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Multimodal Gait Recognition With Inertial Sensor
Data and Video Using Evolutionary Algorithm

Pradeep Kumar

, Subham Mukherjee, Rajkumar Saini, Pallavi Kaushik, Partha Pratim Roy,

and Debi Prosad Dogra

Abstract—Evolutionary decision fusion has applications in
biometric authentication and verification. Gray wolf optimizer
(GWO) is one such evolutionary decision fusion approach that
can be used to tune the fusion parameters in a multimodal data
acquisition system. Human gait is a proven biometric trait with
applications in security and authentication. However, acquiring
human-gait data can be erroneous due to various factors and mul-
timodal fusion of such erroneous gait data can be challenging. In
this paper, we propose a new decision fusion-based approach to
solve the above problem. Gait data is recorded simultaneously us-
ing motion sensors and visible-light camera. The signals of the mo-
tion sensors are modeled using a long short-term memory neural
network and corresponding video recordings are processed using
a three-dimensional convolutional neural network. GWO has been
used to optimize the parameters during fusion. It has been chosen
based on the underlying hunting strategy that leads to better ap-
proximation of the solution. Interestingly, in our case it converges
quicker than other optimization techniques such as genetic algo-
rithm or particle swarm optimization. To test the model, a dataset
involving 23 males and females has been recorded while they per-
form four different types of walks, including, normal walk, fast
walk, walking while listening to music, and walking while watching
multimedia content on a mobile. An overall accuracy of 91.3% has
been recorded across all test scenarios. Results reveal that the pro-
posed study can further be explored to design robust gait biometric
systems.

Index Terms—Biometric, deep learning, gait analysis, gray wolf
optimizer (GWO), Shadow Motion.

I. INTRODUCTION

N RECENT times, gait is being considered as a useful bio-
metric trait because of its unique advantages over other bio-
metric modalities such as noncontact, hard to fake, and ob-
tainable, from a distance [1]. In literature, researchers have
shown that different features can be extracted by analyzing the
walking patterns of individuals to prove their individuality [2].
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Gait-recognition systems are equipped with multiple character-
istics as follows.

1) Gait can be recognized with low-resolution images and at
a distance from the camera, whereas the other biometric traits,
such as face, iris, or fingerprint, require relatively higher image
resolution to be applicable to authentication applications.

2) Gait can be recognized without subject cooperation as it
can be recorded without a user’s consciousness.

(3) Gait is an unconscious behavior, therefore, it is difficult
to be spoofed.

There are a number of pioneering works in gait recognition
with the help of various acquisition systems such as RGB cam-
eras, floor sensors, wearable and depth sensors. Simple camera
based systems involve usage of analog or digital cameras with
suitable optics for acquiring the gait data. Such systems have
several advantages over other biometric systems because al-
most all gait features such as stride, cadence, static parameters
(e.g., distance between head and pelvis, pelvis, and feet) and
the gait cycle can be directly extracted from the video [3]. How-
ever, these techniques suffer from imperfect segmentation due
to clothing, view variations in cameras with respect to the walk-
ing, changes in gait because of carrying objects, mood or change
in speed [4]. Therefore, various approaches have been proposed
over time to tackle such problems by analyzing human silhou-
ettes by dividing them into segments and assigning weights,
background subtraction, and building three-dimensional (3-D)
models from shadow [5]. Choudhury et al. [6] has proposed a
gait-recognition method by analyzing human silhouettes using
procrustes shape analysis (PSA) and elliptic Fourier descrip-
tors. The authors have combined spatio—temporal features with
statistical and physical parameters with silhouette contours. It
has also been analyzed that existing gait-recognition systems
assume that cameras are placed at locations such that the com-
plete body shape of the person can be observed. However, the
classification rate decreases if cameras are installed at a height
from the ground plane, such as on the rooftops of tall buildings
or on unmanned aerial vehicle (UAVs) for wide area security
operations. This is because the human body area, which is used
to extract gait features, may not be fully captured from such
locations or angles. It becomes more difficult to acquire gait
features when the subject engaged in activities like listening to
music, watching videos in mobile phones, and walking fast in
front of the acquisition device.

