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1 Introduction

Contraction analysis, as a mathematical framework, is utilized for investigating
the convergence behavior of dynamical systems. It uses tools from linear systems
analysis to understand the asymptotic behavior of nonlinear systems. Contrasting
with the traditional Lyapunov stability analysis, contraction analysis places em-
phasis on the convergence properties of trajectories, rather than solely focusing
on a particular equilibrium point. Nowadays, contraction analysis has major pro-
gresses in ordinary differential equation (ODE) systems, and these progresses have
found wide applications, such as, network synchronization [20], learning-based
control [83], and convex optimization [14]. However, there remain opportunities
for analysis the contraction properties of specific systems, including switched
systems and differential-algebraic equation (DAE) systems. This thesis aims to
address these gaps by investigating the contractivity of switched systems and
DAE systems. Additionally, we apply our proposed approach to various areas,
such as, stability analysis, observer design, and synchronization problems. In this
chapter, we briefly revisit the concept of contraction analysis for ODE systems,
and provide a sketch of the main contributions. Some notations used throughout
the thesis are also presented.

1.1 Background

Lyapunov stability is a fundamental concept in the analysis of dynamical systems
and plays a crucial role in determining the behavior and equilibrium points of
these systems. The concept is used to analyze the stability of a system’s equilib-
rium points over time. In the context of Ordinary Differential Equations (ODEs)
or difference equations, an equilibrium point (often denoted as xe) of a dynamical
system is considered Lyapunov stable if, for any small positive number ε, there
exists a corresponding positive number δ such that if the initial condition of the
system is within a distance δ from the equilibrium point (i.e., ∥x(0)−xe∥ < δ), then
the trajectory of the system will always remain within a distance ε of the equilib-
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rium point for all future time (i.e., ∥x(t)−xe∥ < ε,∀t ⩾ 0). An equilibrium point is
said to be exponentially stable if, in addition to being Lyapunov stable, the distance
between the solutions and the equilibrium point decreases exponentially as time
progresses. In other words, the rate of convergence towards the equilibrium is
exponential. The exponential stability characteristic holds significant appeal in
numerous real-world applications due to its ability to ensure rapid convergence of
a system towards its equilibrium point. This asymptotic behavior plays a vital role
in guaranteeing stability and resilience across diverse engineering and scientific
domains, including control systems, robotics, economics, and ecology. Neverthe-
less, in specific scenarios like time-varying optimization [69] and time-varying
Nash equilibrium seeking [97], the system’s state tends to approach a common
trajectory instead of a fixed equilibrium point. Therefore, it becomes essential to
study the relationship between any pair of solutions of the system.

As a generalized concept of exponentially stable, contraction (also know as ex-
ponential incremental stability) states that for a given nonlinear system, regardless
of the initial conditions, all trajectories converge exponentially towards a single
trajectory [55]. Consider the following time-varying nonlinear system:

ẋ(t) = f(t, x(t)) (1.1)

where x(t) ∈ Rn is the state vector, and f : R+ × Rn × Rm → Rn is the vector
field. Consider a smooth function f(t, x(t)) with an initial condition x(0) = x0.
The function’s smoothness guarantees the presence of a locally unique solution
to equation (1.1) [44]. We define system (1.1) as a contractive system if there exist
positive constants c and α, such that for any solutions x1(t) and x2(t) of (1.1), the
following condition holds:

∥x1(t)− x2(t)∥ ⩽ ce−αt∥x1(0)− x2(0)∥, ∀t ⩾ 0. (1.2)

The study of contraction analysis can be dated back to 1940s, contraction
mappings in dynamical systems have been studied extensively in [48]. In [55],
Lohmiller and Slotine bring contraction analysis back into focus by applying it to
control theory. For the past two decades, contraction analysis has been intensively
studied in numerous publications. Forni and Sepulchre [27] provide an analog
theorem for contraction analysis by lifting the Lyapunov function to the tangent
bundle. The approach proposed in [6], known as the incremental Lyapunov
approach, establishes incremental stability by verifying a pointwise geometric
condition within the product of the state space. In addition to the Lyapunov
approach, Sontag [80] employs matrix measure, also known as logarithmic norm,
to directly characterize the contraction properties. In [4], the authors studied
transverse exponential stability, which can be considered as a generalized concept
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of incremental exponential stability by using nonlinear Rieammanian metrics.

Figure 1.1: The plot of two neighboring trajectories.

One of the fundamental aspects of contraction theory is the utilization of the
concept of virtual displacements [55], denoted as δx, which represent infinitesimal
state displacements at a fixed time. The virtual displacement δx between two
neighboring trajectories is illustrated in Fig. 1.1. Subsequently, the virtual system
is introduced

δẋ =
∂f

∂x
(t, x(t))δx, (1.3)

where x(t) is the solution of (1.1). The concept of infinitesimal state displacements
δx, can be regarded as the differential of the trajectory x(t) := ϕ(x0, t) with respect
to the initial condition x0, i.e. δx := dϕ(x0,t)

dx0
. In this context, equation (1.3) repre-

sents the dynamics of dϕ(x0,t)
dx0

, illustrating how variations in the initial condition
x0 influence the trajectory x(t).

Defining δx⊤δx as the squared distance between the two trajectories, we can
derive its rate of change from (1.3) as:

d

dt
(δx⊤δx) = 2δx⊤δẋ = 2δx⊤

∂f

∂x
δx. (1.4)

Let λmax(t, x) represent the largest eigenvalue of the symmetric part of the Jacobian
∂f
∂x (t, x(t)) i.e., the largest eigenvalue of 1

2 (
∂f
∂x

⊤
+ ∂f

∂x ). Consequently, we obtain

d

dt
(δx⊤δx) ⩽ 2λmaxδx

⊤δx, (1.5)

and hence,
∥δx∥ ⩽ ∥δx0∥ e

∫ t
0
λmax(t,x)dt. (1.6)
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Let’s assume that λmax(t, x) is uniformly and strictly negative, i.e., ∃β > 0,∀x, ∀t >
0, λmax(t, x) ⩽ −β < 0. In this case, according to equation (1.6), any infinitesimal
length ∥δx∥ exponentially converges to zero. Through path integration, we can
immediately infer that the length of any finite path between x1(t) and x2(t) also
exponentially converges to zero. By introducing a virtual displacement δx and a
virtual system (1.3), Forni et al. [27] employed the Finsler-Lyapunov function to
examine the exponential incremental stability of the system. Sufficient condition
is obtained.

Lemma 1.1. [Theorem 2.1 in [27]] If there exists a Finsler-Lyapunov function V (x, δx)

such that
c1 ∥δx∥px ⩽ V (x, δx) ⩽ c2 ∥δx∥px

and
∂V (x, δx)

∂x
f(t, x) +

∂V (x, δx)

∂δx

∂f(t, x)

∂x
δx ⩽ −λV (x, δx) (1.7)

hold for all (x, δx) ∈ TM, where F : TM → R⩾0 is a Finsler structure. Then, the
system (1.1) is exponentially incrementally stable.

One additional fundamental aspect of contraction theory involves transferring
the distance between two trajectories to the Euclidean point-to-set distance [6], i.e.,
|x|A = infz∈A |x − z|. The primary concept involves examining the set stability
of a combined system, referred to as the auxiliary system, which consists of the
original system and a copy of itself. In [6], it is demonstrated that the distance
between each pair of trajectories of

ẋ = f(d, x) (1.8)

is equivalent to the distance of the auxiliary system{
ẋ1 = f(d, x1)

ẋ2 = f(d, x2)
(1.9)

to the set

∆ =
{[x1

x2

]
∈ R2n : ∃x ∈ Rn :

[
x1
x2

]
=

[
x

x

]}
, (1.10)

where d is the input. In other words, the incremental stability of (1.8) and the
stability of the auxiliary system (1.9) to the set (1.10) are essentially the same. The
existence of a continuous function V (x1, x2), K∞ function α1, α2, and positive

definite function α (the definition of which will be introduced subsequently),
satisfying

α1(|x1 − x2|) ⩽ V (x1, x2) ⩽ α2(|x1 − x2|),
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and
∂V (x1, x2)

∂x1
f(d, x1) +

∂V (x1, x2)

∂δx2
f(d, x2) ⩽ −α(|x1 − x2|)

provides both sufficient and necessary conditions for ensuring incremental global
asymptotic stability.

Apart from the Lyapunov approach, Sontag [80] studies infinitesimal contrac-
tion of a vector field by means of matrix measure

µp(A) := lim
h→0+

||I + hA||p − 1

h
.

In particular, if there exists a strictly positive real number λ > 0, such that

µp(
∂f(t, x)

∂x
) ⩽ −λ, (1.11)

then the system (1.1) exhibits infinitesimal contractivity. Matrix measures enable
us to analyze the contractivity of the system using non-Euclidean Norms, i.e.,
1-norm or ∞-norm.

Based on the previous observations, it is clear that the contractivity of the
system is highly correlated with the characteristics of the Jacobian matrix associ-
ated with the system’s vector field (e.g., (1.3), (1.7), (1.11)). The Jacobian matrix
of an ODE system typically takes the form of a square matrix, which represents a
relatively straightforward structure. However, in certain cases, the Jacobian matrix
can exhibit a more complex structure. For instance, in a DAE system, the Jacobian
matrix is a rectangular matrix. It consists of rows equal to the total number of
differential equations and columns equal to the total number of variables, encom-
passing both differential and algebraic quantities. In the context of a switched
system, the size and structure of the Jacobian matrix rely on the number of state
variables and the specific dynamics associated with each mode or subsystem.
Since the system switches between different modes, the Jacobian matrix may have
different values and structures depending on the current active mode. Due to these
factors, analyzing the characteristics of the Jacobian matrix associated with DAE
systems and switched systems is more complex than ODE systems. In other words,
contraction analysis of DAE systems and switched systems remain a challenging
task.

