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Floquet band structure of a semi-Dirac system
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In this work we use Floquet-Bloch theory to study the influence of circularly and linearly po-
larized light on two-dimensional band structures with semi-Dirac band touching points, taking the
anisotropic nearest neighbor hopping model on the honeycomb lattice as an example. We find cir-
cularly polarized light opens a gap and induces a band inversion to create a finite Chern number in
the two-band model. By contrast, linearly polarized light can either open up a gap (polarized in the
quadratically dispersing direction) or split the semi-Dirac band touching point into two Dirac points
(polarized in the linearly dispersing direction) by an amount that depends on the amplitude of the
light. Motivated by recent pump-probe experiments, we investigated the non-equilibrium spectral
properties and momentum-dependent spin-texture of our model in the Floquet state following a
quench in absence of phonons, and in the presence of phonon dissipation that leads to a steady-
state independent of the pump protocol. Finally, we make connections to optical measurements
by computing the frequency dependence of the longitudinal and transverse optical conductivity for
this two-band model. We analyze the various contributions from inter-band transitions and dif-
ferent Floquet modes. Our results suggest strategies for optically controlling band structures and
experimentally measuring topological Floquet systems.

I. INTRODUCTION

Recent years have witnessed dramatic advances in un-
derstanding the topological properties of the band struc-
ture of quantum many-particle systems1–4. These in-
clude time-reversal (TR) breaking integer quantum Hall
systems, TR invariant two-dimensional quantum spin
Hall systems, and three-dimensional topological insula-
tors (TIs). When inter-particle interactions are included,
the phenomenology is even more diverse5–9. Certain
isotropic low-energy dispersions are known to have par-
ticular stability conditions with respect to inter-particle
interactions. For example, two-dimensional Dirac points
are perturbatively stable to interactions, requiring a fi-
nite interaction strength to open a gap10–12, which under-
lies the low-energy properties of single-layer graphene13.
By contrast, two-dimensional quadratic band touching
points are known to be perturbatively unstable (i.e. a
gap is opened, or the band touching point splits into two
Dirac points) to interactions14.
On the other hand, anisotropic band touching points

dominating the low-energy physics are more intrigu-
ing as both Coulomb interactions and disorder can
have interesting consequences15. Notably, semi-Dirac
fermions have an anisotropic dispersion which dis-
plays a linear dispersion along one direction and a
quadratic dispersion in the perpendicular direction16,17.
Such a dispersion can be realized in phosphorene, in
TiO2/VO2 superlattices17–19, deformed graphene, and
BEDT− TTF2I3 salt under pressure20–22. Systems
with semi-Dirac band touching points are unstable to
Coulomb interactions and display marginal Fermi liquid
behavior with well-defined quasi-particles23–25.
Another interesting class of topological states studied

in recent years arises from the non-equilibrium genera-
tion of interesting band structures under the influence of
a periodic drive26–32. At the non-interacting level, dra-
matic changes in the band structure can occur, includ-

ing a change from a non-topological band structure to
a topological one33–44. Two commonly discussed physi-
cal scenarios for periodically driven systems include pe-
riodic changes in the laser fields that establish the opti-
cal lattice potential for cold atom systems45,46 and solid
state systems that are driven by a monochromatic laser
field32,47–53. Recent work shows that a quadratic band
touching point in two-dimensions has a gap opened by
virtual two-photon absorption and emission processes in
some cases,30 while it can be opened by one-photon pro-
cesses in others.29 By contrast, linearly polarized light
splits the quadratic band touching point into two Dirac
points by an amount that depends only on the amplitude
and polarization direction of the light30. When inter-
particle interactions are included, energy is typically ab-
sorbed from the periodic drive54 and a closed many par-
ticle system will generically end up at infinite temper-
ature in the infinite time limit, unless nongeneric con-
ditions such as many body localization are present55–57.
On the other hand, if the system is open, i.e. coupled
to a bath such as phonons, it is possible for a balance??
to be established where the average energy (over a drive
period) absorbed by the system from the drive can be
released to the bath and a nonequilibrium steady state
established58–64. Previous studies have mostly been per-
formed on Floquet steady states in systems with isotropic
low-energy dispersions30–32 while a thorough examina-
tion of anisotropic band touching points under periodic
drive is still lacking.

In this paper, we focus on a periodically driven semi-
Dirac band model on the honeycomb lattice. We demon-
strate that circularly polarized light can induce a TR
breaking topological band structure carrying finite Chern
numbers in the non-equilibrium steady states, while
linearly polarized light can split the semi-Dirac point
into two linearly dispersing Dirac points. A quench
into the Floquet state yields a strongly momentum-
dependent spin density. By contrast, we find an open
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FIG. 1: (Color online) The honeycomb lattice and
the first Brillouin zone. (a) The honeycomb lattice

with primitive lattice vectors a1 = a
(

3
2 ,

√
3
2

)

, a2 =

a
(

3
2 ,−

√
3
2

)

. A, B sublattices are colored as red and

blue respectively. (b) Reciprocal lattice vectors b1 =

2π/3a
(

1,
√
3
)

, b1 = 2π/3a
(

1,−
√
3
)

and the first Bril-
louin zone with high symmetry points are marked. We
note that Γ

′
= b1 + b2 is equivalent to Γ for the conve-

nience of plotting band structures along Γ →M → Γ
′
.

semi-Dirac system with phonon dissipation can remove
the anisotropy introduced by the quench from the ini-
tial state, which is qualitatively similar to the study of
the Dirac dispersion58. We examine the spin-averaged
ARPES spectrum, the time-averaged spin density, and
we compute the longitudinal and Hall optical conductiv-
ity. We analyze the contribution from different Floquet
modes and emphasize the important differences between
linearly polarized and circularly polarized driving fields.
Our paper is organized as follows. In Sec. II, we de-

scribe the lattice Hamiltonian we study, and in Secs. III
and IV we discuss the influence of a monochromatic laser
field of different polarizations, intensities, and frequen-
cies on the Hamiltonian. In Sec. V we present the spec-
tral function and time-averaged spin texture. In Sec. VI,
we compute the finite-frequency longitudinal optical con-
ductivity of the model for different laser parameters. In
Sec. VII we address the Hall optical conductivity in com-

parison with the longitudinal components. In Sec. VIII
we summarize the main conclusions of this work and dis-
cuss their relevance to real materials. Details of the
derivation of the longitudinal optical conductivity and
the low energy effective model are presented in the Ap-
pendices.

