resulted in a decrease in cortical volume (**p<0.01). ELS did not show a 
difference in cortical volume (n.s.). ELS + TBI showed cortical volume loss (***p<0.001). ELS 
+ TBI did not show differences in cortical reduction compared to TBI. B.) TBI resulted in less 
hippocampal volume (*p<0.05). ELS did not show a difference in hippocampal volume (n.s.). 
ELS + TBI also did not show a difference in hippocampal volume (n.s.). C.) In females, TBI 
resulted in less cortical volume (**p<0.01). ELS reduced cortical volume (**p<0.01). ELS + 
TBI resulted in cortical loss (**p<0.01). There were no differences in cortical volume loss 
between ELS+ TBI and TBI. D.) TBI resulted in less hippocampal volume(****p<0.0001). ELS 
resulted in hippocampal (**p<0.01). ELS + TBI resulted in hippocampal loss (***p<0.001). No 
differences in hippocampal volume were seen between ELS + TBI and TBI (n.s.). 
 

3.5.1 Long-term hippocampal structural deficits are correlated to hippocampal-dependent 
functional deficits after ELS and TBI 
 

Pearson’s r Correlation matrices were used to examine the degree to which neuronal cell 

loss and hippocampal volumetric loss at adulthood were related to hippocampal-dependent 

functional deficits (Figure 17). Most structural changes in the in the injured brain corresponded 

to volumetric loss. For example, in the matrix describing males, (Fig. 18 A), CA2 neurons were 

positively correlated with the time spent in the novel chamber Three-Chamber Task, suggesting a 

relationship between time spent with the novel mouse and number of CA2 neurons. In the matrix 

describing females, (Fig. 18 B), there is a negative correlation between CA1 neurons and Barne’s 

Maze path length to the target hole. This suggests that with fewer neurons in less CA1, there is a 

longer path length to find the target hole. The matrix outputs indicate that the structural 

impairments in the hippocampal subzones are related to the deficits seen in the hippocampal-

dependent behaviors and that each subregion neuron reduction corresponds to the deficit of its 

role in learning and memory. 
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Figure 18. Hippocampal-dependent behaviors were correlated with neuronal loss in hippocampal 
CA1, CA2, and CA3 and cortical and hippocampal volumetric loss.  
A, B.) Correlation matrices were used to summarize hippocampal dependent behaviors, assayed 
at adulthood, with ipsilateral cortical and hippocampal volumes and hippocampal subfields in 
males (A) and females (B). Pearson’s r correlation coefficients are reported in each square (-1.0 
to +1.0). Shades of red and blue indicate either a significant negative correlation (-1.0, p<0.05) 
or a significant positive correlation (+1.0, p<0.05), respectively. A black dot in a square indicates 
non-significance and a down arrow indicates a decrease in performance and a decrease in the 
number of neurons.  
 

3.6 Acute pathogenesis after ELS and TBI is related to hippocampal subzone neuron 
loss at adulthood 
 
Pearson’s r correlation matrices were used to examine the relationship between the pathogenic 

response seen at P22 in the hippocampus and neuronal loss seen in hippocampal subregions at 

adulthood (Fig. 19). At P22, we examined microglial density and apoptosis via caspase-3. Using 

the correlation matrix, we assessed the relationship between acute microglial density and 

apoptosis in the subregions. The matrix indicates a strong positive correlation between microglial 

density and apoptosis. This suggests that the more microglia in the included subregions 
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correlates with greater apoptosis. The relationship between acute pathogenic outcomes and 

adulthood neuronal cell loss was also evaluated. There is a strong negative correlation between 

microglial density and cell death acutely and the number of neurons in the CA1, CA2, and CA3 

subzones at adulthood. Such findings suggest that increased microglial density in each subregion 

at P22, correlates with fewer neurons at adulthood. Additionally, the acute pathogenic changes in 

hippocampal subregions may serve as early biomarkers of long-term neuronal loss in the 

hippocampus and may predict behavioral outcomes. 

 
Figure 19. Indices of acute pathogenesis at P22 (microglial activation, increased caspase-3)  were 
correlated with a reduction in neurons in hippocampal subfields at adulthood.  
Correlation matrices were used to examine the temporal relationship between ELS and ELS+ 
TBI in A.) males and B.) females. Pearson’s r correlation coefficients are reported in each square 
(-1.0 to +1.0) and a heat map was generated to visualize correlation strength between variables. 
shades of red indicate a significant negative correlation (-1.0, p<0.05), shades of blue indicate a 
significant positive correlation (+1.0, p<0.05). A black dot in a square indicates non-significance 
and a down arrow indicates an adverse relationship between the correlated outcomes. 
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Chapter 4: Discussion 

Children who have sustained moderate to severe TBIs often present with deficits in 

learning, memory and sociality (Prins, Greco et al. 2013, Serpa, Ferguson et al. 2021). While 

advanced imaging has offered insights into volumetric changes in the cortex after a pediatric TBI 

(Lindsey, Wilde et al. 2019), few studies have considered how an early age TBI may lead to 

long-term, sustained deficits at adulthood (CDC reference). Recovery in this context is hampered 

by the interaction between injury-related processes that contribute to neurodegeneration which, 

in turn, are superimposed on brain development. Moreover, given the heterogeneity of these 

injuries, based upon imaging studies (Lindsey, Wilde et al. 2019), clinical trials are faced with 

the challenge of increasing size of recruitments.  

  To address this unmet need for longitudinal studies, an early age preclinical model of 

TBI was used to assess learning, memory and sociality, each of which are indices of quality of 

life in adults who have sustained an early age TBI. This study also considered ELS, defined in 

part by fragmental maternal care, that may alter the developmental trajectory of recovery after 

TBI and has been linked to later life psychiatric symptoms (Spadoni, Vinograd et al. 2022). 

 
4.1 Cytokines after ELS and TBI 

Cytokines in the developing brain play a role in neural development, including neuronal 

differentiation (Araujo and Cotman 1995, Schneider, Pitossi et al. 1998, Serpa, Ferguson et al. 

2021). Importantly, proper neurodevelopment, relies, in part, on the balance of pro and anti-

inflammatory cytokines. This is exemplified in studies that report disruption of these natural 

fluctuations in IL-1B, IL-1a, IL-6, IFNg, and TNFa acutely after a TBI in both the young and 

adult brain (Sandhir, Puri et al. 2004, Perez-Polo, Rea et al. 2013, Chhor, Moretti et al. 2017, 

Taib, Leconte et al. 2017, Serpa, Ferguson et al. 2021). While a TBI results in a robust increase 
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in these cytokines in the cortex in both age groups during the acute phase post injury (Perez-

Polo, Rea et al. 2013, Chhor, Moretti et al. 2017, Taib, Leconte et al. 2017, Serpa, Ferguson et al. 

2021), this response is higher in the young brain (Sandhir, Puri et al. 2004, Semple, O'Brien et al. 

2017, Serpa, Ferguson et al. 2021), namely in the cortex. This raises the possibility that the 

young brain may be particularly vulnerable to a TBI due to a more exaggerated inflammatory 

response.  