Alternatively, wearable sensors based techniques can be used
to acquire data. However, such techniques require appropriate
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placement of the sensors over the body to measure different
walking styles [7]-[9]. Several body locations have been pro-
posed by researchers where sensors can be placed, e.g., hip,
legs, arms, or other parts of the body. The wearable sensors can
be of different types as per requirements such as accelerom-
eters (measure acceleration), gyro sensors (measure rotation),
pressure sensors (measure force when walking), etc. The main
advantage of developing gait-recognition system using wearable
sensor techniques is its provision of unobtrusive authentication
for mobile devices (like mobile phones, personal digital assistant
(PDAs), etc.) containing accelerometers or other sensors. There-
fore, it can be utilized for continuous verification of user’s iden-
tity without his/her intervention. Additionally, sensors readings
are more accurate and does not need any preprocessing in com-
parison to the vision-based approaches. Therefore, in this paper,
we have utilized a wireless body sensor suit popularly known
as “Shadow Motion” along with the conventional video system.
The suit consists of 17 inertial sensor nodes, where each node
is equipped with accelerometer, gyroscope, and magnetometer.
Deep learning has been extensively used in computer vision
for image/video classification, gesture recognition, face recog-
nition, and gait recognition. In these approaches, especially con-
volutional neural network (CNN) has been widely used to ex-
tract features from images or videos that are proven to be better
than the hand-crafted features [10]. In addition, long short-term
memory (LSTM) neural networks have been used by researchers
to model temporal sequences in speech recognition, handwrit-
ing recognition, language modeling, etc. Basically, LSTMs are
a specific type of recurrent neural network (RNN) architecture
that are designed to model long-range dependencies in temporal
sequences more accurately [11]. Since we are using more than
one modality to acquire gait data, it is necessary to adopt a deci-
sion fusion approach that can effectively tune the fusion param-
eters for each modality [12], [13]. Therefore, we have adopted
an evolutionary algorithm to select the fusion parameters [14].
Basically, evolutionary algorithms are highly flexible, easy to
follow, and are robust in responding to any change. Moreover,
these algorithms generate global solution and can be applied to
real-world problems where optimization techniques lead to un-
satisfactory results by generating local optima. Therefore, these
algorithms are gaining attention in the research community, par-
ticularly in real-life applications. Recently, Mirjalili et al. [15]
has proposed gray wolf optimizer (GWO) algorithm that has
been inspired from gray wolves (Canis lupus). The authors have
shown the robustness of the algorithm on 29 test functions where
the results outperformed with existing metaheuristics. Likewise,
Emary et al. [16] has used GWO algorithm to propose a fitness
function for finding the optimal subset of features for accu-
rate classification. The feature subset with the least number of
features and the highest classification accuracy is termed to be
the most optimal. It has also been reported by the authors that
GWO has rendered better classification accuracy and more re-
duced feature size than particle swarm optimization (PSO) and
genetic algorithm (GA) optimizers by experimenting on differ-
ent datasets and using three different initialization methods.
Motivated by the recent developments in evolutionary algo-
rithms and sophisticated deep learning architecture, and with
the emergence of full-body sensors, we have proposed a new

biometric-authentication approach by analyzing human gait
motion captured using shadow device and video camera. Most
existing systems perform in single modality by extracting com-
plex handcrafted features from the raw inputs. We have used
3-D CNNs, which are able to extract features from spatial as
well as temporal dimensions by performing 3-D convolutions;
hence, they capture the motion information from multiple ad-
jacent frames. This multichannel information is then combined
into a final feature representation, which is fed to the LSTM lay-
ers for modeling sequential data. Similarly, data from inertial
sensors are processed using a four-stacked LSTM architecture.
The classification has been performed using Softmax function
and the scores are then fused using GWO-guided evolutionary
algorithm.

The main contributions of the paper are as follows.

1) First, we present a multimodal biometric gait-recognition
method for different walking conditions by fusing video
and 3-D sensor data.

2) Second, deep learning frameworks such as 3-D CNNs and
LSTMs have been utilized to train the models with one
type of walking patterns and tested on three different gait
recordings.

3) Third, an evolutionary algorithm scheme (GWO) has been
implemented to tune the fusion parameters of each modal-
ity to boost the recognition performance of the system. Fi-
nally, a comparison with other optimization schemes has
been presented.

The rest of this paper is organized as follows. We present

a review on the recent development on gait recognition in
Section II. The proposed multimodal architecture is presented in
Section III. Results are discussed in Section I'V. Finally, we con-
clude in Section V by highlighting some of the future extensions
of the presented work.

II. RELATED WORK

In this section, we discuss different gait-recognition systems
that have been proposed so far using vision-based or sensor-
based techniques.