In the past few years, contraction theory has gained extensive application
in addressing various control problems. A new approach to design globally
convergent reduced-order observers for nonlinear control systems via contraction
analysis and convex optimization was proposed in [98]. In [86], the authors
employed virtual and horizontal contraction methodologies to reformulate the
Immersion and Invariance Stabilization approach. In [20], the authors expand the
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application of contraction theory from smooth dynamical systems to a broader
class of piecewise smooth dynamical systems, offering a tool for analyzing network
synchronization problem. The fundamental concept behind these applications
involves constructing a contractive system that includes the desired trajectory
within its set of trajectories. From the analysis performed before, it is obvious
that the application of contraction theory to address control problems involving
DAE systems or switched systems is not a straightforward task due to the inherent
complexities in constructing contractive DAE systems or contractive switched
systems.

1.2 Problem statements

In the context of this thesis, our primary attention will be analyzing the stability
and contractivity aspects of both switched systems and DAE systems. Addi-
tionally, a significant emphasis will be placed on the applications of contraction
theory. Within the framework of switched systems, recent literature such as
[20, 26, 57, 71, 94] has introduced contraction analysis. Notably, all the aforemen-
tioned works assume the contractivity of all subsystems. However, delving into
the analysis of contractivity for switched systems where some subsystems are
non-contracting presents a challenge. Such scenarios lead to trajectories diverging
from each other within each dwell time interval. Building upon the understanding
that a switched system featuring entirely unstable modes can attain asymptotic
stability through appropriate switching signals, the first research problem in this
thesis is formulated as follows:

Problem 1.1.How to establish the contractivity of a particular class of switched systems,
which exhibit a combination of both contracting and non-contracting modes, by using
appropriate switching signals?

Regarding DAE systems, recent work on contraction analysis has been presented
in [62]. In this paper, the authors demonstrated that under certain sufficient con-
ditions on algebraic equations, the contractivity of time-invariant DAE systems
can be established by performing exponential stability analysis on the associated
reduced variational ODE systems. However, this methodology might have limita-
tions and may not be applicable to time-varying DAE systems. This is primarily
due to the fact that the boundedness requirement for the algebraic equation, as
presented in [62], is not met by time-varying DAE systems. Therefore, another
question is the following.

Problem 1.2. Can a sufficient condition be offered to ensure the contractivity of time-
varying DAE systems, particularly when there is a lack of prior information about the
specific DAE system?
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Contraction theory finds its application in analyzing the stability of systems pos-
sessing a single equilibrium point, as this equilibrium lies within the trajectory
set of the system. However, when dealing with switched systems that lack a
common equilibrium point, the contraction theory cannot be applied because it
is not possible to achieve contractivity in such systems. In these systems, it has
been demonstrated that trajectories tend to approach a set as opposed to a precise
equilibrium point. The characteristic of converging sets has been examined and
approximated in [2, 24, 84] under the condition that all subsystems are stable.
Nevertheless, the presence of unstable systems within the system could potentially
disrupt this convergence property. Hence, the last question is as follows:

Problem 1.3. Is it possible to introduce theoretical approaches that tackle set stability
within switched systems, encompassing both stable and unstable subsystems?

1.3 Outline and contributions of the thesis

This section explains how this thesis is structured and state its specific contribu-
tions.

In Chapter 2, we present our main contributions in the context of Problem 1.1.
We focus on achieving incremental stability in switched systems featuring non-
contracting subsystems. Furthermore, we present various strategies for designing
time-dependent switching laws that ensure the system attains contractivity. By
introducing the concept of switched virtual systems, we establish a sufficient and
necessary condition for switched systems to be contractive. Subsequently, we
derive a novel class of switching control signals specifically designed for switched
virtual systems comprising both stable and unstable modes. Our approach en-
compasses two key facets: i) we propose a sufficient condition for designing
a switching law based on mode-dependent dwell/leave time to stabilize the
switched virtual systems. ii) We develop a set of Linear Matrix Inequality (LMI)
conditions applicable to switched systems with sector-bound nonlinearities. The
material in this chapter is based on the journal paper [100]

In Chapters 3, we outline our primary contributions within the framework
of Problem 1.2. We investigate the contractivity of time-varying DAE systems.
Initially, we establish the equivalence between the contractivity of the DAE system
and the uniform global exponential stability (UGES) of its corresponding vari-
ational DAE system. Our methodology further evolves as we employ a matrix
measure approach to tackle a higher-order auxiliary ODE system. This system’s
trajectory set encompasses the trajectory of the variational DAE system. Within
this established structure, we formulate a sufficient condition that ensures the at-
tainment of UGES for the variational DAE system. Lastly, we apply our approach
in some specific control challenges: i) Our methodologies are utilized to design
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an observer for a time-varying ODE system by treating the system’s output as an
algebraic constraint. ii) We stabilize a time-invariant DAE system by constructing
a contractive DAE system whose trajectory set encompasses the equilibrium. The
material in this chapter is based on the journal paper [101].

Chapter 4 is dedicated to investigating the pinning synchronization problem
for heterogeneous multi-agent systems (MAS) on directed graphs, utilizing the
principles of contraction theory. Our focus lies in designing a control strategy of
the pinned agents base on the information of the exosystem and putting forward
a distributed control law based only on relative local state measurement for the
remaining agents. By employing the standard regulator equation, we provide
both necessary and sufficient conditions for the solvability of the pinning syn-
chronization problem. These conditions enable the transformation of the pinning
synchronization problem into a contraction analysis problem. The control laws
are designed to ensure the contractility of each agent’s dynamics, while simul-
taneously ensuring that the synchronized state trajectory remains a admissible
trajectory for the agent’s dynamics. The material in this chapter is based on the
journal paper [99].

In Chapter 5, we present our key contributions focused on addressing Problem
1.3. Our primary investigation revolves around the issue of set convergence within
switched systems, even when they involve unstable subsystems. In pursuing
this objective, we introduce a novel class of switching control signals that extend
the current findings related to the challenge of achieving set convergence within
switched systems characterized by exclusively stable subsystems. Sufficient con-
ditions are proposed for the design of switching laws based on mode-dependent
dwell/leave times to ensure the set convergence of the switched systems. Con-
sequently, we utilize our approach on switched affine systems and formulate a
collection of LMI conditions. These conditions enable the practical stability of the
systems to be numerically validated. The material in this chapter is based on the
journal paper [102].

Finally, in Chapter 6 we formulate our conclusions and provide some sug-
gesstions for future work.

1.4 List of publication

Journal articles:

• H. Yin, B. Jayawardhana and S. Trenn, “On Contraction Analysis of Switched
Systems with Mixed Contracting-Noncontracting Modes Via Mode-Dependent
Average Dwell Time,” in IEEE Transactions on Automatic Control, doi:
10.1109/TAC.2023.3237492. (Chapter 2)
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• H. Yin, B. Jayawardhana and R. Reyes-Báez, “Pinning Synchronization of
Heterogeneous Multi-Agent Nonlinear Systems via Contraction Analysis,”
in IEEE Control Systems Letters, vol. 6, pp. 157-162, 2022, doi: 10.1109/LC-
SYS.2021.3053493. (Chapter 4)

• H. Yin, B. Jayawardhana and S. Trenn, “Stability of switched systems with
multiple equilibria: a mixed stable-unstable subsystem case,” in System &

control letters, doi: 10.1016/j.sysconle.2023.105622. (Chapter 5)

• H. Yin, B. Jayawardhana and S. Trenn, “Contraction analysis of time-varying
DAE systems via auxiliary ODE systems,” submitted. (Chapter 3)

• H. Yin, B. Jayawardhana and S. Trenn, “Output contraction analysis of
nonlinear systems,” submitted.

• E. Nuño, I. Sarras, H. Yin and B. Jayawardhana, “Robust Leaderless Consen-
sus of Euler-Lagrange Systems with Interconnection Delays,” submitted.

Conference papers:

• E. Nuño, I. Sarras, H. Yin and B. Jayawardhana, “Robust Leaderless Consen-
sus of Euler-Lagrange Systems with Interconnection Delays,” 2023 American
Control Conference (ACC), San Diego, CA, USA, 2023, pp. 1547-1552, doi:
10.23919/ACC55779.2023.10156387.

• S. Sutrisno, H. Yin, S. Trenn and B. Jayawardhana, “Nonlinear singular
switched systems in discrete-time: Solution theory and (incremental) stability
under fixed switching signals,” accepted by CDC2023.

1.5 Notation

Throughout this thesis, standard notation will be used. The most commonly used
definitions and notation will be listed here, while specific notions and notation
can be found in each of the chapters.

General notation

The symbols R, R⩾0, N denote the set of real, non-negative real, natural numbers,
respectively. Rn denotes the n-dimensional Euclidean space. The identity matrix
with appropriate dimension is denoted by I . Given a matrix A, A⊤ refers to the
transpose of A. For a square matrix A, λ(A) refers to the set of eigenvalues of
A. The matrix diag(Mi) is the the block diagonal matrix with entries of square
matrices M1, · · · ,Mi, · · · ,MN . For symmetric metrics B and C, B > 0 (B ⩾ 0)
indicates that B is positive definite (positive semidefinite) and B < 0 (B ⩽ 0)
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indicates thatB is negative definite (negative semidefinite), B < C (B ⩽ C) means
B −C < 0 (B −C ⩽ 0). τ , τ represent the upper bound, and the lower bound of τ .
For a vector or a matrix, ∥ · ∥ denotes the Euclidean vector norm or the induced
matrix norm, respectively. The sign ⊗ represents matrix Kronecker product. For
vector valued functions F : x 7→ F (x) with x ∈ Rn, and Fp : x 7→ Fp(x) with
x ∈ Rn, we define the Jacobian matrix ▽xF : Rn → Rn×n by ▽xF (x) := ∂F (x)

∂x ,
and ▽xFp : Rn → Rn×n by ▽xFp(x) :=

∂Fp(x)
∂x , respectively. Finally, whenever it is

clear from the context, the symbol “∗” inside a matrix stands for the symmetric
elements in a symmetric matrix.