In this study cytokines were differentially expressed in the cortex in response to TBI, 

ELS or ELS prior to TBI. IL-1B, IL-6, TNFa, IFNg, IL-1a, and IL-10, were measured in 

homogenates of the cortical mantle at 1-day postinjury. Both ELS alone and TBI alone resulted 

in an increase in IL-1B in males and females at P22. These findings parallel with what is 

reported in clinical studies of ELS and TBI (Li and Liu 2013, Nwachuku, Puccio et al. 2016, 

Fogelman and Canli 2019, Sun, Bai et al. 2019, Doganyigit, Erbakan et al. 2022).  

The present study showed a pronounced expression of IL-1B, compared to other 

cytokines, in the injured cortex. The clinical field has gained a better understanding of the 

underlying mechanisms behind neuroinflammation following a TBI and how to best utilize 

biomarkers in identifying this type of inflammation. Nucleotide oligomerization domain (NOD)-

like receptor P3 (NLRP3) is part of the NLR family and plays an important role in regulating 

innate immunity (O'Brien, Pham et al. 2020). NLRP3 in particular is referred to as an 

“inflammasome” or a multiprotein complex that assembles in response to stress-associated 

stimuli (de Zoete, Palm et al. 2014) and specifically lead to the activation of IL-1B. In the 

context to TBI, NLRP3 in which it sends priming signals to signal transcriptional up-regulation 

of itself. Then, sends activation signals to activate the immune system to respond to the 

mechanical TBI (Bauernfeind, Horvath et al. 2009, Swanson, Deng et al. 2019, O'Brien, Pham et 
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al. 2020). This two-step priming and activation process is said to be the initial cascade of 

inflammatory events following at TBI and eventually leads to the conversion of inactive IL-1B to 

active IL-1B. Ultimately, active IL-1B is released in the tissue and serum and acts as a signal to 

microglia and promoters of cell death.  

 The concern of early neuroinflammation in the young brain, in which childhood injuries 

show elevated IL-1B (Giza and Prins 2006, Semple, Blomgren et al. 2013), and adulthood 

injuries show a strong correlation between acutely elevated IL-1B levels and long-term neuronal 

damage after injury and the functional deficits to follow (Nwachuku, Puccio et al. 2016, Liu and 

Quan 2018, Sun, Bai et al. 2019, Doganyigit, Erbakan et al. 2022). The elevation of IL-B has 

been reported in the cortex by others, in the context of adult TBIs in both humans and preclinical 

models. TBI patients evaluated within 24 hours of the injury show robust expression in IL-1B 

and can persist up to 5 days after the injury (Holmin and Hojeberg 2004). Preclinical models 

have expanded these with the utilization of inflammatory interventions and show that the 

neutralization of IL-1B can ameliorate cell loss and additional inflammation (Ozen, Ruscher et 

al. 2020), cell loss, microglial activation, and long-term impairment (Semple, O'Brien et al. 

2017). Longitudinal clinical studies of ELS also show elevated IL-1B levels into adulthood and 

is the most prominent with patients with depression (Liu, Croft et al. 2013, Fogelman and Canli 

2019), a disease state heavily studied in clinical ELS (Kessler and Magee 1994, Kaplow and 

Widom 2007, Saleh, Potter et al. 2017, Syed and Nemeroff 2017, Smith and Pollak 2020). Thus, 

while the present study finds support prior pre-clinical and clinical, they also suggest that IL-1B 

may be the most sensitive pro-inflammatory cytokine to TBI and ELS, and perhaps is an 

essential mediator in the cascade of inflammatory events to follow. 
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My studies addressed the pro-inflammatory environment in both males and females at 

P22 in the context of 3 major conditions, TBI, ELS and ELS+TBI. At P22, corresponding to 1-

day after TBI, there was a broad expression of multiple cytokines, IL-1B, IL6, TNFa, IFNg and 

IL-1a, in both males and females. In contrast, mice exposed to ELS only or ELS in combination 

with TBI resulted in a more limited expression of cytokines (IL-1B, TNFa, IL-10) that was 

restricted to males only. Such findings highlight the complexity of the acute, post-injury 

environment, characterized by a robust pro-inflammatory response in both sexes. While ELS 

alone resulted in a more modest response, it does suggest that ELS, limited to P2 to P9, has a 

sustained effect during subsequent brain development.  

These findings raise an important question regarding the duration of the pro-

inflammatory response after ELS. To the best of my knowledge, there is only one longitudinal 

study of ELS using the LBN model (Hoeijmakers, Ruigrok et al. 2017). The pro-inflammatory 

cytokines IL-1B, IL-6, and TNFa, as measured by mRNA, were evaluated at P9, when animals 

were returned to standard housing, and 4- and 10-months post LBN. While IL-1B mRNA was 

elevated at P9, there was no evidence of elevated cytokines at the later time points (Hoeijmakers, 

Ruigrok et al. 2017). In contrast, studies of other ELS models, such as maternal stress, report an 

elevation of pro-inflammatory cytokines in the hippocampus, serum, and prefrontal cortex, that 

remained elevated beyond the ELS exposure, extending into young adulthood (Wang, Jiao et al. 

2011, Delpech, Wei et al. 2016, Reus, Fernandes et al. 2017, Amini-Khoei, Haghani-Samani et 

al. 2019, Nouri, Hashemzadeh et al. 2020, Lorigooini, Boroujeni et al. 2021). Together, these 

findings raise questions about the concept of immune priming (Danese, Pariante et al. 2007) that 

results in prolonged exposure to inflammatory mediators. The durability of early life stress, as 
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determined by indices of inflammation, may be related to the nature of this insult and based upon 

my findings, may differ between males and females.  

 

4.2 Regional vulnerability of the hippocampus 

Reactive microglia and apoptosis, commonly found in proximity to a primary cortical 

insult, are also evident within subcortical structures including the hippocampus, thalamus, corpus 

callosum, dorsal striatum, and cortex (Loane, Kumar et al. 2014, Loane and Kumar 2016) Tsuru 

(Tsuru-Aoyagi, Potts et al. 2009, Chen, Noble-Haeusslein et al. 2013, Hanlon, Raghupathi et al. 

2019). Rodent CCI models (Tsuru-Aoyagi, Potts et al. 2009, Chen, Noble-Haeusslein et al. 2013) 

and closed head injury models (Hanlon, Raghupathi et al. 2019) address inflammation and cell 

death (apoptosis) in the immature brain (Tsuru-Aoyagi, Potts et al. 2009, Chen, Noble-

Haeusslein et al. 2013, Hanlon, Raghupathi et al. 2019). Such findings indicate that the areas 

such as the dorsal striatum and corpus callosum (Hanlon, Raghupathi et al. 2019) and 

hippocampus (Tsuru-Aoyagi, Potts et al. 2009, Chen, Noble-Haeusslein et al. 2013) show greater 

levels of activated microglia following injury, and this has also been associated with greater cell 

death via apoptosis. This position has been supported by prior work from my lab, which studied 

the overexpression of the antioxidant glutathione peroxide (GPx). Overexpression of GPx 

resulted in a reduction in activated microglial density and apoptosis following an early-aged 

injury (Tsuru-Aoyagi, Potts et al. 2009) and was associated with better long-term behavioral 

recovery (Tsuru-Aoyagi, Potts et al. 2009).  

The hippocampus in rodents is vulnerable to both ELS (Bath, Manzano-Nieves et al. 

