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Abstract: Schizophrenia spectrum disorders (SSD) are complex mental disorders, and while treatment
with antipsychotics is important, many patients do not respond or develop serious side effects.
Genetic variation has been shown to play a considerable role in determining an individual’s response
to antipsychotic medication. However, previous pharmacogenetic (PGx) studies have been limited
by small sample sizes, lack of consensus regarding relevant genetic variants, and cross-sectional
designs. The current study aimed to investigate the association between PGx variants and long-term
clinical outcomes in 691 patients of European ancestry with SSD. Using evidence from the literature
on candidate genes involved in antipsychotic pharmacodynamics, we created a polygenic risk score
(PRS) to investigate its association with clinical outcomes. We also created PRS using core variants
of psychotropic drug metabolism enzymes CYP2D6 and CYP2C19. Furthermore, the CYP2D6 and
CYP2C19 functional activity scores were calculated to determine the relationship between metabolism
and clinical outcomes. We found no association for PGx PRSs and clinical outcomes; however, an
association was found with CYP2D6 activity scores by the traditional method. Higher CYP2D6
metabolism was associated with high positive and high cognitive impairment groups relative to
low symptom severity groups. These findings highlight the need to test PGx efficacy with different
symptom domains. More evidence is needed before pharmacogenetic variation can contribute to
personalized treatment plans.

Keywords: schizophrenia; pharmacogenetic; polygenic risk score; antipsychotic; pharmacokinetic;
pharmacodynamic; metabolism; cardiometabolic syndrome; genotyping; Cytochrome P450

1. Introduction

Schizophrenia spectrum disorders (SSD) are severe mental disorders that affect around
1% of the global population [1]. Various combinations of positive symptoms (i.e., hallu-
cinations), negative symptoms (i.e., social withdrawal), and cognitive impairments (e.g.,
memory problems) contribute to its impairments on quality of life and mortality [1,2].
Despite antipsychotic medication being the mainstay treatment, their effectiveness is highly
variable; up to 50% of patients do not experience symptom relief or experience adverse drug
effects [3–5]. The first generation of typical antipsychotics (TAP), including amongst others
chlorpromazine and haloperidol, is effective in improving positive symptoms. However,
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TAP often causes motor or extrapyramidal side effects (i.e., tardive dyskinesia) [3,6]. Atypi-
cal antipsychotics (AAP), such as olanzapine and risperidone, may cause cardiometabolic
complications [6,7]. Clozapine, another AAP, is licensed for treatment-resistant SSD and
requires monitoring for blood abnormalities as it may cause agranulocytosis [6]. Both
classes of antipsychotics have shown limited efficacy for negative symptoms and cognitive
impairments, which could be attributed to the existence of distinct pathophysiological
mechanisms [7–9]. The failure of antipsychotic treatment has been attributed to clinical
(e.g., age of onset), demographic (e.g., gender), environmental (e.g., smoking), and genetic
factors [4,5].

Pharmacogenetics (PGx) aims at optimizing the application of antipsychotics in SSD
by tailoring treatment to individuals’ genetic profiles [10,11]. Specifically, PGx investigates
how gene variants affect drug absorption, metabolism, and action to optimize treatment
by identifying biomarkers that can predict medication response and tolerability [10,11].
Traditional PGx research has focused on single nucleotide variants (SNVs) involved in the
pharmacodynamics of antipsychotics, such as those affecting dopamine (DA) and serotonin
(5-HT) receptor systems, but these have shown limited clinical utility due to their weak
effect sizes [3,12]. More recently, polygenic risk scores (PRS) have become a powerful tool
to integrate multiple risk SNVs that may predict treatment response [13].

