
Copyright

by

Jiayi Wei

2023

1

The Dissertation Committee for Jiayi Wei
certifies that this is the approved version of the following dissertation:

Combining Static Analysis with Deep Learning for

Type Inference and Code Editing

Committee:

Isil Dillig, Supervisor

Greg Durrett, Co-Supervisor

Raymond J. Mooney

Miltiadis Allamanis

2

Combining Static Analysis with Deep Learning for

Type Inference and Code Editing

by

Jiayi Wei

DISSERTATION

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

August 2023

3

Acknowledgments

Reflecting on my past six years at UT Austin, I am filled with immense

gratitude toward the incredible colleagues, friends, and family who have sup-

ported me. Their contributions have made this journey not just possible, but

truly memorable.

Firstly, I owe a huge debt of gratitude to my advisor, Isil, who ignited

my curiosity in programming language theories and saw my potential early

on. Her guidance has been instrumental in my growth, and the lessons I’ve

learned from her, particularly about communicating effectively and staying

goal-oriented, will forever guide me forward. I deeply appreciate her under-

standing and support, even when I shifted my research directions multiple

times. I am fortunate and privileged to have an advisor who consistently

prioritized my interests above her own.

My co-advisor Greg also deserves a special mention. He guided me in

the areas of deep learning and NLP and taught me how to approach challenging

problems with simple steps—in fact, the type inference work in this thesis

began as a final project in his NLP class. He patiently taught me how to

make compelling presentations and effectively promote our work. And more

importantly, his kindness and support, in both good times and bad, for both

things big and small, has made this journey much more enjoyable and colorful.

4

I am also thankful to my committee members, Ray Mooney and Miltos

Allamanis. Ray’s insightful feedback has significantly improved this thesis,

while Miltos, a pioneer in the field of AI4Code, has been a constant source of

inspiration. I look forward to our paths crossing again in the future.

I was fortunate to work with many great collaborators when I first

joined UT Austin. Yu Feng, whose optimism and hard work ethic had a

deep influence on my early PhD years and played a crucial role in helping me

successfully complete my initial projects. Jia Chen, who made an excellent

duo with me that made my first projects much smoother. Osbert Bastani, for

providing valuable experience and insights on reinforcement learning. Maruth

Goyal, for his assistance on the type inference projects.

I also want to express my gratitude to my fellow members of the

UTOPIA research group: To Yuepeng Wang, for inspiring me to apply to

UT Austin and for his help on countless occasions. To Xinyu Wang, for his

early guidance and wise advices. To Shankara Pailoor, with whom I had many

fanscinating discussions during our ping pong games and movie nights. To

Jocelyn Chen, for being a wonderful classmate, labmate, and friend. And to

Kostas Ferles, whose humor often brightened my days.

Lastly, I thank my family for their unconditional love and support.

Their encouragement has been a cornerstone of my progress. I express my

profound gratitude to Yuege Xie. Meeting you has brought about the most

beautiful transformation in my life and guided me on the path I’m on today.

5

Combining Static Analysis with Deep Learning for

Type Inference and Code Editing

by

Jiayi Wei, Ph.D.

The University of Texas at Austin, 2023

Supervisor: Isil Dillig, Greg Durrett

For many programming tasks, state-of-the-art machine learning tech-

niques treat programs as sequences of tokens and encode only local syntactic

information. While this approach has achieved impressive results on tasks

such as code autocompletion and program synthesis, many other tasks require

analyzing programs at the project level. In this thesis, we propose techniques

that combine lightweight static analysis and code transformations with ma-

chine learning to tackle two challenging problems from this category.

We first focus on probabilistic type inference, where the goal is to pre-

dict missing type annotations for programs written in a gradually typed lan-

guage like JavaScript and Python. Global information is essential for this task

as the model needs to consider how a function is used throughout the project

and be aware of the new types defined elsewhere. Our first approach, Lamb-

daNet, uses lightweight static analysis to generate a program abstraction called

6

a type dependency graph, which is then processed by a graph neural network

to make type predictions. Our more recent work, TypeT5, models type infer-

ence as a code-infilling task and fine-tunes a pre-trained code-infilling model on

type annotation labels. To best utilize the transformer model’s limited recep-

tive field, TypeT5 uses static analysis to construct a dynamic context for each

code element. During inference time, we also propose a sequential decoding

scheme to incorporate previously predicted types into the dynamic context,

allowing information exchange between distant but related code elements.

We then focus on contextual code change prediction, where the goal is

to predict how to edit a piece of code based on other relevant changes made

elsewhere in the same project. We introduce Coeditor, a fine-tuned CodeT5

model specifically designed for code editing tasks. We again model this task as

code infilling using a line-diff-based code change encoding scheme and employ

static analysis to form large customized model contexts, ensuring appropri-

ate information for prediction. Coeditor significantly outperforms the best

code completion approach in a simplified single-round, single-edit task. In the

proposed multi-round, multi-edit setting, Coeditor demonstrates substantial

gains by iteratively conditioning on additional user edits. To encourage future

research, we open-source our code, data, and model weights, and release a

VSCode extension powered by our model for interactive usage.

7

Table of Contents

Acknowledgments 4

Abstract 6

List of Tables 11

List of Figures 12

Chapter 1. Introduction 15

1.1 A Brief History of Probabilistic Type Inference 16

1.2 From Type Inference to Code Auto-Editing 18

Chapter 2. LambdaNet: Probabilistic Type Inference using Graph
Neural Networks 20

2.1 Introduction . 20

2.2 Motivating Example and Problem Setting 23

2.2.1 Problem Setting . 25

2.3 Type Dependency Graph . 25

2.4 Neural Architecture . 29

2.5 Evaluation . 33

2.5.1 Comparison with DeepTyper 36

2.5.2 Predicting User-Defined Types 38

2.5.3 Ablation Study . 39

2.5.4 Comparison with JSNice 40

2.6 Related Work . 41

8

Chapter 3. TypeT5: Seq2seq Type Inference
using Static Analysis 43

3.1 Introduction . 43

3.2 Overview . 46

3.3 Methods . 50

3.3.1 Using CodeT5 for type prediction 50

3.3.2 Building the Usage Graph 51

3.3.3 Constructing Model Inputs 53

3.3.4 Iterative Decoding Inference 55

3.3.5 Training . 56

3.4 Experiments . 56

3.4.1 Evaluation Setup . 57

3.4.2 Comparing TypeT5 with other approaches 62

3.4.3 Ablations on TypeT5 65

3.4.4 User-Guided Interactive Decoding 69

3.5 Related Work . 70

3.6 Real Examples Produced by TypeT5 72

Chapter 4. Coeditor: Leveraging Contextual Changes for Multi-
round Code Auto-editing 77

4.1 Introduction . 77

4.2 Motivating Example . 81

4.3 Methods . 84

4.3.1 Representing Code Changes 84

4.3.2 Analyzing Relevant Signatures 87

4.3.3 Adapting CodeT5 . 87

4.3.4 Discussion of Sparse Attention Mechanisms 89

4.3.5 The PyCommits Dataset 90

4.4 Evaluation . 92

4.4.1 Comparison with Code Completion Approaches 93

4.4.2 Multi-round Editing . 95

4.4.3 Ablation Studies . 98

4.5 Related Work . 99

9

4.6 Code Completion Examples 100

4.7 Multi-round Editing Examples 101

Chapter 5. Conclusion and Future Work 112

Vita 132

10

List of Tables

2.1 Different types of hyperedges used in a type dependency graph. 26

2.2 Comparing LambdaNet with DeepTyper on library types. . 37

2.3 Accuracy when predicting all types. 38

2.4 Performance of different GNN iterations (left) and ablations
(right). 40

3.1 Basic statistics of our two datasets. 60

3.2 Accuracy comparison on common types. 63

3.3 Accuracy comparison on rare types. 63

3.4 Performance of different model modifications. All models are
retrained with the corresponding inputs. 67

3.5 Performance of different decoding strategies. The same TypeT5
model weights are used for different decoding strategies. 68

4.1 General statistics of the PyCommits dataset. 91

4.2 Additional statistics specific to our technique, computed over
the test set. 91

4.3 Performance on 5000 code completion instances extracted from
edits (PyCommits-OneLine). Add EM and Replace EM are
the (enhanced) exact-match accuracies on addition and replace-
ment change, respectively. 94

4.4 Multi-round evaluation results measured on 5000 problems from
the PyCommits test set. Lines, Levenshtein, and Keystrokes
are the average total gains in the corresponding metrics. Rounds
is the average number of rounds needed to complete all desired
changes. 98

4.5 Ablation results on the entire validation set (PyCommits). All
pairwise differences are statistically significant with p < 0.05
using a paired bootstrap test. 99

11

List of Figures

2.1 A motivating example: Given an unannotated version of this
TypeScript program, a traditional rule-based type inference al-
gorithm cannot soundly deduce the true type annotations (shown
in green). 23

2.2 An intermediate representation of the (unannotated version)
program from Figure 2.1. The τi represent type variables, among
which τ8–τ16 are newly introduced for intermediate expressions. 26

2.3 Example hyperedges for Figure 2.2. Edge labels in gray (resp.
red) are positional arguments (resp. identifiers). (A) The re-
turn statement at line 6 induces a subtype relationship between
τ13 and τ5. (B) MyNetwork τ8 declares attributes name τ1 and
time τ2 and method forward τ9. (C) τ14 is associated with a
variable whose named is restore. (D) Usage hyperedge for line
10 connects τ6 and τ15 to all classes with a time attribute. . . 27

3.1 Simplified code snippets taken from our own codebase. The
eval on dataset function first calls the chunk srcs function to
convert the given textual data into equally sized chunks, and it
then feed them into the ModelWrapper.predict method. . . . 47

3.2 How CodeT5 encodes and decodes source code using BPE. Marker
tokens (highlighted in blue) indicate gaps (input) and their cor-
responding fillers (output). 48

3.3 The two-pass iterative decoding process. 48

3.4 The usage graph corresponding to the code snippets in Fig-
ure 3.1. WindowArgs and ChunkedDataset are assumed to be
defined elsewhere in the same project. 51

3.5 The preamble gathers all the important statements and class
headers from the current file. This helps the model see which
types are available and where each symbol comes from. 73

3.6 The usee context shows the signature of the elements that are
used by the main code or by elements from the user context.
By seeing their predicted type signatures, the model can under-
stand the type-level behavior of these definitions without having
to dive into their implementation. 74

12

3.7 The main code is the element that is being annotated by the
model at the current decoding step. The model has made two
errors in this example, both of which can be directly attributed
to the previous two errors made in the usee context (line 102 and
line 97). This shows that the model is making coherent predic-
tions according to the context, and such errors can be avoided
if the user has corrected the previous errors (as described in
subsection 3.4.4). 75

3.8 The user context shows two callers of the predict method from
the main code. We see that the model successfully predicts all
user-defined types, despite the fact that these are all new classes
defined in the current project. 76

4.1 The multi-round auto-editing task. The user inspects the model
output in each editing round and can optionally perform manual
editing. 78

4.2 An example usage of Coeditor. (a) The user first edits the
pack batch function to read an additional dictionary key, ‘‘cost’’,
from each row in the input. (b) The user then removes 3 lines
at the top of the group to batches function. (c) The user now
invokes Coeditor at the bottom half of the same function. Coed-
itor correctly suggests adding a ‘‘cost’’ key to the dictionary
variable row, but it fails to address the now undefined variables
underlined in red. (d) However, if the user accepts the suggested
change and manually introduces two new variables at line 209,
Coeditor can then suggest the correct changes accordingly. . . 82

4.3 Coeditor encoding format. (Left) the input sequence adds place-
holder tokens to indicate code region to edit. (Top right) the
output sequence specifies further changes at each placeholder
token. (Bottom right) relevant signatures are retrieved from
the codebase and added to the context. (In this example, the
Python module is called motivating). 86

4.4 Coeditor encoder sparse attention pattern. All attention be-
tween the reference blocks are skipped to avoid the quadratic
cost of dense attention. 88

4.5 Code completion example 1. Coeditor sees from the relevant
contextual changes (shown in Figure 4.6) that some get asynclib()
calls should be replaced with get async backend(), so it cor-
rectly suggested the change based on the deletion before the
infilling point. InCoder was not able to see the deletion and
infilled the original code given only the surrounding code. . . . 101

13

4.6 Code completion example 1: relevant contexts. The changes
highlighted in orange tell Coeditor that some get asynclib()
calls should be replaced with get async backend(). 102

4.7 Code completion example 2. Coeditor was able to suggest the
correct code based on a similar change from another file (Fig-
ure 4.8, highlighted in orange), whereas InCoder was not able
to see the change and suggested a wrong statement. 103

4.8 Code completion example 2: relevant contexts. 104

4.9 Code completion example 3. Coeditor was able to suggest
adding the correct attribute initialization based on the new us-
age highlighted in Figure 4.10, whereas InCoder was not able
to see the new usages and hallucinated a new attribute. 105

4.10 Code completion example 3: relevant contexts. 106

4.11 Multi-round editing example 1. Coeditor correctly suggested a
subset of the ground-truth changes. Contextual changes omit-
ted for this example. 107

4.12 Multi-round editing example 2 (round 3). Coeditor misunder-
stood the user’s intention and suggested adding two more ar-
guments to the EncodedVideo.from path function call. Under
our multi-round evaluation strategy, we assume the user would
then manually add the next line from the ground truth changes
(see the next figure). 108

4.13 Multi-round editing example 2 (round 4). With the next line
change from the ground truth added, Coeditor understood that
the user intended to only change the calling style and was thus
able to suggest the correct change. 109

4.14 Multi-round editing example 3. Coeditor was able to predict the
correct change in the first editing round by identifying a similar
change inside a different function (see Figure 4.15, highlighted
in orange). 110

4.15 Multi-round editing example 3 (reference blocks). The bottom
changes highlighted in orange are similar to the changes needed
in Figure 4.14. 111

14

Chapter 1

Introduction

In recent years, machine learning (ML) has played a significant role in

various programming-related tasks such as code autocompletion (Chen et al.,

2021, Raychev et al., 2014) and program synthesis (Li et al., 2022). These tasks

often involve modeling programs as a sequence of tokens and using only local

syntactical information. This approach has achieved impressive results. e.g.,

Copilot, the code completion system developed by GitHub, has helped millions

of developers with their everyday tasks, and AlphaCode, the program synthesis

system developed by DeepMind, has been able to match the programming skills

of average coders in online programming competitions. Despite these successes,

there are many other programming tasks that require a more holistic analysis

of the entire program.

This thesis presents techniques that combine static analysis, code trans-

formations, and machine learning to tackle two challenging problems that fall

into this category, namely, probabilistic type inference and code auto-editing.

15

1.1 A Brief History of Probabilistic Type Inference

As gradual typing (Siek and Taha, 2007a) becomes increasingly popular

in languages like TypeScript1 and Python2, there is a growing need to infer

type annotations automatically: while type annotations benefit tasks like code

completion and analysis, these annotations cannot be fully determined by

compilers and are tedious to annotate by hand. Probabilistic type inference

techniques aim to automatically predict these missing type annotations using

ML-based techniques.

The first probabilistic type inference system we are aware of is JS-

Nice (Raychev et al., 2015a), which uses probabilistic graphical models such

as conditional random fields to infer JavaScript program properties like vari-

able names and type annotations. Similarly, Xu et al. (2016) developed a

system for inferring Python type annotations by modeling programs as a fac-

tor graph and applying the sum-product belief propagation algorithm. More

recently, DeepTyper (Hellendoorn et al., 2018a) introduced the use of deep

learning for type inference, using an LSTM to process program tokens and

training the model on open-source TypeScript programs.

To address the challenge of predicting types from an open vocabulary

and make use of more global information, we proposed LambdaNet (Wei et al.,

1TypeScript is a programming language that is a strict syntactical superset of JavaScript,
with additional features such as optional static typing and object-oriented programming
constructs.

2Type annotations were introduced in Python 3.5 as a way to provide hints about the
expected type of a variable or expression to static type checkers and IDEs.

16

2020), a system that combines lightweight static analysis with a graph neural

network and a pointer network layer to predict JavaScript types. We describe

LambdaNet in detail in chapter 2. Typilus (Allamanis et al., 2020) is a similar

system that uses graph neural networks to predict Python type annotations,

but instead of using a pointer network, it uses nearest neighbor search in the

type embedding space to predict user-defined types. Both LambdaNet and

Typilus are able to predict user-defined types that were not seen during train-

ing and achieved new state-of-the-art performance on JavaScript and Python

type inference tasks, respectively.

In addition to using source code, other forms of information have been

utilized to improve probabilistic type inference. OptTyper (Pandi et al., 2020)

explicitly models type constraints as a relaxed continuous optimization objec-

tive. TypeWriter (Pradel et al., 2020) and HiTyper (Peng et al., 2022) both

combine rule-based type checking with inference-time search to prevent gen-

erating type errors. These approaches have shown to be effective in improving

the accuracy and reliability of type prediction systems.