A. Vision-Guided Gait-Recognition Approaches

Wang et al. [17] has proposed an approach of personal iden-
tification from videos based on the gait information. As both
appearance and walking play a crucial role in the recognition of
an individual through gait, they have combined the static features
like body weight and height, and combined them with the dy-
namic features like trajectory and joints angles of the limbs while
moving for person identification. Silhouettes of a person have
been obtained using a simple method of background subtraction
and then the silhouettes are analyzed by PSA method to obtain
the static features. J. Man and B. Bhanu [18] has proposed gait-
analysis methodology that preserves the temporal information
as a single image, thus reducing the requirement storage space
and minimizing the susceptibility to silhouette noise. Finally,
recognition has been performed by merging the features from
original and synthesized data. A model-based gait-recognition
system has been proposed in [19] with the help of leg and arm
movements. The authors have shown that the features obtained
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from the movement of various body parts can be efficient and
discriminate during recognition. Majority of the research work
involving gait pertain to its usage as a biometric feature for rec-
ognizing a person from a distance as typically done in visual
surveillance. For example, a viewing angle variation-based gait
recognition has been proposed by Kusakunniran ez al. [20]. They
have proposed a regression-based view transformation method
to address varying view angles. It has been observed that cor-
relation exists between gait features across the views captured
from various angles, and a regression has been employed to
represent this correlation.

Recently, deep learning approaches have been successfully
used by researchers to extract gait characteristics from videos.
Wu et al. [21] has proposed a deep CNN model that is able
to recognize changes in gait patterns that help in validating the
change in individuals. The model has been trained using a small
dataset, and it has been evaluated on cross-view and cross-walk
scenarios as well. In [22], a CNN model with seven convolu-
tional and pool layers followed by a fully connected layer with
4096 units and a softmax classifier has been proposed for gait
recognition. Their model is robust to viewing angle’s change.
With the growing popularity of CNNs and deep learning, these
techniques are being experimented and often applied these days.
Hammerla er al. [23] has explored CNN- and LSTM-based ap-
proaches for developing a human-activity recognition system
with gait as a biometric feature. They have experimented on
three datasets with data captured during the subjects wearing
different inertial sensors. A simulation-based methodology to
generate synthetic video frames for data augmentation of gait
sequences has been proposed in [24]. It has been observed that
the synthetically generated data retains the identification traits
of the subjects. Aforementioned existing works are either de-
pendent on handcrafted features or consider data from single
trial to build a gait-recognition system. In this paper, visual fea-
tures are extracted with the help of 3-D CNNs by analyzing the
spatial and temporal dimensions of the gait data. Our method-
ology has been tested on four different walk sequences that are
commonly performed by humans.

B. Sensor-Guided Gait-Recognition Systems

Preliminary work in sensor-based gait recognition can be
found in [25] and [26] where the authors have utilized ac-
celerometer sensor to identify the individuals. Mntyjrvi et al.
[25] has tied the accelerometer device on the subject’s back to
record the gait data and then processed the data using correla-
tion, histogram, and frequency-based techniques. The authors
have reported signal correlation method as the best way for gait
recognition. L. Rong et al. [26] has recognized the gait patterns
with the help of dynamic time warping matching algorithm. The
authors have divided the acquired signals into gait cycles and
extracted the relevant features where an equal error rate of 6.7%
has been recorded while the subjects walk at normal speed. The
use of inertial sensors can also be found in the medical domain.
For example, researchers have developed solutions for various
rehabilitation and diagnosis systems using gait analysis [27],
[28]. Yang et al. [29] has developed a poststroke analysis system
using two inertial sensors attached at the midpoint of each shank.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 5, MAY 2019

(a) (b)

Fig. 1.  Pictorial representation of the Shadow Motion body sensor. (a) Sensor
suit wore by a user. (b) 3-D skeleton view of the user.

T. T. Ngo et al. [30] has proposed a methodology to over-
come the sensor orientation inconsistency and to segment ac-
tion signal. Support vector machine (SVM) classifier has been
used to classify five gait cycles with an accuracy of 93.36%.
Integration of inertial and depth sensors (RGB-D) sensors for
human gait identification has been proposed in [31]. The au-
thors have extracted gait features from accelerometer readings
in the eigenspace and by analyzing 3-D dense trajectories for
RGB-D sensor. The recognition has been performed with the
help of SVM classifier. Deep learning approaches have also
been used in [27] and [32]. A CNN-based methodology has
been proposed for gait assessment in multiple sclerosis using
inertial (gyroscope, accelerometer) sensors in [27]. The training
data consists of eight healthy participants who have performed
6-min walk in five different conditions. Cohen-D (Effect size)
and #-test (p value) techniques have been used to compare the
performance of different features in separability of the three
groups in the testing dataset. Likewise, an integration of CNNs
and RNNs has been proposed in [32] to automatically extract
features from different motion sensors for various classification
tasks including car tracking, activity recognition, and gait recog-
nition. Majority of the existing methods use limited number of
inertial sensors, which are positioned at specified body loca-
tions, hence, do not cover the complete gait aspect. Therefore,
we have utilized the full body sensor setup that can capture large
variations in human gait. Also, sensor fusion with the help of
optimization has not been tried earlier. This makes our proposed
method distinct and accurate.