However, PGx PRS studies in antipsychotic response have been limited over the
past two decades. In 2000, Arnaz and colleagues identified six serotonin receptor related
SNVs that predicted clozapine response in SSD patients with a 76.7% success rate [14].
However, this approach did not systematically incorporate all SNVs. In 2016, Zhang
et al. performed a meta-analysis and found a significant association between a PRS of six
SNVs and antipsychotic-induced weight gain (AIWG) [15]. Due to the extensive meta-
analysis required to consolidate reliable findings from individual candidate gene studies,
this method is frequently underutilized. As a result, there is a growing trend of using
PRS for disease-specific traits, such as SSD PRS, to predict treatment response [16]. This
approach might capture a small true effect which may be confounded by the disease SNVs
themselves. Furthermore, these PRSs often overlook important PGx SNVs involved in drug
metabolism, such as those of CYP2D6 and CYP2C19 enzymes [16–20].

Rare functional SNVs in these enzymes account for a significant proportion of genetic
variability in antipsychotic metabolism and can be used to classify an individual’s metabo-
lizing phenotype (i.e., genotype–phenotype prediction) as poor (PM), intermediate (IM),
normal/extensive (NM), and rapid/ultra-rapid (RM/UM) [21]. Individuals with CYP2D6
PM, which occurs in 10% of Europeans, are thought to be at significantly higher risk for
adverse drug events and lack of response to antipsychotics compared to other metaboliz-
ers [12]. Consequently, drug regulatory agencies have developed dosing guidelines for
these genes, although there is poor agreement amongst them [22]. For example, the Dutch
Pharmacogenetics Working Group has provided dosing guidelines for CYP2D6 metabolism
and several antipsychotics, but only two are deemed actionable by the US Food and Drug
Administration and the European Medicines Agency [22]. The lack of consensus amongst
regulatory bodies may attributed to inconsistent research findings on the true effect of these
genetic variations [22].

The current study sought to investigate the effects of PGx genes PRS on long-term
clinical outcomes in SSD, including cognitive, positive, and negative symptom trajectories,
as well as on cardiometabolic complications. Our approach involved creating PRS based
on key PGx SNVs, such as those found in genes responsible for antipsychotic response
and metabolism. Additionally, we delved into the functional antipsychotic metabolizing
status of patients, specifically their CYP genotype predicted activity scores, and analyzed
its impact on the clinical outcomes.

We hypothesized that combining significant SNVs identified from a meta-analysis of
candidate gene studies into a PRS would increase predictive power and result in a signifi-
cant association with clinical outcomes. Furthermore, we proposed that PRS for CYP2D6
and CYP2C19 enzymes would be effective in determining an individual’s metabolizer
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status and would be associated with clinical outcomes. This study took on a polygenic
approach to determine the involvement of key PGx variants on long-term clinical symptom
trajectories and cardiometabolic parameters.

2. Materials and Methods
2.1. Study Design and Participants

The present study is situated within the framework of the genetic risk and outcome
of psychosis (GROUP) cohort [23]. GROUP is a comprehensive, six-year, prospective
national study in the Netherlands, which aimed to investigate the roles of genetic and
environmental factors that contribute to the expression of psychosis. GROUP involved
36 partner mental institutions and university medical centers (Amsterdam, Groningen,
Utrecht, Maastricht). Clinicians working within these institutions screened patients for
eligibility based on the following inclusion criteria: (1) Have schizophrenia spectrum
disorder according to the 4th edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV), (2) be between the ages of 16–50, (3) be Dutch speakers, and (4) be able
to provide informed consent [2]. In addition to patients, unaffected first-degree relatives of
patients and unrelated healthy controls were also sampled. Clinical outcome data were
collected at one of the respective institutions or medical centers at baseline (T1), three (T2),
and six (T3) years, along with genotype data. Further details on the GROUP cohort can be
found in a previous publication [23].