Meanwhile, with the advent of large-scale pretraining and the explo-

sion of transformer architectures, in TypeBert (Jesse et al., 2021), the authors

proposed the first type inference method based on a pre-trained transformer

model and demonstrated significant improvement over LambdaNet in predict-

ing common JavaScript types. Jesse et al. (2022) later improved TypeBert

by using deep similarity learning (Allamanis et al., 2020, Mir et al., 2022) to

better support user-defined types. These approaches showcase the potential

17

of using pre-training and modern transformer architectures for type inference.

Lastly, in our latest work, TypeT5 (Wei et al., 2023), we view type

inference as a masked span infilling task and leverage a pre-trained seq2seq

code completion model for the task. One particularly attractive feature of

using such models is that, due to the use of subword tokenization (Gage, 1994,

Schuster and Nakajima, 2012, Sennrich et al., 2016), they can generate arbi-

trary code expressions—including novel identifier names and AST structures—

at test time, providing a simple and flexible solution to predict user-defined

types and parametric types.3 To optimize the use of the transformer model’s

limited receptive field, TypeT5 uses static analysis to construct a dynamic con-

text for each code element. During inference time, we also propose a sequential

decoding scheme to incorporate previously predicted types into the dynamic

context, allowing information exchange between distant but related code ele-

ments. Our evaluation shows that TypeT5 outperforms prior approaches by a

large margin and drastically improves the accuracy on rare and complex types.

We provide a detailed description of TypeT5 in chapter 3.

1.2 From Type Inference to Code Auto-Editing

Code editing and refactoring are crucial aspects of software develop-

ment, enabling programmers to continuously enhance and maintain their code.

3It is worth noting that none of the aforementioned approaches can handle the unbounded
prediction space induced by parametric types, so complex parametric types have to be
projected into simpler types as a preprocessing step.

18

However, there is a lack of tools available to assist with these tasks. Code com-

pletion and generation techniques may be helpful for writing new code, but

they are not ideal for editing and refactoring existing code. These techniques

cannot predict where or how to make changes and do not account for changes

made by the programmer elsewhere in the project.

In this thesis, we address this gap by developing a technique for code

auto-editing. We propose Coeditor, a Copilot-style tool that functions as fol-

lows: as the programmer makes changes to a function, the tool automatically

suggests additional changes to the remaining code based on partial changes

made to the function thus far and other relevant changes made elsewhere in

the same project. This problem also requires a global view of the program, as

the model must be aware of all relevant changes, such as a signature change

to a used function, even if they are far away. The model must also understand

what APIs are available and how to use them to produce correct code rewrites.

We model this task as a masked span infilling task using a line-diff-based code

change encoding scheme and employ lightweight static analysis to form large

customized model contexts, ensuring appropriate information for prediction.

Our Coeditor model, fine-tuned from CodeT5, significantly outperforms the

best code completion approach in a simplified single-round, single-edit task,

nearly doubling its exact-match accuracy, despite using a much smaller model.

In a multi-round, multi-edit setting, we also observe substantial gains by iter-

atively prompting the model with additional user edits. We present Coeditor

in detail in chapter 4.

19

Chapter 2

LambdaNet: Probabilistic Type Inference

using Graph Neural Networks

2.1 Introduction

Dynamically typed languages like Python, Ruby, and Javascript have

gained enormous popularity over the last decade, yet their lack of a static type

system comes with certain disadvantages in terms of maintainability (Hanen-

berg et al., 2013), the ability to catch errors at compile time, and code com-

pletion support (Gao et al., 2017). Gradual typing can address these short-

comings: program variables have optional type annotations so that the type

system can perform static type checking whenever possible (Chung et al.,

2018, Siek and Taha, 2007b). Support for gradual typing now exists in many

popular programming languages (Bierman et al., 2014, Vitousek et al., 2014),

but due to their heavy use of dynamic language constructs and the absence

of principal types (Ancona and Zucca, 2004), compilers cannot perform type

inference using standard algorithms from the programming languages com-

munity (Bierman et al., 2014, Pierce and Turner, 2000, Traytel et al., 2011),

0An early version of this chapter appeared in Wei et al. (2020). Jiayi Wei is the first
author of the paper, and with the help from other authors, he developed the research idea,
wrote the code, performed the experiments and analysis, and wrote the paper.

20

and manually adding type annotations to existing codebases is a tedious and

error-prone task. As a result, legacy programs in these languages do not reap

all the benefits of gradual typing.

To reduce the human effort involved in transitioning from untyped to

statically typed code, this work focuses on a learning-based approach to au-

tomatically inferring likely type annotations for untyped (or partially typed)

codebases. Specifically, we target TypeScript, a gradually-typed variant of

Javascript for which plenty of training data is available in terms of type-

annotated programs. While there has been some prior work on inferring type

annotations for TypeScript using machine learning (Hellendoorn et al., 2018a,

Raychev et al., 2015a), prior work in this space has several shortcomings. First,

inference is restricted to a finite dictionary of types that have been observed

during training time—i.e., they cannot predict any user-defined data types.

Second, even without considering user-defined types, the accuracy of these

systems is relatively low, with the current state-of-the-art achieving 56.9% ac-

curacy for primitive/library types (Hellendoorn et al., 2018a). Finally, these

techniques can produce inconsistent results in that they may predict different

types for different token-level occurrences of the same variable.

In this work, we propose a new probabilistic type inference algorithm

for TypeScript to address these shortcomings using a graph neural network

architecture (GNN) (Li et al., 2016, Mou et al., 2016, Veličković et al., 2018).

Our method uses lightweight source code analysis to transform the program

into a new representation called a type dependency graph, where nodes repre-

21

sent type variables and labeled hyperedges encode relationships between them.

In addition to expressing logical constraints (e.g., subtyping relations) as in

traditional type inference, a type dependency graph also incorporates contex-

tual hints involving naming and variable usage.

Given such a type dependency graph, our approach uses a GNN to

compute a vector embedding for each type variable and then performs type

prediction using a pointer-network-like architecture (Vinyals et al., 2015). The

graph neural network itself requires handling a variety of hyperedge types—

some with variable numbers of arguments—for which we define appropriate

graph propagation operators. Our prediction layer compares the vector em-

bedding of a type variable with vector representations of candidate types,

allowing us to flexibly handle user-defined types that have not been observed

during training. Moreover, our model predicts consistent type assignments

by construction because it makes variable-level rather than token-level predic-

tions.

We implemented our new architecture as a tool called LambdaNet

and evaluated its performance on real-world TypeScript projects from Github.

When only predicting library types, LambdaNet has a top1 accuracy of

75.6%, achieving a significant improvement over DeepTyper (61.5%). In terms

of overall accuracy (including user-defined types), LambdaNet achieves a

top1 accuracy of around 64.2%, which is 55.2% (absolute) higher than the

TypeScript compiler.

Contributions. This work makes the following contributions: (1) We pro-

22

Figure 2.1: A motivating example: Given an unannotated version of this
TypeScript program, a traditional rule-based type inference algorithm cannot
soundly deduce the true type annotations (shown in green).

pose a probabilistic type inference algorithm for TypeScript that uses deep

learning to make predictions from the type dependency graph representation

of the program. (2) We describe a technique for computing vector embeddings

of type variables using GNNs and propose a pointer-network-like method to

predict user-defined types. (3) We experimentally evaluate our approach on

hundreds of real-world TypeScript projects and show that our method signif-

icantly improves upon prior work.

2.2 Motivating Example and Problem Setting

Figure 2.1 shows a (type-annotated) TypeScript program. Our goal

in this work is to infer the types shown in the figure, given an unannotated

version of this code. We now justify various aspects of our solution using this

example.

Typing constraints. The use of certain functions/operators in Figure 2.1

23

imposes hard constraints on the types that can be assigned to program vari-

ables. For example, in the forward function, variables x, y must be assigned

a type that supports a concat operation; hence, x, y could have types like

string, array, or Tensor, but not, for example, boolean. This observation

motivates us to incorporate typing constraints into our model.

Contextual hints. Typing constraints are not always sufficient for deter-

mining the intended type of a variable. For example, for variable network

in function restore, the typing constraints require network’s type to be a

class with a field called time, but there can be many classes that have such

an attribute (e.g., Date). However, the similarity between the variable name

network and the class name MyNetwork hints that network might have type

MyNetwork. Based on this belief, we can further propagate the return type of

the library function readNumber (assuming we know it is number) to infer that

the type of the time field in MyNetwork is likely to be number.

Need for type dependency graph. There are many ways to view pro-

grams, e.g., as token sequences, abstract syntax trees, control flow graphs, etc.

However, none of these representations is particularly helpful for inferring the

most likely type annotations. Thus, our method uses static analysis to infer a

set of predicates that are relevant to the type inference problem and represents

these predicates using a program abstraction called the type dependency graph.

Handling user-defined types. As mentioned in Section 2.1, prior tech-

niques can only predict types seen during training. However, the code from

Figure 2.1 defines its own class called MyNetwork and later uses a variables

24

of type MyNetwork in the restore method. A successful model for this task

therefore must dynamically make inferences about user-defined types based on

their definitions.

2.2.1 Problem Setting

Our goal is to train a type inference model that can take as input an

entirely (or partially) unannotated TypeScript project g and output a proba-

bility distribution of types for each missing annotation. The prediction space

is Y(g) = Ylib ∪ Yuser(g), where Yuser(g) is the set of all user-defined types

(classes/interfaces) declared within g, and Ylib is a fixed set of commonly-used

library types.

Following prior work in this space (Hellendoorn et al., 2018a, Ray-

chev et al., 2015a, Xu et al., 2016), we limit the scope of our prediction to

non-polymorphic and non-function types. That is, we do not distinguish be-

tween types such as List<T>, List<number>, List<string> etc., and consider

them all to be of type List. Similarly, we also collapse function types like

number → string and string → string into a single type called Function. We

leave the extension of predicting structured types as future work.

2.3 Type Dependency Graph

A type dependency graph G = (N,E) is a hypergraph where nodes N

represent type variables and labeled hyperedges E encode relationships be-

tween them. We extract the type dependency graph of a given TypeScript

25

Figure 2.2: An intermediate representation of the (unannotated version)
program from Figure 2.1. The τi represent type variables, among which τ8–τ16
are newly introduced for intermediate expressions.

Table 2.1: Different types of hyperedges used in a type dependency graph.

Type Edge Description

Logical

Fixed Bool(α) α is used as boolean
Fixed Subtype(α, β) α is a subtype of β
Fixed Assign(α, β)† β is assigned to α
NAry Function(α, β1, . . . , βk, β

∗) α = (β1, . . . , βk) → β∗

NAry Call(α, β∗, β1, . . . , βk) α = β∗(β1, . . . , βk)
NAry Objectl1,...,lk(α, β1, . . . , βk) α = {l1 : β1, . . . , lk : βk}
Fixed Accessl(α, β) α = β.l

Contextual

Fixed Namel(α) α has name l
Fixed NameSimilar(α, β) α, β have similar names
NPairs Usagel((α

∗, β∗), (α1, β1), . . . , (αk, βk)) usages involving name l

† Although assignment is a special case of a subtype constraint, we
differentiate them because these edges appear in different contexts
and having uncoupled parameters for these two edge types is ben-
eficial.

program by performing static analysis on an intermediate representation of

its source code, which allows us to associate a unique variable with each pro-

gram sub-expression. As an illustration, Figure 2.2 shows the intermediate

26

Figure 2.3: Example hyperedges for Figure 2.2. Edge labels in gray (resp.
red) are positional arguments (resp. identifiers). (A) The return statement
at line 6 induces a subtype relationship between τ13 and τ5. (B) MyNetwork

τ8 declares attributes name τ1 and time τ2 and method forward τ9. (C) τ14 is
associated with a variable whose named is restore. (D) Usage hyperedge for
line 10 connects τ6 and τ15 to all classes with a time attribute.

representation of the code from Figure 2.1.

Intuitively, a type dependency graph encodes properties of type vari-

ables as well as relationships between them. Each hyperedge corresponds to

one of the predicates shown in Table 2.1. We partition our predicates (i.e., hy-

peredges) into two classes, namely Logical and Contextual, where the former

category can be viewed as imposing hard constraints on type variables and

the latter category encodes useful hints extracted from names of variables,

functions, and classes.

Figure 2.3 shows some of the hyperedges in the type dependency graph

G extracted from the intermediate representation in Figure 2.2. As shown in

Figure 2.3(A), our analysis extracts a predicate Subtype(τ13, τ5) from this code

because the type variable associated with the returned expression v4 must be

a subtype of the enclosing function’s return type. Similarly, as shown in Fig-

ure 2.3(B), our analysis extracts a predicate Objectname,time,forward(τ8, τ1, τ2, τ9)

27

because τ8 is an object type whose name, time, and forward members are as-

sociated with type variables τ1, τ2, τ9, respectively.

In contrast to the Subtype and Object predicates that impose hard

constraints on type variables, the next two hyperedges shown in Figure 2.3

encode contextual clues obtained from variable names. Figure 2.3(C) indicates

that type variable τ14 is associated with an expression named restore. While

this kind of naming information is invisible to TypeScript’s structural type

system (Bierman et al., 2014), it serves as a useful input feature for our GNN

architecture described in Section 2.4.

In addition to storing the unique variable name associated with each

type variable, the type dependency graph also encodes similarity between vari-

able and class names. The names of many program variables mimic their

types: for example, instances of a class called MyNetwork might often be

called network or network1. To capture this correspondence, our type de-

pendency graph also contains a hyperedge called NameSimilar that connects

type variables α and β if their corresponding tokenized names have a non-

empty intersection.1

As shown in Table 2.1, there is a final type of hyperedge called Usage

that facilitates type inference of object types. In particular, if there is an object

access y = x.l, we extract the predicate Usagel((τx, τy), (α1, β1), . . . , (αk, βk))

1During tokenization, we split identifier names into tokens based on underscores and
camel case naming. More complex schemes are possible, but we found this simple method
to be effective.

28

to connect x and y’s type variables with all classes αi that contain an at-

tribute/method βi whose name is l. Figure 2.3 shows a Usage hyperedge

extracted from the code in Figure 2.2. As we will see in the next section, our

GNN architecture utilizes a special attention mechanism to pass information

along these usage edges.

2.4 Neural Architecture

Our neural architecture for making type predictions consists of two

main parts. First, a graph neural network passes information along the type

dependency graph to produce a vector-valued embedding for each type variable

based on its neighbors. Second, a pointer network compares each variable’s

type embedding to the embedding vectors of candidate types (both computed

from the previous phase) to place a distribution over possible type assignments.

Given a type dependency graph G = (N,E), we first to compute a

vector embedding vn for each n ∈ N such that these vectors implicitly en-

code type information. Because our program abstraction is a graph, a natural

choice is to use a graph neural network architecture. From a high level, this

architecture takes in initial vectors v0
n for each node n, performs K rounds of

message-passing in the graph neural network, and returns the final represen-

tation for each type variable.

In more detail, let vt
n denote the vector representation of node n at the

tth step, where each round consists of a message passing and an aggregation

step. The message passing step computes a vector-valued update to send to

29

the jth argument of each hyper-edge e ∈ E connecting nodes p1, . . . , pa. Then,

once all the messages have been computed, the aggregation step computes a

new embedding vt
n for each n by combining all messages sent to n:

mt
e,pj

= Msge,j(v
t−1
p1

, . . . ,vt−1
pa) vt

n = Aggr(vt−1
n , {mt

e,n|e ∈ N (n)})

Here, N is the neighborhood function, and Msge denotes a particular neural

operation that depends on the type of the edge (Fixed, NAry, or NPairs),

which we will describe later.

Initialization. In our GNN, nodes correspond to type variables and each

type variable is associated either with a program variable or a constant. We

refer to nodes representing constants (resp. variables) as constant (resp. vari-

able) nodes, and our initialization procedure works differently depending on

whether or not n is a constant node. Since the types of each constant are

known, we set the initial embedding for each constant node of type τ (e.g.,

string) to be a trainable vector cτ and do not update it during GNN itera-

tions (i.e., ∀t,vt
n = cτ). On the other hand, if n is a variable node, then we

have no information about its type during initialization; hence, we initialize all

variable nodes using a generic trainable initial vector (i.e., they are initialized

to the same vector but updated to different values during GNN iterations).

Message passing. Our Msg operator depends on the category of edge it

corresponds to (see Table 2.1); however, weights are shared between all in-

stances of the same hyperedge type. In what follows, we describe the neural

layer that is used to compute messages for each type of hyperedge:

30

• Fixed: Since these edges correspond to fixed arity predicates (and the

position of each argument matters), we compute the message of the jth

argument by first concatenating the embedding vector of all arguments and

then feed the result vector to a 2-layer MLP for the jth argument. In

addition, since hyperedges of type Access have an identifier, we also embed

the identifier as a vector and treat it as an extra argument. (We describe

the details of identifier embedding later in this section.)