III. PROPOSED SYSTEM

To the best of our knowledge, no such work exists that fuses
sensor as well as video data with the help of an evolutionary
framework to recognize human gaits. Therefore, we have pro-
posed a methodology that uses multiple criteria obtained using
individual learning framework and fuse them to achieve the
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Fig. 2.

objective. We present the details of the proposed gait-
recognition system that has been built using inertial sensors
and video data. For inertial sensor data, we have used Shadow
Motion wireless body suit. The suit is a complete solution for
many applications such as animation, sports, biomechanics re-
search, gait analysis, and posture analysis. The body-sensor suit
is portable and wireless, and it does not require cameras or a
permanent studio, thus making it easy to use.

A pictorial representation of the complete setup is shown in
Fig. 1(a) where a user is walking by wearing the full body suit,
and the corresponding 3-D representation of the human skeleton
is depicted in Fig. 1(b).

The suit consists of 17 precision inertial sensors nodes and
2 pressure insoles that provide full body tracking.! Each node
is equipped with three different sensors, namely accelerometer,
gyroscope, and magnetometer that provide access to the 3-D
raw data at a sampling rate of 100 Hz with the help of the
software development kit. We have used this setup to acquire 3-
D skeleton information from the sensors, and simultaneously a
video camera is used to acquire the gait sequences of every user.
Thus, the system has a total of four modalities, i.e., three inertial
sensors and a video recorder, which are used to develop a gait
biometric system. The flow diagram of the proposed framework
is shown in Fig. 2, where we have combined multiple modalities
to improve gait analysis. A 3-D CNN with stacked convolutional
layers and a stack of LSTM layers is used for the analysis of
optical flow fields in successive frames in video data sequences.
In this architecture, we have considered 25 frames of size 224 x
224 as inputs to the 3-D CNN model. Next, we have applied 3-D

!https://www.motionshadow.com//

Convolution +
Max- Pooling

L ®
—— [ ®
—
- [ ®
——> —
o @
Fully Connected
Layer
—_— Samd

Convolution +

Max- Pooling Reshape Layer

Architectural detail of the proposed multimodal human-gait recognition using video and sensor fusion.

convolutions witha 3 x 3 x 3 kernel. To increase the number
of feature maps, multiple convolution operations are applied at
each location starting from 64 with a multiplication of 2 at each
layer. Similarly, we have applied Max pooling of size 2 x 2
with a stride of 2 in each layer. With max pooling, the size
of the resultant image is reduced while retaining the valuable
information. It also reduces the number of parameters within
the model. The operation is used to make feature detection
invariant to scale and orientation changes [33]. The flow fields
extracted from successive frames justify the use of LSTMs as
they are well known for their capability to model sequential
data. Sensor data for each corresponding video are collected
using accelerometers, gyroscope, and magnetometers, each of
which has 3-D information and processed with the help of four
stacked LSTM layers. The classification has been performed
using Softmax function that returns the probability score of
each class in the range [0,1] that add up to 1. Next, we have
used these scores and implemented GWO algorithm to improve
the gait-recognition performance by combining all modalities
of the architecture. In the subsequent sections, we present each
component separately.

A. 3D CNNs

CNNss are driving advances not only in fields like whole im-
age classification but also in localization tasks, bounding box
recognition, and pixel-pixel image segmentation, etc. CNNs
usually consist of two parts: 1) stacked convolutional layers,
which act as feature extractors and 2) fully connected networks,
which classify based on the feature maps extracted by the con-
volutional layers. In 2-D CNNs, 2-D convolution is performed
in the convolutional layers to extract features maps from a local
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neighborhood from the feature maps consisting of the previous
layer. Each feature map is then passed through a nonlinear acti-
vation and then passed on to the next layer. It is to be noted that
2-D CNNs consider all inputs as images, and they extract spatial
features maps based on the objects inside the image. However,
when applying to video analysis, it is desirable to capture the
motion information encoded in successive frames. Ji et al. [34]
has achieved excellent classification results for human-action
recognition in videos using 3-D CNNs. 3-D convolutions com-
pute features from both spatial and temporal dimensions. The
3-D convolution is achieved by convolving a 3-D kernel to the
cube formed by stacking multiple successive frames together.
By this construction, the feature maps in the convolution layer
are connected to the successive frames in the previous layers,
and hence, capture motion information. The value at position
(x,y, z) on the jth feature map in the ith layer is given in (1),
where f is the activation function, C; is the size of the 3-D kernel
along the temporal dimension, and w{/y, is the (a, b, ¢)th value
of the kernel connected to the mth feature map in the previous
layer

