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Abstract 

Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of 

amyloid-beta proteins in the brain, leading to loss of neuronal function and eventual death. Though 

the incidence of Alzheimer’s has risen in recent years, in no small part due to increasing lifespans, 

there has been little progress in the diagnosis and prevention of the disease. Diagnosis premortem 

is possible, but mainly through costly imaging or invasive brain biopsies, the latter of which is not 

recommended due to the possibility of further brain damage in the AD patient. Furthermore, AD 

treatments are difficult to study due to the difficulty of identifying patients as well as the diseases’ 

stubborn progression. Thus, there is an area of opportunity in accurately identifying these patients 

for both diagnostic and therapeutic purposes. There are many biomarkers correlated with the 

presence of AD, whether that be noticeable brain damage via scanning, the biomarkers of neuron 

cell death, or latent biomarkers which may cooccur in the progression of the disease. Given that 

these are non-linear relationships, computer-aided diagnosis may help in elucidating the diagnosis 

of AD. Random Forest models, given their ability to generate human-understandable trees and 

decision surfaces, are primed to assist medical professionals with the diagnosis of AD. This thesis 

analyzes several such models and evaluates their accuracies, as well as providing an overview of 

the state of the computer-aided medical diagnostics field.  
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1. Diagnostic Models of Alzheimer's Disease 

As worldwide average life expectancies have drastically increased in the modern era, so 

have rates of Alzheimer’s disease, a neurodegenerative disorder that results in loss of cognitive 

facilities, memory, and ultimately brain function (Rocca & White, 2011). Though there is no 

cure to the disease, there are medicines – acetylcholine (AChE) inhibitors and memantine among 

them – which may increase patients’ quality of life and slow disease progression (National 

Health Service, 2021). Thus, early diagnosis is of the utmost importance. 

Unfortunately, the diagnosis of Alzheimer’s is nontrivial, requiring an accounting of 

symptoms which may be unreliable given that they come from the patient with memory loss 

themselves. The accounts of people close to the patient is required, but people are fallible. 

Memory tests may show cognitive decline, but not necessarily that it is caused by Alzheimer’s. 

CT scans can show mental degeneration, but these are rarely monocausal, leaving us with blood 

tests which may provide the most accurate diagnosis (National Institutes of Health, 2022).  

Of interest in regard to biomarkers are homocysteine and isoprostane. Patients with 

Alzheimer’s tend to have much higher blood plasma levels of homocysteine than the general 

population, controlling for age. There is debate about whether hyperhomocysteinemia is a 

causative factor or marker of Alzheimer’s, given that a deficiency of B vitamins (which also may 

cause cognitive decline) is a cause of hyperhomocysteinemia itself, and that that it causes 

cardiovascular issues which may be upstream of a future Alzheimer’s diagnosis. Regardless of 

whether it lies upstream or downstream of the progression of Alzheimer’s, homocysteine is a 

valuable biomarker in its diagnosis (Zhuo, Wang, & Pratico, 2011). Alzheimer’s progression is 

marked by brain damage and isoprostane levels are elevated in patients with brain damage due to 
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lipid peroxidation. Studies consistently find that while isoprostane levels are higher in 

Alzheimer’s patients, they are not indicative enough to diagnose Alzheimer’s in itself (Irizarry, 

Yao, Hyman, Growdon, & Practico, 2007). 

This thesis seeks to generate a model for the diagnosis of Alzheimer’s, drawing upon the 

indicative studies showing elevated levels of isoprostane and homocysteine in patients. To do so, 

a random forest regression upon a large dataset of Alzheimer’s patients will be generated, 

optimizing the model via hyperparameterization (the modification of parameters used in creating 

this regression such that a more accurate model will be produced). An initial quantitative check 

of the hypothesis was generated, ensuring that there exists a relationship between homocysteine, 

isoprostane, and Alzheimer’s progression scores. Further, keeping with industry standard, the 

data was split into a 90/10 train/test such that we could train the random forest regressor and 

allow the hyperparameterization to perform a random search. This thesis details the creation of 

the model and outcomes from its predictions. 