2016, Walker, Bath et al. 2017, Lumertz, Kestering-Ferreira et al. 2022) and focal cortical 

injuries (Shultz, Bao et al. 2012, Prins, Greco et al. 2013, Semple, Blomgren et al. 2013). 
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However, a clear delineation of this vulnerability has yet to be understood within the CA1, CA2 

and CA3 subregions of the hippocampus. To address this challenge, microglial density and 

apoptosis in defined hippocampal CA subregions served as indicators of secondary pathogenesis. 

In my study, each subregion was first defined: CA2 was immunolabeled using an antibody 

directed against Purkinje cell protein 4 (PCP4), (Hitti and Siegelbaum 2014, San Antonio, Liban 

et al. 2014, Tzakis and Holahan 2019, Peng, Gu et al. 2023), and CA1 and CA3 were identified 

using NeuN, an antibody directed against neuronal nuclei. With these regional markers, Iba-1+ 

microglia and Caspase-3+ cells were then quantified within each region. As might be expected, 

while all experimental conditions were associated with an increase in microglial density and 

apoptosis in the hippocampus, there were differences within subregions. For example, TBI 

resulted in an increase in microglial density in all subregions for both males and females. While 

ELS alone also resulted in an increase in microglial density, this was limited to CA2 and CA3 in 

males and CA3 in females. Prompted by clinical relevance, I addressed the extent to which ELS, 

prior to a TBI would alter pathogenesis in the hippocampus. ELS+ TBI, when compared to TBI, 

resulted in a pronounced microglial response in CA3 in both males and females. The importance 

of this finding is reflected in a recent study in humans (Miller, Chong et al. 2020) who 

demonstrated a key role for CA3 in episodic memory. Techniques involving fMRI reveal that 

bilateral damage to CA3 resulted in the loss of functional integration across the medial temporal 

lobe that is part of the default network. This resulted in disruption in the retrieval of episodic 

memories which were established long after their initial acquisition. As brain injuries in children 

who have experienced ELS may present with this disorder, further studies are needed to address 

an effective remediation that is tailored to this condition.  

4.3.1 Hippocampal-dependent behaviors 
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Given the reduction of neurons in the hippocampus after ELS and TBI, the specific 

learning and memory behaviors to the hippocampal subregions were assessed with the Novel 

Object Recognition Test (NOR), Three-Chamber Task, and the Barnes Maze.  

Social memory and social development are significant determinants of adequate quality 

of life (Ryan, Catroppa et al. 2016). Interestingly, the evaluation of social deficits following early 

age and adulthood injury is limited. The three-chamber task was developed and validated in 

autism-spectrum rodent models and have effectively captured risk factors for social dysfunction 

(Silverman, Yang et al. 2010, Yang, Silverman et al. 2011). One model of a P21 TBI showed 

that TBI in the young brain elicits impairments to social recognition/novelty in at adulthood 

(Semple, Canchola et al. 2012) via the three-chamber task. My findings in this study validate 

these findings in both males and females, in which injured mice did not show a preference for the 

novel stimulus mouse over the familiar mouse. Early clinical studies of pediatric TBI indicate 

that the earlier incidence of injury, the greater vulnerability to poor neurobiological outcomes, 

especially in the learning and memory domains (Levin, Zhang et al. 2004, Anderson and 

Catroppa 2005, Catroppa, Anderson et al. 2008, Anderson, Spencer-Smith et al. 2009, Wells, 

Minnes et al. 2009, Semple, Blomgren et al. 2013). Importantly, patients with an incidence of a 

TBI report social dysfunction, in which the occurrence of a TBI reduced life satisfaction and 

ability to integrate into their community (Rosema, Crowe et al. 2012, Williams, Rapport et al. 

2014, Shultz, McDonald et al. 2020). Clinical research suggests that social deficits may be 

related to the earlier incidence of injury, in which the earlier the injury occurs, the greater the 

risk for a social behavior deficit (Wells, Minnes et al. 2009, Ryan, Catroppa et al. 2016) and 

coincides with white matter pathology resulting from the injury, as indicated by neuroimaging 

techniques (Wells, Minnes et al. 2009, Rosema, Crowe et al. 2012).  
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To the best of my knowledge, there are few groups using the LBN model to assess 

adulthood social recognition with the three-chamber task or a social recognition test (Kohl, 

Riccio et al. 2013, Kohl, Wang et al. 2015, Wendel, Short et al. 2021). These findings indicate 

that ELS via the LBN model displays impairments in social recognition at adulthood (Kohl, 

Riccio et al. 2013, Kohl, Wang et al. 2015, Wendel, Short et al. 2021). and that this deficit is not 

seen in the young or adolescent timepoints (Kohl, Riccio et al. 2013, Kohl, Wang et al. 2015). 

This concept aligns with the TBI field, in which the later timepoints indicate a more pronounced 

deficit compared to other developmental timepoints; however, ELS males and females in the 

present study did not provoke a social deficit, as indicated by the three-chamber task. While the 

three-chamber task selected for the present study followed the protocol of the TBI field  

(Crawley 2008, Semple, Canchola et al. 2012), ELS mice did not show the same social 

impairments at adulthood of that in the literature. This finding suggests that assessment of social 

function via the selected version of the three-chamber task may not be the best measure of the 

social cognition following ELS and perhaps the terminology and measure of social recognition 

versus preference for social novelty are highly specific in the context of ELS.  

Spatial, contextual, episodic, and working memory are key indicators of normal higher 

executive and cognitive function (Cowan, Rutherford et al. 2003, Cowan 2010, Cowan 2014). In 

developmental neuroscience, educational and developmental benchmarks of comprehension 

assess cognitive and executive function and incorporate elements of the ability to learn and retain 

information (Cowan, Rutherford et al. 2003, Cowan 2010, Cowan 2014). The Novel Object 

Recognition (NOR) test has been previously used in rodent models to assess object recall or 

preference (Ennaceur and Delacour 1988, Ennaceur 2010, Akkerman, Blokland et al. 2012, van 

Goethem, Rutten et al. 2012, Leger, Quiedeville et al. 2013, Lueptow 2017). The assessment of 
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object recall at adulthood via the NOR has not been well studied in rodent models assessing an 

early-aged injury; however, the few adult injury models show that TBI impairs novelty 

recall/preference (Zhao, Loane et al. 2012). NOR in my study suggest poor object recall in males 

and females following and early aged injury. The Barnes Maze has been used as an alternative to 

the Morris Water Maze, in which rodents working, spatial, and contextual memory are assessed 

without the use of an additional stressor (i.e. water) (Gee, Steffen et al. 2023). Working memory 

plays an important role in early childhood development and shapes the formation of long-term 

memories (Ericsson and Kintsch 1995, Cowan 2010, Cowan 2014). To date, only one TBI group 

has examined working and spatial learning and memory via the Barnes Maze in the adult injured 

brain (Gee, Steffen et al. 2023) and showed that TBI impaired spatial and contextual memory in 

all aspects of the maze. Injured mice in the present study showed significant spatial, contextual 

memory deficits at adulthood during the probe trial day of Barnes Maze. These findings support 

the implication seen in clinical studies of long-term memory following pediatric injury, in which 

the young brain presents a great vulnerability to spatial, contextual, and working memory 

impairments (Levin, Zhang et al. 2004, Anderson and Catroppa 2005, Catroppa, Anderson et al. 

2008, Anderson, Spencer-Smith et al. 2009, Wells, Minnes et al. 2009, Semple, Blomgren et al. 