• NAry: Since NAry edges connect a variable number of nodes, we need

an architecture that can deal with this challenge. In our current implemen-

tation of LambdaNet, we use a simple architecture that is amenable to

batching. Specifically, given an NAry edge El1,...,lk(α, β1, . . . , βk) (for Func-

tion and Call, the labels lj are argument positions), the set of messages for

α is computed as {MLPα(vlj ∥ vβj
) | j = 1 . . . k}, and the message for each

βj is computed as MLPβ(vlj ∥ vα). Observe that we compute k different

messages for α, and the message for each βj only depends on the vector

embedding of α and its position j, but not the vector embeddings of other

βj’s.
2

• NPairs: This is a special category associated with the usage relation

Usagel((α
∗, β∗), (α1, β1), . . . , (αk, βk)). Recall that this kind of edge arises

from expressions of the form b = a.l and is used to connect a and b’s type

2In our current implementation, this is reducible to multiple Fixed edges. However,
NAry edges could generally use more complex pooling over their arguments to send more
sophisticated messages.

31

variables with all classes αi that contain an attribute/method βi with label

l. Intuitively, if a’s type embedding is very similar to a type C, then b’s type

will likely be the same as C.l’s type. Following this reasoning, we use dot-

product based attention to compute the messages for α∗ and β∗. Specifically,

we use α∗ and αj’s as attention keys and βj’s as attention values to compute

the message for β∗ (and switch the key-value roles to compute the message

for α∗):

mt
e,β∗ =

∑
j

wjv
t−1
βj

w = softmax(a) aj = vαj
· vα∗

Aggregation. Recall that the aggregation step combines all messages sent

to node n to compute the new embedding vtn. To achieve this goal, we use a

variant of the attention-based aggregation operator proposed in graph atten-

tion networks (Veličković et al., 2018).

vtn = Aggr(vt−1
n , {mt

e,n|e ∈ N (n)}) = vt−1
n +

∑
e∈N (n)

weM1m
t
e,n (2.1)

where we is the attention weight for the message coming from edge e. Specifi-

cally, the weights we are computed as softmax(a), where ae = LeakyReLu(vt−1
n ·

M2m
t
e,n) , and M1 and M2 are trainable matrices. Similar to the original

GAT architecture, we set the slope of the LeakyReLu to be 0.2, but we use

dot-product to compute the attention weights instead of a linear model.

Identifier embedding. Like in Allamanis et al. (2017), we break variable

names into word tokens according to camel case and underscore rules and

assign a trainable vector for all word tokens that appear more than once in

32

the training set. For all other tokens, unlike Allamanis et al. (2017), which

maps them all into one single <Unknown> token, we randomly mapped them

into one of the <Unknown-i> tokens, where i ranges from 0 to 50 in our current

implementation. This mapping is randomly constructed every time we run the

GNN and hence helps our neural networks to distinguish different tokens even

if they are rare tokens. We train these identifier embeddings end-to-end along

with the rest of our architecture.

Prediction Layer. For each type variable n and each candidate type c ∈

Y(g), we use a MLP to compute a compatibility score sn,c = MLP(vn,uc),

where uc is the embedding vector for c. If c ∈ Ylib, vc is a trainable vector

for each library type c; if c ∈ Yuser(g), then it corresponds to a node nc in the

type dependency graph of g, so we just use the embedding vector for nc and

set uc = vnc . Formally, this approach looks like a pointer network (Vinyals

et al., 2015), where we use the embeddings computed during the forward pass

to predict “pointers” to those types.

Given these compatibility scores, we apply a softmax layer to turn them

into a probability distribution. i.e., Pn(c|g) = exp(sn,c)/
∑

c′ exp(sn,c′). During

test time, we max over the probabilities to compute the most likely (or top-N)

type assignments.

2.5 Evaluation

In this section, we describe the results of our experimental evaluation,

which is designed to answer the following questions: (1) How does our approach

33

compare to previous work? (2) How well can our model predict user-defined

types? (3) How useful is each of our model’s components?

Dataset. Similar to Hellendoorn et al. (2018a), we train and evaluate our

model on popular open-source TypeScript projects taken from Github. Specif-

ically, we collect 300 popular TypeScript projects from Github that contain

between 500 to 10, 000 lines of code and where at least 10% of type annotations

are user-defined types. Note that each project typically contains hundreds to

thousands of type variables to predict, and these projects in total contain

about 1.2 million lines of TypeScript code. Among these 300 projects, we use

60 for testing, 40 for validation, and the remainder for training.

Code Duplication. We ran jscpd3 on our entire data set and found that

only 2.7% of the code is duplicated. Furthermore, most of these duplicates are

intra-project. Thus, we believe that code duplication is not a severe problem

in our dataset.

Preprocessing. Because some of the projects in our benchmark suite are

only sparsely type annotated, we augment our labeled training data by using

the forward type inference functionality provided by the TypeScript compiler.4

3A popular code duplication detection tool, available at
https://github.com/kucherenko/jscpd.

4Like in many modern programming languages with forward type inference (e.g., Scala,
C#, Swift), a TypeScript programmer does not need to annotate every definition in order to
fully specify the types of a program. Instead, they only need to annotate some “key places”
(e.g., function parameters and return types, class members) and let the forward inference
algorithm to figure out the rest of the types. Therefore, in our training set, we can keep the
user annotations on these key places and run the TS compiler to recover these implicitly
specified types as additional labels.

34

https://github.com/kucherenko/jscpd

The compiler cannot infer the type of every variable and leaves many labeled

as any during failed inference; thus, we exclude any labels in our data set.

Furthermore, at test time, we evaluate our technique only on annotations that

are manually added by developers. This is the same methodology used by

Hellendoorn et al. (2018a), and, since developers often add annotations where

code is most unclear, this constitutes a challenging setting for type prediction.

Prediction Space. As mentioned in Section 2.2.1, our approach takes an

entire TypeScript project g as its input, and the corresponding type prediction

space is Y(g) = Ylib ∪ Yuser(g). In our experiments, we set Yuser(g) to be all

classes/interfaces defined in g (except when comparing with DeepTyper, where

we set Yuser(g) to be empty), and for Ylib, we select the top-100 most common

types in our training set. Note that this covers 98% (resp. 97.5%) of the

non-any annotations for the training (resp. test) set.

Hyperparameters We selected hyperparameters by tuning on a validation

set as we were developing our model. We use 32-dimensional type embedding

vectors, and all MLP transformations in our model use one hidden layer of

32 units, except the MLP for computing scores in the prediction layer, which

uses three hidden layers of sizes 32,16, and 8 (and size 1 for output). GNN

message-passing layers from different time steps have independent weights.

We train our model using Adam (Kingma and Ba, 2014) with default

parameters (α = 0.9, β = 0.999) and set the learning rate to be 10−3 initially

but linearly decrease it to 10−4 until the 30th epoch. We use a weight decay

of 10−4 for regularization and stop the training once the loss on validation set

35

starts to increase (which usually happens around 30 epochs). We use the type

annotations from a single project as a minibatch and limit the maximal batch

size (via downsampling) to be the median of our training set to prevent any

single project from having too much influence.

Implementation Details. We implemented LambdaNet in Scala, build-

ing on top of the Java high-performance Tensor library Nd4j (K.K.), and used

a custom automatic differentiation library to implement our GNN. Our GNN

implementation does not use an adjacency matrix to represent GNN layers; in-

stead, we build the hyperedge connections directly from our type dependency

graph and perform batching when computing the messages for all hyperedges

of the same type.

Code Repository. We have made our code publicly available on Github.5

2.5.1 Comparison with DeepTyper

In this experiment, we compare LambdaNet’s performance with Deep-

Typer (Hellendoorn et al., 2018a), which treats programs as sequences of to-

kens and uses a bidirectional RNN to make type predictions. Since DeepTyper

can only predict types from a fixed vocabulary, we fix both LambdaNet and

DeepTyper’s prediction space to Ylib and measure their corresponding top-1

accuracy.

The original DeepTyper model makes predictions for each variable oc-

5https://github.com/MrVPlusOne/LambdaNet.

36

https://github.com/MrVPlusOne/LambdaNet

Table 2.2: Comparing LambdaNet with DeepTyper on library types.

Model Top1 Accuracy (%)
Declaration Occurrence

DeepTyper 61.5 67.4
LambdaNetlib (K=6) 75.6 77.0

currence rather than declaration. In order to conduct a meaningful comparison

between DeepTyper and LambdaNet, we implemented a variant of Deep-

Typer that makes a single prediction for each variable (by averaging over the

RNN internal states of all occurrences of the same variable before making the

prediction). Moreover, for a fair comparison, we made sure both DeepTyper

and LambdaNet are using the same improved naming feature that splits

words into tokens.

Our main results are summarized in Table 2.2, where the Declaration

(resp. Occurrence) column shows accuracy per variable declaration (resp.

token-level occurrence). Note that we obtain occurrence-level accuracy from

declaration-level accuracy by weighting each variable by its number of occur-

rences.

As we can see from the table, LambdaNet achieves significantly bet-

ter results compared to DeepTyper. In particular, LambdaNet outperforms

DeepTyper by 14.1% (absolute) for declaration-level accuracy and by 9.6% for

occurrence-level accuracy.

Note that the accuracy we report for DeepTyper (67.4%) is not directly

comparable to the original accuracy reported in Hellendoorn et al. (2018a)

37

Table 2.3: Accuracy when predicting all types.

Model Top1 Accuracy (%) Top5 Accuracy (%)
Yuser Ylib Overall Yuser Ylib Overall

TS Compiler 2.66 14.39 8.98 - - -
SimilarName 24.1 0.78 15.7 42.5 3.19 28.4
LambdaNet (K=6) 53.4 66.9 64.2 77.7 86.2 84.5

(56.9%) for the following reasons. While we perform static analysis and have

a strict distinction of library vs. user-defined types and only evaluate both

tools on library type annotations in this experiment, their implementation

treat types as tokens and does not have this distinctions. Hence, their model

also considers a much larger prediction space consisting of many user-defined

types—most of which are never used outside of the project in which they are

defined—and is also evaluated on a different set of annotations than ours.

2.5.2 Predicting User-Defined Types

As mentioned earlier, our approach differs from prior work in that it

is capable of predicting user-defined types; thus, in our second experiment,

we extend LambdaNet’s prediction space to also include user-defined types.

However, since such types are not in the prediction space of prior work (Hel-

lendoorn et al., 2018a), we implemented two simpler baselines that can be used

to calibrate our model’s performance. Our first baseline is the type inference

performed by the TypeScript compiler, which is sound but incomplete (i.e., if

it infers a type, it is guaranteed to be correct, but it infers type any for most

38

variables).6 Our second baseline, called SimilarName, is inspired by the sim-

ilarity between variable names and their corresponding types; it predicts the

type of each variable v to be the type whose name shares the most number of

common word tokens with v.

The results of this experiment are shown in Table 2.3, which shows

the top-1 and top-5 accuracy for both user-defined and library types indi-

vidually as well as overall accuracy. In terms of overall prediction accuracy,

LambdaNet achieves 64.2% for top-1 and 84.5% for top-5, significantly out-

performing both baselines. Our results suggest that our fusion of logical and

contextual information to predict types is far more effective than rule-based

incorporation of these in isolation.

2.5.3 Ablation Study

Table 2.4 shows the results of an ablation study in which (a) we vary

the number of message-passing iterations (left) and (b) disable various features

of our architecture design (right). As we can see from the left table, accuracy

continues to improve as we increase the number of message passing iterations

as high as 6; this gain indicates that our network learns to perform inference

over long distances. The right table shows the impact of several of our design

choices on the overall result. For example, if we do not use Contextual edges

(resp. Logical edges), overall accuracy drops by 14.5% (resp. 25.8%). These

6For inferring types from the TypeScript compiler, we use the code provided by Hellen-
doorn et al. (2018a). We found this method had a slightly lower accuracy than reported in
their work.

39

Table 2.4: Performance of different GNN iterations (left) and ablations (right).

K Top1 Accuracy (%)
Yuser Ylib Overall

6 53.4 66.9 64.2
4 48.4 65.5 62.0
2 47.3 61.7 58.8
1 16.8 48.2 41.9
0 0.0 17.0 13.6

Ablation Top1 Accuracy (%)
(K = 4) Yuser Ylib Overall

LambdaNet 48.4 65.5 62.0
No NPair Attention 44.1 57.6 54.9
No Contextual 27.2 52.6 47.5
No Logical∗ 24.7 39.2 36.2
Simple Aggregation 40.2 66.9 61.5

∗ Training was unstable and experienced gradient explosion.

drops indicate that both kinds of predicates are crucial for achieving good

accuracy. We also see that the attention layer for NPair makes a significant

difference for both library and user-defined types. Finally, Simple Aggregation

is a variant of LambdaNet that uses a simpler aggregation operation which

replaces the attention-based weighed sum in Eq 2.1 with a simple average.

As indicated by the last row of Table 2.4 (right), attention-based aggregation

makes a substantial difference for user-defined types.

2.5.4 Comparison with JSNice

Since JSNice (Raychev et al., 2015a) cannot properly handle class def-

initions and user-defined types, for a meaningful comparison, we compared

both tools’ performance on top-level functions randomly sampled from our

test set. We filtered out functions whose parameters are not library types and

manually ensured that all all the dependency definitions are also included. In

this way, we constructed a small benchmark suite consisting of 41 functions.

40

Among the 107 function parameter and return type annotations, LambdaNet

correctly predicted 77 of them, while JSNice only got 48 of them right. These

results suggest that LambdaNet outperforms JSNice, even when evaluated

only on the places where JSNice is applicable.

2.6 Related Work

Type Inference using Statistical Methods. There are several previous

works on predicting likely type annotations for dynamically typed languages:

Raychev et al. (2015a) and Xu et al. (2016) use structured inference models for

Javascript and Python, but their approaches do not take advantage of deep

learning and are limited to a very restricted prediction space. Hellendoorn

et al. (2018a) and Jangda and Anand (2019) model programs as sequences

and AST trees and apply deep learning models (RRNs and Tree-RNNs) for

TypeScript and Python programs. Malik et al. (2019) make use of a different

source of information and take documentation strings as part of their input.

However, all these previous works are limited to predicting types from a fixed

vocabulary.

Graph Embedding of Programs. Allamanis et al. (2017) are the first

to use GNNs to obtain deep embedding of programs, but they focus on pre-

dicting variable names and misuses for C♯ and rely on static type information

to construct the program graph. Wang et al. (2017) use GNNs to encode

mathematical formulas for premise selection in automated theorem proving.

The way we encode types has some similarity to how they encode quantified

41

formulas, but while their focus is on higher-order formulas, our problem re-

quires encoding object types. Veličković et al. (2018) are the first to use an

attention mechanism in GNNs. While they use attention to compute node em-

beddings from messages, we use attention to compute certain messages from

node embeddings.

Predicting from an Open Vocabulary. Predicting unseen labels at test

time poses a challenge for traditional machine learning methods. For com-

puter vision applications, solutions might involve looking at object attributes

(Farhadi et al., 2017) or label similarity Wang et al. (2018); for natural lan-

guage, similar techniques are applied to generalize across semantic properties

of utterances (Dauphin et al., 2013), entities (Eshel et al., 2017), or labels (Ren

et al., 2016). Formally, most of these approaches compare an embedding of

an input to some embedding of the label; what makes our approach a pointer

network (Vinyals et al., 2015) is that our type encodings are derived during the

forward pass on the input, similar to unknown words for machine translation

(Gulcehre et al., 2016).

42

Chapter 3

TypeT5: Seq2seq Type Inference

using Static Analysis

As seen in the previous chapter, LambdaNet addresses the challenges of

type inference in TypeScript by leveraging graph neural networks and a novel

program representation called type dependency graph. While this approach

provides significant improvements over prior work, it still exhibits some critical

limitations, such as the inability to predict parametric types and the lack of

large-scale pre-training. In this chapter, we aim to overcome these limitations

by presenting a new approach, TypeT5, which integrates static analysis tech-

niques with the powerful seq2seq transformer model, CodeT5, to predict type

annotations in Python code.

3.1 Introduction

In languages like Python and JavaScript, the lack of a static type sys-

tem makes it harder to maintain and analyze codebases. To address this issue,

gradual typing (Siek and Taha, 2007a) was proposed to allow type annotations

0An early version of this chapter appeared in Wei et al. (2023). Jiayi Wei is the first
author of the paper, and with the help from other authors, he developed the research idea,
wrote the code, performed the experiments and analysis, and wrote the paper.

43

to be incrementally added to untyped codebases, thereby marrying the ben-

efits of static typing with the convenience of easy prototyping. As a result,

many mainstream programming languages, including Python and JavaScript,

have already adopted this idea, and researchers have also developed learning-

based techniques to predict missing type annotations (Allamanis et al., 2020,

Hellendoorn et al., 2018b, Jesse et al., 2021, 2022, Mir et al., 2022, Pandi et al.,

2020, Peng et al., 2022, Pradel et al., 2020, Raychev et al., 2015b, Wei et al.,

2020).