2. Overview of Alzheimer’s Disease 

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder caused by 

agglomeration of amyloid-beta (Aβ) and tau proteins, causing inflammation, oxidation, and 

ultimately neuronal degeneration, in turn causing symptoms of dementia (Blennow, de Leon, & 

Zetterberg, 2006). This process is irreversible and hypothesized to be exponential – once initial 

plaques form, healthy proteins interact with them, conforming to their shape, which in turn 

increases the seeding population of misshapen proteins, and so on (Kawarabayashi, et al., 2001). 

This accumulation results in mild cognitive impairment, often akin to that of aging, making it 

difficult to determine the exact onset of the disorder given the common attribution of senility to 
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ageing. In general, this differentiation between senility and AD is difficult. However, AD causes 

a drastic loss of memory ability, cognitive function, and general functioning over that generally 

attributed to aging. Diagnosis rarely happens before the symptoms become debilitating for this 

reason.  

The inability to diagnose during the prodromal phase of AD has brought the discussion of 

biomarkers in the clinical setting to the forefront, though this is still an emerging field, especially 

given those behaviors which increase the risk of AD – smoking, drinking, high cholesterol, 

diabetes – may cause both upstream and downstream effects upon the brain. Also, some 

biomarkers, such as homocysteine, carry their own secondary effects through the body on 

cardiovascular health, raising a classic chicken-and-egg problem. Some diagnostic methods, 

namely brain imaging, may identify neurodegeneration via visual changes in grey matter and 

blood flow, but this is not easily differentiated from other forms of brain damage and age-related 

neurodegeneration, not to mention the other forms of dementia. Aβ and tau protein presence in 

the brain is indicative of AD, however, these tests are invasive, and are not justifiable in a normal 

doctor’s office. Thus, the field has turned to markers contained in bodily fluid such as blood and 

urine (Gunes, Aizawa, Sugashi, Sugimoto, & Rodrigues, 2022). 

2.1. Homocysteine 

B-vitamin deficiency is associated with both neurological decline, as seen in Korsakoff 

syndrome among alcoholics, and hyperhomocystemia itself causes both worse cardiovascular 

outcomes and oxidative stress in the body, identifying the disease as both a possible risk factor 

and cause of AD itself. This multifold relationship led to a meta-analysis stating that there is a 

definite link between AD and high homocysteine levels and that this high concentration comes 
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before the diagnosis of AD, making it a prime biomarker for diagnosis (Morris, 2003). While 

solving the association between B-vitamins, hyperhomocysteimia, and AD is tangled, and 

prospective studies for curing the former disease via B supplementation may not actually cure 

the outcomes of the disease, it is nonetheless a promising avenue for further research (Martí-

Carvajal, Solà, Lathyris, & Dayer, 2017). 

2.2. Isoprostane 

Isoprostane, specifically F2-isoprostanes, are a less studied biomarker for the progression 

of AD. First discovered in the 1990s, they are a marker of oxidative stress as they are products of 

lipid peroxidation and cell death, which makes them ideal for the detection of neuron death in the 

progression of AD, as well as other cerebral and cardiovascular issues such as stroke and brain 

injury. Furthermore, they are stable as compared to other biomarkers and can be detected in 

urine, plasma, and breath, making their detection notably noninvasive (Janssen, 2001). 

Specifically, in AD, isoprostane levels are elevated, and an association between these 

levels in blood and AD has been found. Aβ and tau accumulation in the brain leads to oxidative 

stress, specifically targeting neurons, causing a rise in levels of isoprostane as cell death occurs. 

While increased levels are associated with the progression of AD, they do not seem to predict the 

incidence of the disease, making it a prime biomarker for further research. Complicating the 

issue is that isoprostane is a marker of general cell breakdown, with studies finding higher levels 

in patients with cystic fibrosis, degenerative disorders, smokers, and others with negative health 

behaviors. Thus, any causative relationship would have to be carefully discovered and many 

variables need to be controlled for (Trares, Chen, & Schöttker, 2022). 

3. Data Analysis 



ALZHEIMERS DIAGNOSTIC MODELS  11 
 
 

Data for used in this thesis was obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI), run by the University of Southern California, which takes longitudinal data on 

various biomarkers and AD progression from Alzheimer’s patients, compiling them for study. 