2013, Shultz, McDonald et al. 2020) 

ELS studies using the LBN model have assessed non-social learning and memory 

behaviors (Rice, Sandman et al. 2008, Oomen, Soeters et al. 2010, Gallo, Shleifer et al. 2019, 

Wendel, Short et al. 2021) using the NOR. The original LBN model (Rice, Sandman et al. 2008) 

indicated an impairment in preference for object novelty at adulthood (Rice, Sandman et al. 

2008). While no LBN models have used the Barnes Maze to assess learning and spatial, working, 

and contextual memory impairment, the Morris Water Maze revealed that ELS produces 
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impairments in spatial and contextual memory at later timepoints (Oomen, Soeters et al. 2010). 

Human studies of stress resulting from childhood abuse, neglect, and poverty also reveal learning 

and memory dysfunction beyond the time of ELS exposure (Woon and Hedges 2008, De Brito, 

Mechelli et al. 2009, Chen, Hamilton et al. 2010, Gorka, Hanson et al. 2014, Hanson, van den 

Bos et al. 2017, Lawson, Camins et al. 2017, Teicher, Anderson et al. 2018, Smith and Pollak 

2020) and these dysfunctions are associated with reduced hippocampal volume. It should be 

noted that the ELS studies use different versions of the NOR to assess learning and memory 

behavior and that no group has assessed spatial memory using the Barnes Maze test. While the 

results from the present study cannot be directly compared to the literature or the clinical 

outcomes, ELS in my study only prompted a spatial and contextual memory impairment in 

females but did not elicit deficits in non-social learning and memory in males and females.  

 
While the ELS field suggests memory impairments, ELS does not impact learning and 

memory behavior to the same degree as TBI alone. Results are limited in measures of learning 

and memory after ELS prior to a TBI (Diaz-Chavez, Lajud et al. 2020). The findings indicate 

that ELS combined with a TBI amplifies the impairment in spatial and learning memory 

compared to TBI alone (Diaz-Chavez, Lajud et al. 2020). While this group selected a fear 

conditioning model to assess spatial working memory, ELS prior to TBI in the present study 

impaired spatial working memory as indicated by the Barnes Maze and this was most evident in 

females. Together, TBI elicits a deficit in learning and memory behaviors. Specifically, injury at 

the P21 timepoint suggests these deficits are worse compared to an injury at adulthood, 

especially social recognition. While I was surprised that ELS did not show memory deficits at 

extended timepoints, nor did ELS amplify memory deficits in all measures, learning and memory 

may be most impacted by the loss of neurons in the hippocampal subregions and the reduction of 
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hippocampal volume, produced most significantly by TBI rather than ELS. Additionally, my 

findings address longitudinal outcomes on hippocampal-driven behaviors when ELS precedes a 

pediatric TBI.  

 

4.4 Anxiety and Hyperactivity after ELS and TBI 

Anxiety-related behavior and hyperactivity assessments were included in the present 

study to provide a broad understanding of behaviors that are impaired by ELS and TBI. The 

Open Field Test (OFT) and Elevated Zero Maze (EZM) were selected to measure anxiety-related 

behavior, impulsivity, and hypo- or hyperactivity.  

Psychiatric behaviors, like anxiety, have been historically difficult to assess in rodent 

models because it is difficult to assess emotion in animals (Shultz, Bao et al. 2012, Shultz, 

McDonald et al. 2020)). Rodent models present a difficult challenge in generating an anxiety-

like state ((Shultz, Bao et al. 2012, Shultz, McDonald et al. 2020). Several rodent models 

examining the emergence of an anxiety-like response to injury have utilized the EZM due to 

simplicity and high sensitivity to animal manipulations (i.e. TBI or ELS) (Shultz, Bao et al. 

2012, Popovitz, Mysore et al. 2019, Shultz, McDonald et al. 2020). Early-aged injuries have 

evaluated outcomes of the OFT and EZM into adulthood and show that TBI induces anxiety-like 

behavior (Popovitz, Mysore et al. 2019). Adult models of TBI have also observed increased 

anxiety using the OFT and EZM and persists for several months after the injury (Shultz, Bao et 

al. 2012, Shultz, McDonald et al. 2020) and this is consistent across rodent species. Longitudinal 

studies of pediatric head injuries show that younger children are at the greatest risk for 

developing anxiety disorders as early as 6 months after injury and persists well beyond the 

incidence of injury and is independent of anxiety prior to injury (Levi, Drotar et al. 1999, Luis 
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and Mittenberg 2002, Vasa, Grados et al. 2004, Max, Keatley et al. 2011, Babikian, Merkley et 

al. 2015). Neuroimaging studies suggest that the physical damage resulting from TBI may 

mediate dysregulation of the white matter systems in the injured cortex (Max, Keatley et al. 

2011). Additionally, much like learning and memory, younger children continue to present the 

greatest risk for developing novel anxiety disorder following a TBI (Max, Keatley et al. 2011). It 

should be noted that in most assessments of anxiety following pediatric injury, emotional 

perception and hormonal irregularities are measured in conjunction, in which the anxiety is 

associated with impairment in emotional processing and a hormonal imbalance (Dunlop, 

Udvarhelyi et al. 1991, Blakemore 2008, Schmidt, Hanten et al. 2010, Ryan, Anderson et al. 

2014, Serpa, Ferguson et al. 2021). 

Interestingly, chronic stress is one of the most common ways to elicit an anxiety-like 

response in human and animal models (Shultz, Bao et al. 2012, Shultz, McDonald et al. 

2020),Wilner). Few rodent models of ELS via the LBN model have assessed outcomes of the 

OFT and Elevated Plus Maze (similar to the EZM) at extended timepoints following ELS (Rice, 

Sandman et al. 2008) (Wang, Jiao et al. 2011, Dalle Molle, Portella et al. 2012, Walker, Bath et 

al. 2017, Gallo, Shleifer et al. 2019), all but one (Rice, Sandman et al. 2008)indicate anxiety-like 

behaviors at adulthood (Wang, Jiao et al. 2011, Dalle Molle, Portella et al. 2012, Walker, Bath et 

al. 2017, Gallo, Shleifer et al. 2019). Interestingly, the one group that did not show an anxiety-

like response in the OFT or Elevates Plus Maze, showed hyperactivity at adulthood (Rice, 

Sandman et al. 2008). Clinical studies of adolescents and young adults indicate that ELS during 

childhood is a risk factor for anxiety and may persist into aged adulthood (Safren, Gershuny et 

al. 2002, Bandelow, Charimo Torrente et al. 2004, Norman, Byambaa et al. 2012, Hughes, Bellis 

et al. 2017, Syed and Nemeroff 2017, Lahdepuro, Savolainen et al. 2019, Smith and Pollak 
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2020); however these studies suggest that the anxiety that emerges is non-specific and may vary 

based on the type of ELS exposure (i.e. neglect, childhood abuse, malnutrition, institutional 

rearing, maltreatment, low socioeconomic status). 

While the referenced studies and reviews indicate a straightforward anxiety-like 

response, the present findings show inconsistent results between the OFT and EZM with both 

males and females. I selected the OFT and EZM to determine anxiety-like and/or hyperactivity 

in chronically stressed and injured mice. While the OFT revealed anxiety-like behavior in TBI 

males and females, only males showed a hyperactive state. ELS resulted in anxiety-like behavior 

and hyperactivity in females; however, ELS in males resulted in impulsivity in both OFT and 

EZM but not hyperactivity in either test. When combined, ELS and TBI did not show anxiety or 

impulsivity in the OFT for males and females, but the EZM in males showed impulsivity and no 

hyperactivity. While these findings appear difficult to piece together, they indicate that there may 

be more complex factors beyond ELS and TBI that influence measures of anxiety, impulsivity, 

and hyperactivity. It may also be possible that these measures are not the best assays to assess 

these behaviors in tandem with one another in the context of ELS and TBI. 