Ai—1 Bi—-1Ci—-1
Vit =f (bij I w?jbrfzv((f%irswb)(ﬂc)) :

m a=0 b=0 c=0
(1)

It is to be noted that one 3-D kernel can extract only a single
spatio—temporal feature since the kernel weights are replicated
across the cube; hence, multiple filters are stacked together for
extraction of multiple feature maps at each layer. The number of
filters is increased with successive layers for extraction of mul-
tiple types of features from a set of low-level features extracted
at the initial layers.

B. Long Short-Term Memory

LSTMs are a special form of recurrent neural network (RNN).
RNNs can use their neural feedback connections to store rep-
resentations of their recent inputs in the form of activations.
However, the main disadvantage of an RNN lies in its inabil-
ity to model long term dependencies as compared to LSTMs.
LSTMs are powerful sequence classifiers and are often used to
model complex sequential data. Like RNNs, an LSTM can also
be unrolled in time where each time-step represents a separate
input state. It is to be noted that each input state is related to
its previous and future states and is not mutually exclusive, i.e.,
sequential. An LSTM node has four distinct blocks as shown in
Fig. 3, which provide the ability to learn long-term and short-
term dependencies.

1) Cell state: The cell state c(t) in Fig. 3 is identical to a con-
veyor belt that runs through every time-step with only few
linear interactions. The cell state carries information from
the previous time-steps in the form of activations. LSTMs
have the ability to add or remove necessary information
its cell state.

These operations are done via gates, namely input and
forget gates. They are composed of a sigmoid activation
layer followed by pointwise operation.

2) Forget Gate: The forget gate consists of a dense net-
work followed by a sigmoid activation. The dense layer

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 5, MAY 2019
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Fig. 3. Representation of a LSTM node with three gates and cell state.

is trained to output a weighted representation based on
the information available, which is then converted into a
binary representation by the sigmoid activation. This is
followed by a pointwise multiplication, which masks un-
necessary data on the cell state but allows the necessary
values.

3) Input Gate: The input gate decides what data are to be
added to the cell state. A tanh activation function is applied
on the input data. The gate like the forget gate consists of
a dense network followed by sigmoid activation. Based
on the input data, the dense network outputs a weighted
representation adaptively, which is then converted to a
binary format by the sigmoid layer. These weights are
then multiplied with the input data and added to the cell
state.

4) Output Gate: This gate provides an output based on the
cell state data and the input into the corresponding time-
step. The dense layer followed by the sigmoid activation
is used to perform a weighted representation of the input
data, which is then multiplied with the cell states data.
The output of the pointwise multiplication operation is
the output of the corresponding cell state.

The activation of different gates is calculated using (2)—(7),
where h;_; is the previous output and z; denotes the current
input to the LSTM node. The terms W;, W, W¢, and W, de-
note the weight matrices corresponding to input gate i, forget
gate f, cell C, and output gate o activation vectors, respectively.
Similarly, b;, by, bc, and b, denote biases corresponding to 7, f,
C, and o gate activation vectors, respectively. o is the sigmoid
function, tan h is the hyperbolic tangent activation function, and
hy is the current output. This way, LSTMs can adapt themselves
to any kind of sequence and learn from them

fe=0Ws - [hi—1, 2] + by) 2
iy = o(Wi - [hi_1, 2] + b;) 3)
C; = tanh(We - [hy—1, 2] + be) (4)
Cy = fi % Coy + iy % Cy (5)
op =o(W, + [hy—1, 2] + by) (6)
ht = o x tanh(C}). @)
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In our implementation, we have flattened all the feature maps
F € RT*7%512 for each corresponding frame in the 3-D con-
volutional layers mentioned in Section III-A to form a vector
D € R (T¥7+512) "Each vector D is then fed into the corre-
sponding time-steps of an LSTM layer. Since the number of
frames in each video sample is 25, hence, there are 25 cor-
responding time-steps in the LSTM layer. It has been experi-
mentally noted that LSTMs tend to overfit to the training data
without proper regularization and parameter tuning due to the
large number of parameters involved in the learning procedure.
Srivastava et al. [35] has introduced an efficient method to pre-
vent these networks from overfitting known as dropout regular-
ization. In a dropout layer, some time-step outputs inside the
network layer are randomly dropped along with their connec-
tions and no longer considered to be a part of training process.
This method is used only during the training process. It forces
the classifier to learn more robust features such that it is able to
classify with almost no drop in performance even when dropout
is applied on it.