Data collection began in 2004 and has extended to the present day in various phases. Aside from 

the biomarker and disease progression data used in this paper, further data in the form of brain 

scans were taken to assess disease progression, which itself presents a promising opportunity for 

those interested in computer vision and machine learning to create a predictive model of 

Alzheimer’s based upon changes from baseline MRI/PET data (Alzheimer’s Disease 

Neuroimaging Initiative, 2017). 

To begin the process, ADNI data was sorted and cleaned for processing. To do so, each 

individual participant’s unique RID had to be matched across datasets in order to sort patients 

and split them via their ID as an anonymous identifier. After matching, graphs of isoprostane 

levels, homocysteine levels, and disease assessment scores were generated as a sanity check to 

ensure that the data had a visual correlation. As an aside, disease assessment scores track the 

progression of AD by testing cognitive abilities affected by neurodegeneration such as memory. 

An initial relationship was found among the variables, so a model was built. 

Furthermore, to test the positive correlation between elevated homocysteine and 

isoprostane levels and the incidence of AD, a multilinear regression was run on the data. This 

resulted in a linear regression with a poor R2 of 0.0014 and coefficients of 0.089 and 0.16 for 

isoprostane and homocysteine respectively. While this verifies that homocysteine has a larger 

correlation with the incidence of AD, it also demonstrates the difficulty past researchers have 

had in generating diagnostic models based on biomarkers – the correlation between the two is 
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very poor and it is difficult to draw conclusions as to cause and effect or on diagnostic validity. 

The latter is very important; the diagnosis of AD is a lifechanging event. Receiving a false 

diagnosis causes unnecessary dread within patients; a false negative result in a failure to plan for 

when AD progresses, resulting in worse outcomes for the patient and their family. 

4. First Model 

 A random forest classifier was selected due to its decision tree structure. In a random 

forest classifier, many decision trees are built, with “branches” being logical operations upon 

data which eventually select a “leaf”, or class (Studer, Ritschard, Gabadinho, & Müller, 2011). 

As the decision trees are fitted to the data in training, a model is built. When testing data is sent 

through the model, each individual tree classifies the data; the average prediction of the trees is 

returned as the output for the classifier. This model, in particular, was chosen as the decision tree 

structure resembles medical diagnostics in its own right, and therefore may be understandable to 

a medical professional given a simplified version of the model. Thus, future feedback from 

doctors may be taken into account for diagnostics. 

 First, as a baseline, the ADNI data grouped by RID was broken into a 90%/10% train and 

test split. Then the training data was fed into the random forest regressor. This was set up to 

establish a baseline performance before improvements were made to the model. Using this 

model, an accuracy of 76.0% was achieved, which was below what is optimal for diagnostic 

practice; thus, further improvements were needed. 

4.1. Hyperparameterization 

 To improve the model, hyperparameterization was implemented. Any regressor has 

various variables which may be tuned in order to improve the accuracy of the model. However, 
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there are many variables with more possible values, creating an insurmountable number of 

permutations for one person to execute to find a global optimum. To decrease the time spent 

optimizing these parameters, hyperparameterization executes a random search over the universe 

of possible parameters for the regression model such that this search is automated. Other 

methods are possible, as a local optimum can be searched for in a shorter amount of time, but for 

the purposes of this thesis, a random search was sufficient.  

 In the hyperparameterization, the number of estimators, maximum number of features, 

maximum depth, minimum samples split, minimum samples leaf, and bootstrap variables were 

changed. First, the number of estimators varied between 200 and 2000 with a distance of 10; this 

variable represents the number of decision trees generated for the regression. The maximum 

number of features refers to the maximum number before creating a new branch in a decision 

tree, this is decided by either a square root function or automatic built-in function. The maximum 

depth is the highest level a tree may reach before being terminated, set between 10 and 110 with 

a distance of 11. The minimum samples split sets the lowest amount of data before a new branch 

is created, with values of 2, 5, or 10. The leaf variable sets the same for a leaf at 1, 2, or 3. 

Bootstrap determines whether points are sampled with replacement. These options allow the 

random search to iterate through 64,800 permutations to find a global optimum for the model’s 

parameters (Koehrsen, 2018). A graph of the search is provided below. 
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Figure 1. Graph of Parameter Permutations and Test Scores 

 This graph may be interpreted via each line, for which each represents a permutation of 

the random forest’s parameters. As the line travels from left to right, it selects a unique 

combination of these parameters as described above; each model is tested against the validation 

data in the model such that a test score representing the difference from real world data is 

generated, and each instance is ranked to produce the final model and parameters that will be 

analyzed. 