II. LATTICE MODEL AND BAND STRUCTURE

We study a honeycomb lattice model with anisotropic
hopping that leads to semi-Dirac dispersions at low en-
ergy. We also consider a coupling of electrons to a bath
of phonons. The total Hamiltonian is

H = H0 +Hph +Hc, (1)
where H0 is the tight-binding model with different val-
ues of nearest-neighbor (NN) hopping parameters that
produces the semi-Dirac band touching point:

H0 =
∑

l

(

tc†B,l+a1
cA,l + tc†B,l+a2

cA,l + t′c†B,lcA,l

)

+h.c.,

(2)
and Hph is the phonon Hamiltonian, with Hc the Hamil-
tonian describing the coupling of electrons and phonons.
In Fig. 1, the primitive lattice vectors are chosen as (we
set the lattice constant a = 1 in the remainder of the
paper),

a1 = a

(

3

2
,

√
3

2

)

, a2 = a

(

3

2
,−

√
3

2

)

, (3)

where t is the NN hopping integral along δ1 =
(1/2,

√
3/2) and δ2 = (1/2,−

√
3/2), t′ is the NN hop-

ping integral along δ3 = (−1, 0), cA(B)i, c
†
A(B)i are cre-

ation and annihilation operators of electrons on the A(B)
sublattices. The electron Hamiltonian H0 can be Fourier
transformed and then diagonalized. The electron dis-
persions and corresponding band structure are obtained
from the eigenvalues:

ǫ±(k) = ±

√

√

√

√2t2 + t′2 + 2t2 cos
√
3ky + 4t′t cos

(

3

2
kx

)

cos

(√
3

2
ky

)

. (4)

For t′ 6= 2t, there are two Dirac points in the first Bril-
louin zone. If we set t′ = 2t, the dispersion is quadratic
along ky and linear along kx near the position of the band
touching point

M =

(

2π

3a
, 0

)

. (5)

The spectrum (Fig. 2) is linear in kx and quadratic in
ky. The standard k · p Hamiltonian reads

HSD(k) =
k2y
2m

σx + vF kxσy, (6)

with the effective mass m = 2/3t and the fermi velocity
vF = 3t. In the following sections, we set t′ = 2t to inves-
tigate semi-Dirac points under the influence of a periodi-
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FIG. 2: (Color online) The band energies from Eq.(4)

with t
′
= 2t and the semi-Dirac band touching point at

M = (2π3 , 0) for (a) Energy dispersions viewed along the
ky axis, (b) dispersion along Γ → K → M → Γ, (c) En-
ergy dispersions viewed along the kx axis, (d) dispersion

along Γ →M → Γ
′ → K → Γ.

cally driven electric field. Furthermore, dissipation from
the environment affects the electron distribution and thus
the spectral density together with the electrical transport
coefficients. Here we consider dissipation due to coupling
to two-dimensional phonons, similar to the approach of
Refs. [58, 65, and 66]: the phonon part of Eq. (1) is a
bilinear form of free boson operators:

Hph =
∑

q,i=x,y

ωqib
†
qibqi, (7)

and the electron-phonon coupling is specified as

Hc =
∑

kq,σ,σ′=A,B

ωqic
†
kσAph(q) · σσσ′ ckσ′ , (8)

with

Aph(q) = [λx,q(b
†
qx + b−qx), λy,q(b

†
qy + b−qy)], (9)

representing the phonon field. Here, σ, σ′ = A,B are
pseudo-spin labels of sublattices. Above we have made
the assumption that phonon induced electron scattering
with different quasi-momentum does not occur58,65,66. In
the following calculations, the electronic states at differ-
ent quasi-momenta k are independently coupled to the
reservoir and the broadening effect of electron-phonon
interaction is not taken into account.

III. PERIODIC DRIVE UNDER A LASER

FIELD

When the system is coupled to a laser field, the Hamil-
tonian is modified according to the Peierls substitution
k → k+A(t1):

Hk(t1) =
∑

k

(

c†kA, c
†
kB

)

(

0 hAB
k (t1)

[

hAB
k (t1)

]∗
0

)(

ckA
ckB

)

,

(10)

where we use t1 as the time label to distinguish it from
the hopping parameter and

hAB
k (t1) =

∑

i=1,2

tei(k+A(t1))·δi + t′ei(k+A(t1))·δ3 . (11)

In Eq. (11), we set Planck’s constant ~ = 1, the speed
of light c = 1, and the charge of the electron e = 1, and
adopt the Coulomb gauge by setting the scaler potential
φ = 0. We ignore the tiny effect of the magnetic field.
The units of energy are expressed in terms of the hop-
ping t and we set t = 1. As hAB

k is not invariant under
translation by integer multiples of nibi, we could recover
the symmetry by the shift ckB → ckBe

ik·δ3 :

hAB
k (t1) = t′eiA(t1)·δ3 +

∑

i=1,2

teik·ai+iA(t1)·δi . (12)

Throughout this paper, circularly polarized laser fields
are expressed with the vector potential A(t1) =
A(cos(Ωt1), sin(Ωt1)) and linear polarized laser fields are
expressed with A(t1) = A(sin(Ωt1), 0) and A(t1) =
A(0, sin(Ωt1)) for the polarization along kx and ky di-
rection, respectively, where A is the amplitude and Ω the
frequency of the laser.