2.2. Outcome Measures

To assess the severity of positive and negative symptoms in patients, the widely-used
valid positive and negative syndrome scale (PANSS) for Schizophrenia was employed [24].
The PANSS entails a clinician-administered interview comprising 30 items, with responses
measured on a seven-point Likert scale [24]. Two subscales were derived from the PANSS
based on the European Psychiatric Association guidelines [25]. Positive symptom items
were summed to create the positive subscale (P1–P7) and core negative symptom items
(N1-4, N6) were summed to create the negative subscale. To measure neurocognitive
function, a composite score was generated by averaging the Z-score of the following tests:
World learning task (WLT) (immediate recall, delayed recall), continuous performance
test-HQ (CPT-HQ) (CPT performance index and CPT variability), and the Wechsler adult
intelligence scale (WAIS-II) (digit symbol substitution, information, arithmetic, and block
design) [26–28]. Group-based trajectory modeling was used to identify distinct subgroups
with unique symptom trajectories over time (up to 6-years follow-up) [29]. To increase
statistical power for the current analysis, the symptom clusters were merged. Positive and
negative symptom trajectories were dichotomized into high and low symptom groups,
while cognition impairments were consolidated into high, mild, and no impairment groups.
This resulted in sum scores <15 for both positive and negative symptoms classifying
as low severity and >15 were for high symptom severity. For the cognitive composite
scores, high impairments were <−2, mild impairments were 1 to −1, and no impairments
were >1.5. In addition, we collected cardiometabolic variables at T2 (3-year follow-up),
including glycated hemoglobin levels (HbA1c) in mmol/mol, body mass index (BMI) in
kg/m2, umbilical waist circumference (cm), blood pressure (mmHg), pulse rate (beats/min),
triglycerides (mmol/L), high-density lipoprotein (HDL) in mmol/L, and low-density
lipoprotein (LDL) in mmol/L.

2.3. Covariables

Antipsychotic medication use was obtained and classified as either atypical (AAP) or
typical antipsychotics (TAP) due to no single antipsychotic meeting the minimum sample
size requirements [30]. The medication use was categorized into three groups: AAP if this
was recorded at all three time points, TAP if this was recorded at all three time points, and
mixed if there was a change from AAP to TAP at any of the three time points. For missing
data, the last observation carried forward method was used to classify these subjects. As
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cigarette smoking is prevalent in those with SSD and has possible implications on drug
metabolism, smoking status was obtained at baseline and patients were categorized as
smokers or non-smokers [4,5]. Additional clinical variables, including sex and age at
baseline, were also collected.

2.4. Genotyping, Quality Control, and Imputation of Non-Genotyped Variants

All quality control procedures were performed using PLINK v1.9 (http://pngu.mgh.
harvard.edu/purcell/plink/, accessed on 15 September 2022) according to standard pro-
tocol [31]. Complete details on genotyping and QC process were described in the Sup-
plementary Methods. In summary, genotype data for 2812 individuals (patients, siblings,
parents, and healthy controls) and 570,038 SNVs were generated on a customized Illu-
mina Institute of Psychological Medicine and Clinical Neurology chip array and were
subjected to an extensive QC process. Non-genotyped variants were imputed using a
1000 Genome Phase 3 (version 5) reference panel on the Michigan Imputation Server
(https://imputationserver.sph.umich.edu, accessed on 1 October 2022). A post imputation
filter of R2 > 0.5 was applied to include only high quality rare variants.

2.5. Predicting Metabolizer Status

To generate the CYP genotype that predicted activity scores and metabolizer groups,
Stargazer, a bioinformatics python tool was used [32]. We input imputed data for chro-
mosomes 22 and 10 to identify CYP2D6 and CYP2C19 star alleles (haplotypes), respec-
tively [32]. The tool further classified individuals into their phenotype (e.g., Intermediate
metabolizers) and provided respective activity scores. To ensure accuracy, these classifica-
tions were cross-checked with the PharmVar (www.pharmvar.org, accessed on 15 January
2023) genotype–phenotype translation tables and Pharmacogenomics Knowledgebase
(https://www.pharmgkb.org/, accessed on 15 February 2023) [33].