 To analyze the effect of each parameter on the accuracy of the model, a multilinear 

regression was performed on the testing data, with each parameter coded to numerical values. 

Iterating over the data, the bootstrap parameter had the most effect, with the maximum features 

after it, minimum samples leaf following, and minimum samples split. The other parameters - # 

of estimators and maximum depth – were negligible, with p-values of 0.83 and 0.73 respectively. 

The regression output is below. 

Table 1. Multilinear Regression on Parameters 

 Coefficients Standard Error t Stat P-value 
Intercept -0.619 0.044188 -14.0085 1.22E-24 

param_n_estimators 3.8E-06 1.8E-05 0.211426 0.833018 
param_min_samples_split 0.007059 0.003 2.352634 0.020749 
param_min_samples_leaf 0.029897 0.007883 3.792709 0.000265 

param_max_features 0.228485 0.019953 11.45102 1.85E-19 
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param_max_depth -9.6E-05 0.00028 -0.34266 0.732625 
param_bootstrap 0.242507 0.019579 12.38632 2.18E-21 

 We can visualize these parameters’ effects by graphing them against the test score, where 

a test score closer to zero represents a higher degree of accuracy. Taking a closer look at the 

graphs, there are several conclusions. First, a higher number of estimators – on average – results 

in a higher mean test score. However, the low variance of its outcomes kept it from 

outperforming the final model. In another model, it seems that there are two regions of 

optimality ranging around 600-800 estimators and 1600. Further, we can see that the mean test 

score for each option of minimum samples split is about equal; all that differs is the variance in 

outcome. Minimum leaf samples has a similar result; the mean for each option is about equal; if 

a few percentage points of performance need to be added to a model, it seems that a higher value 

results in slightly better performance. 

 The maximum features parameters result in some interesting outcomes. For the 

multilinear regression, ‘auto’ was coded to 0 and ‘sqrt’ to 1. For the automatic setting, where the 

maximum number of features is equal to the number of features, there was a much lower mean 

test score than that where the square root of the number of features was equal to the maximum 

number of features. However, the variance of the former was much higher; resulting in some 

outcomes more optimal than would be expected given its low average. 

 The maximum depth parameter demonstrated great variation; with two islands of high-

performance centering around values of 20 and 80; however, the lowest values exhibited the 

highest variability and could conceivably result in metastable outcomes. Finally, the bootstrap 

parameter, with ‘false’ coded to 0 for the regression and ‘true’ coded to 1, had latter far 

outperform the former, though again a high region of variability for false implies that there are 
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some models which may outperform the current model, though these may have been inaccessible 

in the first random search. 

 

Figure 2. Graphical Representation of Parameter Scores 

 To illustrate the importance of hyperparameterization, a base model was built with one 

specified parameter – the number of estimators being 10 – resulting in an accuracy of 29.07% 

when compared to the testing dataset. Thus, the care taken in the hyperparameterization step 

resulted in an accuracy improvement of 50% over baseline. Any training success without this 

essential step is up to chance, and a future paper could explore the use of a grid search for 

parameters rather than the random search used to gain a higher degree of accuracy in training the 

model.  
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 Another reason for not continuing with hyperparameterization is that this can cause the 

model to overfit on data. In other words, it performs perfectly on the training data, but only that, 

and when applied to data in the testing set or in real-world applications, it does not accurately 

predict outcomes. Avoiding this outcome is contingent on testing with real-world data to ensure 

that the model makes logical predictions and watching accuracy predictions; if one obtains 

predictions that are near-perfect, the model is likely overfitted. 

4.2. Evaluation 

 Using the 10% of data set aside when the model was built, model accuracy was tested, 

finding that the hyperparameterized model has an accuracy of 88.34% with the following 

parameter values: 

Table 2. Selected Random Forest Regression Parameters 

N 
Estimators 

Min Samples 
Split 

Min Samples 
Leaf 

Max 
Features 

Max 
Depth Bootstrap 

400 2 4 Sqrt 10 true 
 To properly visualize this data, a graph of the results versus the actual results was 

generated, with actual Alzheimer's scores as circles, and predicted as Xs. 