IV. FLOQUET THEORY

Since the laser field can be approximated as monochro-
matic (single frequency) light, it renders the Hamiltonian
periodic in time: H(t) = H(t+T ), where T is the period
corresponding to Ω = 2π/T . In analogy to the periodic-
ity in lattice translations that leads to Bloch’s theorem,
one can apply Floquet’s theory67. The Floquet eigen-
function can be expressed as

|Ψkα(t)〉 = eiǫkαt|φkα(t)〉, (13)

where |φkα(t)〉 = |φkα(t + T )〉 are the Floquet quasi-
modes and ǫkα is the corresponding quasienergy for band
α. Substituting this form of the wave function into the
time-dependent Schrodinger equation, and defining the
Floquet Hamiltonian operator as H(t) = H(t)− i ∂

∂t , one
finds

H(t)|φkα(t)〉 = ǫkα|φkα(t)〉. (14)

By performing a Fourier transformation on time

Hn
αβ =

1

T

∫ T

0

Hαβ(t) exp(−inΩt)dt,

|φkα(t)〉 =
∑

m

eimΩt|φmkα〉, (15)

with m,n = 0,±1,±2, . . . ,±∞, one arrives at

∑

m

Hnm
F |φmkα〉 = ǫkα|φnkα〉, (16)
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FIG. 3: (Color online) The Floquet band structures of
the semi-Dirac honeycomb lattice model embedded in a
normally incident polarized light for (a) circularly polar-
ized light with A = 1.5,Ω = 5t; (b) circularly polarized
light with A = 1.5,Ω = 10t; (c) circularly polarized light
with A = 2.4,Ω = 5t; (d) linearly polarized light with
A = 1.5,Ω = 5t along x direction; (e) linearly polarized
light with A = 1.5,Ω = 5t along y direction. The semi-
Dirac point linearly disperses in kx and has a quadratic
dispersion along ky.

where

Hnm
F = Hn−m + nΩIδnm, (17)

is the Floquet Hamiltonian living in the enlarged Floquet
Hilbert space67. In the lattice model we studied,

hAB
k (m− n) =

1

T

∫ T

0

hAB
k (t1) exp [−i(m− n)Ωt1] dt1

=
1

T

∫ T

0

dt1

[

te
i

[

3kx
2 +

√
3ky
2 +

Ax(t1)

2 +
√

3Ay(t1)

2

]

+ te
i

[

3kx
2 −

√
3ky
2 +

Ax(t1)

2 −
√

3Ay(t1)

2

]

+ t′e−iAx(t1)

]

× exp [−i(m− n)Ωt1] . (18)

In the numerical evaluation, we truncate the range of Flo-
quet modes to m,n = 0,±1,±2,±3,±4 and verified that
a larger range of m,n has little numerical impact on our
results for the frequencies and electric field amplitudes
we considered.

A. Circularly polarized case

For circularly polarized light, Eq. (18) becomes

hAB
k (m−n) = te

i

[

3kx
2 +

√
3ky
2

]

Jm−n(A) exp
[

i(m− n)
π

6

]

+te
i

[

3kx
2 −

√
3ky
2

]

Jm−n(A) exp

[

i(m− n)
5π

6

]

+t′Jm−n(A)e
−i(m−n)π

2 ,

(19)

where Jn(x) is the order-n Bessel function of the first
kind. The Floquet band structures are displayed in Fig.
3(a-c). For A = 1.5,Ω = 5t, there exists a gap between

upper and lower band in a single Floquet copy. The gap
size is ∆ ≈ 0.52t. As a comparison, the gap size for
A = 1.5,Ω = 10t is ∆ ≈ 0.15t. They both hold finite
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Chern numbers C = 1 for fully occupied “lower” bands
(which one is “lower” is essentially a gauge choice; we
refer here to the lower one in our figure), indicating the
existence of topologically non-trivial transport properties
under TR breaking circularly polarized light. A higher
chern number with C = 2 is realized by A = 2.4,Ω = 5t
with a small gap size ∆ ≈ 0.05. But unlike the graphene
case66, we do not find C = 3 for the semi-Dirac band
structure in the presence of a laser field.
Moreover, we discovered that the leading order contri-

bution to ∆ is O(A
4

Ω2 ) in the small field amplitude and
large frequency limit. This is revealed by the low energy
effective theory in the high frequency expansion68 up to
O(1/Ω2). The detailed analysis is given in Appendix B.

We would like to emphasize that this leading order con-
tribution is different from either that of the quadratic
band touching point30 O(A4/Ω) or of the Dirac point32

O(A2/Ω).

B. Linearly polarized case

In this work, we consider linear polarization in the x
and y directions to reflect the symmetry of the semi-
Dirac dispersion in our model. When the driven field
is polarized in the x-direction, i.e., the linearly dispers-
ing direction around the M point according to Eq. (6),
Eq. (18) is reduced to

hAB
k (m− n) = te

i

[

3kx
2 +

√
3ky
2

]

Jm−n

(

A

2

)

+ te
i

[

3kx
2 −

√
3ky
2

]

Jm−n

(

A

2

)

+ t′Jn−m(A). (20)

Similarly, if the polarization is in the y-direction, i.e., the quadratically dispersing direction around the M point,
Eq. (18) reads

hAB
k (m− n) = te

i

[

3kx
2 +

√
3ky
2

]

Jm−n

(√
3A

2

)

+ te
i

[

3kx
2 −

√
3ky
2

]

Jn−m

(√
3A

2

)

+ t′. (21)

Fig. 3(c),(d) display the Floquet band structures under
linearly polarized light along the x and y directions, re-
spectively. Unlike circularly polarized light, linearly po-
larized light does not break the time-reversal symmetry32

and therefore the Chern number must be zero. For po-
larization along the quadratically dispersing direction, we
find a gap opening induced at the band touching point.
The gap size is of order O(A2) and can be estimated from
the zeroth order high frequency expansion of the low en-

ergy Hamiltonian in Appendix B. In contrast to the cir-
cular polarization case, the leading order contribution to
the gap is independent of the driving frequency, Ω. On
the other hand, when the polarization is along the lin-
early dispersing direction, the bands remain gapless and
the semi-Dirac band touching point described by Eq. (6)
is split into two single Dirac points. This particular fea-
ture of the Floquet bands can be roughly understood in
the zeroth order high frequency expansion of the lattice
model itself, which is the n = 0 case of Eq. (20):

hAB
k (m− n = 0) = te

i

[

3kx
2 +

√
3ky
2

]

J0

(

A

2

)

+ te
i

[

3kx
2 −

√
3ky
2

]

J0

(

A

2

)

+ t′J0(A). (22)

As long as A 6= 0, the coefficients in front of the phase
factors in eq. (22) do not change signs and the propor-

tion t/t
′
is only renormalized by J0(A/2)/J0(A), which

leads to the splitting of semi-Dirac point into two Dirac
points as J0(A/2)/J0(A) 6= 1 in analogy with different

t/t
′
values in the static Hamiltonian Eq. (2). Moreover,

the two Dirac points are on the ky axis and their separa-
tion in the BZ is proportional to A2 and independent of
Ω, up to leading order in the high frequency limit. This
dependency is again captured by the low energy model
(Appendix B).