Meanwhile, with the advent of large-scale pretraining and the explosion

of transformer architectures, seq2seq models have proven to be very effective

for programming tasks like code comments generation (Panthaplackel et al.,

2020b), completion (Ahmad et al., 2021, Wang et al., 2021), and synthesis (Li

et al., 2022). One particularly attractive feature of such models is that, due

to the use of subword tokenization (Gage, 1994, Schuster and Nakajima, 2012,

Sennrich et al., 2016), they can generate arbitrary code expressions—including

novel identifier names and AST structures—at test time. However, unlike

code completion tasks that can often work well with just the surrounding code

as context, effective type inference generally requires non-local information,

including code fragments that may belong to an entirely different file. For

instance, consider a function f that passes a generically named parameter x

directly into another function g. It can be hard to figure out the type of

x by just looking at f ’s body. When programmers find themselves in such

a situation, they often inspect the callers and callees of f , sometimes even

44

transitively, in order to figure out the intended type of x. Thus, in many

cases, looking at the immediate context of a given variable may be insufficient

for accurately predicting its type.

Our approach, TypeT5, solves this challenge by using static analysis

to identify which parts of the codebase are useful for each prediction. In

particular, we construct a so-called usage graph, where nodes correspond to

code elements (i.e., functions or variables whose types we want to predict)

and edges denote a potential user-usee relation between them. Given such

a graph, we then encode the users and usees of a given code element in a

form that resembles normal code and feeds them as additional contexts to the

transformer model. To take full advantage of the seq2seq paradigm, we also

propose an iterative decoding scheme that pass in previous type predictions

using the contexts, allowing information to be propagated between distant

code elements across the entire codebase.

We have implemented TypeT5 on top of the popular CodeT5 model and

use it to synthesize type annotations for untyped Python code. Our evaluation

compares TypeT5 with three state-of-the-art type inference tools (Allamanis

et al., 2020, Mir et al., 2022, Peng et al., 2022) and a CodeT5 baseline that

does not leverage static analysis. The results show that TypeT5 outperforms

all baselines by a large margin, while drastically improving the accuracy on

rare and complex types. Our ablation studies confirm the benefits of the

various modifications we made to the CodeT5 baseline, while an additional

type checking experiment shows that the proposed iterative decoding scheme

45

also improves the coherence of the produced type assignments, resulting in

fewer type constraint violations. Finally, we explore an alternative use case

of our model, where the user interactively inspects the model’s predictions

and makes necessary corrections. The result demonstrates the usefulness of

our approach as a developer tool to annotate entirely untyped projects—on

average, the user only needs to to correct one in every five model predictions.

To summarize, this work makes the following contributions:

• We apply CodeT5 to infer Python type annotations and show significant

improvement over prior approaches. To our knowledge, this is the first

ML-based technique capable of predicting both parametric and user-defined

types.

• We improve the vanilla CodeT5 model by applying static analysis techniques

to help the model reason about information beyond local contexts, further

boosting its performance.

• We propose an iterative decoding scheme that particularly helps with coher-

ence, as measured by the number of type errors reported by the type checker.

We additionally propose the novel setting that combines the seq2seq decod-

ing scheme with user intervention.

3.2 Overview

In this section, we motivate the design of TypeT5 using the exam-

ple shown in Figure 3.1. This example features a method predict and two

46

functions eval on dataset and chuck srcs, each of which is implemented in

a different file. Given an untyped version of this code, our goal is to auto-

matically infer the type annotations (highlighted in green). This example is

challenging for existing type inference techniques due to the heavy use of user-

defined types (such as ChunkedDataset, PythonType, and ModelWrapper) and

complex parametric type like dict[int,list[PythonType]].

Type inference as code infilling In this work, we advocate a new ap-

proach that views type inference as an instance of code infilling. Because

type annotations can be viewed as missing code fragments, we fine-tune a

state-of-the-art code infilling model, namely CodeT5, as our starting point.

Since CodeT5 produces sequences of subword tokens using Byte Pair Encod-

Figure 3.1: Simplified code snippets taken from our own codebase. The
eval on dataset function first calls the chunk srcs function to convert the
given textual data into equally sized chunks, and it then feed them into the
ModelWrapper.predict method.

47

Figure 3.2: How CodeT5 encodes and decodes
source code using BPE. Marker tokens (high-
lighted in blue) indicate gaps (input) and their
corresponding fillers (output).

Figure 3.3: The two-pass it-
erative decoding process.

ing (Gage, 1994, Radford et al.) (see Figure 3.2), it can, in principle, predict

arbitrary code snippets to fill masked gaps—including type annotations with

complex parametric types and user-defined classes.

Incorporating context through static analysis By using surrounding

code as the prediction context, our fine-tuned version of CodeT5 can rela-

tively easily predict the correct type annotations of some of the variables. For

example, based on the names and default values of n seqs (model.py, line 7)

or window size (eval.py, line 4), CodeT5 can figure out the correct types of

these parameters. However, for other parameters such as model in line 2 of

eval.py, the surrounding context does not contain enough information to make

a reasonable prediction. To see why, observe that ModelWrapper is a new class

defined in a separate file, so, (1) it has never been seen during training, and

48

(2) its definition is not available as part of the context. Similarly, it is also

very difficult to predict the return type of eval on dataset since it directly

returns the result of model.predict, whose definition is also not available to

the model.

To address this issue, our approach enhances the prediction context of

CodeT5 using static analysis. The details of how we construct the context

from static analysis will be described in subsection 3.3.3, but, in a nutshell,

our approach analyzes the user-usee relations among code elements and pulls

in the relevant definitions into the context. For example, when the model is

making a prediction for eval on dataset, the context includes the definitions

of DefaultWindow and predict, which are defined in ModelWrapper and invoked

at line 6 and line 12 of eval.py, respectively.

TypeT5 architecture As there are many dependencies between different

code elements, making independent type predictions for each code element is

not ideal. For example, to infer the return type of eval on dataset, we would

need to know the return type of ModelWrapper.predict, which depends on

the return type of the self.predict on batch (model.py, line 12). However,

since there is limited context that can be fed to the model, it is not feasible

to include all transitive users and usees. To deal with this problem, TypeT5

utilizes an iterative decoding scheme that allows conditioning on previous type

predictions. In more detail, our decoding scheme first sorts the user-usee

graph topologically and then performs two sequential prediction passes, first

49

from usee to users and then going in the reverse direction, as illustrated in

Figure 3.3. To see why both of these directions are useful, observe that the

return type of eval on dataset depends on predict, which in turn depends

on predict on batch. Thus, propagating information from callees to callers

is clearly useful. Conversely, consider predicting the type of data, the first

parameter of predict. Since the return value of chunk srcs is passed as the

first argument of predict, propagating information in the reverse direction

can also be helpful.

3.3 Methods

3.3.1 Using CodeT5 for type prediction

We formulate type prediction as a sequence-to-sequence (seq2seq) task.

Let u = (u1, . . . , un) represent a sequence of code tokens, where each token is a

single untyped code element e (function or variable). We insert into u indexed

marker tokens (<extra id i>) at each point where we wish to predict types

and let the model predict t = (t1, . . . , tm), the token sequence that encodes

types for the marked locations in u. Note that t only contains the types, no

other code tokens, in the format <extra id 1> [type 1 tokens] <extra id 2>

[type 2 tokens], etc. We use the same tokenizer as CodeT5, which allows

encoding any Python expression as a (typically short) sequence of subword

tokens.

Our baseline CodeT5 model is a Transformer seq2seq model P (t | u, ū)

placing a distribution over type sequences t given the raw code sequence u and

50

Figure 3.4: The usage graph corresponding to the code snippets in Figure 3.1.
WindowArgs and ChunkedDataset are assumed to be defined elsewhere in the
same project.

its surrounding code ū. This process is shown in Figure 3.2, and ū is omitted

for clarity.

Our improved model, TypeT5, replaces the surrounding code ū with

a context constructed from static analysis, which we denote as s. Thus, we

can write the model as P (t | u, s). Note that, in both models, we remove

all comments and Python docstrings as a pre-processing step, as was done in

prior work. We now show how s is constructed from static analysis.

3.3.2 Building the Usage Graph

To overcome the limitations of using only the surrounding code as con-

text, our approach relies on static analysis to extract relevant global informa-

tion about the codebase. In particular, our analysis constructs a usage graph,

whose nodes correspond to code elements and edges represent a direct usage.

For example, if x and y are both functions, an edge from x to y means that x

calls y. Similarly, for variables, an edge from x to y means that the value of x

51

depends on y.

The usage graph for our previous example is shown in Figure 3.4. We

show two types of usages: a certain usage, shown as solid arrows, and a po-

tential usage, shown as dotted arrows. A certain usage is one that can be

statically determined without knowing the types of the involved variables. For

example, the global function chunk srcs is directly used by eval on dataset,

and we also know that predict on batch is called by predict (self method

call on line 12). For other cases like a non-self attribute access or method

call, the target depends on the type of the receiver, so we first collect all at-

tributes and methods with a matching name from the current project and then

generate a potential usage for each of them. We give the details of how we

construct usage graphs for Python programs below.

Analyzing Python usage graphs To resolve the user-usee relations at

the project level (used in subsection 3.3.2), we built a custom static analysis

pipeline on top of the libcst library. We use libcst to parse Python files and

also rely on its utilities to resolve symbol references within the same file (i.e.,

it tells us whether a local name refers to a function defined in the current file

or comes from an import statement, etc.) We then implement custom import

resolution logic (following Python’s module rules) and combine it with libcst

to resolve all certain usages within the current project. For unresolved usages

with a syntactic form matching a class attribute/method usage, we generate

a potential usage to each class members with a matching name. Since the

52

involved static analysis operations are fairly lightweight and we parallelize the

construction of different graphs on CPUs, the time spent on constructing the

usage graphs only makes up a tiny fraction of the total training or inference

time. For example, using 28 Python processes, it only takes about 8 min-

utes to process the entire BetterTypes4Py training set, including the time

spent on other tasks such as parsing, code transformation, and tokenization.

While our implementation limits the analysis scope to the current project, it is

straight-forward to extend the analysis to also include usages involving library

definitions, which may help the model see type signatures of uncommon library

APIs. We did not do this in our experiments mainly due to the manual effort

it would require to install the correct library dependencies for all the projects

in our datasets.

3.3.3 Constructing Model Inputs

TypeT5 leverages the usage graph G to construct the inputs to our

model. In particular, we define the model input for a code element e to be

a concatenation of four parts: the preamble spre, usees susee, main code u,

and users suser, which are constructed as follows (see section 3.6 for a concrete

example).

• Preamble: The main purpose of spre is to help the model map each local

name to the definition that it is referring to, so the preamble includes all

import statements. Additionally, to help the model see which types are

available in the current scope, the preamble also includes the headers of all

53

class definitions as well as all the type variable declarations from the current

file.

• Main code: For the code element e of interest, we use its definition to

construct u. If e is a function, u is just its source code, and if e is a variable,

u includes all top-level assignment statements in which e appears as the left

hand side. Additionally, if e is a method or attribute of a class C, we also

indent u and prepend it with the header of C, as shown in Figure 3.7.

• Users: Given the usage graph G, we construct suser by including the source

tokens of all elements from users(G, e). Since these elements can come from

different source files, we also prepend each element with a special comment

denoting the Python module it comes from. Note that these elements can

optionally contain the types predicted by our TypeT5 model, as described

later in subsection 3.3.4.

• Usees: susee contains not just the direct users of e, but also anything that

is used in the user context suser. i.e., susee contains the elements from

usees(G, e) ∪
⋃

e′∈users(G,e) usees(G, e′). Since this generally contains many

more elements than suser, we only use the (typed or untyped) signatures of

the elements to construct susee.

We limit the total input size to be at most 4096 subword tokens and cut

off any exceeding tokens from both left and right, centered around the main

code. Context elements involving certain usages are arranged to be closer to

the center so that they are always prioritized over potential usages.

54

3.3.4 Iterative Decoding Inference

We now describe how to conduct inference in our base model as well as

our context-augmented model using an iterative decoding scheme.

CodeT5 decoding: Given our trained model P (t | u, ū), we can infer

a most likely set of types t for u (with surrounding context ū) using beam

search. Our implementation performs joint prediction of the output types for a

single code block u, since later types in the block condition on the predictions

of earlier types. However, note that both u and ū are always completely

untyped code: while we condition on previous types as we predict, these are

not inserted into the prediction context for the next element.1

TypeT5 iterative decoding: Part of our motivation for including the con-

text s is to exploit its type information at inference time. Crucially, this

requires s to be typed. However, the contexts that are drawn from the orig-

inal codebase are not typed, so TypeT5 iteratively adds type signatures to

these contexts using its own predictions. Let M be the type assignment pro-

duced by the model, which maps each code element e to its predicted type

te, and denote M(s) as the context obtained by annotating the elements in

s according to M. Starting with an empty M (which leaves any context s

unchanged), TypeT5 then iteratively updates M using an iterative decoding

scheme that traverses the usage graph G twice, as shown in Figure 3.3. The

1In our experiments, including predicted types actually hurts the performance due to
exposure bias.

55

first prediction pass follows the usee-to-user order,2 while the second pass goes

in the reverse direction to allow for bidirectional information flow. At any

given time step, we can denote the model’s prediction for element e as drawn

from P (te | ue,M(se)), and the predicted types t′e are then used to update

M such that M(e) = t′e.

3.3.5 Training

To save computation and improve parallelism during training, we use

the available human annotations as a gold type assignment M∗ instead of let-

ting the model condition on its own prediction. Note that this type assignment

is generally incomplete and may not contain a label for every missing type.

We train the model to maximize the log likelihood of predicting the ground

truth, i.e., logP (t∗e | ue,M∗(se)), for every element e where t∗e is available,

using teacher-forcing. We train the CodeT5 baseline model similarly on the

same dataset.3

3.4 Experiments

We implement TypeT5 in Python, whose the source code and model

weights can be found on GitHub4. Below, we first describe our evaluation setup

and list the hyperparameters and hardware details. We then compare TypeT5

2This requires performing a topological sort over G. When G is not a DAG, we break the
cycles arbitrarily.

3Note that without this training (fine-tuning) step, the original CodeT5 model performs
very poorly as it tends to predict arbitrary Python expressions that are not types.

4Available at https://github.com/utopia-group/TypeT5.

56

https://github.com/utopia-group/TypeT5

against three state-of-the-art type inference systems for Python, namely Typ-

ilus (Allamanis et al., 2020), Type4Py (Mir et al., 2022), and HiTyper (Peng

et al., 2022). Finally, we present ablation studies to evaluate different factors

contributing to the model’s performance.

3.4.1 Evaluation Setup

Datasets In our evaluation, we predict the type annotations for top-level

code elements of each Python project. These include all class attributes, meth-

ods, top-level functions, and global variables. We treat any existing user-added

type annotations as the ground truth, and we use per type accuracy as the

main performance metric. Following a setting similar to that of Allamanis

et al. (2020) and Wei et al. (2020), we split our dataset per Python project.

This way, types newly defined in the test projects will not have been seen

during training. Such a setting is more challenging than splitting the dataset

per file, as is done in Type4Py and other work (Mir et al., 2022, Pradel et al.,

2020), but more closely reflects the model’s real-world performance (Gruner

et al., 2022).

Our main dataset, BetterTypes4Py, is constructed by selecting a

high-quality subset from the ManyTypes4Py dataset (Mir et al., 2021), which

was used to train Type4Py. We describe the selection criteria in the next

paragraph. Since our model is fine-tuned from the CodeT5 model (which

may have already been pre-trained on some of the test repositories in the

aforementioned dataset), we additionally construct InferTypes4Py, a test

57

set derived from the source code of Typilus, Type4Py, and our own tool, none

of which were used as CodeT5’s (pre-)training data.

Constructing the BetterTypes4Py dataset Our dataset is constructed

from the ManyTypes4Py dataset as follows: we first filter out the GitHub

repositories that are no longer accessible or that fail to download within 10

seconds. This leaves us with 4890 out of the 5996 original projects. Then, we

discard projects that have not been updated for more than one year (to avoid

outdated library APIs), reducing the number of repositories to 1218. To limit

the influence of any particular project, we also filter out the 37 projects with

more than 50K lines of code. Finally, to exclude those projects that have very

few type annotations, we compare the number of type annotations nt of each

project with its lines of code nc and filter out those with a nt-to-nc ratio less

than 1:20. This gives us our final set of 663 projects. We then randomly select

50 test and 40 validation projects and use the rest for training.

Code Duplication Code duplication (Allamanis, 2019) has been shown

to have adverse effects on the performance of ML models and can blur the

evaluation results. Hence, prior work like Type4Py applies file-level dedupli-

cation to remove duplicated source files. However, this is hard to do in our

project-based setting since we need all files to be present during inference. To

address this, we have manually verified that our InferTypes4Py dataset does

not contain files that are copy-pasted from elsewhere. We also run the popular

58

code duplication tool jscpd5 on our test set to detect duplicated code blocks.

The analysis shows that there is relatively little duplication in the dataset

(only around 4% of duplicated lines), and the majority of these duplications

came from the same project rather than across projects, so we believe code

duplication is not a major issue under our by-project evaluation.

Label Quality In our evaluation, developer-provided type annotations are

used as the ground truth, which are not always accurate or coherent (Ore et al.,

2018). This partially motivated us to construct the InferTypes4Py dataset,

which consists of high-quality type annotations with a relatively low error rate.