ALZHEIMERS DIAGNOSTIC MODELS  18 
 
 

 

Figure 3. Random Forest Classifier Residuals 

 From this graph, it is evident that the model is able to predict Alzheimer's progression 

with reasonable accuracy, though there are several differences. The model has a much lower 

variance in outputs as compared to real-world data; it seems reluctant to classify past a score of 

30 though real-world scores may extend to 70s. Despite this, it does vary with real-world data – 

i.e., as the ADNI testing score increases, so does the model, and it decreases the same as well, 

resulting in the prior accuracy statistic.  

 Another statistic of interest in evaluating machine learning models is recall, otherwise a 

confusion matrix, which compares predicted and actual labels from a model such that one can 

view true positives and negatives against false predictions. In a diagnostic model, this is 

especially important, as a false diagnosis of Alzheimer's can be life-altering; a false positive 

causing undue stress in patients and a false negative resulting in a failure to plan for the disease’s 

progression. Comparing predicted and actual labels, we obtain the below graph, where a lighter 

color represents a higher-frequency outcome. 
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Figure 4. Random Forest Classifier Confusion Matrix 

 This graph identifies several areas for improvement. Visually, the ideal shape for a 

confusion matrix is a diagonal line from the top left to bottom right, as this indicates a higher 

ability for precise predictions. However, this graph does indicate diagnostic ability, as there is a 

group which demonstrates AD diagnoses and that without, though this is very noisy. To view 

this, the resolution of this graph was reduced. The general cutoff for AD diagnosis on the ADAS 

is 17 (Monllau, et al., 2007). 
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Figure 5. Simplified Confusion Matrix 

 Lowering the resolution of the graph results in the above, where the top left corner is the 

number of successful AD diagnoses (22), the top right corner the number of false positives (!7), 

the bottom left false negatives (1), bottom right negative diagnoses (1). From this, we can 

conclude that the false negative rate must be decreased to have a successful diagnostic model. 

5. Retraining the Model 

In this thesis, an initial assumption was that the ADAS score should predict the diagnosis 

of AD in a continuous distribution. This proves inaccurate with the above data. Instead, a 

superior way to build this model is via discrete variables. After all, a patient either has AD or 

does not. To visualize these differences, the above graphs plotting the relationship between 

homocysteine and isoprostane levels versus ADAS scores were regenerated, with red values 

indicating lack of AD and blue values indicating AD. Here, there are two separate groups clearly 
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visible. This indicates a higher probability of success for generating a diagnostic model than 

attempting to predict AD progression via ADAS scores, as it reduces model variability. 

 

Figure 6. Homocysteine and Isoprostane versus ADAS Scores 

 To rebuild this model, an ADAS cutoff of 17 was used as in the literature (Monllau, et 

al., 2007). Given that a discrete variable is now used, a random forest classifier will be used in 

the place of a regressor. Regressors are typically used for continuous data such as ADAS scores. 

Given that the model type changed, hyperparameterization was rerun as well, with the same 

parameter ranges as before. As well, the method for splitting the data into training and testing 

was changed to sklearn’s train_test_split as this reduces variability during training. Furthermore, 

given that there are less patients without AD than with AD, to ensure model accuracy, the 

training data was stratified such that it receives more control patients while training to ensure 

that the model does not overfit on patients with AD, which may have contributed to the high 

false positive rate in the prior model. 
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 Hyperparameterization was again used with the same parameters, producing the below 

plot of permutations. To analyze each instance’s effect on the model, a multilinear regression 

was run, producing the below table. In this, the number of estimators used in the model, the 

minimum number of samples required to split a branch, the minimum number of samples to 

create a leaf, and the bootstrap parameter were statistically significant. This differs from the prior 

model, which was not dependent on the number of estimators, but was dependent on the 

maximum number of features per leaf. In other words, this model requires a larger forest of 

decision trees to average the results of; the prior model requires greater tuning of the algorithm 

used to create a branch split. 