2.6. Polygenic Risk Scores

Unweighted PRSs were created for candidate genes, CYP2D6, and CYP2C19, as no
validated (i.e., effect sizes on antipsychotics outcomes) weights were available for the SNVs
on the metabolizing enzymes. To construct the unweighted PRS with SNVs associated
with antipsychotic response, candidate genes, which have been studied extensively over
the past 10 years, were identified through a recent meta-analysis [12]. Only SNVs that
showed significant results in an additive model in Caucasians were included in the PRS. To
maintain consistency with our outcome measures, these SNVs were selected based on their
association with changes in symptoms. These SNVs were located on the genes HTR1A
(rs6449693), HTR3A (rs1062613), COMT (rs1062613), and DRD3 (rs6280) (Supplementary
Table S1). For the CYP2D6 and CYP2C19 PRSs, the core SNVs were identified through the
PharmGKB and PharmVar databases (Supplementary Table S1). Due to numerous variants
present in CYP2D6, unique core tier 1 SNVs identified for each star allele were selected, as
sub-alleles are considered functionally equivalent, and distinguishing them is not deemed
important for phenotype predictions [34]. To create unweighted PRSs for the candidate
genes CYP2D6 and CYP2C19 independently, a simple scoring method was employed using
the PLINK, v1.9 software (http://pngu.mgh.harvard.edu/purcell/plink/, accessed on
15 March 2023) [31]. Individuals with the presence of a risk allele were assigned a score of
one, and the cumulative score represented the total number of risk alleles in their genotype.
To understand the relationship between CYP2D6 and CYP2C19 PRSs, they were plotted
against the CYP2D6 and CYP2C19 metabolizer phenotypes (Figure 1). Due to the relatively
low number of variants in the PRSs, PRS CYP2C19 distribution was left skewed and PRS
CYP2D6 was right skewed (Supplementary Figure S2). Thus, all PRSs were dichotomized
to high if above the median and low if below the median and incorporated as such in
the models.

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
https://imputationserver.sph.umich.edu
www.pharmvar.org
https://www.pharmgkb.org/
http://pngu.mgh.harvard.edu/purcell/plink/
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Figure 1. Violin plot showing the relationship between CYP2D6 PRS and CYP2D6 phenotype (A)
and CYP2C19 PRS with CYP2C19 phenotype (B).

The x-axis shows the unweighted PRS, which represents the number of risk alleles an
individual has over the total risk alleles, and the y-axis represents the genotype–phenotype
conversion based on the presence of star alleles. Abbreviation: PM, Poor metabolizer; IM,
intermediate metabolizer; NM, normal metabolizer; RM, rapid metabolizer; UM, ultra-
rapid metabolizer.

2.7. Data Analysis and Statistical Modeling

Statistical analyses were performed using R packages version 4.1.3 (10 March 2022) [35].
The sample size for regression models was determined using the “pwr” package with a
set significance level of 0.0125 (Bonferroni correction), 80% power, and moderate effect
size [36]. For linear regression, a sample requirement of 202 patients was determined.
For binary logistic regression, 135 patients were needed per category. For multinomial
regression, 72 individuals were needed per outcome category. As complete cases were
used, no missing value imputation methods were used. Logistic regression models using
the “lme4” package were used to explore the relationship between unweighted PRSs and
CYP phenotypic activity scores on positive and negative symptom long-term trajectories
(high vs. low symptom severity) [37]. Multinomial logistic regression was used to assess
the association between predictors and cognitive impairment trajectories (no, mild, high
cognitive impairment) using the “nnets” package [38]. Linear regression was performed
for all cardiometabolic outcomes, with all models pre-determined based on literature
evidence and adjusted for age, sex, and smoking as covariates. Furthermore, three principal
components were included in all models to account for the genetic population variation
(refer to Supplementary Methods). To adjust for multiple testing using the Bonferroni
correction, our alpha of 0.05 was divided by the number of comparisons (four), resulting
in a significant threshold of p-value < 0.0125. The best fitting model was selected using
an adjusted R-squared or McFadden’s R-squared. A sensitivity analysis incorporating
medication use (i.e., AAP, TAP, and mixed) was included in all models to determine the
impact of PGx variables on clinical outcomes. For cardiometabolic symptoms that were
collected at T2, medication use at this time point was considered. The best fitting model
was selected using the adjusted R-squared or McFadden’s R-squared.
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3. Results
3.1. Descriptive Statistics