Sets

• We denote the tangent bundle of M by TM = ∪x∈M{x} × TxM, where
TxM is the tangent space of M at x ∈ M.

• For a given set N , the sets ∂N and N denote the boundary of N and the
complement of N , respectively.

Functions

• A function f : Rn → Rm is Ck (for some k ∈ N) if it is k-times differentiable,
and all the k partial derivatives are continuous functions.

• A function α : R⩾0 → R⩾0 is positive definite if it verifies the identity
{x ∈ R|α(x) = 0} = {0};

• A function α : R⩾0 → R⩾0 is of class-K if it is strictly increasing and
α(0) = 0;

• A function α : R⩾0 → R⩾0 is of class-K∞ if it is of class-K and lims→0 α(s) =

+∞;

• A function β : R⩾0 × R⩾0 → R⩾0 is of class-KL if, for each fixed s, β(r, s) is
of class-K with respect to r, and for each fixed r, β(r, s) is decreasing with
respect to s, and lims→0 β(r, s) = 0.

• A function F : TM → R⩾0 defined on the tangent bundle TM is a Finsler
structure, if F satisfies the following conditions:

i) F is a C1 function for each (x, δx) ∈ TM such that δx ̸= 0;

ii) F (x, δx) > 0 for each (x, δx) ∈ TM such that δx ̸= 0;

iii) F (x, λδx) = λF (x, δx) for each λ > 0, and each (x, δx) ∈ TM such
that δx ̸= 0 (homogeneity);

iv) F (x, δx1 + δx2) < F (x, δx1) + F (x, δx2) for each (x, δx1), (x, δx2) ∈
TM such that δx1 ̸= λδx2 for any given λ ∈ R (subadditivity).
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On contraction analysis of switched
systems via mode-dependent dwell

time

This chapter studies contraction analysis of switched systems that are composed
of a mixture of contracting and noncontracting modes. The first result pertains to
the equivalence of the contraction of a switched system and the uniform global
exponential stability of its variational system. Based on this equivalence prop-
erty, sufficient conditions for a mode-dependent average dwell/leave-time based
switching law to be contractive are established. Correspondingly, LMI condi-
tions are derived that allow for numerical validation of contraction property of
nonlinear switched systems, which include those with all non-contracting modes.

2.1 Introduction

For the past two decades, analysis and control of switched systems (as an im-
portant and special class of hybrid systems) have been well studied due to their
relevance in representing numerous modern engineering systems where an abrupt
change of parameters can occur or a jump in systems dynamics can happen as a
response to the sudden change in their environment. Some well-known examples
of such engineering systems are the dynamics of aircraft [25], and of power elec-
tronics [59]. Typically, switched systems are described by a family of subsystems,
which can either be continuous-time or discrete-time dynamics, and a switching
signal σ(t) with switching times {t1, t2, . . .} that determines which subsystem is
active over each time interval [ti, ti+1) for all i ⩾ 0. Such switching times can
depend on particular state events [26], or time events [35, 61, 104]. In the time-
dependent switching sequence, the dwell time (DT) [61] and average dwell time
(ADT) notions [35] are two basic and important concepts in switched systems,
both of which refer to the time interval or the average time interval, respectively,
between consecutive switching times being lower bounded by a certain positive
constant. A more general and flexible switching sequence, so-called mode depen-
dent average dwell time (MDADT), was introduced in [104], which allows each
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mode to have its own ADT.
The stability of switched systems has been widely investigated in the literature

[13, 35, 47, 49, 50, 53, 61, 92, 104] with a large body of works concern with switched
systems comprising of stable subsystems. The common Lyapunov function tech-
nique [50] and multiple Lyapunov function technique [13] are commonly used
to analyze the stability of these systems. In recent years, analysis of switched
systems has also covered those with both stable and unstable subsystems [47, 53].
The main idea of these studies is to check whether the dwell-time of the stable
subsystems is sufficiently large to offset the diverging trajectories caused by the
unstable subsystems that are dwelt for a sufficiently short time. This approach of
having a trade-off between stable and unstable subsystems is no longer applicable
when all subsystems are unstable. In [49, 92], a discretized Lyapunov function
technique is presented that can be used to analyze the stability of switched systems
with all unstable subsystems. In this paper, we present another approach using
contraction analysis to analyze the stability of switched systems which encompass
all cases including those with all unstable modes.

As one of the stability analysis methods that has received a growing interest
lately, contraction analysis is concerned with the relative trajectories of a systems
than to a particular attractor equilibrium point in standard Lyapunov stability
analysis. There are many different methods to analyze the contractivity of non-
switched systems in literature, such as [4, 6, 7, 12, 27, 30, 40, 55, 65, 74] among many
others. In [55], the contraction property can be guaranteed if the largest eigenvalue
of the symmetric part of the associated variational systems matrix (which is loosely
termed as the Jacobian) is uniformly strictly negative. Finsler–Lyapunov functions
were introduced in [27] to analyze the incremental stability of the system. A
hierarchical approach to study convergence using matrix norm was discussed
in [74]. In the context of switched systems, the contraction analysis thereof has
recently been presented in [20, 26, 57, 71, 94]. Using contraction analysis method
in [55], sufficient conditions for the convergence behavior of reset control systems
have been studied in [71]. The extension of matrix norm-based contraction analysis
[74] to piecewise smooth continuous systems is formalized in [20]. In [26], the
singular perturbation theory and matrix norm are used to study the contraction
property of switched Filippov systems, which include piecewise smooth systems.

In all of above mentioned results on contraction analysis for switched systems,
it is assumed that all subsystems are contracting. It remains non-trivial to analyze
contractivity of switch systems with all non-contracting subsystems, where in
each dwell time interval the trajectories diverge from each other. Following the
fact that a switched system with all unstable modes can be made asymptotically
stable by an appropriate switching signal, we study in this chapter whether the
contraction of these systems, as a particular class of switched systems with mixed
contracting-noncontracting modes, can be established by using the right switching
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signals.
As our first main result in this chapter, we present contraction analysis for

switched systems with mixed contracting-noncontracting modes. We establish
that the stability of the corresponding variational dynamics is a sufficient and
necessary condition to the contraction of the original switched systems. Sub-
sequently, as our second contribution, we provide sufficient conditions on the
time-varying Lyapunov function and on the mode dependent average dwell-time
for switched nonlinear systems such that they are contracting. In general, these
conditions ensure that the growth of time-varying Lyapunov function due to
the noncontracting modes can be compensated by the switching behavior and
the decaying Lyapunov function due to the contracting modes. In addition, we
also consider all noncontracting subsystems case, where the increment can only
be compensated by the switching behavior. Based on these conditions, as our
third contribution, we propose a time-varying quadratic Lyapunov function that
can be used to establish the contraction of switched systems via LMI conditions.
Our result is more general and less conservative than the discretized Lyapunov
function technique as proposed and used in [49, 92]. This result implies also that
we can establish the stability of switched linear systems with all unstable modes.

This chapter is organized as follows. In Section 2.2, we present preliminaries
and problem formulation. Necessary and sufficient conditions for the contractivity
of nonlinear switched systems are presented in Sections 2.3. The switching law
design strategy is provided in Section 2.4. The numerical simulations are provided
in Section 2.5. The conclusions are given in Section 2.6.

2.2 Preliminaries and problem formulation

Consider switched systems in the form of

ẋ(t) = fσ(t)(x(t), t), x(t0) = x0, (2.1)

where x(t) ∈ X ⊆ Rn is the state vector, t0 ∈ R is the initial time and x0 ∈ X is the
initial value. Define an index set M :=

{
1, 2, · · · , N

}
, where N is the number of

modes. The signal σ : [t0,∞) → M denotes the switching signal, which is assumed
to be a piece-wise constant function continuous from the right. The vector field
fi : X × [t0,∞) → Rn, (x, t) 7→ fi(x, t), i ∈ M is continuous in t and continuously
differentiable in x. The switching instants are expressed by a monotonically
increasing sequence S :=

{
t1, t2, · · · , tk, · · ·

}
, where tk denotes the k-th switching

instant. The length between successive switching instants is commonly referred
to as the mode duration and given by τk = tk+1 − tk, k = 0, 1, 2, · · · . We assume
that (2.1) is forward complete, which means for each x0 ∈ X there exists a unique
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solution of (2.1) and no jump occurs in the state at a switching time.

Definition 2.1. A switched system given by (2.1) with a given switching signal
σ(t), is called

(i) incrementally uniformly globally asymptotically stable (iUGAS) if there exists
a class-KL function β, such that for all solutions x1(t), x2(t) of (2.1) in
t ∈ [t0,+∞) we have

∥x1(t)− x2(t)∥ ⩽ β(∥x1(t0)− x2(t0)∥, t), (2.2)

(ii) uniformly contracting if there exists positive numbers c and α such that for all
solutions x1(t), x2(t) of (2.1) we have

∥x1(t)− x2(t)∥ ⩽ ce−αt∥x1(t0)− x2(t0)∥. (2.3)

In order to study contractivity of the switched systems (2.1), as usual, we will
analyse the (uniform) stability of the corresponding variational systems, in which
case, the following definition is relevant (note that by assumption for each time
t ⩾ t0 the map x 7→ fσ(t)(x, t) is continuously differentiable at all x ∈ X ).