 

Figure 7. Random Forest Classifier Parameter Scores 

Table 3. Multilinear Regression of Random Forest Classifier Parameters 

 Coefficients Standard Error t Stat P-value 
Intercept 0.481538 0.005076 94.85896 2.38E-94 

param_n_estimators 5.06E-06 2.06E-06 2.452233 0.016063 
param_min_samples_split 0.000771 0.000345 2.238143 0.027598 
param_min_samples_leaf 0.011355 0.000906 12.53932 1.06E-21 

param_max_features 0.000355 0.002292 0.155045 0.877122 
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param_max_depth -6.1E-05 3.22E-05 -1.88176 0.062996 
param_bootstrap 0.03596 0.002249 15.98767 1.99E-28 

 To better visualize this data, violin plots of each variable and their effects on the test 

result were generated. A higher test score – the y-axis – is a better result. The best model for 

hyperparameterization has 1400 estimators, so it is surprising that the graph demonstrates that, 

on average, this selection has the most suboptimal results. However, this was likely chosen due 

to the fact that this selection has the highest variance in test scores, and its low average can be 

explained by the fact that there is much more room to have a lower score than a higher one. For 

the minimum number of samples to split a branch, there is little variation in the average result. 

Again however, the selected value – 10 – is due to this value’s higher variance, producing much 

higher and lower test scores than the other options. The minimum samples for a leaf in a decision 

tree differ greatly from the first model. Despite the highest value having a much higher average 

test score than the other options, the middle value is selected due to its longer tail. In the first 

model, all three options had a much higher variance than this model. Furthermore, as its p-value 

suggests, the maximum number of features makes little difference, with both distributions 

appearing nearly identical. 

 Though not statistically significant, the maximum depth parameter merits some 

discussion. Each value is radically different from each other, more so than in the first model. On 

average, a value of 20 seems to perform better, but a value of 90 has higher variance and may 

lead to better outcomes if enough fits are performed. Finally, bootstrap values have the greatest 

difference in mean test scores of any parameter, with TRUE outperforming FALSE by five-

hundredths. As expected, the former value was chosen during the fit. 
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Figure 8. Visualization of Parameter Variation Data for Random Forest Classifier 

5.1. Evaluation 

 Evaluating the model with a different 80/20 train/test split so that a higher number of 

testing results may be analyzed, a model with an accuracy of 53.0% was obtained, lower than the 

prior model. The following parameters were obtained, representing the model with the best 

performance from hyperparameterization. 

Table 4. Random Forest Classifier Parameters 

# 

Estimators 

Min Samples 

Split 

Min Samples 

Leaf 

Max 

Features 

Max 

Depth 
Bootstrap 

1400 10 2 sqrt 80 TRUE 
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 Though the accuracy statistic is lower than in the prior model, the false positive rate was 

successfully reduced, correctly diagnosing 15 AD patients and identifying 29 patients without 

AD. However, the number of false positives and negatives were 19 and 20 respectively. This is 

still higher than optimal. As a comparison, the false positive rate of mammograms over ten years 

is approximately 50% (Pace, 2022). The false negative rate of mammograms is about 20% 

(National Cancer Institute, 2023).  

For this model, an F1 score was generated. This score is a function of accuracy and 

recall, recall being one minus the false negative rate. This value was 59.3%, indicating that the 

model does perform better than chance (with 100% being perfect diagnostic quality). While these 

results are an improvement on the previous model, improvements can be made. 

 

Figure 9. Random Forest Classifier Confusion Matrix 

6. Boosting the Model 
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 XGBoost starts as a typical random forest model, building an ensemble of decision trees 

and creating the forest. The difference between XGBoost and a random forest is that the former’s 

trees depend on the results of the trees before it, and the random forest is the average of many 

trees. This results in a more accurate model (xgboost developers, 2022). Hyperparameterization 

was again performed, this time with a smaller number of permutations due to less available 

parameters. The number of estimators varied between 100 and 1400; the maximum depth 

between 10 and 110, and maximum leaves between 2, 5, and 7 with an unlimited option. Given 

the limited amount of data available, cross-validation was used to train and test the model. This 

splits the data into a number of data subsets, all but one of which train individual models, the last 

one tested against. The average performance of the models generated is the accuracy metric. This 

does tend to generate worse accuracy results for smaller datasets such as the ADNI data than 

expected. However, this does result in better models. The hyperparameterized model’s accuracy 

statistic is 52.6%. The parameters of this model are 200 estimators, a maximum depth of 30, and 

unlimited leaves. 