In total, the study sample consisted of 691 patients (76% male) with mean age 27 ± 0.3 years,
age of onset 23 ± 0.2 years, and an average illness duration of five years (Table 1). 83%
were European and had on average 12 years of education. The majority of the patients
were smokers (65%) and taking AAP (70%). Regarding symptom profiles, the majority of
patients had low positive (71%) and negative (70%) symptom trajectories as compared to
high symptom severity trajectory groups. Likewise, for cognitive symptoms, 12% had no
impairments, 73% had mild impairments, whereas 15% had high cognitive impairment
trajectories. Further details are presented in Table 1.

Table 1. Demographic and clinical characteristics of the 691 studied patients.

Baseline Measures Longitudinal Measures (6 Year Follow-Up)

Age (years), mean (SE) 27.71 (0.27) Antipsychotic use N (%):
Sex (male), N (%) 525 (75.98) AAP use 485 (70.19)

Education (years), mean (SE) 12.46 (0.15) TAP use 42 (6.08)
Smokers N (%) 449 (64.98) Mixed (AAP & TAP) 57 (8.25)

Age onset illness (years), mean (SE) 23.19 (0.23) Unknown 107 (15.48)
Duration of Illness (years), mean (SE) 4.97 (0.17) Positive symptoms N (%):

Psychotic episodes, mean (SE) 1.72 (1.17) Low 491 (71.06)
Systolic BP (mmHg), mean (SD) 127.35 (15.68) High 200 (28.94)
Diastolic BP (mmHg), mean (SD) 79.38 (11.36) Negative symptoms N (%):
Pulse rate (beat/min), mean (SD) 75.30 (15.80) Low 489 (70.77)

Triglycerides (mmol/L), median (IQR) 1.84 (1.30) High 202 (29.23)
HDL (mmol/L), mean (SD) 1.27 (0.74) Cognitive impairments N (%):
LDL (mmol/L), mean (SD) 3.12 (0.94) None 84 (12.16)

HbA1c (mmol/mol), mean (SD) 35.01 (6.05) Mild 500 (72.36)
BMI (kg/m2), mean (SD) 26.01 (4.72) High 107 (15.48)

Waist circumference (cm), mean (SD) 95.08 (14.13)

Abbreviations: SE, standard error; BP, blood pressure; HDL, high-density-lipoprotein; LDL, low-density-
lipoprotein; HbA1c, glycated hemoglobin; BMI, body mass index; AAP, atypical antipsychotic; TAP, typical
antipsychotic.

3.2. Metabolizer Phenotype Status

Stargazer identified metabolizer status and activity scores for both CYP2D6 and
CYP2C19 (Figure 2). CYP2D6 normal/extensive metabolizer was the most common
CYP2D6 phenotype (N = 371; 54%), followed by intermediate (N = 281; 41%) and poor me-
tabolizers (N = 39; 6%). Ten individuals with one or more haplotypes that had no function,
unknown function, or uncertain function were classified as undetermined metabolizers
and were excluded from further analysis, as no activity score could be generated. Ultra-
rapid metabolizers were not classified, as required structure SNV (including copy number
variations) were not included in genome-wide association study (GWAS) panels. However,
as reported by Okhuijsen-Pfeifer and colleagues, the misclassification would have occurred
in about 3% of the sample and there is no suggestive evidence that this would have a
meaningful impact on the study findings [39]. For CYP2C19, individuals were classified
into normal/extensive (N = 347; 50%), intermediate (N = 111; 16%), poor (N = 17; 2%),
rapid (N = 182; 26%), and ultra-rapid metabolizers (N = 34; 5%). Genotype–phenotype
conversion has been detailed in the supplementary document (Supplementary Tables S2
and S3).
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Figure 2. Distribution of CYP2D6 (A) and CYP2C19 (B) phenotypes based on genotype–phenotype
conversion. Red dashed lines indicate the separation of metabolizer-phenotype classifications. The
x-axis shows the CYP activity scores and the y-axis reflects the total number of individuals classified
as each metabolizer phenotype. Red dashed lines indicate the separation of metabolizer-phenotype
classifications. Abbreviation: PM, Poor metabolizer; IM, intermediate metabolizer; NM, normal
metabolizer; RM, rapid metabolizer; UM, ultra-rapid metabolizer.