V. SPECTRAL FUNCTION

In this section, we examine the electronic spectral den-
sity of our model in both closed and open systems. One
can expand the fermionic operators in the quasimode ba-
sis at time t0,

ckσ (t0) =
∑

α′

φσkα′ (t0) γkα′ , (23)

where γkα′ annihilates a particle in Floquet state kα′.
In a closed system, the electron occupation probability is
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given by

ρk,α = |〈φkα(0)|ψin,k〉|2 , (24)

where |ψin,k〉 is the initial state chosen to be the ground
state of Eq. (2).
In an open system, we consider electrons coupled to

a phonon bath described by Eq. (1). We assume the
reservoir of phonons to remain in thermal equilibrium at
a temperature T . Inelastic scattering between electrons
and phonons will cause the electron distribution function
to relax and ρk,α can be solved using the methods of
Ref. [58].
The pseudo-spin-resolved ARPES spectrum is given by

the lesser Greens function, ig<σσ(k, ω), with pseudospin
labels σ = A,B. The analytical expression is derived in
Ref. [58]:

ig<AA(k, ω) = 2π
∑

mα

δ (ω − [ǫkα −mΩ]) |amkα| 2ρk,α,

ig<BB(k, ω) = 2π
∑

mα

δ (ω − [ǫkα −mΩ]) |bmkα| 2ρk,α,(25)

where amkα, bmkα are the Fourier transformed compo-
nents of the Floquet eigenvectors,

|φkα(t)〉 =
∑

m∈int

eimΩt

(

amkα

bmkα

)

. (26)

Then the total spectral density is A(k, ω) =
Im
[

Tr
(

gR
)]

.58

When the electron occupation probability is taken into
account, the spectral density has an imbalance between
upper and lowerm = 0 Floquet bands. The total spectral
density is a sum over psuedo-spin states i

∑

σ g
<
σσ(k, ω).

It is also possible to measure the momentum resolved
pseudo-spin polarization texture averaged over a period
of the driving laser field, which is obtained from,

Pz (kx, ky) = i

∫

dω

2π

∑

σ

σg<σσ(k, ω). (27)

In the following, we will discuss the momentum and en-
ergy resolved spectral density and the momentum re-
solved pseudo-spin polarization for both closed and open
systems under different polarizations of light.

A. Circularly polarized light

The ARPES spectrum and pseudo-spin textures in a
circularly polarized laser field are shown in Fig. 4. From
the spectral density along the high symmetry line, one
can see the appearance of Floquet side bands. Without
phonons, the system is quenched from its initial state
to the Floquet eigenstate with an electron distribution
density given by Eq. (24). This is a highly nonthermal

state in which the memory of the initial state is retained
and the state does not thermalize58. As a result, the
ARPES spectrum intensity in Fig.4(a-b) exhibits discon-

tinuity at the K point along Γ → K → Γ
′
and anisotropy

at the M point along Γ → M → Γ
′
. The same charac-

ter around K can be observed in the momentum slices
of Pz (kx, ky) in Fig.4(c-d). The asymmetry at K and
M can be understood58. When the initial gauge field is

pointing along the x̂ direction, ρquenchkα around K and M
has a strong angle dependence on the phase angle θ(k)
of the initial ground state. In the presence of a phonon
bath, Fig. 4 shows that the lattice symmetry is retained
in the ARPES spectrum and pseudo-spin textures, indi-
cating that the phonons cause a loss of the memory of
the initial states58 and lead to a nonequilibrium steady
state distribution. In particular, the pseudo-spin texture
with a phonon bath has perfect symmetry around kx. For
A = 1.5,Ω = 5t, the band is predominantly of sublattice
B character47 in the upper half of kx-ky plane while sub-
lattice A dominates the lower half plane. The same phe-
nomenon happens for the counterpart in A = 2.4,Ω = 5t
except for the region near the BZ boundary, where pos-
itive and negative polarizations are separated by nodal
lines. This is a strong indication of a further band inver-
sion compared to A = 1.5,Ω = 5t.

B. Linearly polarized case

For comparison purposes, we plot the ARPES spec-
trum for our model in the presence of linearly polarized
light in Fig. 5. Without phonons, it is noticeable that the
asymmetry along Γ → K → Γ

′
and Γ → M → Γ

′
is no

longer present for both x and y polarization in contrast
with the circular polarization. This is due to the fact that
at time t1 = 0, the initial gauge field is exactly 0 and the
electron distribution is independent of the angle between
the momentum and the gauge field around K and M58.
In the presence of phonons, one can observe the spectral
weight redistribution between upper and lower bands in
all cases.

VI. LONGITUDINAL OPTICAL

CONDUCTIVITY

Although angle resolved photoemission spectroscopy is
a direct measurement of the energy spectrum in the sys-
tem, it can only detect occupied states69. Here we inves-
tigate the electromagnetic response of the system.65,66 In
the following, we will present a thorough study of both
the longitudinal and the Hall optical conductivity. In
this section, our focus is on the longitudinal components
of the ac conductivity, for which the formula is derived
in Appendix A,
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FIG. 4: (Color online) The spectral density of the semi-Dirac lattice model under the circularly polarized light. (a-b)
ARPES spectrum i

∑

σ g
<
σσ(k, ω) for (a) A = 1.5,Ω = 5t and (b) A = 2.4,Ω = 5t along high symmetry lines. Upper

panel: without phonons and for a quench. Lower panel: steady state with phonons at T = 0.01Ω; (c-d) Time averaged
pseudo-spin density Pz (kx, ky) for (c) A = 1.5,Ω = 5t and (d) A = 2.4,Ω = 5t in the first BZ with k · a1 and k · a2 as
x and y axes. Left panel: without phonons and for a quench. Right panel: steady state with phonons at T = 0.01Ω;
(e-f) Time averaged pseudo-spin density Pz (kx, ky) for (e) A = 1.5,Ω = 5t and (f) A = 2.4,Ω = 5t along the high
symmetry line. In both (e) and (f), the pseudo-spin polarization textures show a discontinuity at the K point following
a quench.