Definition 2.2. The family of (time-varying) linear switched system

ξ̇(t) = Fσ(t)(x(t), t)ξ(t), ξ(t0) = ξ0 ∈ Rn (2.4)

with Fp(x(t), t) = ▽xfp(x(t), t) and x(·) : [t0,+∞) → Rn be any given solution
trajectory of (2.1) is called

(i) uniformly globally asymptotically stable (UGAS), if there exist a class-KL
function β, (independently of the chosen solution x(·)) such that for every
solution ξ(t) ∈ Rn of (2.4) the following inequality holds,

∥ξ(t)∥ ⩽ β(∥ξ(t0)∥, t), ∀t ⩾ t0, (2.5)

(ii) uniformly globally exponentially stable (UGES), if there exist positive numbers
c, α (independently of the chosen solution x(·)) such that for every solution
ξ(t) ∈ Rn of (2.4) the following inequality holds,

∥ξ(t)∥ ⩽ ce−αt∥ξ(t0)∥, ∀t ⩾ t0. (2.6)

The contraction analysis problem for switched systems with all contracting
modes has attracted considerable attentions. For example, in [71, 94], a common
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contraction region is required between each subsystem. Then, contracting can be
achieved by activating the subsystems for a sufficient long time. However, for
noncontracting subsystems, you can not find such common contraction region, to
be precise, you can not find any contraction region for a noncontracting subsystem.
Then, the results in [71, 94] cannot be applied. The objective of this paper is
to propose a sufficient condition that guarantees the switched system (2.1) is
contracting with respect to switching law σ(t) when not all modes of (2.1) are
contracting, including the case where none of the modes is contracting.

2.3 A necessary and sufficient condition for the con-
traction of switched systems

Since switched systems with fixed switching signal can be considered as time-
varying systems, tools for time-varying systems can be used to analyse of such
switched systems. In this section, inspired by contraction analysis of time-varying
systems as presented in [7, 55], we have the following proposition that establish the
relations between (2.1) being iUGAS/contracting and (2.4) being UGAS/UGES.

Proposition 2.3. For a given switching signal σ(t), the following properties hold

(i) the system (2.1) is iUGAS if the family of systems (2.4) is UGAS,

(ii) the system (2.1) is uniformly contracting if, and only if, the family of systems (2.4) is
UGES.

Proof. We first establish a relationship between the solutions of (2.1) and (2.4).
Let x(t) = φ(t, x0), x̂(t) = φ(t, x0 + δξ0) be two trajectories of (2.1) with initial
conditions x(t0) = φ(t0, x0) = x0 ∈ Rn and x̂(t0) = φ(t0, x0 + δξ0) = x0 + δξ0,
respectively, where δ is a sufficiently small positive constant and ξ0 will later be
related to the initial condition of (2.4). We will now show that

ξ(t) := lim
δ→0

φ(t, x0 + δξ0)− φ(t, x0)

δ
(2.7)

is a solution of (2.4) with initial value ξ(t0) = ξ0. For any t, let i ∈ N be such that
t ∈ [ti, ti+1), so that the flow φ(t, x0) of (2.1) satisfies

φ(t, x0) = x0 +

i−1∑
k=0

∫ tk+1

tk

fσ(tk)(φ(s, x0), s)ds+

∫ t

ti

fσ(ti)(φ(s, x0), s)ds, (2.8)
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and similarly, the flow φ(t, x0 + δξ0) satisfies

φ(t, x0 + δξ0) = x0 + δξ0 +

i−1∑
k=0

∫ tk+1

tk

fσ(tk)(φ(s, x0 + δξ0), s)ds

+

∫ t

ti

fσ(ti)(φ(s, x0 + δξ0), s)ds.

(2.9)

Hence,

ξ(t) = ξ0 +

i−1∑
k=0

∫ tk+1

tk

lim
δ→0

fσ(tk)(φ(s, x0 + δξ0), s)− fσ(tk)(φ(s, x0), s)

δ
ds

+

∫ t

ti

lim
δ→0

fσ(ti)(φ(s, x0 + δξ0), s)− fσ(ti)(φ(s, x0), s)

δ
ds.

(2.10)

Clearly, for j ∈ {0, 1, . . . , i}

lim
δ→0

fσ(tj)(φ(s, x0 + δξ0), s)− fσ(tj)(φ(s, x0), s)

δ

=
∂

∂ x0

[
fσ(tj)(φ(s, x0), s)

]
· ξ0

=
[
∇xfσ(tj)(φ(s, x0), s) · ∇x0φ(s, x0)

]
· ξ0.

Here we used the fact that the map x0 7→ φ(t, x0) is differentiable for all t ∈ [t0,∞)

which is a consequence from the ability to write φ as a concatenation of the
smooth solution flows φσ(ti)(t, ti, xi) of the (non-switched) differential equations
ẋ = fσ(ti)(x, t), x(ti) = xi. In fact, φ(t, x0) = φσ(tj)(t, ti, φ(ti, x0)) and, recursively
for k = i− 1, . . . , 2, 1, we have φ(tk, x0) = φσ(tk−1)(tk, tk−1, φ(tk−1, x0)). Hence

ξ(t) = ξ0 +

i−1∑
k=0

∫ tk+1

tk

∇xfσ(tk)(φ(s, x0), s)∇x0
φ(s, x0)ξ0ds

+

∫ t

ti

∇xfσ(ti)(φ(s, x0), s)∇x0
φ(s, x0)ξ0ds (2.11)

and consequently

ξ̇(t) = ∇xfσ(ti)(φ(t, x0), t)∇x0φ(t, x0)ξ0

= F (t, x(t)))∇x0
φ(t, x0)ξ0,

where the last equality follows from σ(ti) = σ(t) for all t ∈ [ti, ti+1). Furthermore,
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from (2.8),

∇x0φ(t, x0) = I +

i−1∑
k=0

∫ tk+1

tk

∇xfσ(tk)(φ(s, x0), s)∇x0
φ(s, x0)ds

+

∫ t

ti

∇xfσ(ti)(φ(s, x0), s)∇x0
φ(s, x0)ds

(2.12)

which when multiplied with ξ0 and in view of (2.11) leads to

∇x0
φ(t, x0)ξ0 = ξ(t).

Altogether this shows that indeed ξ given by (2.7) is a solution of (2.4). In particular,
∇x0

φ(t, x0) is the transition matrix for (2.4), i.e.

d
dt∇x0

φ(t, x0) = ∇xfσ(t)(x(t), t)∇x0
φ(t, x0). (2.13)

Proof of (i) on UGAS ⇒ iUGAS. Let us consider two solutions x(t) = φ(t, x0)

and x̂(t) = φ(t, x̂0) of (2.1). We already highlighted in the first part of the proof that
the map x0 7→ φ(t, x0) is differentiable for each fixed t ∈ [t0,∞). Consequently,
we can utilize the fundamental theorem of calculus for line integrals to obtain

x̂(t)− x(t) =

∫ x̂0

x0

∇yφ(t, y)dy. (2.14)

From UGAS of (2.4) and (2.13) it follows that there exists a class-KL function β,
such that

∥∇yφ(t, y)∥ ⩽ β(∥∇yφ(t0, y)︸ ︷︷ ︸
=I

∥, t) = β(1, t),
(2.15)

for all y ∈ X . Using (2.15) to get the upper bound of (2.14), we have

∥x̂(t)− x(t)∥ ⩽ β(1, t)∥x̂0 − x0∥ = β′(∥x̂0 − x0∥, t), (2.16)

where β′(∥x̂0 − x0∥, t) is a class-KL function.

Proof of (ii) on Contracting ⇔ UGES. As we show φ(t, x0) is differentiable with
respect to x0 for each fixed t ∈ [t0,∞).

We show: Contracting ⇒ UGES. The proof is done by contradiction, i.e. we
show that the assumption that (2.1) is not UGES leads to a contradiction if (2.1) is
contracting. Towards this goal, assume that there exists a solution x(·) of (2.1) and
an initial value ξ0 such that for the corresponding solution ξ(·) of (2.4) we have
that for all positive c′ and α′, there exist T > 0 such that

∥ξ(T )∥ > c′e−α
′T ∥ξ0∥. (2.17)
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where ξ(t) is a solution of (2.4). Let c and α be the constants corresponding to
the contractivity condition (2.3), we will now show, that the choice c′ := 3

2c and
α′ := α leads to a contradiction. In fact, choose T > 0 such that, the following
inequality is satisfied.

∥ξ(T )∥ > 3

2
ce−αT ∥ξ0∥ (2.18)

Let x̂(·) be a solution of (2.1) with initial value x̂(t0) = x0+ δξ0 for a (small) param-
eter δ ∈ R. In the first part of the proof we have shown that ξ(t) = limδ→0

x̂(t)−x(t)
δ ,

in particular, we have at time T that

lim
δ→0

x̂(T )− x(T )

δ
= ξ(T ). (2.19)

In particular, for a sufficiently small δ > 0, we have that

∥x̂(T )− x(T )∥
δ

>
2

3
∥ξ(T )∥. (2.20)

Combining (2.18) with (2.20) we obtain

∥x̂(T )− x(T )∥ > 2

3
δ∥ξ(T )∥

> ce−αT ∥δξ0)∥ξ(t0)∥
= ce−αT ∥x̂(t0)− x(t0)∥.