 

Conclusion 

In conclusion these studies address the clinically relevant problem of heterogeneity of injury 

recovery, with the superimposition of early life stress. We show that the chronically stressed and 

injured brain amplifies elements of inflammation and pathogenesis and this in turn has 

significant implications on the long-term functional and structural consequences seen at 

adulthood. The findings provide an opportunity to potentially develop biomarkers in preclinical 

models to understand the short and long-term recovery following an injury. Translational studies 
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may be able to use this information to improve care management following a pediatric head 

injury.  
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Supplemental Data 

 

Supplemental Figure 1. The Barnes Maze was used to test spatial and contextual learning and 
Memory. Data in males and females were first separately evaluated across all groups and found 
to be significantly different (Supplemental tables, 44-45; N= 6/group, one-way ANOVA). 
Tukey’s post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 
significance threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared 
to the sham controls, unless otherwise stated. On probe trial day, in males A.) TBI resulted in 
less time spent at the target hole (****p<0.0001). ELS showed less time spent at the hole 
(**p<0.01). ELS + TBI males spent more time at the target hole compared to TBI (***p<0.001). 
In females B.), TBI resulted in less time spent at the target hole (*p<0.05). ELS showed less time 
spent at the target hole (**p<0.01). ELS + TBI resulted in less time at the target hole compared 
to TBI (**p<0.01).  
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Supplemental Figure 2. The Barnes Maze was used to test spatial and contextual learning and 
Memory. Data in males and females were first separately evaluated across all groups and found 
to be significantly different (Supplemental tables, 44-45; N= 6/group, one-way ANOVA). 
Tukey’s post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 
significance threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared 
to the sham controls, unless otherwise stated. Total distance was measured in male and female 
mice (A, B). In males A.), TBI showed more distance moved (****p<0.0001). ELS resulted in 
greater distance traveled (**p<0.01). ELS + TBI did not show differences in distance traveled 
compared to TBI (n.s.). In females, TBI mice showed greater distance moved (***p<0.001). ELS 
resulted in more distance moved (*p<0.05). ELS + TBI did not show differences in total distance 
moved compared to TBI (n.s.). 
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Supplemental Table 1. ANOVA Table for cytokine IL-1B in males at P22.  
 

 
Supplemental Table 2. ANOVA Table for cytokine IL-16 in males at P22.  
 
 

 
Supplemental Table 3. ANOVA Table for cytokine TNFa in males at P22.  
 
Supplemental Table 4. ANOVA Table for cytokine IFNg in males at P22.  
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Supplemental Table 5. ANOVA Table for cytokine IL-10 in males at P22.  
 
 

 
Supplemental Table 6. ANOVA Table for cytokine IL-1a in males at P22.  
 
 

 
Supplemental Table 7. ANOVA Table for cytokine IL-1B in females at P22.  
 

 
Supplemental Table 8. ANOVA Table for cytokine IL-16 in females at P22. 
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Supplemental Table 9. ANOVA Table for cytokine TNFa in females at P22. 
 
 

 
 
Supplemental Table 10. ANOVA Table for cytokine IFNg in females at P22. 
 
 

 
Supplemental Table 11. ANOVA Table for cytokine IL-10 in females at P22. 

 
Supplemental Table 12. ANOVA Table for cytokine IL-1a in females at P22. 
 
 



 114 

 
Supplemental Table 13. ANOVA Table for microglial density in CA1 in males at P22. 
 
 

 
Supplemental Table 14. ANOVA Table for microglial density in CA2 in males at P22. 
 
 

 
Supplemental Table 15. ANOVA Table for microglial density in CA2 in males at P22. 
 

 
Supplemental Table 16. ANOVA Table for microglial density in the dentate gyrus in males at 
P22. 
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Supplemental Table 17. ANOVA Table for microglial density in CA1 in females at P22. 
 
 

 
Supplemental Table 18. ANOVA Table for microglial density in CA2 in females at P22. 
 
 

 
Supplemental Table 19. ANOVA Table for microglial density in CA3 in females at P22. 
 
 

 
Supplemental Table 20. ANOVA Table for microglial density in the dentate gyrus in females at 
P22. 
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Supplemental Table 21. ANOVA Table for cell death (apoptosis) in CA1 in males at P22. 
 
 

 
Supplemental Table 22. ANOVA Table for cell death (apoptosis) in CA2 in males at P22. 
 
 

 
Supplemental Table 23. ANOVA Table for cell death (apoptosis) in CA3 in males at P22. 
 

 
Supplemental Table 24. ANOVA Table for cell death (apoptosis) in the dentate gyrus in males at 
P22. 
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Supplemental Table 25. ANOVA Table for cell death (apoptosis) in CA1 in females at P22. 
 
 

 
Supplemental Table 26. ANOVA Table for cell death (apoptosis) in CA2 in females at P22. 
 
 

 
Supplemental Table 27. ANOVA Table for cell death (apoptosis) in CA3 in females at P22. 
 

 
Supplemental Table 28. ANOVA Table for cell death (apoptosis) in the dentate gyrus in females 
at P22. 
 
 



 118 

 
Supplemental Table 29. ANOVA Table for time in the inner area of the Open Field Test (OFT) 
in adult males 
 
 

 
Supplemental Table 30. ANOVA Table for time in the distance moved in the OFT in adult males 
 
 
 

 
Supplemental Table 31. ANOVA Table for time in the inner area of the OFT in adult females 

 
Supplemental Table 32. ANOVA Table for time in the distance moved in the OFT in adult 
females 
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Supplemental Table 33. ANOVA Table for time in the open arms of the EZM in adult males 
 
 

 
 
Supplemental Table 34. ANOVA Table for the distance moved in the EZM in adult males 
 
 

 
 
Supplemental Table 35. ANOVA Table for time in the open arms of the EZM in adult females 
 

 
Supplemental Table 36. ANOVA Table for distance moved in the EZM in adult females 
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Supplemental Table 37. ANOVA Table for time in the novel chamber in the Three-chamber task 
in adult males 
 

 
Supplemental Table 38. ANOVA Table for time in the novel chamber in the Three-chamber task 
in adult females 
 
 

 
Supplemental Table 39. ANOVA Table for the Novel Preference index in Novel Object 
Recognition (NOR) in adult males 
 
 

 
Supplemental Table 40. ANOVA Table for the Novel Preference index in NOR in adult females 
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Supplemental Table 41. ANOVA Table for the latency to target hole in the Barnes Maze for 
adult males 

 
Supplemental Table 42. ANOVA Table for the visits to target hole in the Barnes Maze for adult 
males 
 

 
Supplemental Table 43. ANOVA Table for path length to target hole in the Barnes Maze for 
adult males 
 
 

 
Supplemental Table 44. ANOVA Table for time spent at the target hole in the Barnes Maze for 
adult males 
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Supplemental Table 45. ANOVA Table for total distance moved in the Barnes Maze for adult 
males 