Re[σii(ω)] =
1

N

∑

k

∑

m

Dm
uid(k)D

−m
diu (k)(ρku − ρkd)

× −4 (ǫkd − ǫku −mΩ) δ

[ω2 − (ǫkd − ǫku −mΩ) 2] 2 + 2 (ω2 + (ǫkd − ǫku −mΩ) 2) δ2
, (28)

where

Dm
uid(k) =

∑

nl

〈φ̃nku|[
∂hm+n−l

k

∂ki
]|φ̃lkd〉. (29)

Eq. (29) can be seen as a generalization of the Kubo for-
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FIG. 5: (Color online) ARPES spectrum i
∑

σ g
<
σσ(k, ω) for the lattice model embedded in the linearly polarized light

with A = 1.5,Ω = 5t along the high symmetry lines with (a-b) x-polarization, (c-d) y-polarization. Upper panel:
without phonons and for a quench. Lower panel: steady state with phonons at T = 0.01Ω

mula for a Floquet system. The total optical conductiv- ity is comprised of contributions from different Floquet
modes,
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Re[σii(ω)] =
∑

m

Re[σm
ii (ω)],

Re[σm
ii (ω] =

1

N

∑

k

Dm
uid(k)D

−m
diu (k)(ρku − ρkd)

× −4 (ǫkd − ǫku −mΩ) δ

[ω2 − (ǫkd − ǫku −mΩ) 2] 2 + 2 (ω2 + (ǫkd − ǫku −mΩ) 2) δ2
. (30)

It is worth pointing out that Eq. (30) has most of its
weight coming from regions where ω ≈ |ǫkd − ǫku −mΩ|.
In our study, σxx is along the linearly dispersing direction
while σyy is along the quadratically dispersing direction.

A. Circular Polarization

From Fig. 6(a), one sees that σxx and σyy for Ω =
5t, A = 1.5 are similar to each other in profile. Be-
cause of a finite gap in the Floquet band structure, σxx
and σyy only have appreciable contributions from inter
band quasi-electron excitations with ω & ∆ (the gap).
Note that σxx is larger than σyy in the whole frequency
range indicating a smaller effective mass generated by
the laser field along the x-direction compared to the y-
direction. From Fig. 6(b), one sees that both σxx and
σyy for Ω = 5t, A = 2.4 become negative around ω ≈ Ω.
This is a characteristic feature of a Floquet system in the
non-equilibrium steady state due to the non-zero electron
distribution on the side bands. By examining Eq. (30),
one can see that when ω ≈ |ǫkd − ǫku −mΩ| for m = −1,
the numerator can change sign if a quasi-electron can be
excited from the lower band to the upper band by a sin-
gle photon absorption. To illustrate this point, we plot
Eq. (30) with all the Floquet modes for A = 1.5,Ω = 5t
in the top and middle panel of Fig. 7. We notice that
the m < 0 contributions are negative while the m ≥ 0
contributions are all positive for both σm

xx and σm
yy. Over-

all, the m = 0 mode dominates the low frequency regime
while m 6= 0 modes dominate the high frequency regime
of the longitudinal optical conductivity. In Fig. 6(c),
we show the case of large driving frequency of the laser
field: A = 1.5,Ω = 10t, in which a sharp contrast be-
tween the profiles of σxx and σyy are observed. In the
ideal case, the non-zero dc conductivity is due to the
small gap size compared with the broadening parameter.
In both closed and open systems, a finite electron distri-

bution probability above the Fermi level will also lead to
a finite contribution to the dc conductivity.

B. Linear Polarization

Next we turn to the optical conductivity of the linearly
polarized driving field. Fig. 8(a) and (c) display σxx and
σyy for polarization along x and y direction, respectively.
It is obvious from both plots that σxx and σyy have sig-
nificant difference in peak profile, indicating a sharp con-
trast between the gapless and gapped Floquet bands near
the Fermi level. The shift in peak positions of the longi-
tudinal optical conductivity for x polarization (Fig. 8(a))
results from the anisotropy of the band structure along x
and y directions, i.e. the splitting of the semi-Dirac point
into single Dirac points separated along ky. On the other
hand, laser fields polarized along y-direction gives rise to
a negative value for both σxx and σyy in the ideal case.
This feature can be attributed to the gapless nature be-
tween the upper band of m = 0 mode and the lower
band of m = 1 mode while ǫku − ǫkd holds a finite gap.
To illustrate the point, we plot Eq. (30) with the ideal
electron distribution in Fig. 8(b) and (d) corresponding
to (a) and (c) respectively, where the dominant contribu-
tion at low probe frequency shifts from σm=0 to σm=−1

and changes sign by comparing (b) to (d). In both the
quench and phonon panels of Fig. 8(c), the negative sign
of σm=−1 is offset by the inversion in electron distribution
between different Floquet modes and in consequence, the
low frequency conductivity remains positive.

VII. CHERN NUMBER AND OPTICAL HALL

CONDUCTIVITY

Starting from the linear response theory, the optical
Hall conductivity is derived as66

σij(ω) = − 1

N

∑

k,m

[ǫkd − ǫku +mΩ]2 Fm
ijk

ω2 − (ǫku − ǫkd −mΩ)2 − 2iωδ
[

ω2 − (ǫku − ǫkd −mΩ)
2
]2

+ 4ω2δ2
〈Ψ(t0) |[γ†kdγkd − γ†kuγku]|Ψ(t0)〉, (31)

where

Fm
ijk = i

[

∑

l

〈

φ̃lku|∂ki
φ̃l−m
kd

〉

∑

n

〈

φ̃nkd|∂kj
φ̃n+m
ku

〉

−
∑

l

〈

φ̃lkd|∂ki
φ̃l+m
ku

〉

∑

n

〈

φ̃nku|∂kj
φ̃n−m
kd

〉

]

, (32)
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(a) (b)

(c)