(2.21)

By choosing c = 2
3c

′ and α = α′, one has

∥x̂(T )− x(T )∥ > ce−αT ∥x̂(t0)− x(t0)∥

This is in contradiction to the contractivity of (2.1), which concludes this step of
the proof.

We show: UGES ⇒ Contracting.

∥∇yφ(t, y)∥ ⩽ ce−αt∥∇yφ(t0, y)︸ ︷︷ ︸
=I

∥ = ce−αt,
(2.22)

for all y ∈ X . Using (2.22) to get the upper bound of (2.14), we have

∥x̂(t)− x(t)∥ ⩽ ce−αt∥x̂0 − x0∥, (2.23)

which implies that (2.4) is contracting. This completes the proof.

In Proposition 2.3 we establish the concept of UGAS for variational system,
which is not presented before in [7, 55]. Note that the variational system (2.4) being
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UGAS is only a sufficient condition for system (2.1) being iUGAS. The reverse
implication is not trivial to establish and it cannot follow the same line of proof
as in [7]. Particularly, we can not conclude that δβ′(∥ξ(T )∥, T ) ⩾ β′(δ∥ξ(T )∥, T ) =
β′(∥ξ(t0)∥, T ) holds.

2.4 Switching law design

In general, when individual systems are contracting, the switched systems can
be made contracting by activating each subsystem sufficiently long. Instead of
considering this situation, in this section, we study the property of contraction
of switched systems whose modes are composed of a mixture of contracting
and non-contracting modes. The switched systems under study include also the
worst case, where all individual systems are not contracting1, and we provide
sufficient conditions on MDADT/MDALT (whose precise definition will shortly
be given below) that guarantee the contraction of the switched systems. The use
of MDADT/MDALT property in this paper is in contrast to the existing results
in literature that are based on common dwell time. For this purpose, we define S
as the set of all stable modes and U as the set of all unstable modes. In our main
result, we propose a new class of switching signals that is suited for switched
systems with stable and unstable modes.

Denoting Nσp(t1, t2) as the number of times that the pth mode is activated in
the interval [t1, t2), and Tp(t1, t2) as the sum of the running time of the pth mode
in the interval [t1, t2), p ∈ M = {1, 2, ..., N}. We revisit the following definitions
of mode dependent average dwell time in [104].

Definition 2.4. A constant τap > 0 is called (slow) mode dependent average dwell
time (MDADT) for mode p ∈ M of a switching signal σ : [t0,∞) → M, if there
exist a constant N0p ⩾ 0 such that for all finite time intervals [t1, t2) ⊆ [t0,∞) we
have

Nσp(t1, t2) ⩽ N0p +
Tp(t1,t2)
τap

. (2.24)

Definition 2.5. A constant τap > 0 is called mode dependent average leave time
(MDALT) for mode p ∈ M of a switching signal σ : [t0,∞) → M, if there exist a
constant N0p ⩾ 0 such that for all finite time intervals [t1, t2) ⊆ [t0,∞),

Nσp(t1, t2) ⩾ N0p +
Tp(t1,t2)
τap

. (2.25)

1Equivalently, the corresponding variational system (2.4) is not UGES [7, 40].
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Remark 2.6. In Definition 2.5 we refer to τap as the mode dependent average leave
time (MDALT) instead of fast mode dependent average dwell time as e.g. in [104].
We prefer the former, because τap in Definition 2.5 is not related to how long (at
least, on average) the system dwells (remains) in a certain mode, but when the
system has to leave a certain mode at the latest (on average). So “leave time” seems
a better naming choice for τap than “fast dwell time”.

We present now the following theorem on the contracting properties of switched
systems (2.1) with MDADT and/or MDALT.

Theorem 2.7. Consider switched nonlinear system (2.1) with switching signal σ :

[0,∞) → M and corresponding switching times S := {t0, t1, . . . , ti, . . .}. Assume that
we can classify each mode p as being either stable or unstable, i.e. assume M = S ∪̇ U
and, correspondingly, assume the switching signal σ has a MDADT τap > 0 for each
stable mode p ∈ S and a MDALT τap > 0 for each unstable mode p ∈ U . Furthermore,
assume that for each mode p ∈ M there exist a continuously differentiable function
Vp : Rn × Rn × R⩾0 → R⩾0 with

V̇p(x, ξ, t) := ∇(x,ξ)Vp(x, ξ, t)
(
fp(x,t)
Fp(x,t)ξ

)
+∇tVp(x, ξ, t)

such that for all (x, ξ, t) ∈ Rn × Rn × R⩾0

V̇p(x, ξ, t) ⩽ ηpVp(x, ξ, t), ∀p ∈ M, (2.26)

with ηp ⩾ 0 if p ∈ U or ηp < 0 otherwise. Finally, assume that for every p ∈ M, there
exists µp > 0 such that

Vσ(ti)(x, ξ, ti) ⩽ µσ(t−i )Vσ(t−i )(x, ξ, ti), ∀ti ∈ S . (2.27)

Without loss of generality, we let µp > 1 for p ∈ S. Then, with the following switching
law

τap > τap := − lnµp

ηp
, ∀p ∈ S,

τap < τap := − lnµp

ηp
, ∀p ∈ U .

}
(2.28)

the switched nonlinear system (2.1) is

(i) incrementally uniformly globally asymptotically stable (iUGAS) if there exist class
K∞ functions vp, vp, such that Vp(x, ξ, t) satisfies

vp(∥ξ∥) ⩽ Vp(x, ξ, t) ⩽ vp(∥ξ∥), ∀p ∈ M, (2.29)

(ii) uniformly contracting if there exist vp ⩾ vp ⩾ 0, such that Vp(x, ξ, t) satisfies

vp∥ξ∥22 ⩽ Vp(x, ξ, t) ⩽ vp∥ξ∥22, ∀p ∈ M. (2.30)
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We note that τap < τap in (2.28) can only be satisfied if µp ∈ (0, 1) for p ∈ U .

Proof. Let x(·) be a solution of (2.1) and let ξ(·) be a solution of the corresponding
system (2.4). We will show in the following that there exists k > 0 and λ > 0

(independent from x(·) and ξ(·)) such that

Vσ(t)(x(t), ξ(t), t) ⩽ ke−λ(t−t0)Vσ(t0)(x0, ξ0, t0). (2.31)

From (2.29) we can then conclude that

∥ξ(t)∥ ⩽ v−1
σ(tn)

◦ Vσ(tn)(x(t), ξ(t), t)

⩽ v−1
σ(tn)

(
ke−λ(t−t0)Vσ(t0)(x0, ξ0, t0)

)
⩽ v−1

σ(tn)

(
ke−λ(t−t0)v−1

σ(t0)
(∥ξ0∥)

)
.

(2.32)

It is easy to see that v−1
σ(tn)

(
ke−λ(t−t0)v−1

σ(t0)
(∥ξ0∥)

)
is a class KL function.

From (2.30) we can then conclude that

∥ξ(t)∥ ⩽
1

√
vσ(tn)

V
1
2

σ(tn)
(x(t), ξ(t), t)

⩽

√
k

vσ(tn)
e−

λ
2 (t−t0)V

1
2

σ(t0)
(x0, ξ0, t0)

⩽

√
k
vσ(t0)

vσ(tn)
e−

λ
2 (t−t0)∥ξ0∥.

(2.33)

According to (2.32), (2.33), Proposition 2.3 and Definition 2.2, we can then conclude
that (i) system (2.4) is UGAS the system (2.1) is iUGAS, (ii) system (2.4) is UGES
the system (2.1) is contracting.

Towards showing (2.31) first observe that for any t ∈ [ti−1, ti) and p := σ(t−i )

we have
d
dtVp(x(t), ξ(t), t) = V̇p(x(t), ξ(t), t).

Consequently, in view of (2.27) and (2.26),

Vσ(ti)(x(ti), ξ(ti), ti)

⩽ µσ(t−i )Vσ(t−i )(x(ti), ξ(ti), ti)

= µσ(ti−1)Vσ(ti−1)(x(ti), ξ(ti), ti)

⩽ µσ(ti−1)e
ησ(ti−1)(ti−ti−1)Vσ(ti−1)(x(ti−1), ξ(ti−1), ti−1).
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Recursively applying this inequality, we arrive at, for t ∈ [ti, ti+1),

Vσ(ti)(x(t), ξ(t), t) ⩽ cσ(t)Vσ(t0)(x, ξ, t0), (2.34)

with

cσ(t) = eησ(ti)
(t−ti)

i−1∏
k=0

µσ(tk)e
ησ(tk)(tk+1−tk)

=
∏
p∈M

µNσp(t,t0)
p eηpTp(t,t0)

=
∏
p∈M

eNσp(t,t0) lnµp+ηpTp(t,t0).

By assumption, we have for p ∈ S that lnµp > 0 and hence by (2.24)

Nσp(t, t0) lnµp + ηpTp(t, t0) ⩽ N0p lnµp + (ηp +
lnµp

τap
)Tp(t, t0);

and for p ∈ U we have lnµp < 0 and hence by (2.25) we arrive at the same
inequality as above. Let λp := ηp +

lnµp

τap
, then from (2.28) together with lnµp > 0

for p ∈ S and lnµp < 0 for p ∈ U , we have that λp < 0 for all p ∈ M. With
k =

∏
p∈M µ

N0p
p and λ := minp∈M(−λp) > 0 we obtain

cσ(t) ⩽ k
∏
p∈M

e−λTp(t,t0) = ke−λ(t−t0),

where we used the fact that
∑
p∈M Tp(t, t0) = t− t0. This concludes the proof.