 
Supplemental Table 46. ANOVA Table for the latency to target hole in the Barnes Maze for 
adult females 
 
 

 
Supplemental Table 47. ANOVA Table for visits to the target hole in the Barnes Maze for adult 
females 
 
 

 
Supplemental Table 48. ANOVA Table for path length to the target hole in the Barnes Maze for 
adult females 
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Supplemental Table 49. ANOVA Table for time spent at the target hole in the Barnes Maze for 
adult females 
 

 
Supplemental Table 50. ANOVA Table for total distance moved in the Barnes Maze for adult 
females 
 
 

 
Supplemental Table 51. ANOVA Table for NeuN+ cells in CA1 in adult males 
 
 

 
Supplemental Table 52. ANOVA Table for PCP4+ cells in CA2 in adult males 
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Supplemental Table 53. ANOVA Table for NeuN+ cells in CA3 in adult males 
 

 
Supplemental Table 54. ANOVA Table for NeuN+ cells in CA1 in adult females 
 

 
Supplemental Table 51. ANOVA Table for PCP4+ cells in CA2 in adult females 
 
 

 
Supplemental Table 56. ANOVA Table for NeuN+ cells in CA3 in adult females 
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Supplemental Table 57. ANOVA Table for cortical volume in adult males 
 

 
Supplemental Table 58. ANOVA Table for hippocampal volume in adult males 
 
 

 
Supplemental Table 59. ANOVA Table for cortical volume in adult females 
 
 

Supplemental Table 60. ANOVA Table for cortical volume in adult females 
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List of Figures 

 

Figure 1. Experimental Design and Timeline. Mice were bred in house. On P2, litters were culled 
to 6-8 pups. Nursing dam and litters were randomized into LBN or Control cages until P9. 
Continuous home cage monitoring was used to track maternal behavior. A subset of animals was 
used for qTPCR to analyze collected for immunohistochemistry and protein expression. On P21, 
pups were weaned and randomized into TBI or Sham surgery. Brain tissue was collected for 
immunohistochemistry and protein expression. On 60-70, animals were analyzed for 
hippocampal structure and function.  
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Figure 2. Standard murine models of ELS (limiting bedding nestlet, LBN) and TBI (controlled 
cortical impact) were used in this study. 
 
A. The LBN model consisted of a metal, mesh bottom that was positioned on top of standard 
corncob bedding and a reduced nestlet square (right). The control cage contained corncob 
bedding with a full nestlet square (left). 
B.) Schematic of a focal injury, produced by a controlled cortical impact, at P21.  
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Figure 3. Maternal behaviors, measured at P3, revealed disrupted maternal behavior. 
Time spent on the nest and entries of dams to the nest were scored and averaged across 0:00, 
6:00, 11:00, 12:00, 18:00, and 23:00 Zeitgeber time hours. A.) ELS dams spent more time on 
their nests (unpaired t-test, t=2.718, *p<0.05) and B.) made more entries to the nest as compared 
to controls (unpaired t-test, t=7.592 ***p<0.0001). 
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Figure 4.  Arginine vasopressin (AVP) was increased in the hypothalamus after exposure to ELS.  
AVP and corticotropin-releasing hormone (CRH) were quantified in the hypothalamus at P9, a 
time point corresponding to the final day of exposure to ELS. While there was an increase in 
AVP (N=4-5, multiple t-test, Bonferroni Correction, t= 2.625, *p<0.05), there was no change in 
CRH (N=4-5, multiple t-test, Bonferroni Correction, t= 0.6694, p=0.08). 
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Figure 5. Body weights were tracked during and after exposure to ELS.  
ELS was associated with a lower gain in weight than that of control pups (N=23-37, mixed effect 
analysis, F3, 128=101.80, ***p<0.001). ELS females showed lower gains in body weights 
compared to ELS males (males, N=12-26, females, N=11-16; two-way ANOVA, F1,129=10.30, 
**p<0.01). 
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Figure 6. Cytokines, quantified in cortical homogenates at P22, revealed limited variation across 
experimental conditions.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats were compared to the sham 
controls, unless otherwise stated.  
 
(A-F) In males, TBI resulted in an increase in A.) IL-1B (**p<0.01), B.) IL-6 (*p<0.05), C.) 
TNFa (**p<0.01), and D.) IFNg (**p<0.01); there was a reduction in F.) IL-1a (****p<0.0001). 
Similarly, ELS resulted in increased A.) IL-1B (*p<0.05) and B.) TNFa (***p<0.001), but F.) 
reduced IL-1a (***p<0.001). ELS + TBI resulted in an increase in A.) IL-1B (****p<0.0001), 
B.) IL-6 (***p<0.001), C.) TNFa (****p<0.0001), D.) IFNg (**p<0.01), and F.) IL-1a 
(***p<0.001). When compared to TBI, ELS + TBI resulted in increased A.) IL-1B (**p<0.01) 
and E.) IL-10 (*p<0.05). 
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(E-F) In TBI resulted in G.) increased IL-1B (****p<0.0001), H.) IL-6 (****p<0.0001), I.) 
TNFa (***p<0.001), J) IFNg (**p<0.001), and L.) IL-1a (*p<0.05). ELS resulted in G). an 
increase that was limited to IL-1B (****p<0.0001). ELS+ TBI produced increased G.) IL-1B 
(****p<0.0001), H.) IL-6 (****p<0.0001), I.) TNFa (*p<0.05), and J.) IFNg (*p<0.05). When 
compared to TBI, ELS + TBI resulted in decreased G.) IL-1B (*p<0.05). 
 
 

 
Figure 7. Summary of the differential response of cytokines in cortical homogenates at 1day post 
injury.     
A.) With the exception of IL-10, cytokines were significantly elevated in the injured cortex, in 
both males and females, compared to shams. 
B.) ELS resulted in a more limited increased expression of cytokines (IL-1B and TNFa only) 
compared to shams.  
C.) Only male pups, when exposed to ELS+TBI, showed an elevation in cytokines, compared to 
TBI. 
D.) With the exception of IL-10, cytokines were significantly elevated in the injured cortex for 
males and females, compared to shams. 
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Figure 8. At 1 day post injury, there were regional differences in microglial density in the 
hippocampus in mice exposed to either ELS or TBI.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
(A-D) In males, there were significant changes in cytokines when compared across all groups 
(Supplemental tables 13-16; N= 6/group, One-Way ANOVA). TBI resulted in an increase in Iba-
1+ cells in A) CA1 (***p<0.001), B) CA2 (***p<0.001), C), CA3 (****p<0.0001), and D) the 
dentate gyrus (**p<0.01). ELS resulted in an increase in Iba-1+ cells in A) CA1 (***p<0.001), 
B) CA2 (****p<0.0001), C) CA3 (**p<0.01), and D) the dentate gyrus (****p<0.0001). ELS+ 
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TBI revealed similar findings to that of TBI alone. There was an increase in the number of Iba-
1+ cells in the CA1 (****p<0.0001), CA2 (p****<0.0001), CA3 (****p<0.0001), and dentate 
gyrus (**p<0.01). ELS+ TBI in males, when compared to TBI, resulted in an increase in Iba-1+ 
cells in B.) CA2(*p<0.05) and C.) CA3(****p<0.0001) E-H.) 
 