In particular, our own codebase (which are included in InferTypes4Py) makes

heavy use of type annotations throughout the development process and is

continuously type-checked by VSCode. As a very rough metric to approximate

label quality, we report the coherence error (defined in section 3.4.3) of the

human labels on both datasets: On BetterTypes4Py and InferTypes4Py, the

average coherence error per human annotation is 0.019 and 0.045, respectively.

We summarize key properties of both datasets in Table 3.1. We define

the size of a type as the number of type constructors in its body6 and categorize

a type as simple if its size is 1, and complex otherwise. We also categorize

a type as rare or common depending on whether it contains a rare type

5https://github.com/kucherenko/jscpd
6e.g., both int and foo.Bar has a size of 1, whereas dict[str, foo.Bar] has a size

of 3.

59

https://github.com/kucherenko/jscpd

Table 3.1: Basic statistics of our two datasets.
BetterTypes4Py InferTypes4Py
train valid test test

Projects 573 40 50 3
Nonempty files 16.5K 1098 949 99
Lines of code 2.4M 174K 139K 21K
Top-level type slots 541K 38.2K 28.4K 4.6K
Top-level user-added types 275K 19.3K 15.8K 2.7k
Rare type ratio 25.7% 23.3% 35.0% 33.8%
Complex type ratio 20.4% 16.6% 20.8% 33.4%
Average type size 1.42 1.33 1.43 1.72

constructor that is not from the top-100 most frequent type constructors in

our training set.

Accuracy metrics. Since Python allows the same type to be written in

different syntactic forms,7 we first perform type normalization to convert both

the predicted and ground-truth types into a canonical form. The details of this

normalization step can be found in the next paragraph. and we use the term

full accuracy to refer to the accuracy against all human annotations after

normalization. To better compare with prior work, we also define adjusted

accuracy (our main metric), which (1) filters out all None and Any labels (as

in prior work); (2) converts fully qualified names to simple names (e.g., Tensor

instead of torch.Tensor) since some prior approach does not output correctly

qualified types; (3) rewrites any outermost Optional[T] and Final[T] into

7e.g., both Union[int,None] and Optional[int] refer to an integer that can also be
None, and both list and List[Any] refer to a python list with untyped elements

60

T since they tend not to be used consistently across programmers.8 Finally,

we also define a base accuracy metric that is the same as adjusted accuracy

except that it only checks the outermost type (e.g., Dict[str,List] will match

any Dict but, for example, not Mapping.)

Type Normalization To compute the accuracy metrics in subsection 3.4.1,

we recursively apply the following steps to normalize a Python type:

1. Rewrite any Optional[T] to Union[T,None].

2. Sort the arguments of Union types and flatten any nested Unions.

e.g., rewrite Union[B,Union[C,A]] into Union[A,B,C].

3. If all type arguments are Any, drop them all. e.g., rewrite List[Any] to

List.

4. Capitalize the names of basic types. e.g., rewrite list to List.

Hyperparameters and Running times We initialize our model’s weights

from the CodeT5 model provided by Huggingface Transformers library (Wolf

et al., 2020) and train our model for exactly one epoch using the library’s

default optimizer configuration (AdamW with a base learning rate of 2e-5 and

a weight decay of 0.01.) During inference, we use beam search with a beam

width of 16 and diversity penalty of 1.0. We adaptively set the maximal output

8e.g., the type checker mypy has an option to enable implicit Optional types, so it
would not be possible for the model to know if it should output Optional[T] or T just
from the untyped code.

61

sequence length to be 16n+10, where n is the number of types to be predicted

in the input. We set the size limit of preamble, usee Context, main code, and

user Context to 1000, 2048, 512, 1536, respectively, both during training and

test time. Note that preamble uses the space within usee context, so the

total maximal input size is 4096. Training the model took about 11 hours on

a single Quadro RTX 8000 GPU with 48GB memory. Performing the two-

pass inference on the BetterTypes4Py test set takes about 4 hours, whereas

performing a single-pass inference (e.g., UseeToUser) takes about half the time.

For comparison, training CodeT5 model on the same machine takes about 3.7

hours, and the corresponding evaluation takes about 0.5 hour.

3.4.2 Comparing TypeT5 with other approaches

We compare TypeT5 with the basic CodeT5 model described in sub-

section 3.3.4 as well as the released versions of three other state-of-the-art

approaches from prior work.9 Typilus (Allamanis et al., 2020) models the pro-

gram as a graph and applies a graph neural network to compute the types of

variables. The original Typilus model can predict from a set of common types

as well as (nonparametric) user-defined types, but their released model can

only predict common types, so we only evaluate its performance on common

types. Type4Py (Mir et al., 2022) uses variable names and the surrounding

code to compute an embedding and performs type prediction via a nearest-

9Since our approach benefits from CodeT5’s large-scale pre-training across 8 different
programming languages, we use a smaller training set than prior work and do not retrain
these prior approaches on our dataset.

62

Table 3.2: Accuracy comparison on common types.

BetterTypes4Py
full adjusted base
all all simple complex all

Typilus n/a 54.05 55.12 33.23 60.37
Type4Py n/a 50.34 51.91 32.14 47.51
HiTyper 59.20 54.28 57.70 26.44 59.01
CodeT5 76.74 78.04 82.43 53.03 82.44
TypeT5 79.24 81.43 85.69 56.75 84.82

InferTypes4Py
full adjusted base
all all simple complex all

Typilus n/a 52.33 52.19 53.91 64.67
Type4Py n/a 32.08 33.47 16.54 29.83
HiTyper 45.67 43.54 46.00 19.27 47.99
CodeT5 77.83 78.06 85.31 63.41 81.87
TypeT5 81.75 82.95 87.62 72.78 84.17

Table 3.3: Accuracy comparison on rare types.

BetterTypes4Py
full adjusted base
all all simple complex all

Type4Py n/a 12.37 13.17 4.05 14.15
HiTyper 10.30 25.51 27.59 9.79 29.33
CodeT5 49.47 52.95 57.28 34.26 57.65
TypeT5 58.56 61.47 65.21 40.22 68.44

InferTypes4Py
full adjusted base
all all simple complex all

Type4Py n/a 0.25 0.14 0.98 0.17
HiTyper 9.36 9.36 10.79 1.19 12.33
CodeT5 51.64 53.28 59.97 30.62 66.47
TypeT5 53.44 56.27 61.50 36.92 69.23

63

neighbor search in the type embedding space. We run the released Type4Py

model via its web interface. HiTyper (Peng et al., 2022) combines the strengths

of a rule-based type inference algorithm with ML type inference models by only

invoking the ML model on places where the inference algorithm gets stuck and

deducing the types elsewhere using typing constraints. Its implementation uses

Type4Py as the default ML backend, which we use to run HiTyper.

We show each tool’s accuracy in Table 3.2 (on common types) and

Table 3.3 (on rare types). Since HiTyper was only able to make a predition

for about 67% of all labels, we report its performance on this subset. From

Table 3.2, we can make the following observations. (1) Our CodeT5 baseline

model already outperforms all prior approaches by a large margin, demon-

strating the advantage of using a seq2seq pre-trained language model. (2)

TypeT5 further improves the adjusted accuracy by 3.4% and 4.9% on the two

datasets. (3) Type4Py’s performance on InferTypes4Py dataset is significantly

lower than on BetterTypes4Py, likely because Type4Py was originally trained

on some of the test files in BetterTypes4Py. Looking at ??, we see that both

CodeT5 and TypeT5 dramatically outperform the other approaches on rare

types. Moreover, TypeT5 achieves the largest improvements on types that

are both rare and complex, improving upon CodeT5 by about 6% on both

datasets, suggesting that that global information is especially important in

these cases. For a qualitative analysis, we also show TypeT5’s outputs on a

real-world example in section 3.6.

64

Why Type4Py has much lower performance on our dataset The ac-

curacies reported in the original Type4Py paper are much higher than we mea-

sured here. We have discussed our experiments with the authors of Type4Py

and believe that the discrepancy we observe is likely due to the combination

of two reasons: First, while our evaluation only counts the type annotations

on all top-level APIs, Mir et al. (2022) includes all local variables in their eval-

uation as well. Second, while we only evaluate on human annotations, they

also include machine-inferred type annotations (via the type checker Pyre) as

ground-truth labels. As a result, the distributions of labels reported by the

two papers are significantly different: in our setting, function annotations (pa-

rameters + return types) constitute the majority (87%) of the labels, whereas

in Mir et al. (2022), their portion is significantly smaller, merely 18%. This

suggests that their label set is likely inflated by simple labels inferrable from

the type checker, which explain the performance drop when evaluated on our

datasets.

3.4.3 Ablations on TypeT5

We next present a series of ablations that evaluate how various factors

contribute to TypeT5’s performance. In addition to accuracy (on all types),

we also report the type error count as a way to estimate how coherent the

model’s predictions are.10

10Accuracy does not always correlate with coherency. e.g., when we have x = y, and x
and y are equally likely to be a str or an int, a coherent type assignment needs to ensure
that x and y always have the same type, even if this requirement does not lead to a higher

65

Measuring Type Coherence using Type Errors To estimate the type

coherence (subsection 3.4.3), we call the type checker MyPy11 on codebases

annotated with the types predicted by the model. Since not all errors reported

by MyPy are type errors or are related to type coherence, we only count the

errors with the following 5 error codes, whose meaning according to MyPy’s

documentation are:

• attr-defined checks that an attribute is defined in the target class or module

when using the dot operator.

• arg-type checks that argument types in a call match the declared argument

types in the signature of the called function.

• return-value checks that the returned value is compatible with the type

signature of the function.

• assignment checks that the assigned expression is compatible with the as-

signment target.

• name-defined checks that a name is defined in the current scope.

Note that this metric does have its limitations. One undesired property we

found is that it can favor predicting a non-existing type over an incorrect type.

For instance, when the model predicts an incorrect type on a function, the type

accuracy in expectation.
11http://mypy-lang.org/.

66

http://mypy-lang.org/

Table 3.4: Performance of different model modifications. All models are
retrained with the corresponding inputs.

Modification Accuracy Type Error

No Preamble 64.20 6067
No Users 71.20 7053
No Usees 67.25 7332
Nonincremental 72.52 5720
Original (TypeT5) 73.02 5087

checker will check all the usages of that function against this declared type and

will thus likely report multiple errors. However, if the model predicts a non-

existing type, the type checker will only report a single name-defined error at

the declaration site and will skip checking its usages. This effect has caused

the No Preamble variant in Table 3.4 to have a lower error count than other

two other variants since it tends to predict a lot more non-existing types. But

we have verified that it was not the cause of the type error count improvement

by our two-pass sequential decoding model.

How do different components contribute to the model’s performance?

To evaluate the impact of each context element, we remove one component at

a time and retrain the model accordingly. In particular, the No Preamble,

No Users, and No Usees ablations correspond to removing the spre, suser,

and susee context elements (introduced in subsection 3.3.3) from the model’s

input, respectively. The Noniterative model does not perform iterative de-

coding and is trained to condition on an untyped context. We use the same

input size limit (4096 subword tokens) for all models, so a model that does

67

Table 3.5: Performance of different decoding strategies. The same TypeT5
model weights are used for different decoding strategies.

Strategy Accuracy Type Error

Independent 71.68 6876
Random 71.66 6215
UserToUsee 70.67 7415
UseeToUser 72.65 6402
TwoPass (TypeT5) 73.02 5087

not utilize one kind of information have more space for other kinds. We show

both the adjusted accuracy on all types and type error count in Table 3.4. We

can see that (1) all components improve the overall accuracy, with the pream-

ble having the largest impact, and (2) while the iterative decoding scheme

only improves overall accuracy slightly, it significantly improves the model’s

coherence, resulting in 12% fewer type errors.

How do different decoding strategies compare? In addition to the two-

pass iterative decoding strategy introduced in subsection 3.3.4, we also test

four other decoding strategies: (1) Independent, which independently pre-

dicts the type signature for each element without conditioning on the model’s

own prediction (same as the Noniterative model except not retrained); (2)

Random, which visits each element once following a random order; (3) User-

ToUsee, which visits the users before the usees; (4) UseeToUser, which vis-

its the usees before the users. The results are shown in Table 3.5. We can

see that our proposed TwoPass decoding scheme yields the largest accuracy

and type error improvement over Independent; whereas UserToUsee performs

68

worse than Independent, suggesting that bad decoding ordering can have ad-

verse effects on the model’s performance.

3.4.4 User-Guided Interactive Decoding

Compared to prior work, our approach has a unique strength: because

the model can condition on previous types, it allows easy user intervention by

conditioning on any corrections made by the user. We thus explore an alter-

native use case of our model where the user interactively inspects each type

signature predicted by the model and makes any necessary corrections before

the model moves on to the next prediction. We emulate this interactive process

using the ground-truth human annotations M∗, and we modify the usee-to-

user decoding process to let the model predict the types of each element e

(as before), but then override the predicted types te with the corresponding

human annotations M∗(e) if e ∈ M∗. On the BetterTypes4Py dataset, this

interactive decoding process achieves a full accuracy of 78.04% and an ad-

justed accuracy of 79.37%—meaning that on average, it only requires the user

to correct one in every five model-predicted types to fully annotate an entirely

untyped project from scratch. Note that only 59% of the test set contains a

user type annotation, so some incorrect type annotations may not be corrected

immediately and can get propagated to other places. Thus, in an interactive

real-world setting, we can expect the actual accuracy to be even higher.

69

3.5 Related Work

Deep Learning Type Inference Most prior approaches predict user-defined

types via some form of type embedding matching. e.g., LambdaNet (Wei

et al., 2020) tackles this challenge by combining graph neural networks with a

pointer network. Typilus (Allamanis et al., 2020) performs nearest-neighbor

search in the type embedding space. However, neither approach can handle the

unbounded type space induced by parametric types. TypeBert (Jesse et al.,

2021) is the first type inference method based on pre-trained transformer mod-

els and has demonstrated superior performance in predicting common types.

Jesse et al. (2022) later improved TypeBert using deep similarity learning to

better support user-defined types. Different from our work, TypeBert does

not use a seq2seq model or construct context from static analaysis. Apart

from just using the source code, other forms of information have also been

utilized for type prediction. Both TypeWriter (Pradel et al., 2020) and Hi-

Typer (Peng et al., 2022) combines type checking with inference-time search

to avoid generating type errors. OptTyper (Pandi et al., 2020) explicitly mod-

els type constraints by turning them into a continuous optimization objective.

NL2Type (Malik et al., 2019) focuses on predicting types from natural lan-

guage information such as code comments and documentation.

Retrieval-based models in NLP Similar to our context augmentation

with static analysis, a number of methods have been developed to augment

pre-trained models with context in natural language processing (NLP). For

70

open-domain question answering (Chen et al., 2017), approaches like REALM

Guu et al. (2020) and DPR (Karpukhin et al., 2020) can retrieve knowledge

relevant to a query, and retrieval-augmented generation (Lewis et al., 2020)

and its extensions (e.g., Fusion-in-Decoder (Izacard and Grave, 2020)) have

shown that it is possible to generate longer outputs using this information.

RETRO (Borgeaud et al., 2021) and WebGPT (Nakano et al., 2021) take this

to a web-scale extreme. However, we are also able to leverage static analysis

based on the usage graph, which has no analogue for text.

Linking with T5 While our use of CodeT5 for type prediction is novel to

our knowledge, T5 (Raffel et al., 2019) has been applied to a range of NLP

tasks like summarization. Most similar to ours is its use for entity linking

(Petroni et al., 2021): Systems in this vein generate names of entities token

by token (De Cao et al., 2020) and are able to generalize to new entities like

TypeT5. However, the presence of ad hoc types for each new context and the

types of context clues needed are very different in the code setting than in

natural language.

Structured Prediction Our iterative decoding process can be viewed as

applying a learned policy to perform structured prediction (BakIr et al., 2007,

Daumé et al., 2009). In this work, our training scheme can be viewed as

behavior cloning since the model directly conditions on ground-truth human

annotations, which can lead to distributional mismatch between training and

71

inference time. Applying more advanced training schemes such as Scheduled

Sampling (Bengio et al., 2015), DAgger (Ross et al., 2011), or reinforcement

learning (Sutton and Barto, 2018) may help further boost the performance of

iterative decoding.

3.6 Real Examples Produced by TypeT5

We run TypeT5 on the actual code corresponding to the example shown

in Figure 3.1 and show the obtained preamble (Figure 3.5), usee context

(Figure 3.6), main code (Figure 3.7), and user context (Figure 3.8) for the

ModelWrapper.predict element. For each type predicted by the model, we in-

dicate whether it is correct with a green or red marker, and if not, also show

the ground truth type in red. Note that these outputs were generated by the

model in the second pass of the sequential decoding process (described in sub-

section 3.3.4), so all the elements have already been annotated at least once

(but some may have not been annotate the second time).

72

Figure 3.5: The preamble gathers all the important statements and class head-
ers from the current file. This helps the model see which types are available
and where each symbol comes from.

73

Figure 3.6: The usee context shows the signature of the elements that are
used by the main code or by elements from the user context. By seeing their
predicted type signatures, the model can understand the type-level behavior
of these definitions without having to dive into their implementation.