Different from Corollary 1 in [104], we do not need here to consider the ordering
of stable and unstable subsystems. Some Lyapunov methods of incremental
stability have recently appeared in the literature. Let us compare our results to
these works. In this paper we do not exclude the case that the system switches
from a non-contracting mode q to another non-contracting mode p and then back
to mode q again (Example 2.2). In this case, according to (2.26), the variational
system of each subsystem is divergent with a bounded rate ηp. Therefore, we
need condition (2.27) to compensate for the divergent trajectory by having µp < 1.
This is not possible if Vp(x, ξ, t) is time independent. Indeed, otherwise we have
Vp(x, ξ) < µqVq(x, ξ) < µqµpVp(x, ξ) < Vp(x, ξ), which is a contradiction. In
[27], the authors study the incremental stability of time-varying system based
on the Finsler distance. A sufficient and necessary condition for incremental
stability of time-invariant system with input is given in [6], which shows that
the time-invariant system is incrementally stable if and only if there exists an
incremental Lyapunov function with respect to the manifold {x1 = x2}). Neither
[27] nor [6] study the stability properties of the variational systems. In addition,
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the Lyapunov functions in [27], [6] are all time-independent, which cannot solve
switched systems with all non-contracting subsystems. By means of Proposition
2.3 and Theorem 2.7, we can analyze the contraction of switched systems with
all non-contracting subsystems by finding multiple time-dependent Lyapunov
functions for its variational system. Since constructing time-dependent Lyapunov
functions is much more difficult than constructing time-independent Lyapunov
functions, a LMI method is established in the subsequent Theorem 2.13 to construct
time-dependent Lyapunov functions for a family of nonlinear switched systems.

Remark 2.8. The results for all modes are contracting in [57, 94], can be considered
as a particular case of Theorem 2.7. In particular, if we assume that M = S
in Theorem 2.7 then the switched nonlinear system (2.1) is contracting for any
MDADT switching signals satisfying τap > τap = − lnµp

ηp
,∀p ∈ M, which recovers

the results of Theorem 1 in [94] and Proposition 1 in [57].

For switched system (2.1), if all subsystems are non-contracting, which rep-
resents the worst case scenario, the distance increment between two trajectories
will not be contracting in each mode and it can only be compensated by at the
switching events. In this case, we have the following corollary from Theorem 2.7.

Corollary 2.9. Using the notation of Theorem 2.7, assume that M = U , i.e. we assume
all modes are non-contracting. Then the switched nonlinear system (2.1) is contracting
for any MDALT switching signals satisfying

τap ⩽ τap = − lnµp
ηp

, ∀p ∈ M. (2.35)

Although Theorem 2.7 provides a general framework to handle the contraction
analysis problem, it is impractical for actual use, since it does not provide means
to construct the Lyapunov functions Vp(x, ξ, t) using existing computational tech-
niques. In addition, when noncontracting subsystems are involved, we cannot find
a monotonically decreasing Lyapunov function for each subsystem. Inequality
(2.26) implies that the value of Vp(x, ξ, t) may increase in some time interval with a
bounded rate ηp > 0. The same as switched systems with all subsystems unstable,
it is not easy to find a Lyapunov function and the corresponding parameter ηp
satisfying (2.26). Different from [92, Thm. 1] that uses the DT to ensure asymp-
totic stability for all unstable mode switching systems, we consider here the use
of MDALT to ensure exponentially stability of the switched systems. Based on
Theorem 2.7, we will establish a sufficient condition that is easily verifiable for
analysing the contraction property of switched systems.

As pursued in recent literature, the contraction analysis pertains to the stability
analysis of nonlinear system using linear systems theory via its variational system
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(2.4). As the variational system can be regarded as a state-dependent linear system
with the state ξ, quadratic Lyapunov function can directly be used to prove the sta-
bility. Hence let us consider a time dependent Lyapunov function of the quadratic
form Vp(x, ξ, t) = ξ⊤Mp(t)ξ for some matrix function Mp : [0,∞) → Rn×n with
symmetric, positive definite values. The following lemma provides conditions on
such Lyapunov functions to ensure the contracting property of switched system
(2.1).

Lemma 2.10. Consider a switched nonlinear system (2.1) with given switching times
S := {t0, t1, . . . , ti, . . . tn, . . .} generated by σ : [0,∞) → M. Let each mode p be
classified as either stable or unstable, i.e. M = S ∪̇ U and correspondingly assume that
there exists τap > 0 such that (2.24) holds for the stable mode p ∈ S or (2.25) holds for
the unstable mode p ∈ U . Suppose that for each mode p ∈ M there exist mp ⩾ mp ⩾ 0

and a time dependent symmetric matrix Mp(t) such that

mpI ⩽Mp(t) ⩽ mpI, ∀p ∈ M, (2.36)

Fp(x, t)
⊤Mp(t) + Ṁp(t) +Mp(t)Fp(x, t) ⩽ ηpMp(t),∀p ∈ M, (2.37)

with ηp ⩾ 0 if p ∈ U or ηp < 0 otherwise. Assume that for every p ∈ M, there exists
µp > 0, such that

Mσ(ti)(ti) ⩽ µσ(t−i )Mσ(t−i )(t
−
i ), ∀ti ∈ S . (2.38)

Then the switched nonlinear system (2.1) is contracting for any MDADT/MDALT switch-
ing signals satisfying (2.28).

Proof. By taking a Lyapunov function in the form of Vp(x, ξ, t) = ξ⊤p Mp(t)ξp,
it follows that (2.36) and (2.38) satisfy (2.30) and (2.27) in Theorem 2.7, respec-
tively. By differentiating Vp(x, ξ, t) along the trajectory of system (2.4), we have

V̇p(x, ξ, t) = ξ⊤p

(
Fp(x, t)

⊤Mp(t) + Ṁp(t) +Mp(t)Fp(x, t)
)
ξp. Using (2.37), it fol-

lows that V̇p(x, ξ, t) ⩽ ηpVp(x, ξ, t), e.g. (2.26) holds. By Theorem 2.7, it implies
that (2.1) is contracting for any switching signals satisfying (2.28).

We note that the most popular quadratic Lyapunov function in contraction
analysis literature is Vp(x, ξ, t) = ξ⊤Mpξ, where Mp is a positive definite constant
matrix [65]. In this case, Ṁp(t) in (2.37) is vanished. However, in the contrac-
tion analysis problem, since F (x) in (2.4) is time-varying and state-dependent,
the existence of such a constant matrix Mp is not always possible. In addition,
in this paper, we allow subsystems are all non-contracting, Mp should be time-
dependent. Hence, in general, allowing for time-varying matrix Mp(t) in Lemma
2.10 leads to a significantly less conservative stability condition. For a general
time dependent matrix Mp(t), the inequality (2.38) is not trivial to solve. An-
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other well-known technique to solve such a problem is the discretized Lyapunov
function technique which is widely used in the stabilization of linear switched
systems [49, 92]. The basic idea of the discretized Lyapunov function technique
is to linearize Mp(t) into the form of t−ti

τdp
Pp + (1 − t−ti

τdp
)Qp. However, it can be

difficult to find such Mp(t) for some simple systems, e.g. for the switched system

p = 1 :

{
ẋ1 = −1.9x1 + 0.6x2,

ẋ2 = 0.5x1 + 0.7x2,
p = 2 :

{
ẋ1 = 0.5x1 − 0.9x2,

ẋ2 = 0.1x1 − 1.4x2.
. If we apply dis-

cretized Lyapunov function technique as presented in [92] to this switched system,
the corresponding LMIs are not feasible or τdp > − lnµp

ηp
. We will present later in

Corollary 2.15 a method to design stabilizing switching signals for this switched
system.

In order to compensate the conservativity brought by the Matrix Young inequal-
ity, in the following, we propose a construction of Mp(t) in a nonlinear fashion

by the addition of ϕp(t)
(
1 − ϕp(t)

)
Gp to Mp(t), which is more general than the

discretized Lyapunov function proposed in [49, 92]. By considering the class of
switching signals with mode dependent strict dwell time τdp > 0, i.e., each mode
p is active at least for τdp time before switching to another mode, we can transform
the inequality condition of (2.36)-(2.38) into LMI conditions in Theorem 2.13 pre-
sented below. This is achieved by introducing a time-varying Lyapunov function
that interpolates two quadratic constant Lyapunov functions in a prescribed dwell
time τdp. Before stating our main result, we first recall two technical lemmas on
matrix algebra.

Lemma 2.11. (Matrix Young inequality): For any X,Y ∈ Rn×m and any symmetric
positive-definite matrix S ∈ Rn×n,

X⊤Y + Y ⊤X ⩽ X⊤SX + Y ⊤S−1Y (2.39)

holds.

Lemma 2.12. (Lemma 2 in [49]) Consider the matrix polynomial f : [0, 1]n → Rn×n

defined by

f(τ1, τ2, · · · , τn) = Σ0 + τ1Σ1 + τ1τ2Σ2 + · · ·+ (

n∏
k=1

τk)Σn, ∀τk ∈ [0, 1],

(2.40)
for some matrices Σ0, Σ1, . . ., Σn. If the matrices Σk, k ∈ N, are symmetric and satisfy∑d
k=0 Σk < 0 (or

∑d
k=0 Σk > 0) for all d = 0, 1, · · · , n, then f(τ1, τ2, · · · , τn) < 0 (or

f(τ1, τ2, · · · , τn) > 0).