In females, TBI resulted in E.) an increase in Iba-1+ cells in CA1 (**p<0.01), F.) CA2 
(**p<0.01), and G.) CA3 (**p<0.01). Exposure to ELS resulted in an increase in Iba-1+ cells in 
G.) CA3 (*p<0.05) and H.) dentate gyrus (*p<0.05). ELS + TBI resulted in an increase in Iba-1+ 
cells in E.) CA1 (***p<0.001), F.) CA2 (***p<0.001), G.) CA3 (****p<0.0001), and H.) dentate 
gyrus (****p<0.0001). ELS + TBI, when compared to TBI, resulted in an increase in Iba-1+ 
cells in G.) CA3 (****p<0.0001). 
 
Distinct microglial phenotypes, randomly assessed throughout the hippocampus, were evident at 
1-day post injury in the hippocampus. Representative images (I-K) were taken in the injured 
male hippocampus at P22.  
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Figure 9. Caspase-3+ cells were quantified in hippocampal subfields. ELS + TBI was associated 
with increased numbers of caspase-3+ cells in both males (A-D) and females (E-H).  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
In males, TBI resulted in an increase in caspase-3+ cells in A.) CA1 (****p<0.0001), B.) CA2 
(***p<0.001), C.) CA3 (****p<0.0001), and D.) dentate gyrus (****p<0.0001). ELS resulted in 
a similar number of caspase-3 cells in A.) CA1 (n.s.), B.) CA2 (n.s.), C.) CA3 (n.s.), and D.) 
dentate gyrus (n.s.). ELS + TBI resulted in a greater number of caspase-3+ cells in A.) CA1 
(****p<0.0001), B.) CA2 (***p<0.001), C.) CA3 (****p<0.0001), and D.) dentate gyrus 
(****p<0.0001). ELS + TBI resulted in the number of caspase-3 + cells in A.) CA1 
(****p<0.0001) and C.) CA3 (****p<0.0001) compared to TBI. 
 
In females, TBI yielded greater caspase-3+ cells in the E.) CA1 (***p<0.001), F.) CA2 
(***p<0.001), G.) CA3 (****p<0.0001), and H.) dentate gyrus (****p<0.0001). ELS showed no 
differences in the number of caspase-3+ cells in E.) CA1 (n.s.), F.) CA2 (n.s.), G.) CA3 (n.s.), 
and H.) dentate gyrus (n.s.). ELS + TBI resulted in an increase in caspase-3+ cells in E.) CA1 
(****p<0.0001), F.) CA2 (****p<0.0001), G.) CA3 (****p<0.0001), and H.) dentate gyrus 
(****p<0.0001). ELS + TBI, when compared to TBI, resulted in increased numbers of caspase-
3+ cells in E.) CA1 (***p<0.001) and G.) CA3 (***p<0.001). 
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Figure 10.  The open field test was used to assess anxiety-like behavior and hyperactivity.  Mice 
were evaluated for their preference to the center of the field (inner zone) versus the perimeter 
(outer zone) and the distance traveled over a period of 10 minutes. 
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
A.) Brain-injured male mice spent less time in the outer zone (****p<0.0001). In contrast, ELS 
showed no differences in time spent in the outer zone. While ELS + TBI resulted in increased 
time spent in the outer zone (***p<0.001), ELS + TBI spent less time in the outer zone 
compared to TBI (****p<0.0001).  
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B.)  In males, TBI resulted in greater distance moved (****p<0.0001). ELS and ELS +TBI did 
not show a difference in the distance moved. ELS + TBI resulted in reduced activity compared to 
TBI (**p<0.01).  
C.) In females, TBI and ELS spent less time in the outer zone (****p<0.0001) and 
(****p<0.0001), respectively. ELS + TBI when compared to shams or TBI, resulted in reduced 
time spent time in the outer zone. (****p<0.0001, for both comparisons.) 
D.) Female TBI mice spent a similar time in the outer zone (n.s.). ELS resulted in a reduction in 
time spent in the outer zone (**p<0.01). ELS + TBI resulted in an increase in the total distance 
moved compared to sham (**p<0.01) or TBI (*p<0.05).  
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Figure 11. The elevated zero maze was used to assess anxiety-like behavior.  ELS and TBI 
resulted in altered preference for open versus closed arms.  
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
A.) In males, TBI showed no difference in time spent in the open arms (**p<0.01). ELS resulted 
in more time spent in the open arms (***p<0.001). ELS + TBI showed more time spent in the 
open arms (****p<0.0001). Compared to TBI, ELS + TBI in males resulted in more time spent 
in the open arms (****p<0.0001).  
B.) There was no difference in total distance moved between male TBI and sham animals (n.s.). 
ELS showed a similar distance moved (n.s.). ELS did not show a difference in distance traveled 
compared to sham (n.s.). ELS + TBI resulted in greater distance moved (*p<0.05). There was no 
difference in total distance traveled between ELS + TBI and TBI (n.s.). 
C.) In females, TBI resulted in more time spent in the open arms (****p<0.0001). ELS showed 
more time spent in the open arms (****p<0.0001). ELS + TBI showed greater time spent in the 
open arms (***p<0.001). ELS + TBI spent a similar time in the open arms compared to TBI 
(n.s.).  
D.) TBI females showed a similar distance moved. ELS resulted in greater distance moved 
(****p<0.0001). ELS + TBI showed a greater distance moved (****p<0.0001). ELS + TBI 
resulted in more total distance moved compared to TBI (**p<0.01). 
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Figure 12. The novel object recognition test was used to evaluate learning and memory.   A 
preference index, the time spent with a novel object versus a familiar object, was determined for 
each group.  
 
A., B.) In trial 1, a mouse was exposed to 2 identical Duplo® blocks for 5 minutes (A). In trial 2, 
1 block was replaced with a similar sized gold dishwasher elbow (B). 
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
C.) In males, TBI resulted in a reduced time spent with the novel object (****p<0.0001). ELS 
did not show a difference in time spent with the novel object (n.s.). ELS + TBI resulted in 
decreased time spent with the novel object (***p<0.001). There was no difference in time spent 
with the novel object between ELS + TBI and TBI (n.s.).  
D.) In females, TBI showed decreased time with the novel object (****p<0.0001). ELS resulted 
in less time spent with the novel object (***p<0.001). ELS + TBI decreased the time spent with 
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the novel object (**** p<0.0001). ELS + TBI reduced time spent with the novel object compared 
to TBI (*p<0.05). 
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Figure 13. Social recognition was evaluated using the 3-chamber task  
A-B.) A summary of the raw data from the 3-chamber task represents the time spent in each 
chamber during trial 1 (T1) and trial 2. (T2).  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
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C.) In males, TBI reduced the amount of time spent in the novel chamber (*p<0.05). ELS 
showed similar time spent in the novel chamber (n.s.). ELS + TBI resulted in less time in the 
novel chamber (***p<0.001). There was no difference between time spent in the novel chamber 
between ELS + TBI and TBI (n.s.). D.) In females, TBI resulted in less time spent in the novel 
chamber (*p<0.05). ELS and ELS + TBI did not show a difference in time spent in the novel 
chamber (n.s.). There was no difference in time spent in the novel chamber between ELS + TBI 
and TBI (n.s.).  
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Figure 14. The Barnes maze was used to test spatial and contextual learning and memory.  
A.) All male mice learned the location of the target hole by the last acquisition day (N=15/group, 
simple linear regression).  
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
B.) On probe trial day, TBI resulted in a greater latency to the target (****p<0.0001). ELS 
showed a similar latency to the target hole (n.s.). ELS + TBI showed a longer latency to find the 
target (****p<0.0001). ELS + TBI did not show a difference in latency to find the target hole 
compared to TBI (n.s.). C.) No differences in number of visits to the nest was seen in male mice. 
D.) In females, TBI resulted in greater path length (*p<0.05). ELS showed a similar path length 
to the target (n.s.). ELS + TBI showed a greater path length to the target hole (****p<0.0001). 
ELS + TBI resulted in greater path length compared to TBI (**p<0.01). 
E.) Female mice from all groups learned the location of the target hole by the last acquisition day 
N=15 females/group, simple linear regression). 
F.) On probe trial day, TBI in females resulted in greater latency to the target (**p<0.01). ELS 
showed longer latency to the target hole (****p<0.0001). ELS + TBI resulted in higher latency 
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to the target hole (****p<0.0001). ELS + TBI in females did not contribute to a longer latency to 
target hole compared to TBI (n.s.). 
G.) In females, TBI made a similar number of visits to the target hole. ELS made less visits to 
the target hole (**p<0.01). ELS + TBI did not show a difference in the number of visits made to 
the target hole (n.s.). ELS + TBI made a similar number of visits to the target hole compared to 
TBI.  
H.) TBI and ELS in females showed no difference in path length to find the target hole compared 
to sham (n.s., for both comparisons). ELS + TBI showed a longer path length to the target hole 
(***p<0.001) and ELS + TBI resulted in longer path lengths to find the target hole compared to 
TBI (*p<0.05). 
 