FIG. 6: (Color online) The longitudinal and transverse optical conductivity Re[σ] under a circularly polarized laser
field as a function of the frequency of the probe light, in units of e2/h. The driving laser frequency, laser amplitude,
and the Chern number are (a) Ω = 5t, A = 1.5, C = 1, (b) Ω = 5t, A = 2.4, C = 2, (c) Ω = 10t, A = 1.5, C = 1. Top
panel: ideal electron distribution with ρkd − ρku = 1. Middle panel: distribution following a quench. Bottom panel:
steady state distribution with phonons at T = 0.01Ω

is the Berry curvature and

Am
βiα =

1

T

∫ T

0

dte−imΩt 〈φkβ(t)|∂ki
φkα(t)〉 =

1

T

∫ T

0

dte−imΩt
∑

l

∑

l′

eil
′Ωte−ilΩt

〈

φ̃lkβ |∂ki
φ̃l

′

kα

〉

=
∑

l

〈

φ̃lkβ |∂ki
φ̃l+m
kα

〉

,

(33)

is the Fourier transformed Berry connection. In the static
limit ω → 0, Eq.(31), the dc Hall conductivity can be

obtained as

σij(ω = 0) =

∫

BZ

d2k

(2π)2
F̄kd〈Ψ(t0) |[γ†kdγkd−γ

†
kuγku]|Ψ(t0)〉,

(34)
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FIG. 7: (Color online) The longitudinal and transverse
optical conductivityRe[σ] decomposed into different Flo-
quet modes in the ideal case ρkd − ρku under a circularly
polarized laser field as a function of the frequency of the
probe light, in units of e2/h for Ω = 5t, A = 1.5, C = 1.
Top panel: σm

xx. Middle panel: σm
yy. Bottom panel: σm

xy

where

Fkd(t) = i
[〈

∂ki
φkd(t)|∂kj

φkd(t)
〉

−
〈

∂kj
φkd(t)|∂ki

φkd(t)
〉]

,
(35)

is the berry curvature in the real time. The above ex-

pression is in the unit of e2

~
, if we recover the units,

σij(ω = 0) =
e2

h

∫

BZ

d2k

(2π)2
F̄kd〈Ψ(t0) |[γ†kdγkd−γ

†
kuγku]|Ψ(t0)〉.

(36)

In the ideal case, 〈Ψ(t0) |[γ†kdγkd − γ†kuγku]|Ψ(t0)〉 = 1,
Eq.(34) is reduced to

σij(ω = 0) =
e2

h
C, (37)

where C is the Chern number computed as as

C =
1

2π

∫

BZ

d2kF̄kd. (38)

In Fig. 6, the Hall optical conductivity is plotted to-
gether with the longitudinal components for all cases we
have examined in the system with circularly polarized
laser fields. The main difference between the two is the
oscillation between positive and negative values in σxy
for ω ≪ Ω. In particular, for ω ≈ max(ǫku − ǫkd), the
optical Hall conductivity dips sharply into negative val-
ues while the longitudinal components are peaked due to

the van Hove singularity. This can be explained by the
different analytical behavior of the factors that include ω
dependence. In Eq.(30), the frequency dependent factor
is sharply peaked at ǫkd − ǫku while the counterpart in
Eq.(31) changes sign. In the bottom panel of Fig. 7, we
confirm that a sign change can happen within each m in
Eq.(30).

VIII. CONCLUSION AND DISCUSSION

In this work, we addressed the influence of a laser driv-
ing field on a tight-binding model on the honeycomb
lattice with a semi-Dirac dispersion at the low ener-
gies. We studied the effects of both circularly and lin-
early polarized light along two characteristic directions
(reflecting the anisotropy of the semi-Dirac point) and
analyzed different Floquet band structures from the low-
energy effective Hamiltonian obtained in the high fre-
quency limit. Compared to a nearest-neighbor hopping
graphene model, the anisotropic band touching point we
studied exhibits more diversity in gap openings, avoided
crossings, and mixing between different Floquet side
bands. We corroborated the richness by computing the
ARPES spectrum and the pseudo-spin texture within
quench scenario, and one that includes phonon dissipa-
tion. These calculations connect with recent pump-probe
experiments. In addition, we also studied the optical con-
ductivity of the lattice model over the same conditions
(quench and with phonons). The decomposition of the
optical conductivity into different Floquet modes helps
one better understand the Floquet band structure and
connects to experiments by including realistic features of
an electronic system in an open environment.
We would like to point out that the low energy Hamil-

tonian that captures the Floquet bands in our system is
not the same as the semi-Dirac Hamiltonian with mo-
mentum replaced by Peierls substitution,

HSD(k,A) =
(ky +Ay)

2

2m
σx + vF (kx +Ax)σy, (39)

which will only includes the vector potential Ax(t) up
to linear order. Thus, the gap size of leading order
O(A4/Ω2) is not captured correctly. Moreover, for a lin-
early polarized laser field applied along the x-direction,
there is no splitting of the semi-Dirac point into two sin-
gle Dirac-points along the y-direction in Eq.(39). Our
study highlights the fact that even though a leading order
k · p Hamiltonian is a successful low-energy effective for
the static Hamiltonian in equilibrium, its time-dependent
counterpart by Peierls substitution can still hold differ-
ent physical content from that of the correct low energy
model.
Overall, our work broadens the scope for optically con-

trolling band structures with topological band touching
points and presents a detailed, experimentally accessible
set of observables in lattice systems exposed to periodi-
cally driven laser field. The model we studied could be
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(a) (b)

(d)(c)

FIG. 8: (Color online) The longitudinal optical conductivity Re[σ] under a linearly polarized laser field and its
decompositions into Re[σm] as a function of the frequency of the probe light with Ω = 5t, A = 1.5. (a) Re[σ] for
x-polarization, (b) Re[σm] for x-polarization, (c) Re[σ] for y-polarization, (d) Re[σm] for y polarization. Top panel:
ideal electron distribution with ρkd − ρku = 1. Middle panel: distribution with quench. Bottom panel: distribution
with phonons at T = 0.01Ω

realized in modern cold atom experiments in optical lat-
tices, in addition to the solid state systems we mentioned
in the introduction.
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Appendix A: DERIVATION OF LONGITUDINAL