C. GWO Scheme

GWO has gained a lot of popularity in recent years and is
being used in a varied number of domains. The optimizer has
been proposed by Mirjalili et al. [15] to give competitive or
better performance in terms of exploration and exploitation of
the search space, avoidance of the local minima, and faster con-
vergence in comparison with existing metaheuristic algorithms
like PSO, differential evolution, gravitational search algorithm,
etc. Basically, GWO is a metaheuristic optimization technique
that derives its motivation from the 4-level leadership hierarchy,
namely, alpha, beta, delta, and omega, and the social behavior
followed by the gray wolves while catching prey. The alpha
wolves are the highest in the leadership hierarchy and their de-
cisions are followed by the entire pack of wolves. The next in
hierarchy are the beta wolves, which help the alphas in decision
making or other pack-related activities. They obey the alphas
and make sure the rest of the pack also does the same. The last
in hierarchy are the omega wolves that form the lowest level of
wolves. They have to obey all their superiors and are the last
ones to eat in the pack. The wolves that do not fall under the
category of either alpha, beta, or omega are termed as the delta
wolves. These obey the alpha and beta wolves but command the
omega wolves.

Mathematical model for social hierarchy: The range of possi-
ble population is generated in the feasible domain. The solution
in the population with the best fitness is termed as alpha, the
second best as beta, the third best as delta, and the rest are con-
sidered to be as omega. Another important behavior mimicked
by GWO algorithm is their hunting behavior. In order to hunt
the gray wolves first encircle the “prey,” which is defined as
the optimum point. Then hunt the prey, which is usually guided
by the alpha wolf. However, the beta and delta wolves might
also take part in hunting occasionally. It is supposed that the
alpha, beta, and delta wolves have better knowledge of the prey
and, hence, their positions is used by the other wolves to update
their positions as well, which is nearer to the prey. An overview
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Fig. 4. Position update of wolves toward the prey with respect to the values

of alpha, beta, delta, and omega.

of the position update of wolves toward the prey with respect
to the values of alpha, beta, delta, and omega is depicted in
Fig. 4. The encircling procedure of prey by gray wolves during
the hunt is defined in (8)—(11), where ¢ represents the current
iteration; X (¢) and X, (¢) are the position vectors of the wolf
and the prey, respectively. The terms A, C, and D are the coef-
ficient and difference vectors, and a is the vector that linearly
decreased from 2 to 0. r; and r9 are the random vectors, which
allow wolves to reach any position

D =[C-X,)-X() ®)
X(t+1)=X,(t)—A-D )
A=2a-m-7a (10)
C=2.7 (11)

The positions of the prey are estimated from the positions
of the alpha, beta, and delta wolves’ positions and the rest of
the wolves update their positions around the prey. In this paper,
we have implemented GWO to tune the fusion parameters of
the proposed multimodal gait recognition. Since four different
modalities have been fused together, therefore, four weights are
optimized using the algorithm. Thus, the search space for opti-
mization becomes 4-D in nature. The optimization function Oy
is defined in (12), where Wy, Wy, W3, and W, are the weight
parameters corresponding to Ve, Vinag, Vayro, and Viiq, which
defines the validation accuracies of accelerometer, magnetome-
ter, gyroscope, and video data, respectively

Of - Wl * V;cc + W2 * Vmag + W3 * V},‘yro + W4 * V:/id
(12)
Similarly, the fitness function F'it is designed to minimize the
classification error and is defined in (13). The vector a is for-
mulated as per the number of iterations defined in (14). The
complete procedure of GWO-based weight optimization is
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Algorithm 1 GWO-Based Weight Optimization.
Require: Size of the population of wolves (Popsize),
Number of iterations (Numitr), Number of variables in the
function to be optimized (Novar) (in this study Novar = 4,
i.e., W1 5 WQ, Wg, and W4)
Ensure: Find global optima for the function being
optimized

1: for i = 1: Popsize
2: for j = 1: Novar
3: Generate a random number in the feasible
space
4. end
5: Add the generated wolf to Population
6: end
7: for ¢ = 1: Numitr
8: Evaluate fitness Fit;, for each wolf % using (13)
9: Find the alpha (a), beta (b) and delta (d) wolves
10: for i = 1: Popsize
11: Evaluate the D,,, Dy, D, for the ith wolf using
(®)and (11)//D,, D, D, are the difference vectors
from the ¢th wolf to a, b, and d wolves, respectively.
12: Evaluate Upd,, Upd;, and Upd,; using (9), (10),
and (14) //Upd is update for corresponding wolf.
13: Evaluate NewPos = (24 +U7§d” +Upda)
NewPos is the new position
14: Evaluate NewFit (New fitness) of the ith wolf
using (13)
15: if Fit; < NewFit
16: Update the ith wolf with NewPos
17: end
18: end