Theorem 2.13. Consider switched nonlinear system (2.1) with globally Lipschitz fp,
p ∈ M and with given switching times S := {t0, t1, . . . , ti, . . . tn, . . .} generated by
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σ : [0,∞) → M. Assume that the modes can be classified as stable or unstable, i.e.
M = S ∪ U and assume that for every mode p there exists τap > 0 such that (2.24) for
p ∈ S or (2.25) for p ∈ U holds. Suppose that for each mode p ∈ M there exist a minimum
mode dependent dwell time τdp > 0, a constant matrix Ap, a positive semi-definite matrix
Γp, symmetric constant matrices Pp, Qp, Gp, and positive constants mp > 0, ϵp ⩾ 0 such
that fp is decomposed2 into the following form

fp(x, t) = Apx+ gp(x, t), (2.41)

with
▽xgp(x, t)

⊤▽xgp(x, t) ⩽ Γp, ∀x ∈ Rn, t ⩾ 0, (2.42)

and
0 < Qp < mpI, 0 < Pp < mpI, 0 < Pp +Gp < mpI, (2.43)

A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp) + ϵ−1

p Γp + ϵpmpQp ⩽ ηpQp, (2.44)

A⊤
p (Pp +Gp) + (Pp +Gp)Ap +

1

τdp
(Pp −Qp −Gp) + ϵ−1

p Γp

+ ϵpmp(Pp +Gp) ⩽ ηp(Pp +Gp),

(2.45)

A⊤
p Pp + PpAp +

1

τdp
(Pp −Qp −Gp) + ϵ−1

p Γp + ϵpmpPp ⩽ ηpPp, (2.46)

A⊤
p Pp + PpAp + ϵ−1

p Γp + ϵpmpPp ⩽ ηpPp, (2.47)

hold with ηp ⩾ 0 if p ∈ U or ηp < 0 otherwise. Assume that for every p ∈ M, there exists
µp > 0 such that

Qσ(ti) ⩽ µσ(t−i )Pσ(t−i ), ∀ti ∈ S . (2.48)

Then the switched nonlinear system (2.1) is contracting for any MDADT/MDALT switch-
ing signals satisfying (2.28), and which have mode dependent dwell time τdp > 0.

Proof. Let us define Mp(t) in the following form

Mp(t) =

{
ϕp(t)

(
1− ϕp(t)

)
Gp + ϕp(t)Pp +

(
1− ϕp(t)

)
Qp, t ∈ [ti, ti + τdp),

Pp, t ∈ [ti + τdp, ti+1),
(2.49)

where ϕp(t) = t−ti
τdp

, so that Mp(ti) = Qp and Mp(ti+ τdp) = Pp. Note that Mp(t) is
positive definite according to (2.43) and Lemma 2.12. Now, let us consider Mp(t)

2This decomposition is well-posed since the vector field fp is assumed to be globally Lipschitz. The
matrix Ap in this decomposition can be non-Hurwitz, which is relevant for the unstable modes.
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in the time interval [ti, ti + τdp). The time derivative of Mp(t) is given by

Ṁp(t) =
1

τdp
(Gp + Pp −Qp)− ϕp(t)

2

τdp
Gp. (2.50)

For t ∈ [ti, ti + τdp), we obtain from (2.37), (2.49) and (2.50) that

Fp(x, t)
⊤Mp(t) + Ṁp(t) +Mp(t)Fp(x, t)− ηpMp(t) = Σ1 + ϕp(t)Σ2 + ϕ2p(t)Σ3,

(2.51)
where

Σ1 = F⊤
p Qp +QpFp +

1

τdp
(Gp + Pp −Qp)− ηpQp,

Σ2 = F⊤
p (Gp + Pp −Qp) + (Gp + Pp −Qp)Fp −

2

τdp
Gp − ηp(Gp + Pp −Qp),

Σ3 = −F⊤
p Gp −GpFp + ηpGp.

(2.52)
According to (2.41), and Lemma 2.11 (for S = ϵpI), we have

Σ1 =
(
Ap + ▽xgp

)⊤
Qp +Qp

(
Ap + ▽xgp

)
+

1

τdp
(Gp + Pp −Qp)− ηpQp

⩽ A⊤
p Qp +QpAp + ϵ−1

p ▽xg
⊤
p ▽xgp + ϵpQpQp +

1

τdp
(Gp + Pp −Qp)− ηpQp

⩽ A⊤
p Qp +QpAp + ϵ−1

p Γp + ϵpmpQp +
1

τdp
(Gp + Pp −Qp)− ηpQp,

(2.53)
Similarly we have

Σ1 +Σ2 = F⊤
p (Gp + Pp) + (Gp + Pp)Fp +

1

τdp
(Pp −Qp −Gp)− ηp(Gp + Pp)

⩽ A⊤
p (Gp + Pp) + (Gp + Pp)Ap + ϵ−1

p Γp + ϵpmp(Gp + Pp)

+
1

τdp
(Pp −Qp −Gp)− ηp(Gp + Pp),

(2.54)
and

Σ1 +Σ2 +Σ3 = F⊤
p Pp + PpFp +

1

τdp
(Pp −Qp −Gp)− ηpPp

⩽ A⊤
p Pp + PpAp + ϵ−1

p Γp + ϵpmpPp +
1

τdp
(Pp −Qp −Gp)− ηpPp,

(2.55)

Using the hypotheses (2.44), (2.45), and (2.46) of the theorem, it follows that Σ1 < 0,
Σ1 + Σ2 < 0, Σ1 + Σ2 + Σ3 < 0. Since ϕp(t) ∈ [0, 1], it follows from Lemma 2.12
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that (2.51) is negative definite. Similarly, for t ∈ [ti + τdp, ti+1), (2.51) is negative
definite according to (2.47). Consequently, in combination with (2.43), (2.48), and
(2.28), all hypotheses in Lemma 2.10 are satisfied and the claim of the theorem
follows immediately.

We remark that there are a number of families of systems that can be written in
the form of (2.41). This includes Lipschitz systems [103], Lorentz systems, Lur’e
systems, and Persidskii systems.Note that, the assumption of gp after (2.41) is
uniformly in x. This is because for a time-varying system, contracting property
does not guarantee the boundedness of x (we refer to Example 2.1 later where one
of the states can diverge to infinity). However, this condition is less conservative
then the global Lipschitz condition presented in [103], and the references therein.
For the global Lipschitz condition, one has ▽xgp(x, t)⊤▽xgp(x, t) ⩽ γ2I , where γ
is the Lipschitz constant, while in our condition, Γp can be much smaller than γ2I .
To illustrate this, let us consider gp(x, t) =

[
sin(x1)

0

]
, where the Lipschitz constant is

given by γ = 1. For this example, we have ▽xgp(x, t)⊤▽xgp(x, t) =
[
cos2(x1) 0

0 0

]
⩽

[ 1 0
0 0 ]. Hence Γp = [ 1 0

0 0 ], which is less than γ2I . In addition, if ▽xgp(x, t) is a
symmetric matrix, such inequality reduces to the incremental monotonic condition
present in [30], or the uniformly Lipschitz smooth condition introduced in [12].

Remark 2.14. Suppose that the hypotheses in Theorem 2.13 hold with M = U ,
i.e. all modes are non-contracting. Then the switched nonlinear system (2.1) is
contracting for any MDALT switching signals satisfying (2.35).

As an interesting particular case of our main results above, let us consider
the stabilization of linear switched systems where all modes are unstable. Using
results in Theorem 2.13, we can stabilize such switched unstable systems. Consider
a linear switched system given by

ẋ(t) = Aσ(t)x(t), (2.56)

where x(t) and σ(t) are as in (2.1), and Ap, p ∈ M, are unstable matrices for each
mode p.

Corollary 2.15. Consider a linear switched system (2.56) with a given switching sequence
S :=

{
t0, t1, · · · , ti, · · · tn

}
generated by σ(t). Assume that there exists τap > 0 such

that (2.25) holds. Suppose that for each mode p ∈ M there exist a minimum mode
dependent dwell time τdp > 0, symmetric constant matrices Pp, Qp, Gp, and scalars
mp > 0 and 0 < µp < 1, such that (2.43), (2.48), and the following inequalities

A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp) ⩽ ηpQp, ∀p ∈ M, (2.57)
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A⊤
p (Pp +Gp) + (Pp +Gp)Ap +

1

τdp
(Pp −Qp −Gp) ⩽ ηp(Pp +Gp), ∀p ∈ M,

(2.58)

A⊤
p Pp + PpAp +

1

τdp
(Pp −Qp −Gp) ⩽ ηpPp, ∀p ∈ M, (2.59)

A⊤
p Pp + PpAp ⩽ ηpPp, ∀p ∈ M, (2.60)

hold. Then the switched system (2.56) is exponentially stable for any MDALT switching
signals satisfying (2.35) and with mode-dependent dwell times τdp > 0.

Proof. The proof follows vis-á-vis with the proof of Theorem 2.13 adapted to the
switched linear system (2.56). In this case, we have

A⊤
pMp(t) + Ṁp(t) +Mp(t)Ap − ηpMp(t) = Σ1 + ϕp(t)Σ2 + ϕ2p(t)Σ3, (2.61)

where

Σ1 = A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp)− ηpQp,

Σ2 = A⊤
p (Gp + Pp −Qp) + (Gp + Pp −Qp)Ap −

2

τdp
Gp − ηp(Gp + Pp −Qp),

Σ3 = −A⊤
p Gp −GpAp + ηpGp.

(2.62)
It follows from (2.57), (2.58), (2.59), (2.62) and Lemma 2.12 that (2.61) is nega-
tive definite. Then, following Theorem 2.13, the linear switched systems (2.56)
is contracting. Since x(t) = 0 is one of admissible trajectories of (2.56) and it is
contracting, it follows that all the trajectories will converge to x(t) = 0 exponen-
tially.