OPTICAL CONDUCTIVITY

In this section we derive the general form of the optical
conductivity66. The current-current correlation function
which quantifies how an electric field applied in the di-
rection î affects the current flowing in the direction î is
given by

RC
ii (q, t, t

′) = −i
〈

TC
[

J i
qI(t)J

i
−qI (t

′)
]〉

, (A1)

where

J i
q(t) =

1√
N

∑

k,σσ′

c†
k+q/2,σ(t)ck−q/2,σ′(t)

∂hσσ
′

k (t)

∂ki
,

(A2)

is the current operator in the interaction representation
evolved from t = t0:

JkI(t) = Uk (t0, t)Jk (t0)Uk (t, t0) . (A3)

The time-evolution operator is given by,

Uk (t, t0) =
∑

α

e−iǫkα(t−t0)|φkα(t)〉〈φkα (t0) |, (A4)

where ǫkα is the quasi-energy and

|φkα(t)〉 =
(

φupkα(t)
φdnkα(t)

)

, (A5)

is the Floquet eigenvector. Thus, Eq. (A4) becomes

Ukσσ′ (t, t0) =
∑

α

e−iǫkα(t−t0)φσkα(t)φ
σ′∗
kα (t0) . (A6)

In the interaction representation,

cIkσ(t) = Ukσσ′ (t, t0) c
I
kσ′ (t0) , (A7)

cI†kσ(t) = cI†kσ′ (t0)Ukσ′σ (t0, t) . (A8)

We expand the fermionic operators in the quasi-mode
basis at time t0 as

cIkσ (t0) =
∑

α′

φσkα′ (t0) γkα′ . (A9)

By combining Eqs.(A7-A9) and then inserting the result
into Eq.(A1), the response function becomes

Rij (q, t, t
′) = −iθ(t− t′)

1

N

∑

k,αβγδ

e
−i

(

ǫ
k−q

2
α
−ǫ

k+
q
2
β

)

(t̄+ tr
2 −t0)

e
−i

(

ǫ
k+

q
2
γ
−ǫ

k− q
2
δ

)

(t̄− tr
2 −t0)

×〈φk+ q

2 β
(t)|
[

∂hk(t)

∂ki

]

|φk− q

2 α
(t)〉〈φk− q

2 δ
(t′) |

[

∂hk (t
′)

∂kj

]

|φk+ q

2 γ
(t′)〉

×〈Ψ(t0) |
[

γ†
k+ q

2 β
γk−q

2 α
, γ†

k−q

2 δ
γk+q

2 γ
] |Ψ(t0)〉

≈ −iθ(t− t′)
1

N

∑

k,αβ

e
−i

(

ǫ
k− q

2
α
−ǫ

k+
q
2
β

)

tr

×〈φk+ q
2 β

(t)|
[

∂hk(t)

∂ki

]

|φk− q
2 α

(t)〉〈φk− q
2 α

(t′) |
[

∂hk (t
′)

∂kj

]

|φk+ q
2 β

(t′)〉

×〈Ψ(t0) |γ†k+ q

2 β
γk+q

2 β − γ†
k−q

2 α
γk−q

2 α
|Ψ(t0)〉, (A10)

where α, β = u, d, u, d represent upper and lower band
in a Floquet mode respectively. In the last approximate

equality of Eq.(A10), we drop the term with fast oscilla-

http://dx.doi.org/10.1103/PhysRevB.93.245416
http://dx.doi.org/10.1103/PhysRevB.91.184301
http://dx.doi.org/10.1103/PhysRevB.91.235133
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http://dx.doi.org/10.1103/PhysRevE.91.030101
http://dx.doi.org/ 10.1103/PhysRevLett.103.047403
http://dx.doi.org/10.1103/PhysRevB.91.155422
http://dx.doi.org/10.1103/PhysRevB.92.165111
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1103/PhysRevLett.102.136401
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tion factor e−i(ǫku−ǫkd)(t+t′)/2. We set

〈φk+ q
2 β

(t)|
[

∂hk(t)

∂ki

]

|φk− q
2 α

(t)〉 =
∑

m

eimΩtDm
βiα(k,q),

(A11)
and rewrite Eq.(A10) as

Rij (q, t, t
′) = −iθ(t− t′)

1

N

∑

k,αβ

e
−i

(

ǫ
k−q

2
α
−ǫ

k+
q
2
β

)

tr

×
∑

m

eimΩtDm
βiα(k,q)

∑

m′

eim
′Ωt′Dm′

αjβ(k,− q)

×〈Ψ(t0) |γ†k+ q
2 β
γk+q

2 β
− γ†

k− q
2 α
γk− q

2 α
|Ψ(t0)〉.
(A12)

Averaged over t+t′

2 , only m = −m′ term of Eq.(A12) has
a contribution:

Rij (q, tr,mode = 0) = −iθ(tr)
1

N

∑

k,αβ

e
−i

(

ǫ
k− q

2
α
−ǫ

k+
q
2
β

)

tr

×
∑

m

eimΩtrDm
βiα(k,q)D

−m
αjβ(k, − q)〈Ψ(t0) |[γ†k+q

2 β
γk+ q

2 β
− γ†

k− q

2 α
γk− q

2 α
]|Ψ(t0)〉.(A13)

By Fourier transform Eq.(A13) with respect to tr, one arrives at

Rij(q, ω,mode = 0) =

∫

dtrRij (q, tr,mode = 0) ei(ω+iδ)tr

= −i
∫

dtre
i(ω+iδ)trθ(tr)

1

N

∑

k,αβ

e
−i

(

ǫ
k− q

2
α
−ǫ

k+
q
2
β

)

tr
∑

m

eimΩtrDm
βiα(k,q)D

−m
αjβ(k,− q)