74

Figure 3.7: The main code is the element that is being annotated by the model
at the current decoding step. The model has made two errors in this example,
both of which can be directly attributed to the previous two errors made in
the usee context (line 102 and line 97). This shows that the model is making
coherent predictions according to the context, and such errors can be avoided
if the user has corrected the previous errors (as described in subsection 3.4.4).

75

Figure 3.8: The user context shows two callers of the predict method from the
main code. We see that the model successfully predicts all user-defined types,
despite the fact that these are all new classes defined in the current project.

76

Chapter 4

Coeditor: Leveraging Contextual Changes for

Multi-round Code Auto-editing

Building on our previous work on probabilistic type inference, we now

shift our focus to a more general and important problem: contextual code

editing prediction. While both tasks require analyzing programs at the project

level and leveraging global information, the latter aims to predict how to edit

a piece of code based on other relevant changes made elsewhere in the same

project—in some sense, type inference can be viewed as predicting a special

type of code edits. To address this challenge, we reuse some of the ideas from

our type inference work, such as using lightweight static analysis to construct

dynamic contexts and modeling our problem as masked span infilling.

4.1 Introduction

In recent years, there has been enormous interest in applying trans-

former models for code generation (Ahmad et al., 2021, Allal et al., 2023,

Chen et al., 2021, Feng et al., 2020, Fried et al., 2022, Wang et al., 2021),

0An early version of this chapter was submitted to NeurIPS 2023. Jiayi Wei is the first
author of the paper, and with the help from other authors, he developed the research idea,
wrote the code, performed the experiments and analysis, and wrote the paper.

77

Figure 4.1: The multi-round auto-editing task. The user inspects the model
output in each editing round and can optionally perform manual editing.

which has led to impressive performance on tasks such as program synthe-

sis (Li et al., 2022, Nijkamp et al., 2022), program translation (Lachaux et al.,

2020, Szafraniec et al., 2022), type inference (Jesse et al., 2022, Wei et al.,

2023), and code auto-completion (Guo et al., 2021, Nguyen and Nadi, 2022,

Svyatkovskiy et al., 2021, Zhang et al., 2023).

While these approaches effectively help programmers creating new code,

they are not as adept at assisting with revising existing code. Code comple-

tion tools like GitHub Copilot do not track programmers’ changes and cannot

predict where and how to make additional modifications. However, during a

software project’s development cycle, developers often spend significant time

editing code—changes made to one part of the codebase typically affect many

others, and manually propagating these changes can be tedious and time-

consuming.

In this work, we introduce a task that we call (multi-round) auto-editing

where the goal is to predict edits to code conditioned on the user’s previous

78

edits. In particular, given an original codebase U and a set of code changes

∆1, . . . ,∆k that are semantically related (like those forming part of a commit),

the auto-editing problem is to predict how to modify a specified region of code

u ∈ U by learning the following distribution:

P (∆u | ∆k . . .∆1, U) . (4.1)

Importantly, we allow the target region region u to overlap with any previous

modifications ∆1, . . . ,∆k to support repeated editing to the same region. This

formulation enables the workflow illustrated in Figure 4.1, where a user can

work alongside the model in multiple editing rounds, accepting suggestions

matching the user’s intent and making additional edits manually if necessary.

To solve this problem, we propose a new model called Coeditor that

builds on top of the established CodeT5 (Wang et al., 2021) model architecture

and pre-trained checkpoint. Coeditor is based on two key ideas. First, it

encodes all prior code edits ∆1, . . . ,∆k using a line-based diffing scheme and

decodes ∆u using masked span infilling; and, second, it uses lightweight static

analysis to pull in relevant parts of the codebase U . To effectively handle

large contexts with numerous code changes, we also replace CodeT5’s dense

attention with a block-sparse attention pattern, allowing us to reduce the

computation cost while maintaining the ability to attend to all relevant code

changes.

Another challenge in developing Coeditor is the lack of suitable training

data for multi-round auto-editing. We address this issue by collecting a new

79

dataset, PyCommits, from the commit histories of 1650 open-source Python

projects on GitHub. We compute tree-differences between adjacent codebase

versions to identify modifications to the same Python function and randomly

split some changes into the model input for training in repeated editing sce-

narios. During testing, we use ground truth code changes to simulate user

decisions regarding when to accept partial changes suggested by the model

and when to manually perform edits missed by the model.

We compare our approach against existing code infilling models and

show that, even in a simplified setting that requires predicting a single edited

line in isolation, they severely lag behind our change-aware model: our method

achieves 60.4% exact match accuracy, almost twice that of the best performing

code infilling model despite using a model that is 30x smaller. In the full multi-

round setting, we found that Coeditor automates editing 46.7% of the changed

lines, saving the user 28.6% of keystrokes measured by an edit distance metric

that accounts for cursor movement.

In summary, this work presents the following main contributions:

• We introduce the multi-round code editing suggestion task, along with

the corresponding PyCommits dataset and evaluation framework.

• We introduce a new code editing model derived from CodeT5, using a line

diff-based encoding scheme and enhancements that enable the model to

condition on long contexts and appropriate other parts of the codebase,

addressing key challenges in this setting.

80

• We release our source code, dataset, model, as well as a VSCode exten-

sion that supports interactive usage to foster future research.

4.2 Motivating Example

In this section, we illustrate our technique using the example in Fig-

ure 4.2, showcasing a two-round interaction between the user and our Coeditor

model. Subfigures (a) and (b) display two initial user changes, while subfigures

(c) and (d) illustrate two sequential Coeditor invocations with inlined model

suggestions. We further analyze this example in detail below.

First, the user modifies the pack batch function in subfigure (a) to read

a new dictionary key, ‘‘cost’’, from each row in the input. The extracted

values are used to compute the total cost of the batch and added to the output.

Next, the user removes three lines at the top of the group to batches function

in subfigure (b). By removing these three lines, the user wants to avoid creating

these lists beforehand and instead plans to call the process edit function

inside the for loop below.

The user then scrolls down and invokes Coeditor at the bottom half

of the same function (subfigure c). Here, the modified pack batch function is

called at lines 225 and 228 in subfigure (c), and its argument current batch

is iteratively constructed from row, which is a dictionary defined at line 215.

Hence, the model correctly infers that row should be updated to include a

‘‘cost’’ key. Examining the surrounding context, the model also identifies

that the ex cost variable (defined at line 209) should be used as the inserted

81

Figure 4.2: An example usage of Coeditor. (a) The user first edits the
pack batch function to read an additional dictionary key, ‘‘cost’’, from
each row in the input. (b) The user then removes 3 lines at the top of the
group to batches function. (c) The user now invokes Coeditor at the bottom
half of the same function. Coeditor correctly suggests adding a ‘‘cost’’ key to
the dictionary variable row, but it fails to address the now undefined variables
underlined in red. (d) However, if the user accepts the suggested change and
manually introduces two new variables at line 209, Coeditor can then suggest
the correct changes accordingly.

82

dictionary value.1

While Coeditor makes some useful editing suggestions so far, it does not

address the now-undefined variables underlined in red by the IDE in subfigure

(c). In particular, as there are no obvious alternatives nearby to replace these

variables, Coeditor is unable to automatically fix these errors. Such a situa-

tion is common when the surrounding changes alone do not provide sufficient

information to derive a complete solution. Therefore, the user can accept the

partial changes suggested by the model and then manually introduce two new

variables at line 209, as shown in subfigure (d). Coeditor can then leverage

these new variables to suggest the correct changes needed to fix the errors.

This iterative approach enables Coeditor to adapt and refine its sug-

gestions based on additional user edits, providing a more efficient and flexible

code editing experience compared to existing code completion techniques. By

incorporating the editing history into the prediction context, Coeditor demon-

strates its potential to assist developers in a wide range of code editing tasks,

from simple modifications and refactoring to more complex codebase-wide up-

dates.

1TypeT5 would produce the same result even if pack batch were defined far away or
in a different file, as Coeditor tracks all changes ∆i the user has made since the last commit
and incorporates them into the prediction context.

83

4.3 Methods

Recall from the introduction that we wish to model the distribution

P (∆u | ∆k . . .∆1, U). To this end, we first describe how to encode the target

change ∆u and contextual changes ∆1 . . .∆k (subsection 4.3.1). We then

describe how to form the context from the codebase U using function signatures

(subsection 4.3.2). These choices naturally lead to a model compatible with

fine-tuning CodeT5, which was pre-trained on the masked span infilling task

(subsection 4.3.3). Finally, we describe our new dataset that is used to fine-

tune this model (subsection 4.3.5).

4.3.1 Representing Code Changes

A suitable format is required to map code changes into token sequences

that can be processed by a seq2seq transformer language model. In our setting,

we want to select a format that encodes and decodes code changes in a uniform

manner while minimizing the number of tokens the model needs to produce.

Hence, we adopt a line-diff-based format, enabling us to convert auto-editing

into a masked span infilling problem (Wang et al., 2021).2

Consider a block of code u to be made up of lines l1, . . . , lm and a user-

specified edit region that spans between line a and a+n, where 1 ≤ a ≤ a+n ≤

m. Moreover, each line is associated with a status variable si indicating what

2Prior work has proposed various methods to produce code changes. e.g., Zhang et al.
(2022) learns the distribution P (u′ | u) and Reid and Neubig (2022) tags each input token
with a label indicating deletion, insertion, or replacement. However, these methods require
more copying or tagging, resulting in longer output sequences compared to our approach.

84

type of change (if any) has already been made; si ∈ {(empty), <add>, }.3

We represent the input code by a function EncInput that (optionally) prepends

status tokens s1 . . . sm and placeholder tokens <1> . . . <n> at the start of each

line:

EncInput(u) = s1l1s2l2 . . . <1>sala<2>sa+1la+1 . . . <n>sa+nla+n . . . smlm .

For contextual changes ∆1 . . .∆k, we can represent them using the same format

but with an empty edit region. When the target change ∆u contains line

additions, denoting the jth line to be inserted before line i as l′ij, we can

represent ∆u using the following expression,

EncOutput(∆u) = <1>IaDa<2>Ia+1Da+1 . . . <n>Ia+nDa+n ,

where Ii = <add> l′i1<add> l′i2 . . . <add> l′i|Ii| ,

Di = if li is to be deleted then else (empty) .

Note that we add a further restriction that forbids Di from being if

si is <add> in order to prevent the model from modifying a line that has

just been added; we discuss this in more detail in ??. Figure 4.3 illustrates

this line-diff-based encoding scheme using the example from Figure 4.2. This

format ensures that if we replace the placeholder tokens in the input with the

corresponding changes specified in the output sequence, we obtain the total

change that combines u and ∆u.

3We represent edits as line diffs output by Differ.compare using the standard
difflib library.

85

Figure 4.3: Coeditor encoding format. (Left) the input sequence adds place-
holder tokens to indicate code region to edit. (Top right) the output sequence
specifies further changes at each placeholder token. (Bottom right) relevant
signatures are retrieved from the codebase and added to the context. (In this
example, the Python module is called motivating).

86

4.3.2 Analyzing Relevant Signatures

Having described how we represent code changes, we must also estab-

lish a method for feeding U , the remaining codebase, to the model. Simply

inputting the entire codebase as is would result in an excessive number of

tokens, overwhelming the context. Instead, inspired by the ideas proposed

in previous type inference work (Pradel et al., 2020, Wei et al., 2020, 2023),

we employ lightweight static analysis to extract the most relevant information

into the context, as outlined below.

For each target code region u, we analyze its pre-edit code and generate

a list of its usages.4 In the case of a function usage, we retrieve its function

signature; for a variable or class member usage, we retrieve the first statement

in which it was assigned. We then concatenate all these usages into a single

“document”, as shown at the bottom right of Figure 4.3, which serves as

additional input context. This approach allows the model to access the most

pertinent information about the current code region and significantly improves

model performance (Table 4.5), while generating only a small number of extra

tokens in the context (Table 4.2).

4.3.3 Adapting CodeT5

Our model is based on the architecture and pre-trained weights of

CodeT5 (Wang et al., 2021). CodeT5 was pre-trained on a large corpus of code

4We use the Jedi package for this purpose: https://github.com/davidhalter/jedi.

87

https://github.com/davidhalter/jedi

Figure 4.4: Coeditor encoder sparse attention pattern. All attention between
the reference blocks are skipped to avoid the quadratic cost of dense attention.

data using the masked span infilling objective, making it a suitable choice for

our problem. We employ the CodeT5-base model, containing 220M parame-

ters, and fine-tune it for our code auto-editing setting. Although the original

CodeT5 model was pre-trained with a small sequence length of 512, its relative

positional encoding scheme allows us to fine-tune it on much longer sequences

for our problem.

Considering that a single commit may contain numerous code changes,

concatenating all changes into a single input can lead to long token sequences

that are difficult for the CodeT5 model to process with dense attention. To

mitigate this issue, we replace the full attention in its encoder with a block-

sparse attention pattern, illustrated in Figure 4.4. This pattern divides the

input sequences into multiple reference blocks and a query block. The query

block contains the code to be edited, whereas each reference block encodes a

contextual unit change ∆uj or a chunk of the signature document. We limit

the sequence length of each block to 512 tokens for references and 1024 for the

88

query, dividing longer blocks into multiple ones if necessary. The self-attention

within each block is performed as usual, but the attention between different

reference blocks is skipped to save computation, similar to other retrieval-

augmented models (Izacard and Grave, 2021). However, we still allow the

query block to attend to and be attended by all reference blocks (a global

attention block (Beltagy et al., 2020, Zaheer et al., 2020)). We also set the

relative distance between each reference and the query to be infinite when

computing the relative positional encoding, making the model is insensitive to

the ordering of the references. We are able to use a total of 16.4K reference

tokens at test time, which is sufficient to cover 88.8% of problem instances in

our test set without truncating the context (Table 4.2).

4.3.4 Discussion of Sparse Attention Mechanisms

The block-sparse attention pattern we described in subsection 4.3.3

follows past work on retrieve-and-read models for natural language question

answering. Specifically, it resembles Fusion-in-Decoder (Izacard and Grave,

2021) with three changes. First, we have no notion of a question that is

jointly encoded with each retrieved snippet. Second, our target code block u

is given special status in the encoder and can globally attend to each retrieved

snippet. Third, we modify the relative positional encoding to make each query

“infinitely” far from the reference.

Our approach also resembles Longformer (Beltagy et al., 2020) or Big-

Bird (Zaheer et al., 2020), most notably in how our query block’s cross-

89

attention with the references can be viewed as an instance of global attention.

However, our segments do not come from a coherent context, so our local

attention component is a block-diagonal sparse matrix rather than a sliding

window as in those methods. Our modification to relative position encod-

ing also makes our model invariant to the ordering of references, helping it

generalize to different editing orders at inference time.

4.3.5 The PyCommits Dataset

To train our model, we gather real-world code changes from the commit

histories of open-source Python projects, a dataset we call PyCommits. For

each commit, we first identify which changes are made to the same code unit (a

unit can be either a function, a region of a class, or a region of a module) and

subsequently separate the commit into a list of unit additions, unit deletions,

or unit modifications. As our work primarily focuses on code editing, only unit

modifications are used as training labels, while the other two types of changes

remain visible to the model as context.

For each unit modification, we create a training problem instance that

instructs the model to predict the code change based on all prior (but not

future) changes from the same commit. Git does not record the editing order

of changes within the same commit, so we employ a simple heuristic that sorts

unit changes according to their source code locations and the import order

between modules. Specifically, we assume that units within the same file are

modified from top to bottom, and if a module imports another module, changes

90

Table 4.1: General statistics of the PyCommits dataset.

train valid test

projects 1550 50 50
used commits 217K 5006 5854
modified files 501K 10.1K 11.1K
modified functions 958K 20.1K 22.5K
modified lines 7.10M 143K 169K

Table 4.2: Additional statistics specific to our technique, computed over the
test set.

definition median mean max ≥ max

query tokens EncInput(u) 258 361.9 1024 7.8%
output tokens EncOutput(∆u) 60 89.7 512 1.3%
prev change tokens EncInput(∆1 . . .∆k) 1625 4.14K 16.4K 11.2%
signature tokens {signature(v)}v∈usages(u) 313 515.5 15.9K 0.0%

in the imported module occur before those in the importing module.5 To train

our model for the proposed multi-round editing setting, we generate synthetic

data demonstrating repeated editing to the same code unit as follows: for

those code change involving least two changed lines, we randomly sample a

subset of the changes as the prediction target and line the remaining changes

into the input. For example, the problem instance shown in Figure 4.3 can be

generated by inlining 2 of the 6 changed lines in the input.

We construct a new code editing dataset using the commit history

of 1,650 Python projects with permissive licenses (MIT, Apache, and BSD)

sourced from GitHub. We use 50 of the projects for testing and 50 for val-

5Note that this ordering mainly affects how we generate the training and testing data.
At test time, our model can condition on changes both above and below the edit region.

91

idation and use the remaining 1,550 projects for training. We use at most

1000 commits per project per project to ensure that the model is trained on

a diverse set of code changes. We show the general statistics in Table 4.1 and

the statictics that are specific to our technique in Table 4.2. Tokenization is

performed using the CodeT5 tokenizer.