 
Table 4. Summary of behaviors at adulthood. Behaviors measured at adulthood are summarized 
above. Outcome comparisons are the following: ELS = ELS vs sham; TBI = TBI vs sham; ELS 
+ TBI = ELS + TBI vs TBI. The arrows in the OFT and EZM indicate an increase or decrease in 
the time spent or distance moved. For the NOR and 3-chamber task a down arrow indicates 
decreased performance in each task. In the Barnes Maze, an up arrow indicates decreased 
performance. 
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Figure 15. Learning and memory and anxiety-like behaviors were evaluated at adulthood.  
 
Correlation matrices were used to summarize learning and memory related behaviors in A.) 
Males and C.) Females and measures of anxiety and overall activity in B.) Males and D.) 
Females. Outcomes from each category of behavior are correlated with one another. Pearson’s r 
correlation coefficients are reported in each square (-1.0 to +1.0). The shades of red indicate a 
significant negative correlation (-1.0, p<0.05), shades of blue indicate a significant positive 
correlation (+1.0, p<0.05). A black dot in a square indicates non-significance and a down arrow 
indicates a decreased performance in both groups.  
 
 
 



 147 

 
Figure 16. Stereological techniques were used to quantify neurons in CA1, CA2, and CA3.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
In males, TBI resulted in decreased labeling of NeuN+ in the A.) CA1 (****p<0.0001), 
decreased PCP4+ cells in the B.) CA2 (*p<0.05), and decreased NeuN+ cells in the C.) CA3 
(****p<0.0001). ELS decreased labeling of NeuN+ cells in the A.) CA1 (****p<0.0001) and C.) 
CA3(*p<0.05). ELS + TBI showed less NeuN+ labeling in the A.) CA1 (****p<0.0001), PCP4+ 
cells in the B.) CA2 (**p<0.01), and NeuN+ cells in the C.) CA3 (****p<0.0001). ELS + TBI 
did not show differences in labeling in the A.) CA1 (n.s.), B.) CA2 (n.s.), and C.) CA3 (n.s.) 
compared to TBI. In females, TBI showed less NeuN+ labeling in the D.) CA1(****p<0.0001), 
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PCP4+ labeling in the E.) CA2 (***p<0.001), and NeuN+ cells in the F.) CA3 (****p<0.0001). 
ELS decreased NeuN+ cells in the D.) CA1 (*p<0.05), PCP4+ cells in the E.) CA2. (*p<0.05), 
and NeuN+ cells in the F.) CA3 (****p<0.0001). ELS + TBI resulted in decreased NeuN+ 
labeling in the D.) CA1 (****p<0.0001), PCP4+ labeling in the E.) CA2 (***p<0.001), and 
NeuN+ cells in the F.) CA3 (****p<0.0001). ELS + TBI decreased NeuN+ in the D.) CA1 
(****p<0.0001), compared to TBI. 
 
 

 
Figure 17. At adulthood, ELS+TBI resulted in similar cortical and hippocampal volumetric loss 
when compared to TBI alone.  
 
Data in males and females were first separately evaluated across all groups and found to be 
significantly different (Supplemental tables, 45-50; N= 6/group, one-way ANOVA). Tukey’s 
post hoc tests were then used for multiple comparisons (adjusted p, *p<0.05 significance 
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threshold, n.s.= not significant, one-way ANOVA). All reported stats are compared to the sham 
controls, unless otherwise stated.  
 
A.) In males, TBI resulted in a decrease in cortical volume (**p<0.01). ELS did not show a 
difference in cortical volume (n.s.). ELS + TBI showed cortical volume loss (***p<0.001). ELS 
+ TBI did not show differences in cortical reduction compared to TBI. B.) TBI resulted in less 
hippocampal volume (*p<0.05). ELS did not show a difference in hippocampal volume (n.s.). 
ELS + TBI also did not show a difference in hippocampal volume (n.s.). C.) In females, TBI 
resulted in less cortical volume (**p<0.01). ELS reduced cortical volume (**p<0.01). ELS + 
TBI resulted in cortical loss (**p<0.01). There were no differences in cortical volume loss 
between ELS+ TBI and TBI. D.) TBI resulted in less hippocampal volume(****p<0.0001). ELS 
resulted in hippocampal (**p<0.01). ELS + TBI resulted in hippocampal loss (***p<0.001). No 
differences in hippocampal volume were seen between ELS + TBI and TBI (n.s.). 
 
 
 

 
Figure 18. Hippocampal-dependent behaviors were correlated with neuronal loss in hippocampal 
CA1, CA2, and CA3 and cortical and hippocampal volumetric loss.  
A, B.) Correlation matrices were used to summarize hippocampal dependent behaviors, assayed 
at adulthood, with ipsilateral cortical and hippocampal volumes and hippocampal subfields in 
males (A) and females (B). Pearson’s r correlation coefficients are reported in each square (-1.0 
to +1.0). Shades of red and blue indicate either a significant negative correlation (-1.0, p<0.05) 
or a significant positive correlation (+1.0, p<0.05), respectively. A black dot in a square indicates 
non-significance and a down arrow indicates a decrease in performance and a decrease in the 
number of neurons.  
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Figure 19. Indices of acute pathogenesis at P22 (microglial activation, increased caspase-3) were 
correlated with a reduction in neurons in hippocampal subfields at adulthood.  
Correlation matrices were used to examine the temporal relationship between ELS and ELS+ 
TBI in A.) males and B.) females. Pearson’s r correlation coefficients are reported in each square 
(-1.0 to +1.0) and a heat map was generated to visualize correlation strength between variables. 
shades of red indicate a significant negative correlation (-1.0, p<0.05), shades of blue indicate a 
significant positive correlation (+1.0, p<0.05). A black dot in a square indicates non-significance 
and a down arrow indicates an adverse relationship between the correlated outcomes. 
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