3.3. Polygenic Risk Scores

The resulting continuous unweighted CYP2D6 PRS had a median of 0.22 (0–0.39),
CYP2C19 PRS a median of 0 (0–0.50), and candidate gene PRS a median of 0.4 (0–0.80). The
relationship between unweighted continuous CYP PRSs and CYP phenotypes suggests that,
as more patients possess core risk alleles, their metabolism decelerates (Supplementary
Figure S1). Dichotomized CYP2D6 PRS based on these continuous scores classified with
high score represented 60% of the sample, whereas most of the sample was classified with
low CYP2C19 (62%) and candidate genes (64%) scores.

3.4. Long-Term Core Symptom Severity Trajectories

Higher CYP2D6 activity scores were associated with high positive symptoms (p = 0.01)
and high cognitive impairments (p = 0.0005) as compared to low symptom severity groups
(Figure 3). Individuals with high CYP2D6 activity scores had 1.46 and 2.53 greater odds of
experiencing positive symptoms and cognitive impairments, respectively, as compared to
those without impairments. Notably, smoking status as a covariate was also significantly
associated with high positive symptoms (p = 0.001) and both mild (p = 0.009) and high
(p = 0.001) cognitive impairment groups. This suggests that smokers have 1.90 greater odds
of experiencing high positive symptoms, 1.92 greater odds of mild cognitive impairments,
and 2.97 greater odds of high cognitive impairment compared to low symptom severity
groups. No associations were found between predictors and negative symptom severity
groups. No significant associations were found between candidate gene PRS, CYP2D6
PRS, and CYP2C19 PRS and symptom domains (Figure 3; Supplementary Table S4). In the
sensitivity analysis accounting for medication use, those who switched medications (mixed
use) had 1.81 greater odds of experiencing high negative symptoms compared to those
with continued AAP use; however, this was nominally significant (p = 0.04). No significant
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differences were found between those using TAP and AAP with positive and cognitive
symptom severity groups.
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Figure 3. Forest plot for core symptom trajectories. Odds ratios and respective 95% confidence
intervals are plotted for each outcome. The x-axis reflects the odds ratio and the y-axis shows
the predictor variables. Groups with high symptom severity are plotted relative to low symptom
severity groups for negative and positive symptoms. Highly impaired and mildly impaired cognitive
function groups are plotted relative to the no impairment group. Unweighted dichotomized PRSs
(CYP2D6 PRS, CYP2C19 PRS, candidate gene PRS) have been adapted from a separate model (to
avoid collinearity). High PRS groups are compared relative to low PRS groups.

3.5. Cardiometabolic Variables

No PRSs or CYP activity scores were associated with any cardiometabolic outcome
(Supplementary Table S5). Smoking status was nominally associated with pulse rate
(p = 0.03), indicating that smokers have an increase in pulse rate of 3.5 beats/min relative
to non-smokers. In the sensitivity analysis accounting for medication use, AAP was
significantly associated with pulse rate (p = 0.003), indicating an increased pulse rate
by 8.15 beats/min for each AAP user relative to those taking TAP. Additionally, when
accounting for medication use, those classified with a high CYP2D6 PRS score (slow
CYP2D6 metabolism) were found to have an increased BMI of 1.2 kg/m2 relative to those
with low CYP2D6 PRS scores (fast CYP2D6 metabolism); however, this was only nominally
significant (p = 0.02).