 To better visualize the results of this data, a confusion matrix (using cross-validation) was 

generated. It properly diagnosed 116 AD patients, with 58 false positives and 31 false negatives. 

It identified 208 patients correctly as not having AD. This improves greatly over the prior two 

models.  
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Figure 10. XGBoost Cross-validated Confusion Matrix 

7. Model Comparison 

 The random forest classifier method was chosen because of its ability to demonstrate its 

decision structure in a human-readable format for diagnosis of AD patients. First, the decision 

surface of the random forest classifier was generated, revealing a noncontinuous relationship 

between homocysteine and isoprostane levels and the diagnosis of AD. Generally, given the 

relationship in the literature, one would expect that as homocysteine and isoprostane levels 

increase, there is a likelier chance of AD. Indeed, at very low levels of both of these biomarkers, 

this holds true. However, discontinuous islands of AD appear at higher levels, but the highest 

levels of the biomarkers do not reveal a connection between those and AD. There are several 

narrow bands with negative diagnoses combined with larger islands. This model is suboptimal 

due to the presence of these islands – it suggests overfitting of the data. This means that the 

model is too attuned to the training data and may not generalize to the real world; it is able to do 

so by recognizing patterns in the noise of the patient data (Carremans, 2018). Though there is not 
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another population that may be tested on at the present moment, we can assume that it may not 

work as well in the real world. Given the second model’s performance, this is not good. 

 

 

Figure 11. Decision Surface, Random Forest Classifier 

 The general pattern of island diagnoses holds for the XGBoost model. However, the same 

islands do not appear. The main difference is that the model more freely diagnoses AD at a lower 

incidence of isoprostane than the other. Also, there are less sparse diagnostic islands than in the 

prior model, which makes it more generalizable for aiding medical diagnoses. Though there is 

more than what may be optimal, the lower number reveals that there may be less overfitting in 

the XGBoost Model which allows it to be used for diagnostic purposes. However, it would 

benefit from more training data. Ideally, there would be no islands of diagnoses and while we do 

not expect to see a linear relationship, there ought to be less gaps in the data. 
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Figure 12. Decision Surface, XGBoost 

 XGBoost works by chaining various decision trees together to produce a forest. Though 

not the best tool for diagnosis, this allows the generation of the tree which outputs the final 

decision and has been generated below where f1 represents isoprostane and f0 homocysteine. 

This iterated series of trees gives a few conclusions. First, while there is a positive association 

between the incidence of AD and elevated isoprostane and homocysteine levels, it is not 

necessarily linear. Therefore, as shown in past studies, linear models are insufficient for this task. 

Also, homocysteine is the largest contributor to the diagnosis of AD out of the two biomarkers. 

This is not a new finding (Morris, 2003). However, that this tree independently came to this 

conclusion demonstrates some diagnostic validity. And, this finding points to some treatment 

areas if this is a causative factor, namely B vitamin supplementation and methylated B vitamins 

if the patient has an MTFHR mutation that makes them unable to process cyanocobalamin and 

the like (Maron & Loscalzo, 2009). Given more data, this tree could likely be collapsed into a 

doctor-readable decision tree to be used in the diagnosis of AD without a computer. 
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Figure 13. Decision Tree, XGBoost 
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8. Future Progress 

 The data collected for this thesis represents a very small subset of AD patients. Most 

machine learning models benefit from much more data than that used in this paper. Given that 

homocysteine and isoprostane levels are easily collected from blood tests, a study could be 

created to take these levels and generate a more generalizable model for the diagnosis of AD. 

Furthermore, the ADNI data did not necessarily have patients which represent the general 

population; all ADNI patients are eligible by virtue of being between the ages of 55 and 90. The 

levels of homocysteine and isoprostane for younger people are likely different and therefore this 

model may not work for those outside these demographics. Furthermore, these patients are 

already likely to have elevated levels of these two biomarkers, making it more difficult to 

diagnose them when only looking at patients with these prior risk factors. A researcher with 

better access to patient data across the United States may be able to consider age in their model 

and look at demographics not covered in this study. A promising avenue of research would be 

measuring these levels as the patient grows older, looking for spikes in these biomarkers which 

precede an increase in ADAS scores to determine a cause-and-effect relationship, whether 

elevated isoprostane and homocysteine cause AD or these increased levels are a biproduct of the 

disease. A personal conjecture is that hyperhomocystemia and AD are both diseases caused by 

an underlying factor and that hyperhomocystemia happens to be more visible first since it is 

more easily tested for. However, higher isoprostane levels are likely evidence of already-existing 

neurodegeneration. However, these are simply conjectures and are very interesting avenues for 

future research. 
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 As well, machine learning as we know it is still in its infancy. The first random forest 

classifier used in this model was developed in 1999; XGBoost in 2014 (United States Patent No. 