19: return alpha //global optima for the function

defined in Algorithm 1

Total Number of Samples
Fit = 13
! Correct Prediction 3)
4= 9% Iteratlol.ls (14)
max Iterations
IV. RESULTS

We first discuss the dataset that has been recorded using
Shadow Motion suit and video camera. Next, we present the
results obtained using the multimodal architecture. Finally,
evolutionary-algorithm-based gait-recognition results are pre-
sented.

A. Dataset Description

A total of 23 participants including 19 males and 4 females
have been enrolled for dataset collection. Four different walking
styles that are usually performed in daily routine have been
included in the study. None of the participants has been trained
prior to the recording. Therefore, the actions performed by
the volunteers are unsupervised, natural, and without any
constraints. The length of the walk has been set to 6 m, and each
walk has been performed by every participant after wearing the

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 5, MAY 2019

Slow walk Video watch Listen music

Fast walk

Fig. 5. Examples of the four walks (columnwise) considered in the dataset
when performed by a: (a) male participant and (b) female participant.
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Fig. 6. Plots of different walks when performed by a user. The plots are

corresponding to the readings of the different sensors and the video.

Shadow Motion suit. Corresponding video has been recorded
using a front-facing RGB camera. Calibrated data from all
sensor nodes have been recorded through accelerometer,
gyroscope, and magnetometer. Sample frames while walking
are presented in Fig. 5. Corresponding readings from each
sensor and the video for each type of walk are plotted in Fig. 6
when performed by a user.

A total of 92 (i.e.,, 23 x 4) walking sequences have been
recorded for carrying out the analysis. Next, a windowing tech-
nique has been used to process the data for each modality to
represent the temporal sequence. The sensor data have been di-
vided into multiple files with the help of a window consisting
of 26 frames. Similarly, video data have been processed with a
window consisting of 25 frames. The window size has been de-
termined experimentally. A pictorial representation of the data
segmentation is shown in Fig. 7.
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M Video Frames

(b)

Fig. 7. Segmentation of each type of walk for processing. (a) Video data have
been processed with a window of size 25 frames. (b) Sensor data have been
partitioned with 26 frames.
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Fig.8. Gait-recognition performance for each type of walk with unimodalities.

Note: A-Accelerometer, M-Magnetometer, G-Gyroscope, and V-Video.

B. Gait Recognition Using Single Modality

The training of both networks has been performed using the
data acquired by “normal walk” only, whereas the robustness of
the architecture has been tested on different walk sequences. For
video, 3-D CNN has been utilized to extract gait features, which
are then fed into the LSTM classifier for gait recognition. A
learning rate of le — 3 has been used with RMSprop optimizer
and a decay of le — 6 too. The weights of the network have
been initialized using the Xavier initialization that initializes the
weights in such a manner that the variance remains the same.
This helps in keeping the signal from exploding to a high value
or vanishing to zero. Similarly, a 4-layer LSTM stack has been
utilized to process the gait readings acquired from different
sensors of Shadow Motion. The results of each modality as
per the different walk scenarios are depicted in Fig. 8, where
maximum accuracies of 82.61%, 95.65%, and 82.61% have
been recorded for fast walk, video-watching walk, and music-
listening walks using magnetometer sensor, respectively. The
minimum accuracy has been recorded with gyroscope sensor
readings across all modalities for all types of walk.

Since we have used windowing technique to process the
video and sensors data, experiments have also been carried
out by varying window size to decide an optimum window
size for obtaining discriminative gait features. Likewise, the im-
pact of the network depth has also been investigated to analyze

gait-recognition performance. The analysis has been shown in
Fig. 9, where it can be seen from the Fig. 9(a) that a window size
of 26 frames for sensor data and 25 frames for videos results in
higher performance. Depth of the network has been varied by
stacking different LSTMs. It can be seen from Fig. 9(b) that,
a 3-layer stack in video sequences and 4-layer stack in sensors
results in higher recognition. The reason of low accuracies in
small windows is due to the lack of temporal information to
learn an effective gait model. However, while increasing the
depth of the network, the accuracy remains almost the same or
varies insignificantly because the network can learn more robust
features with larger depths.