4. Discussion

The present study investigated the influence of unweighted PGx PRS in antipsychotic
treatment on long term clinical trajectories and cardiometabolic complications in patients
with SSD. Drawing on existing literature and guidelines, the study utilized genotype
data from 691 patients with European ancestry to generate unweighted PRS for CYP2D6,
CYP2C19, and candidate genes as well as CYP2D6 and CYP2C19 activity scores. While
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these PRSs did not significantly associate with clinical and cardiometabolic outcomes,
higher CYP2D6 activity scores were found to play a role in high positive symptom and
high cognitive impairment trajectories as compared to low symptom severity groups. Addi-
tionally, we observed that the covariate smoking was significantly associated with positive
and cognitive symptom severity, but not with negative symptoms. These findings have
important implications for the future directions of personalized medicine in psychiatry.

The activity score of CYP2D6 was significantly associated with long term positive
and cognitive symptom trajectories, indicating that those with higher CYP2D6 functional
activity are likely to have higher symptom severity. This is supported by the notion that
reduced drug plasma concentrations decrease the effectiveness of the medication [40].
Studies investigating the role of CYP in patients on clozapine have found opposite results
indicating no association between CYP functional activity and change in PANSS overall
symptom severity scores [30,41]. Furthermore, a recent systematic review demonstrated
mixed findings regarding CYP2D6’s role, with most studies reporting no significant as-
sociation with PANSS overall scores and few reporting slight associations with subscales
of positive domains [42]. This suggests that CYP2D6, among others, may play a role in
medications that target positive and cognitive symptom domains, however, more research
is needed to uncover its true association.

Although cognitive impairments have not been extensively studied in the PGx of
antipsychotics, there has been growing interest due to their high heritability and severe
impact on quality of life [29]. Our study contributes to the emerging critical role of CYP2D6
in cognition, which is widely expressed in the brain [43]. Core SNV rs16947 of CYP2D6 has
been associated with both cognition and schizophrenia in previous research [44–46]. Studies
have found that increased CYP2D6 metabolism is linked with reduced cognitive function,
particularly in attentional processing [43]. Similarly, another study found that carriers of the
CYP2D6*4 allele (NM) were associated with cognitive impairments, suggesting CYP2D6
genotype may moderate cognition [47].

Our results did not associate CYP2C19 with core symptom domains, but previous
studies have found mixed findings for overall PANSS symptom severity with certain
antipsychotics [39,41]. Lesche et al. found no association between CYP2C19 PM and lower
symptom severity, while another study found a significant association between higher
CYP2C19 activity scores and lower symptoms for clozapine users [39,41]. These mixed
results may explain why there are no guidelines with recommendations for CYP2C19
metabolizers and antipsychotics yet [20].

Regarding cardiometabolic parameters, no association was found between CYP2D6
and CYP2C19 on metabolic parameters, consistent with previous studies [21,30,48]. While
most studies have failed to find an association between different CYP2D6 metabolizing ac-
tivity and cardiometabolic parameters, they did not differentiate between the effects of spe-
cific antipsychotics, often due to small sample sizes [30,48]. A comprehensive meta-analysis
of antipsychotics and cardiometabolic parameters revealed that different antipsychotics
have varying effects, with clozapine and olanzapine accounting for the most metabolic dys-
regulation [49]. Thus, it is essential to analyze the efficacy of antipsychotics separately [49].