4.4 Evaluation

In this section, we first compare Coeditor with prior code completion

approaches on a simplified version of the editing task. We then report Coedi-

tor’s performance on the proposed multi-round editing task and conduct abla-

tion studies. Example model outputs are included in the end of this chapter.

Training Setup We initialize Coeditor with the CodeT5-base checkpoint

(220M parameters) and train the model on our training set for 1.75 epoch,

gradually increasing the model reference context size from 2048 tokens to

4096 tokens (at epoch 1) and then to 8192 tokens (at epoch 1.5). We use

Huggingface’s Trainer implementation and the AdamW optimizer, with a lin-

ear learning rate schedule with a starting learning rate of 2e-5 and 0.01 weight

decay. We train the model with a fixed batch size of 1 and a total of 1.34 mil-

lion training steps. Training took about 5 days on a single NVIDIA Quadro

RTX 8000 GPU with 48 GB memory.

92

4.4.1 Comparison with Code Completion Approaches

Baselines We compare Coeditor with 3 open-source code generation models:

InCoder-1B, InCoder-6B (Fried et al., 2022), and SantaCoder (Allal et al.,

2023). All three code generation models are trained with the Fill-in-the-middle

pre-training objective (Aghajanyan et al., 2022) and use a context size of 2048

tokens.

Creating test instances We generate code completion problem instances

from real commits as follows. For each code change in PyCommits, we take

the last changed line as the completion target. If the last change is a modifica-

tion, we delete the modified line and let the model fill in the new version of the

line. If the last change is a deletion, we simply discard the change. We then

inline all changes before the target into the prediction context. This inlining

process is implemented differently for each model: for our Coeditor model,

the inlined changes are visible to our model following the encoding scheme

described in subsection 4.3.1; for the code completion models, we simply ap-

ply the inlined changes to the original code and use the resulting state as the

model input. Also note that while our model constructs its prediction context

using relevant changes and static analysis (as described in subsection 4.3.2),

the code completion models (which are unaware of code changes) only use the

code surrounding the completion target as the prediction context. We call this

test dataset, derived from our PyCommits test set, PyCommits-OneLine.

93

Table 4.3: Performance on 5000 code completion instances extracted from
edits (PyCommits-OneLine). Add EM and Replace EM are the (enhanced)
exact-match accuracies on addition and replacement change, respectively.

Model Parameters Add EM (%) Replace EM (%) Overall EM (%)

InCoder1B 1.3B 29.0 25.2 26.2
InCoder6B 6.7B 34.0 30.4 31.3
SantaCoder 1.1B 31.0 28.1 28.8
Coeditor 220M 47.1 64.9 60.4

Results We report the performance (without fine-tuning on this task) of all

approaches in Table 4.3. We use an enhanced exact-match (EM) accuracy

metric that performs semantic-preserving code normalization before checking

for string equivalence.6 The results are measured on 5000 code completion

problems sampled from our test set. We see that Coeditor significantly out-

performs the other code generation models for both addition and replacement

changes. Coeditor achieves an overall EM of 60.4%, which is almost twice as

high as the best performing code completion model (31.3%), despite using a 30

times smaller model, demonstrating the significant benefits of incorporating

editing history for code completion. We also include 3 example model outputs

on this task in section 4.6.

6We normalize Python code by (1) parsing the code into a syntax tree using the ast
library, (2) removing any comments and docstrings, (3) sorting all keyword arguments in
function calls, and (4) un-parsing the syntax tree.

94

4.4.2 Multi-round Editing

This evaluation focuses on the editing assistant use case where we as-

sume the user has some desired code changes in mind, and we aim to evaluate

how much the model can save the user’s effort by automating as much changes

as possible, potentially under the guidance of the user. The user can accept

partial changes suggested by the model and make additional changes manually

if needed.

Evaluation workflow To evaluate the above use case automatically, we use

the ground-truth code changes to simulate the user’s actions. In particular,

when the model predicts a list of changes, we compare the predicted changes

against the ground truth changes line-by-line and accept any line change that

exactly matches the ground truth. If none of the suggested changes match the

ground truth, we assume the user will manually perform the first remaining

change. In both cases, after the additional changes, we rerun the model to ob-

tain new suggestions and repeat until all desired changes have been performed

or the round limit = 6 has been reached. In the end, we compute the total

gain using the difference between the editing cost of the ground truth and the

accumulative editing cost of all manually performed edits.

Measuring editing cost There are multiple ways to measure the cost of

performing a code change. Since there is no consensus on the best metric, we

report 3 metrics in our results. Prior work (Lavazza et al., 2023) suggests that

95

for code understanding tasks, simple line counts-based metrics are almost as

good as more complex metrics, hence our first metric, Lines, simply measures

the number of changed lines before and after the edit. We also report Lev-

enshtein, the classic Levenshtein editing distance metric that measures the

minimal number of character addition, deletion, and substitution needed to

transform one string into another. Although simple, the Levenshtein distance

doesn’t model many important aspects of code editing, such as the cost asso-

ciated with cursor movement, and it also under-count the cost of substitution

and over-count the cost of large deletions. Hence, we propose an additional

metric, Keystrokes, that aims to better approximate the number of needed

user keystrokes than Levenshtein by allowing for batch deletion and account-

ing for the cost of cursor movements. We describe this metric in detail below.

Note that the total gain can be negative when measured with Levenshtein and

Keystrokes.7

Keystroke Distance We developed a string distance metric incorporating

the cost of cursor movement, approximating the number of keystrokes needed

to transform an input string into an output string.

Given the initial state with i=len(input), j=len(output), cursor dis=

init cursor dis, and deleting=False, the cost is calculated using dynamic

programming with the optimal combination of the following operations:

7For example, the Levenshtein distance of modifying a sentence is lower than the total
of first deleting the sentence and then adding a new one.

96

• M: Match character (cost=0), requires input[-i] == output[-j] and

not deleting, results in i -= 1, j -= 1, and cursor dis += 1.

• D: Delete input character (cost=1), requires cursor dis == 0 and not

deleting, results in i -= 1.

• A: Add output character (cost=1), requires cursor dis == 0 and not

deleting, results in j -= 1.

• C: Move cursor to current position (cost=min(cursor dis, jump cost)),

requires no conditions, results in cursor dis = 0.

• S: Begin deletion (cost=1), requires cursor dis == 0 and not deleting,

results in deleting = True.

• K: Continue deletion (cost=0), requires deleting, results in i -= 1.

• E: End deletion (cost=1), requires cursor dis == 0 and deleting, re-

sults in deleting = False.

Where jump cost is a constant that we set to 4 when reporting our results.

Note that this model does not consider copying and pasting operations. The

worst-case complexity of this algorithm is O(len(input) × len(output) ×

jump cost).

Results We report the evaluation results on 5000 problems sampled from

our test set in Table 4.4, and we also report the single-round performance for

97

Table 4.4: Multi-round evaluation results measured on 5000 problems from
the PyCommits test set. Lines, Levenshtein, and Keystrokes are the average
total gains in the corresponding metrics. Rounds is the average number of
rounds needed to complete all desired changes.

Setting Lines (%) Levenshtein (%) Keystrokes (%) Rounds

SingleRound 28.5 23.1 19.2 1
MultiRound 46.7 25.9 28.6 2.43

reference. We see that Coeditor achieves much larger total gains under the

multi-round setting, especially when measured with the Lines and Keystrokes

metric (which we believe more accurately captures the user editing effort than

Levenshtein). We also show 3 examples of the model’s suggestions in sec-

tion 4.7.

4.4.3 Ablation Studies

We retrain the model with various components disabled to study their

impact on the overall model performance. We report the (single-round) exact

match performance of each variation on the entire PyCommits validation set

in Table 4.5. The results show that removing any of the components leads to a

decrease in performance, highlighting the importance of each component in the

overall model. Specifically, when we remove the explicit feeding of code changes

(No Diffs), the EM drops the most, from 42.1% to 26.1%. When we disable

the static analysis component (No Signatures), the EM decreases to 33.3%.

Using a smaller limit of reference tokens impacts the model performance the

least, reducing EM to 39.8%. All results reported in Table 4.5 were obtained

98

Table 4.5: Ablation results on the entire validation set (PyCommits). All
pairwise differences are statistically significant with p < 0.05 using a paired
bootstrap test.

Ablation Description EM (%)

No Diffs Feeding the same input to the model except that all
changes are replaced with their post-edit results alone.

26.1

No Signatures Disabling the static analysis component and removing
function and class signatures from the prediction con-
text.

33.3

Small Context Reducing the max number of reference tokens from
16K to 2048.

39.8

No Ablation Model trained with our default settings. 42.1

by training the model for half amount of training steps to save compute.

4.5 Related Work

The past work most similar to our setting is that of Brody et al. (2020),

which also targets a contextual code editing setting. However, it can only

predict a restrictive set of code changes expressable as moving, deleting, or

copying existing AST nodes and cannot generate novel expressions that are

not present in the input. It also doesn’t make use of modern transformer

architecture or pre-training techniques. In contrast, Ni et al. (2021) takes a

rule-based approach, using program synthesis methods to distill similar change

patterns in the context and make editing suggestions accordingly.

There is also prior work on non-contextual code change prediction set-

tings. In Chakraborty et al. (2020), the authors use past code patches to train

the model to perform similar edits and evaluate it on future edits in the same

99

codebase. However, since the model does not condition on relevant changes,

their technique requires retraining the model for new types of edit patterns.

Panthaplackel et al. (2020a) proposes augmenting the decoder with a direct

copying mechanism to help a encoder-decoder model perform editing tasks.

Zhang et al. (2022) proposes a de-noising pre-training scheme, in which they

randomly corrupt actual code snippets and train the model to predict the un-

corrupted version from the corrupted version. Tufano et al. (2021) focuses on

predicting code review changes using developer discussions. Reid and Neu-

big (2022) focuses on modeling the iterative editing process of texts and code

and proposes a different change encoding scheme that represents edits at the

word-level based on the Levenshtein algorithm.

Lastly, there is prior work that focuses on on learning to update code

comments (Panthaplackel et al., 2020b) or generating natural language de-

scriptions (Panthaplackel et al., 2022) from code changes. This work, we focus

on measuring our model’s ability to make correct code changes and remove

comments and doc-strings before measuring the exact accuracy.

4.6 Code Completion Examples

To help the reader see why including contextual changes can be benefi-

cial for (editing-related) code completion problems, we compare Coeditor and

InCoder6B’s outputs on 3 example problems from our test set in the next few

pages (Figure 4.5–Figure 4.10). These examples are sampled from a subset

that are small enough to be presentable within one or two pages and in which

100

Coeditor outperforms InCoder6B.

4.7 Multi-round Editing Examples

We show 3 multi-round editing examples from our test set in Fig-

ure 4.11–Figure 4.15. These examples are sampled from a subset that are small

enough to be presentable within two pages and in which Coeditor achieved 50–

100 total keystrokes edit gain.

Figure 4.5: Code completion example 1. Coeditor sees from the relevant con-
textual changes (shown in Figure 4.6) that some get asynclib() calls should
be replaced with get async backend(), so it correctly suggested the change
based on the deletion before the infilling point. InCoder was not able to see
the deletion and infilled the original code given only the surrounding code.

101

Figure 4.6: Code completion example 1: relevant contexts. The changes high-
lighted in orange tell Coeditor that some get asynclib() calls should be re-
placed with get async backend().

102

Figure 4.7: Code completion example 2. Coeditor was able to suggest the cor-
rect code based on a similar change from another file (Figure 4.8, highlighted
in orange), whereas InCoder was not able to see the change and suggested a
wrong statement.

103

Figure 4.8: Code completion example 2: relevant contexts.

104

Figure 4.9: Code completion example 3. Coeditor was able to suggest adding
the correct attribute initialization based on the new usage highlighted in Fig-
ure 4.10, whereas InCoder was not able to see the new usages and hallucinated
a new attribute.

105

Figure 4.10: Code completion example 3: relevant contexts.

106

Figure 4.11: Multi-round editing example 1. Coeditor correctly suggested
a subset of the ground-truth changes. Contextual changes omitted for this
example.

107

Figure 4.12: Multi-round editing example 2 (round 3). Coeditor misun-
derstood the user’s intention and suggested adding two more arguments to
the EncodedVideo.from path function call. Under our multi-round evaluation
strategy, we assume the user would then manually add the next line from the
ground truth changes (see the next figure).

108

Figure 4.13: Multi-round editing example 2 (round 4). With the next line
change from the ground truth added, Coeditor understood that the user in-
tended to only change the calling style and was thus able to suggest the correct
change.

109

Figure 4.14: Multi-round editing example 3. Coeditor was able to predict the
correct change in the first editing round by identifying a similar change inside
a different function (see Figure 4.15, highlighted in orange).

110

Figure 4.15: Multi-round editing example 3 (reference blocks). The bottom
changes highlighted in orange are similar to the changes needed in Figure 4.14.

111

Chapter 5

Conclusion and Future Work

In this thesis, we presented techniques that combine static analysis,

code transformations, and machine learning to tackle two challenging problems

in the domain of programming languages: probabilistic type inference and

contextual code change prediction.

We first introduced LambdaNet, a neural architecture for type infer-

ence that combines explicit program analysis with graph neural networks.

LambdaNet demonstrated improved performance over state-of-the-art tools

in predicting library types and effectively predicted user-defined types not en-

countered during training. Despite its success, LambdaNet had limitations in

handling function types and generic types.

To address these limitations, we developed TypeT5, a system that inte-

grates a pre-trained code completion model (CodeT5) with lightweight static

analysis and a new decoding scheme. TypeT5 outperformed previous systems

and showed that incorporating the right context with static analysis signifi-

cantly improved the prediction of rare and complex types. This work high-

lights the potential of leveraging pre-trained code models and static analysis

for probabilistic type inference tasks.

112

Finally, we introduced Coeditor, an approach for multi-round code

auto-editing based on the CodeT5 architecture. Coeditor incorporated line diff

format and static analysis to create large customized model contexts, resulting

in substantial performance improvements over existing code completion meth-

ods. We also demonstrated the practical application of Coeditor by releasing

a VSCode extension for interactive model usage.

Our work emphasizes the importance of combining static analysis with

machine learning models to increase their effectiveness in tackling complex

programming tasks. The techniques presented in this thesis have the poten-

tial to be applied to various programming tasks beyond type inference and

code change prediction. For instance, they could help developers with code

refactoring, code generation, and unit testing by providing context-aware and

edit-sensitive suggestions. We hope that our work will inspire future research

in this area, ultimately leading to more powerful and versatile tools for en-

hancing developer productivity.

Looking ahead, there are several potential improvements and extensions

to our type inference systems that could be explored for future work. One

critical area for advancement lies in enforcing hard constraints during inference

could provide consistent and reliable type assignments, enhancing the quality

of the predictions. Another crucial direction for future work is to align the

training and inference processes more closely. Our TypeT5 system creates a

distribution discrepancy as it conditions only on previously predicted types

during inference, despite incorporating user annotations from real code into

113

the context during model training. This discrepancy could lead to suboptimal

performance. Advanced training schemes such as reinforcement learning could

be utilized to better align these processes, potentially boosting the performance

of the system. Moreover, enhancing the static analysis-based retrieval methods

to obtain additional types of relevant context information beyond user-usee

relations could further increase the accuracy of our models.

In terms of Coeditor, a promising direction for future work would be

extending the model to help users identify regions of code that need to be

changed within the entire codebase. This feature could enable new types of

usage such as auto-refactoring. Furthermore, it would be beneficial to explore

methods for allowing the model to interactively collaborate with users in edit-

ing partially modified lines. While our current design prevents the model from

modifying lines that the user has already changed, this restriction can also

limit the practical usage of our tool.

114

Bibliography

Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin,

Hu Xu, Naman Goyal, Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike

Lewis, et al. CM3: A Causal Masked Multimodal Model of the Internet.

arXiv eprint arxiv:2201.07520, 2022.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Uni-

fied pre-training for program understanding and generation. In Proceedings

of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 2655–

2668, 2021.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher

Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex

Gu, Manan Dey, et al. Santacoder: don’t reach for the stars! arXiv preprint

arXiv:2301.03988, 2023.

Miltiadis Allamanis. The adverse effects of code duplication in machine learn-

ing models of code. In Proceedings of the 2019 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software, pages 143–153, 2019.

115

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning

to represent programs with graphs. ICLR, 2017.

Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. Typilus:

Neural type hints. In PLDI, 2020.

Davide Ancona and Elena Zucca. Principal typings for java-like languages. In

ACM SIGPLAN Notices, volume 39, pages 306–317. ACM, 2004.

G. BakIr, Neural Information Processing Systems Foundation, T. Hof-

mann, A.J. Smola, B. Schölkopf, and B. Taskar. Predicting Structured

Data. Advances in neural information processing systems. MIT Press,

2007. ISBN 9780262026178. URL https://books.google.com/books?id=

b1EFKUoFF8IC.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-

Document Transformer. arXiv preprint arXiv:2004.05150, 2020.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-

uled sampling for sequence prediction with recurrent neural networks. In

C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems, volume 28. Curran Asso-

ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/

file/e995f98d56967d946471af29d7bf99f1-Paper.pdf.