US6009199A, 1999) (Chen & Guestrin, 2016). And, these classification techniques have only 

just had their first forays into medicine given their newness and time it takes for new 

technologies to diffuse into other fields (Alam, Rahman, & Rahman, 2019). Given the recent rate 

of advancement in machine learning (e.g., ChatGPT and other LLMs), the gap between 

technology and that used in the medical field may only widen. 

 This gap is not monocausal. While the rate of advancement in the machine learning field 

versus medicine is large, there are also less incentives for advancement in medicine specifically. 

Novelty is incentivized over working off older research; academic code does not often follow the 

same standards as code written in industry. As well, the job market for AI engineers and the like 

is much higher than the pay afforded to medical professionals (Leming, et al., 2023). 

 There are additional challenges aside from the positive incentives, namely the likelihood 

of future regulation of machine learning. Increased scrutiny has been applied to AI not only due 

to its exponential rate of increase but also due to its new applications which augment human 

judgement, and nowhere is the quality for human judgement more valued than that of the 

medical profession (Candelon, di Carlo, De Bondt, & Evgeniou, 2021). Furthermore, medical 

associations are worried about racial bias in diagnostics given the recent scandal in artificial 

upward adjustment of Black patient’s kidney filtration scores, denying some patients necessary 

transplants (Robeznieks, 2021). This was noticed in a relatively uncomplicated algorithm which 

directly mentioned race (Inker, et al., 2021). But in a more complicated algorithm in which race 

is not present, race may be correlated with both biomarker levels and outcomes may hold racial 
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bias in an unexpected way. Thus, great care must be taken to ensure the absence of bias. There 

are very recently developed methods to explain behavior in LLMs – this will go a long way in 

reducing bias in larger models such as IBM’s Watson diagnostic tool (Bills, et al., 2023). 

However, for models used in this paper such as random forest classifiers and XGBoost, racial 

bias must be elucidated through statistical methods. To solve this problem, careful processing of 

the data may help – preprocessing seems to significantly reduce racial bias in one iteration of 

XGBoost – as well as better model selection (Allen, et al., 2020). 
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Conclusion 

 Alzheimer’s disease has an extremely complex etiology which has led to its increased 

diagnosis as lifespans increase. Given its eventuality in the ageing process, much more research 

into its causes and prevention must be incentivized. Of the biomarkers involved in the 

progression of the disease, homocysteine and isoprostane are of interest, seeming to act as a 

marker of the underlying causes of AD for the former and a sign of neuronal death and further 

degeneration for the latter. Several models analyzing these biomarker levels and their effect on 

ADAS scores were analyzed, with random forest regression on raw ADAS scores falling short, 

but higher accuracy was achieved by converting this to a diagnosis model with a ADAS score 

greater than 17 as a cutoff. Furthermore, hyperparameterization was proven to help with 

diagnostic outcomes. To further improve this model, XGBoost with chained decision trees was 

implemented, reducing the proportion of false negatives and positives in the ADNI population. 

Despite this improvement, far more progress can be made in the diagnosis of AD if larger 

datasets of AD patients are available, as a sample size of <1000 is not optimal for the creation of 

a general model of diagnosis for the disease. To these ends, it would be helpful for more patient 

data to be open-sourced. This would allow for better models with more researchers working on 

them. Also, LLMs present a promising compliment to these models. Given the recent success of 

LLMs such as ChatGPT 3 and 4, one could envision an LLM trained on patient charts and 

histories covering several years such that a general diagnostic intelligence may be trained from 

this set. The proliferation of diagnostic models will help doctors make more informed decisions 

for patients, help properly diagnose patients, and assist in research on diseases such that false 

positives are excluded from study populations, allowing for more targeted treatments.  
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