A strong association between smoking and more severe positive and cognitive symp-
tom domains was found. Although some studies have adjusted for smoking status to avoid
phenoconversion, others have concluded that smoking alone explains more variance in
symptom severity than metabolizing status [41]. While the relationship between smoking
and CYP1A2 is well established, that is not the case for CYP2D6 and CYP2C19 [50]. Despite
not accounting for smoking in the CYP activity scores, our results align with the larger body
of literature indicating that the role of smoking behavior is significantly associated with in-
creased positive symptoms and cognitive impairment [51–54]. While 70–80% of those with
SSD are smokers, nicotine has been associated with reduced negative and extrapyramidal
side effects through its activation of the nicotinic acetylcholine receptors, leading to its use
as “self-medication” by many patients [51,55,56].
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Lastly, we found that combining previously studied candidate gene variants in a
PRS did not improve predictability, likely due to the lower power of biologically derived
PRS with few mechanistic SNVs. Notably, none of these SNVs have been identified in
recent hypothesis-free GWAS of antipsychotic response [57,58]. While the dopamine
dysfunction hypothesis has been a focus in the past decade, these results suggest that
other receptor systems might be more important, including the role of glutamate receptor
systems, particularly genes GRID2, GRM7, SLC1A1, and TNIK [58]. Glutamate receptors
have also recently been linked to the etiology of schizophrenia, suggesting its abnormal
functioning in many regions of the brain may contribute to its development [59]. Thus,
GWAS may be essential to better understand the mechanism of antipsychotics and identify
novel drug targets for precision PGx treatment [6,7]. Furthermore, they should focus on
analyzing rare variants to capture small variants with large effect sizes, such as that of the
CYP enzymes. While the current study did not find CYPD2D6 PRS and CYC19 PRS based
on core variants to be significant predictors of antipsychotic response, it reveals the potential
importance of star alleles, which can only be calculated through the identification of several
SNVs [32]. As there have been emerging studies finding significant associations with star
alleles rather than the genotype predicted metabolizer derived from PGx guidelines, they
should continue to be investigated [40,47]. Considering there are numerous combinations
of haplotypes that can result in normal or intermediate metabolizer phenotypes, we may
fail to identify a critical role of certain star alleles. Evaluating unknown function alleles
individually may help determine their function.

The current study offers several noteworthy strengths and limitations. By parsing the
heterogeneity in symptom severity through investigating longitudinal symptom trajecto-
ries, we were able to accurately assess the role of PGx across positive, negative symptom
domains, and cognitive functioning. Our findings emphasize the need for a personalized
approach toward treatment plans that consider the distinct pathophysiology of each symp-
tom domain rather than overall symptom severity [8,9]. Moreover, our findings suggest
that a hypothesis-free GWAS approach may advance the field [10,12]. This aligns with
the recommendations of Siemens et al. (2022), who conducted a systematic review of PGx
PRS and found large discrepancies between those of candidate gene studies and GWAS,
suggesting future studies should be hypothesis-free [60]. Lastly, as drug metabolism is
known to differ by ancestry groups, this study utilized a strict sample of those with Eu-
ropean ancestry only, which may increase clinical utility [50,61]. However, we lacked the
statistical power to compare individual antipsychotics, which may account for the lack of
effect seen in the sensitivity analysis on antipsychotic use as well as on cardiometabolic
outcomes. We also lacked information on drug blood concentration levels, which is key
in understanding the dose–metabolism relationship, although previous studies have not
found significant relationships [39,41]. Additionally, as individuals with SSD often have
polypharmacy and comorbidities, our study’s failure to consider these factors represents a
key limitation [41,50,62]. Finally, the GROUP cohort is a relatively healthy sample, which
may explain the lack of effect found between CYP and cardiometabolic symptoms.

5. Conclusions

No association was found between pharmacogenetic PRSs, apart from CYP2D6 func-
tion, when adjusting for smoking status. We found that increased CYP2D6 activity score
was associated with increased longitudinal positive and cognitive symptom severity tra-
jectories, but not with negative symptom trajectories or cardiometabolic outcomes. These
findings highlight the potential clinical value of pre-emptive genetic testing for the func-
tional activity of this metabolizing enzyme. This assessment considers an individual’s
genetic variations in this enzyme which can then categorize them as poor (PM) or rapid
(RM), for example. This assessment can thus possibly aid in treatment selection for the
most appropriate antipsychotics and dose, which can lead to a better treatment response.
Additionally, our study highlights the potential need for clinicians to evaluate the improve-
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ment of symptoms through specific domains in carefully designed naturalistic studies to
better understand how antipsychotics may be influencing their treatment.

By tailoring antipsychotic choices and dosages based on an individual’s functional
CYP enzyme activity, physicians can enhance desired outcomes while minimizing the
occurrence of side effects and adverse reactions. This personalized approach to treatment
can lead to more effective and safer antipsychotic therapy in psychiatry.
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