×〈Ψ(t0) |[γ†k+ q

2 β
γk+q

2 β
− γ†

k− q

2 α
γk− q

2 α
]|Ψ(t0)〉

=
1

N

∑

k,αβ

∑

m

Dm
βiα(k,q)D

−m
αjβ(k,− q)〈Ψ(t0) |[γ†k+ q

2 β
γk+ q

2 β
− γ†

k−q
2 α
γk−q

2 α]|Ψ(t0)〉

ω + iδ −
(

ǫk− q

2 α
− ǫk+q

2 β
−mΩ

) , (A14)

where the longitudinal component can be extracted as

Rii(q, ω,mode = 0) =
1

N

∑

k,αβ

∑

m

Dm
βiα(k,q)D

−m
αiβ (k,− q)〈Ψ(t0) |[γ†k+ q

2 β
γk+ q

2 β
− γ†

k− q

2 α
γk− q

2 α
]|Ψ(t0)〉

ω + iδ −
(

ǫk−q
2 α

− ǫk+q
2 β

−mΩ
) . (A15)

In the limit q → 0, Eq.(A15) is reduced to

Rii(q = 0, ω,mode = 0) =
1

N

∑

k,αβ

∑

m

Dm
βiα(k)D

−m
αiβ (k)〈Ψ(t0) |[γ†k+ q

2 β
γk+ q

2 β
− γ†

k− q

2 α
γk−q

2 α]|Ψ(t0)〉

ω + iδ −
(

ǫk− q

2 α
− ǫk+ q

2 β
−mΩ

)

=
1

N

∑

k

∑

m

Dm
uidD

−m
diu 〈Ψ(t0) |[γ†kuγku − γ†kdγkd]|Ψ(t0)〉

2 (ǫkd − ǫku −mΩ)

ω2 − (ǫkd − ǫku −mΩ) 2 + 2iωδ − δ2

(A16)

with

Dm
uid(k) =

∑

nl

〈φ̃nku|[
∂hm+n−l

k

∂ki
]|φ̃lkd〉. (A17)
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Thus the longitudinal optical conductivity is evaluated as

Re[σii(ω)] ≡
ImRii(q = 0, ω,mode = 0)

ω

=
1

N

∑

k

∑

m

Dm
uid(k)D

−m
diu (k)(ρku − ρkd)

× −4 (ǫkd − ǫku −mΩ) δ

[ω2 − (ǫkd − ǫku −mΩ) 2] 2 + 2 (ω2 + (ǫkd − ǫku −mΩ) 2) δ2
. (A18)

Appendix B: LOW ENERGY EFFECTIVE

HAMILTONIAN

In this section, we derive the low energy time-
dependent Hamiltonian from the lattice model Eq.(2)

which we rewrite here for convenience:

hAB
k (t1) = 2teiA(t1)·δ3 +

∑

i=1,2

teik·ai+iA(t1)·δi

= te
i

[

3kx
2 +

√
3ky
2 +

Ax(t1)
2 +

√
3Ay(t1)

2

]

+ te
i

[

3kx
2 −

√
3ky
2 +

Ax(t1)
2 −

√
3Ay(t1)

2

]

+ 2te−iAx(t1), (B1)

where we used t1 as time to be distinguished from the hopping parameter. By expanding Eq.(15) up to O
(

k2
)

and O
(

A2
)

in the vicinity of D =
(

2π
3 , 0

)

, one arrives at

hAB
k (t1) ≈ −3t (Ax (t1) + px) i−

3t

4

(

Ax (t1)
2 −Ay (t1)

2 − 2Ax (t1) px − 3px
2 − 2Ay (t1) py − py

2
)

, (B2)

where (px, py) is the momentum around D =
(

2π
3 , 0

)

. This can also be written in the compact matrix form as

Hk (t1) =
3t

4

(

−Ax (t1)
2 +Ay (t1)

2 + 2Ax (t1) px + 3px
2 + 2Ay (t1) py + py

2
)

σx + 3t (Ax (t1) + px)σy . (B3)

The dominant features of the band structure can be understood by considering the effective Hamiltonian at
large driving frequency Ω, which is given by68

Heff
k = H0

k +
1

Ω

[

H1
k, H

−1
k

]

+

[

H−1
k ,

[

H0
k, H

1
k

]]

+
[

H1
k,
[

H0
k, H

−1
k

]]

2Ω2

−
[

H1
k,
[

H−2
k , H1

k

]]

+
[

H−1
k ,

[

H2
k, H

−1
k

]]

3Ω2
+

[

H−1
k ,

[

H−1
k , H2

k

]]

+
[

H1
k,
[

H1
k, H

−2
k

]]

6Ω2
, (B4)

where Hn
k is computed from Eq.(15). We will discuss the

form of Heff
k in different polarization of the laser field.

1. Circularly polarized laser field

In the circularly polarized light, one has the following
Fourier components:
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H0
k = 3tpxσy +

(

3t

4
py

2 +
9t

4
px

2

)

σx,

H1
k =

(

3tApx
4

− i
3tApy

4

)

σx +
3tA

2
σy ,

H−1
k =

(

3tApx
4

+ i
3tApy

4

)

σx +
3tA

2
σy ,

H2
k = −3tA2

8
σx, H

−2
k = −3tA2

8
σx, (B5)

By inserting Eq.(B5) into Eq.(B4),

Heff
k =

(

3t

4
py

2 +
9t

4
px

2 − 27t3A2

8Ω2

(

px
2 + py

2 +A2
)

)

σx + 3tpx

(

1− 9t2A2

8Ω2

(

px
2 − py

2 +
A2

2

))

σy +
9(tA)2

4Ω
pyσz.

(B6)

The energies of Eq.(B6) contain a gap ∆ = 27t3A4

4Ω2 at

(0, 0). Notice that we keep px
2 term only for the conve-

nience of momentum expansion. The dispersion is dom-
inated by O (kx).

2. Linearly polarized laser field

In the linearly polarized field along x-direction, the
effective Hamiltonian reads

Heff
k = H0

k =

(

3t

4
py

2 +
9t

4
px

2 − 3t

8
A2

)

σx + 3tpxσy .

(B7)
The spectrum of Eq.(B7) includes two symmetric Dirac
points along y-direction. The distance between the two
band touching points is |∆k| =

√
2A. In the linearly po-

larized field along y-direction, the effective Hamiltonian
reads

Heff
k = H0

k =

(

3t

4
py

2 +
9t

4
px

2 +
3t

8
A2

)

σx + 3tpxσy ,

(B8)

which contains a gap of size ∆ = 3tA2

4 .