C. GWO-Based Multimodal Gait Recognition

Here, we present the gait-recognition rates by performing a
weighted fusion of all the four modalities including sensors and
the video using GWO optimizer. The optimization function and
the fitness criteria are evaluated as per the formulas given in
(12) and (13), respectively. The initial population has been set
between 2 to 70 and the number of iterations varied from 2 to 15.
Fast convergence has been noticed in the GWO algorithm where
it has taken only 7 iterations to reach optimum solution with
population as 9. The values of the four weights have been found
as0.8163,0.239,0.8541, and 0.45 for accelerometer, gyroscope,
magnetometer, and video data, respectively. The results of the
optimization are shown in Fig. 10, where the GWO optimizer
performs better with a margin of 8.69% and 4.35% in fast walk
and music-listening walk, whereas in the video-watching walk
no improvement has been recorded when compared with the
magnetometer-based gait recognition.

D. Comparative Study

To show the effectiveness of GWO algorithm, a comparison
with other evolutionary algorithms has been performed. For this,
we have tuned the fusion parameters with PSO [36] and GA
[37]. GA is a metaheuristic algorithm that derives its inspiration
from the Darwin’s theory of evolution. It makes use of the
criteria of inheritance and the survival of the fittest. It works on a
population of chromosomes, i.e., solutions in the feasible search
domain and updates the population via crossover and mutation
operators. Crossover helps in creating children chromosomes by
taking the aspects from their parents. Mutation helps in inducing
a change in the chromosomes in order to increase the possibility
of avoidance of local minima or maxima. Similarly, PSO is an
optimization algorithm that helps to mimic the behavior of the
swarm of birds or school of fish. These creatures wander in group
while maintaining a safe distance from one another and also have
the tendency to reach a fixed destination. In the swarm, each bird
or fish helps its neighbors to update their positions with respect
to them, thus, ensuring that the whole group travels together and
in the right direction. This algorithm also works on a population
of solutions in the feasible domain and the value of each particle
is updated so that an optimal point is reached. The optimization
and fitness functions are same as those for GWO optimizer. We
have recorded similar performance of all the three algorithms.
However, the convergence rate varies for all the algorithms.
Therefore, we have shown a comparison among the convergence
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Fig. 11.  Convergence comparison between different evolutionary algorithms.

to minimize classification error in different iterations. Fig. 11
depicts the variation in error as per the number of iterations
for the 3 evolutionary algorithms, where GWO takes only 7
iterations to reach optimum solution in comparison to GA and
PSO optimizers that have converged in 42 and 97 iterations,
respectively.

and sum from the sensors data. The training has been performed
using “normal-walk™ data while other walks have been used
for testing. Average accuracies of 83.57% and 71.34% have
been recorded using SVM and RF classifiers with magnetometer
readings, whereas the proposed GWO-based system performs
with an average accuracy of 91.3%.

In addition, a comparison with state-of-the-art gait-
recognition techniques has been performed. For this experiment,
publicly available CASIA Gait Dataset B has been used. The
dataset contains videos of 124 subjects captured from different
view angles. We have used 90° angle recordings for compara-
tive analysis, and experiments have been performed by focusing
on two normal and two carrying sequences [38]. Likewise, Zou
et al. [31] has proposed a gait-recognition system using ac-
celerometer and RGB-D sensors. The authors have used SVM
classifier for gait identification. Their dataset contains gait se-
quences of normal and fast walks performed by 10 individuals.
The comparison is shown in Table I. It may be observed that
the proposed method outperforms both of the above-mentioned
state-of-the-art techniques.

Zhttp://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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V. CONCLUSION

In this paper, we have proposed a multimodal gait-recognition
approach using Shadow Motion sensor and video sequences. We
have found that the walking pattern of every individual person
depends on the activity in which the user is engaged. Therefore,
we have analyzed different walking patterns of individuals with
four different walks, namely, normal walk, fast walk, walking
while listening to music, and walking while watching video on
mobile. Data from three different sensors, i.e., accelerometer,
gyroscope, magnetometer, and video have been acquired. 3-D
CNNs have been utilized to process the videos and to extract
spatial and temporal features, which are then processed using
LSTMs. Similarly, another LSTM architecture has been used to
model the inertial sensors data for gait recognition. Finally, an
evolutionary algorithm (GWO) has been implemented to fuse
all modalities to enhance the gait-recognition performance. An
average accuracy of 91.3% has been recorded using the GWO
optimizer on all walk sequences when training is performed
on normal-walk data. In future, the work can be extended by
exploring other evolutionary algorithms that can tune the fusion
parameters effectively.
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