Gavin Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding type-

script. In Richard Jones, editor, ECOOP 2014 – Object-Oriented Program-

116

https://books.google.com/books?id=b1EFKUoFF8IC
https://books.google.com/books?id=b1EFKUoFF8IC
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf

ming, pages 257–281, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

ISBN 978-3-662-44202-9.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza

Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste

Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Ja-

cob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore,

Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving,

Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen,

and Laurent Sifre. Improving language models by retrieving from trillions

of tokens. In arXiv, 2021. URL https://arxiv.org/abs/2112.04426.

Shaked Brody, Uri Alon, and Eran Yahav. A structural model for contex-

tual code changes. Proceedings of the ACM on Programming Languages, 4

(OOPSLA):1–28, November 2020. ISSN 2475-1421. doi: 10.1145/3428283.

URL https://dl.acm.org/doi/10.1145/3428283.

Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.

CODIT: Code Editing with Tree-Based Neural Models. IEEE Transac-

tions on Software Engineering, pages 1–1, 2020. ISSN 0098-5589, 1939-3520,

2326-3881. doi: 10.1109/TSE.2020.3020502. URL http://arxiv.org/abs/

1810.00314. arXiv: 1810.00314.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading

Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th

117

https://arxiv.org/abs/2112.04426
https://dl.acm.org/doi/10.1145/3428283
http://arxiv.org/abs/1810.00314
http://arxiv.org/abs/1810.00314

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), 2017. URL https://aclanthology.org/P17-1171.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas

Joseph, Greg Brockman, et al. Evaluating large language models trained on

code. arXiv preprint arXiv:2107.03374, 2021.

Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. Kafka:

Gradual typing for objects. In ECOOP 2018-2018 European Conference on

Object-Oriented Programming, 2018.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured pre-

diction. Machine learning, 75(3):297–325, 2009.

Yann Dauphin, Gokhan Tur, Dilek Z. Hakkani-Tur, and Larry P. Heck. Zero-

shot learning for semantic utterance classification. In ICLR, 2013.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autore-

gressive entity retrieval. In Proceedings of the International Conference on

Learning Representations (ICLR), 2020. URL https://arxiv.org/abs/

2010.00904.

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada,

and Omer Levy. Named entity disambiguation for noisy text. In CoNLL,

2017.

118

https://aclanthology.org/P17-1171
https://arxiv.org/abs/2010.00904
https://arxiv.org/abs/2010.00904

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects

by their attributes. In CVPR, 2017.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A

Pre-Trained Model for Programming and Natural Languages. In Findings of

the Association for Computational Linguistics: EMNLP 2020, pages 1536–

1547, 2020.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda

Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. In-

coder: A generative model for code infilling and synthesis. arXiv preprint

arXiv:2204.05999, 2022.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):

23–38, 1994.

Zheng Gao, Christian Bird, and Earl T. Barr. To type or not to type:

Quantifying detectable bugs in javascript. In Proceedings of the 39th In-

ternational Conference on Software Engineering, ICSE ’17, pages 758–769,

Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-3868-2. doi:

10.1109/ICSE.2017.75. URL https://doi.org/10.1109/ICSE.2017.75.

Bernd Gruner, Tim Sonnekalb, Thomas S Heinze, and Clemens-Alexander

Brust. Cross-domain evaluation of a deep learning-based type inference

system. arXiv preprint arXiv:2208.09189, 2022.

119

https://doi.org/10.1109/ICSE.2017.75

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua

Bengio. Pointing the unknown words. In Proceedings of the ACL, 2016.

Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt,

and Miltiadis Allamanis. Learning to complete code with sketches. In In-

ternational Conference on Learning Representations, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei

Chang. REALM: Retrieval-Augmented Language Model Pre-Training. In

Proceedings of the 37th International Conference on Machine Learning,

2020.

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter,

and Andreas Stefik. An empirical study on the impact of static typing

on software maintainability. Empirical Software Engineering, 19:1335–1382,

2013.

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.

Deep learning type inference. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ESEC/FSE 2018, pages 152–162,

New York, NY, USA, 2018a. ACM. ISBN 978-1-4503-5573-5. doi: 10.1145/

3236024.3236051. URL http://doi.acm.org/10.1145/3236024.3236051.

Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis.

Deep learning type inference. In Proceedings of the 2018 26th acm joint

120

http://doi.acm.org/10.1145/3236024.3236051

meeting on european software engineering conference and symposium on the

foundations of software engineering, pages 152–162, 2018b.

Gautier Izacard and Edouard Grave. Leveraging Passage Retrieval with Gen-

erative Models for Open Domain Question Answering. In arXiv, 2020. URL

https://arxiv.org/abs/2007.01282.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with gener-

ative models for open domain question answering. In Proceedings of the 16th

Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, pages 874–880, Online, April 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.74. URL

https://aclanthology.org/2021.eacl-main.74.

Abhinav Jangda and Gaurav Anand. Predicting variable types in dynamically

typed programming languages. arXiv preprint arXiv:1901.05138, 2019.

Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. Learning type

annotation: is big data enough? In Proceedings of the 29th ACM Joint

Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 1483–1486, 2021.

Kevin Jesse, Premkumar Devanbu, and Anand Ashok Sawant. Learning to

predict user-defined types. IEEE Transactions on Software Engineering,

2022.

121

https://arxiv.org/abs/2007.01282
https://aclanthology.org/2021.eacl-main.74

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu,

Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense Passage Retrieval

for Open-Domain Question Answering. In Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP),

2020. URL https://aclanthology.org/2020.emnlp-main.550.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In ICLR, 2014.

Konduit K.K. Deeplearning4j. https://github.com/eclipse/

deeplearning4j. Accessed: 2019-09-24.

Marie-Anne Lachaux, Baptiste Rozière, Lowik Chanussot, and Guillaume

Lample. Unsupervised translation of programming languages. ArXiv,

abs/2006.03511, 2020.

Luigi Lavazza, Abedallah Zaid Abualkishik, Geng Liu, and Sandro Morasca.

An empirical evaluation of the “cognitive complexity” measure as a predictor

of code understandability. Journal of Systems and Software, 197:111561,

2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,

Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks. In Proceedings of the 34th

International Conference on Neural Information Processing Systems, 2020.

122

https://aclanthology.org/2020.emnlp-main.550
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated

graph sequence neural networks. ICLR, abs/1511.05493, 2016.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,

Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,

et al. Competition-level code generation with alphacode. arXiv preprint

arXiv:2203.07814, 2022.

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. Nl2type: inferring

javascript function types from natural language information. In Proceedings

of the 41st International Conference on Software Engineering, pages 304–

315. IEEE Press, 2019.

A. M. Mir, E. Latoskinas, and G. Gousios. Manytypes4py: A bench-

mark python dataset for machine learning-based type inference. In

IEEE/ACM 18th International Conference on Mining Software Reposito-

ries (MSR), pages 585–589. IEEE Computer Society, May 2021. doi:

10.1109/MSR52588.2021.00079.

Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios.

Type4py: practical deep similarity learning-based type inference for python.

In Proceedings of the 44th International Conference on Software Engineer-

ing, pages 2241–2252, 2022.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural net-

works over tree structures for programming language processing. In AAAI,

volume 2, page 4, 2016.

123

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang,

Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William

Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin

Button, Matthew Knight, Benjamin Chess, and John Schulman. WebGPT:

Browser-assisted question-answering with human feedback. In arXiv, 2021.

URL https://arxiv.org/abs/2112.09332.

Nhan Nguyen and Sarah Nadi. An empirical evaluation of GitHub copilot’s

code suggestions. In Proceedings of the 19th International Conference on

Mining Software Repositories, pages 1–5, 2022.

Ansong Ni, Daniel Ramos, Aidan Z. H. Yang, Ines Lynce, Vasco Manquinho,

Ruben Martins, and Claire Le Goues. SOAR: A Synthesis Approach for

Data Science API Refactoring. In 2021 IEEE/ACM 43rd International Con-

ference on Software Engineering (ICSE), pages 112–124, Madrid, ES, May

2021. IEEE. ISBN 978-1-66540-296-5. doi: 10.1109/ICSE43902.2021.00023.

URL https://ieeexplore.ieee.org/document/9402016/.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,

Silvio Savarese, and Caiming Xiong. A conversational paradigm for program

synthesis. arXiv e-prints, pages arXiv–2203, 2022.

John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and Lambros Karkazis.

Assessing the type annotation burden. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering,

pages 190–201, 2018.

124

https://arxiv.org/abs/2112.09332
https://ieeexplore.ieee.org/document/9402016/

Irene Vlassi Pandi, Earl T Barr, Andrew D Gordon, and Charles Sutton.

Opttyper: Probabilistic type inference by optimising logical and natural

constraints. arXiv preprint arXiv:2004.00348, 2020.

Sheena Panthaplackel, Miltiadis Allamanis, and Marc Brockschmidt. Copy

that! Editing Sequences by Copying Spans, December 2020a. URL http:

//arxiv.org/abs/2006.04771. arXiv:2006.04771 [cs, stat].

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Ray-

mond Mooney. Learning to update natural language comments based on

code changes. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 1853–1868, 2020b.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Ray Mooney. Learn-

ing to describe solutions for bug reports based on developer discussions.

Findings of the Association for Computational Linguistics: ACL 2022, 2022.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and

Michael Lyu. Static inference meets deep learning: A hybrid type infer-

ence approach for python. In Proceedings of the 44th International Confer-

ence on Software Engineering, ICSE ’22, page 2019–2030, New York, NY,

USA, 2022. Association for Computing Machinery. ISBN 9781450392211.

doi: 10.1145/3510003.3510038. URL https://doi.org/10.1145/3510003.

3510038.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yaz-

dani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin,

125

http://arxiv.org/abs/2006.04771
http://arxiv.org/abs/2006.04771
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3510003.3510038

Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel.

KILT: a Benchmark for Knowledge Intensive Language Tasks. In Proceedings

of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, 2021. URL

https://aclanthology.org/2021.naacl-main.200.

Benjamin C Pierce and David N Turner. Local type inference. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 22(1):1–44,

2000.

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. Typewriter:

Neural type prediction with search-based validation. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 209–220,

2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer. In

arXiv, 2019. URL https://arxiv.org/abs/1910.10683.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with

statistical language models. In Proceedings of the 35th ACM SIGPLAN

126

https://aclanthology.org/2021.naacl-main.200
https://arxiv.org/abs/1910.10683

Conference on Programming Language Design and Implementation, pages

419–428, 2014.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program

properties from ”big code”. In Proceedings of the 42Nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’15, pages 111–124, New York, NY, USA, 2015a. ACM.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program

properties from” big code”. ACM SIGPLAN Notices, 50(1):111–124, 2015b.

Machel Reid and Graham Neubig. Learning to Model Editing Processes, May

2022. URL http://arxiv.org/abs/2205.12374. arXiv:2205.12374 [cs].

Xiang Ren, Wenqi He, Meng Qu, Clare R Voss, Heng Ji, and Jiawei Han. La-

bel noise reduction in entity typing by heterogeneous partial-label embed-

ding. In Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 1825–1834. ACM, 2016.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning. In Proceed-

ings of the fourteenth international conference on artificial intelligence and

statistics, pages 627–635. JMLR Workshop and Conference Proceedings,

2011.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In

127

http://arxiv.org/abs/2205.12374

2012 IEEE international conference on acoustics, speech and signal process-

ing (ICASSP), pages 5149–5152. IEEE, 2012.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine trans-

lation of rare words with subword units. In Proceedings of the 54th An-

nual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1715–1725, Berlin, Germany, August 2016. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL

https://aclanthology.org/P16-1162.

Jeremy Siek and Walid Taha. Gradual typing for objects. In European Con-

ference on Object-Oriented Programming, pages 2–27. Springer, 2007a.

Jeremy G. Siek and Walid Taha. Gradual typing for objects. In ECOOP,

2007b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Ju-

liana Vicente Franco, and Miltiadis Allamanis. Fast and memory-efficient

neural code completion. In 2021 IEEE/ACM 18th International Conference

on Mining Software Repositories (MSR), pages 329–340. IEEE, 2021.

Marc Szafraniec, Baptiste Rozière, Hugh Leather Francois Charton, Patrick

Labatut, and Gabriel Synnaeve. Code translation with compiler represen-

tations. ArXiv, abs/2207.03578, 2022.

128

https://aclanthology.org/P16-1162

Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow. Extending hindley-

milner type inference with coercive structural subtyping. In Asian Sym-

posium on Programming Languages and Systems, pages 89–104. Springer,

2011.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and

Gabriele Bavota. Towards automating code review activities. In

2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pages 163–174. IEEE, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph Attention Networks. International

Conference on Learning Representations, 2018. accepted as poster.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In

NeurIPS, 2015.

Michael M Vitousek, Andrew M Kent, Jeremy G Siek, and Jim Baker. Design

and evaluation of gradual typing for python. In ACM SIGPLAN Notices,

volume 50, pages 45–56. ACM, 2014.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for

theorem proving by deep graph embedding. In Advances in Neural Infor-

mation Processing Systems, pages 2786–2796, 2017.

Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via

semantic embeddings and knowledge graphs. In CVPR, 2018.

129

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-

aware Unified Pre-trained Encoder-Decoder Models for Code Understanding

and Generation. In Proceedings of the 2021 Conference on Empirical Meth-

ods in Natural Language Processing, pages 8696–8708, 2021.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. LambdaNet: Proba-

bilistic Type Inference using Graph Neural Networks. In International Con-

ference on Learning Representations, 2020. URL https://openreview.

net/forum?id=Hkx6hANtwH.

Jiayi Wei, Greg Durrett, and Isil Dillig. TypeT5: Seq2seq Type Inference using

Static Analysis. In International Conference on Learning Representations,

2023. URL https://openreview.net/forum?id=4TyNEhI2GdN.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-

towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine

Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-

of-the-art natural language processing. In Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing: System

Demonstrations, pages 38–45, Online, October 2020. Association for Com-

putational Linguistics. URL https://www.aclweb.org/anthology/2020.

emnlp-demos.6.

130

https://openreview.net/forum?id=Hkx6hANtwH
https://openreview.net/forum?id=Hkx6hANtwH
https://openreview.net/forum?id=4TyNEhI2GdN
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python

probabilistic type inference with natural language support. In Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, pages 607–618. ACM, 2016.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris

Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,

Li Yang, and Amr Ahmed. Big Bird: Transformers for Longer Sequences.

In Advances in Neural Information Processing Systems, 2020.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao,

Jian-Guang Lou, and Weizhu Chen. Repocoder: Repository-level code

completion through iterative retrieval and generation. arXiv preprint

arXiv:2303.12570, 2023.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Mi-

los Gligoric. CoditT5: Pretraining for Source Code and Natural Lan-

guage Editing, September 2022. URL http://arxiv.org/abs/2208.05446.

arXiv:2208.05446 [cs].

131

http://arxiv.org/abs/2208.05446

Vita

Jiayi Wei was born in Sichuan, China, and holds a Bachelor of Science

degree in Physics from the University of Science and Technology of China.

He commenced his graduate studies at the University of Texas at Austin in

August 2018 under the supervision of Isil Dillig. Later, he was co-advised

by Joydeep Biswas (2021-2022) and Greg Durrett (2022-2023). During his

PhD, Jiayi has conducted research in software security, robotics, and machine

learning for code, focusing on type inference and code editing. He has a keen

interest in software tools and programming languages, with a background in

functional programming and six years of experience in writing Scala, before

he was converted to Julia and now Python. Jiayi has also gained industry

experience as a PhD intern at Facebook (2020) and JetBrains (2021).

Address: MrVPlusOne@gmail.com

This dissertation was typeset with LATEX by the author.

132

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	A Brief History of Probabilistic Type Inference
	From Type Inference to Code Auto-Editing

	Chapter 2. LambdaNet: Probabilistic Type Inference using Graph Neural Networks
	Introduction
	Motivating Example and Problem Setting
	Problem Setting

	Type Dependency Graph
	Neural Architecture
	Evaluation
	Comparison with DeepTyper
	Predicting User-Defined Types
	Ablation Study
	Comparison with JSNice

	Related Work

	Chapter 3. TypeT5: Seq2seq Type Inference using Static Analysis
	Introduction
	Overview
	Methods
	Using CodeT5 for type prediction
	 Building the Usage Graph
	 Constructing Model Inputs
	Iterative Decoding Inference
	Training

	Experiments
	Evaluation Setup
	Comparing TypeT5 with other approaches
	Ablations on TypeT5
	User-Guided Interactive Decoding

	Related Work
	 Real Examples Produced by TypeT5

	Chapter 4. Coeditor: Leveraging Contextual Changes for Multi-round Code Auto-editing
	Introduction
	Motivating Example
	Methods
	Representing Code Changes
	Analyzing Relevant Signatures
	Adapting CodeT5
	Discussion of Sparse Attention Mechanisms
	The PyCommits Dataset

	Evaluation
	Comparison with Code Completion Approaches
	Multi-round Editing
	Ablation Studies

	Related Work
	Code Completion Examples
	Multi-round Editing Examples

	Chapter 5. Conclusion and Future Work
	Vita