Discretized Lyapunov function technique for stabilizing switched systems with
all unstable subsystems can be found in [92, Theorem 2]. The main differences
with the results in Corollary 2.15 are as follows. Firstly, the construction of our
Lyapunov functions is based on nonlinear interpolation that connects Qp and
Pp via Gp, as opposed to a linear interpolation used in [92]. Consequently, the
derivative of Mp(t) in (2.50) may be negative so that the corresponding Lyapunov
function may decrease in [ti, ti + τdp), in contrast to the non-decreasing Lyapunov
function in [92]. We note that the discretized Lyapunov function technique in
[92, Theorem 2] can be obtained by taking Gp = 0. Secondly, our approach
consider MDALT condition which generalizes the DT condition assumed in [92].
For the previous linear case after Lemma 2.10, by using Corollary 2.15 we can fix
η1 = η2 = 1.7, µ1 = µ2 = 0.7, then a periodic switching signal with mode duration
τdi is given by τd1 = τd2 = 0.2.
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2.5 Simulation setup and results

In this section, three numerical examples will be presented. In the first case, we an-
alyze the contraction of a switched system with mixed contracting-noncontracting
modes by using Theorem 2.7. In the second case, we apply Theorem 2.13 to design
the switching law for the system whose subsystems are all noncontracting. In the
third case, we analyze the stability of a linear switched system whose subsystems
are all unstable by using Corollary 2.15. In the last case, we apply our results to
solve the synchronization problem of one-way identical non-autonomous systems
with switching coupling.

Example 2.1. Consider a switched system (2.1) consisting of two time-varying
subsystems, whose dynamics take the form

p = 1 :

{
ẋ1 = −x1 − x31 + 3x2 sin t,

ẋ2 = −2x1 sin t− x2 + 2 cos t,

p = 2 :

{
ẋ1 = x1 + x2 + t,

ẋ2 = −x1 − 2x2 + cosx2.

(2.63)

where x(t) ∈ Rn is the state vector. Subsystem p = 2 is non-contracting. The
Lyapunov function can be selected as V1(ξ) = 2ξ21+3ξ22 , V2(ξ) = ξ21+ξ

2
2 . According

to Theorem 2.7, we can fix η1 = −2, η2 = 2, µ1 = 3, µ2 = 0.5, the switched law
(2.28) is given by τa1 ⩾ 0.55, τa2 ⩽ 0.35. For the simulation shown Figure 2.1 we
use a periodic switching signal with τ1 = 0.65 and τ2 = 0.35.

Example 2.2. Consider a switched system (2.1) consisting of two noncontracting
subsystems, whose dynamics take the form

p = 1 :

{
ẋ1 = 0.1x1 − 0.9x2 − 0.2 cos(0.1x1),

ẋ2 = 0.1x1 − 1.4x2 − 0.7 cos(0.1x2),

p = 2 :

{
ẋ1 = −1.9x1 + 0.6x2 + 0.7 cos(0.1x2),

ẋ2 = 0.6x1 − 0.1x2 + 0.2 cos(0.1x2).

(2.64)

where x(t) ∈ Rn is the state vector.

It can be checked that for each mode, there exist a positive eigenvalue of
▽xfi(x, t) which satisfies λ1 ⩾ 0.0130 (for the first mode) or λ2 ⩾ 0.0948 (for the
second mode). In other words, each individual system is non-contracting. As a
result, the methods used in [71, 94] are no longer applicable in this particular case.

Using Theorem 2.13, where we fix m1 = m2 = 0.1, η1 = η2 = 0.3, µ1 = 0.65,
µ2 = 0.6, ϵ1 = ϵ2 = 1, Γ1 = [ 0.0004 0

0 0.005 ], Γ2 = [ 0.005 0
0 0.0004 ], it can be checked that
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Figure 2.1: The plot of trajectories of switched system in Example 2.1 initialized
at
[

2
−2

]
and

[−2
2

]
for mode 1 and 2, respectively, and using a periodic switching

signal with τ1 = 0.65 and τ2 = 0.35.

using the following symmetric constant matrices

Pi :

[
0.0398 −0.0071

−0.0071 0.0933

]
,

[
0.0881 −0.0208

−0.0208 0.0547

]
,

Qi :

[
0.0493 −0.0129

−0.0129 0.0326

]
,

[
0.0235 −0.0013

−0.0013 0.0554

]
,

Gi :

[
−0.0038 0.0013

0.0013 −0.0272

]
,

[
−0.0340 0.0107

0.0107 −0.0064

]
,

(2.65)
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the LMI problem given by (2.43)-(2.48) is feasible. Correspondingly, we have
MDALTs as τa1 = 1.435, τa2 = 1.702, and the minimum dwell time for each mode
as τd1 = τd2 = 0.5.

To illustrate the contraction property, we consider switching signals with
periodic switching time (each p mode has the same dwell time). Trajectories of
a periodic switching signal with mode duration: τa1 = 0.5, τa2 = 1.7 with two
different initial conditions

[
1
−1

]
,
[−1

1

]
are shown in Figure 2.2. The switching

signal satisfies hypotheses of Theorem 2.13, Figure 2.2 shows that despite each
mode is noncontracting and the distance between the trajectories may increase in
each mode (before the first switching, the distance are increasing), the increments
are compensated by the switching behaviors, so that the trajectories converge to
each other asymptotically.

Example 2.3. Let us consider a linear switched system (2.56) that is composed of
two modes as follows.

p = 1 :

{
ẋ1 = −1.9x1 + 0.6x2,

ẋ2 = 0.5x1 + 0.7x2,
p = 2 :

{
ẋ1 = 0.5x1 − 0.9x2,

ẋ2 = 0.1x1 − 1.4x2.
(2.66)

It can be checked that the unstable pole for each mode is given by λ1 = 0.8107

and λ2 = 0.4514, respectively. We can directly apply Corollary 2.9 to this switched
system, where we fix η1 = η2 = 1.7, µ1 = µ2 = 0.7, and τd1 = τd2 = 0.2.
If we apply discretized Lyapunov function technique as presented in [1, 92] to
this switched system, the corresponding LMIs are not feasible or τdp > − lnµp

ηp
.

However, in our result, it can be checked that using the following symmetric
constant matrices

Pi :

[
62.9289 −1.6230

−1.6230 50.5991

]
,

[
41.6025 7.7470

7.7470 75.9246

]
,

Qi :

[
26.4695 5.7076

5.7076 51.6393

]
,

[
41.1033 −0.6396

−0.6396 34.2129

]
,

Gi :

[
−12.7895 2.7501

2.7501 0.3126

]
,

[
1.1959 −1.5380

−1.5380 −13.3743

]
,

(2.67)

the LMI problem given by (2.57)-(2.60) is feasible. Correspondingly, we have
τa1 = τa2 = 0.21. By considering a periodic switching signal with τa1 = τa2 = 0.2

for the corresponding switched system with initial state x(0) =
[

3
−3

]
, Figure 2.3

shows the resulting state trajectories which converge to zero as expected.

Example 2.4. In this numerical example, we apply our main results to the syn-
chronization problem of one-way coupled identical oscillators in [87, 94], whose
dynamics take the form

ẇ = f(w(t), t), (2.68)
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Figure 2.2: The plot of trajectories of switched system in Example 2.2 initialized
at
[

1
−1

]
and

[−1
1

]
for mode 1 and 2, respectively, and using a periodic switching

signal with τa1 = 0.5 and τa2 = 1.7.

ẋ = f(x(t), t) + uσ(t)(w(t))− uσ(t)(x(t)), (2.69)

where w(t), x(t) ∈ Rn is the state vector, f(w(t), t) is the dynamics of the uncou-
pled oscillators, and uσ(t)(w(t))− uσ(t)(x(t)) is the switched coupling force. The
synchronization goal is to design a switching sequence σ(t) such that the trajecto-
ries of (2.68), (2.69) satisfy limt→+∞ ∥x(t)−w(t)∥ = 0. Since w(t) and x(t) are both
the solutions of (2.69), it follows that if ẋ = f(x(t), t)− uσ(t)(x(t)) is contracting,
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Figure 2.3: The plot of state trajectories of xi in Example 2.3 with initial condition[
3
−3

]
and using periodic switching signal with τa1 = τa2 = 0.2.

the synchronization will be achieved.

Let us now consider the following non-autonomous system, and the coupled
switched oscillators with two modes.[

ẇ1

ẇ2

]
=

[
−0.9w1 + 0.6w2 + 2t

0.1w1 + 0.4w2 + 2t

]
, (2.70)

[
ẋ1
ẋ2

]
=

[
−0.9x1 + 0.6x2 + 2t

0.1x1 + 0.4x2 + 2t

]
+ uσ(t)(w)− uσ(t)(x), (2.71)

where σ(t) ∈ {1, 2}, uσ(t) ([
z1
z2 ]) =

[
−z1+1.5z2+0.2 cos(0.1z1)

1.8z2+0.7 cos(0.1z2)

]
. Then, f(x(t), t) −

uσ(t)(x(t)) are given by{
ẋ1 = 0.5x1 − 0.9x2 + 0.2 cos(0.1x2)

ẋ2 = 0.1x1 − 1.4x2 + 0.7 cos(0.1x1)
(2.72)

{
ẋ1 = −1.9x1 + 0.6x2 + 0.7 cos(0.1x2)

ẋ2 = 0.5x1 + 0.3x2 + t+ 0.2 cos(0.1x1)
(2.73)
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The Jacobian of f(x(t), t)− up(x(t)), p = 1, 2, are given by

▽xf1(x, t)− ▽xu1(x, t) =

[
−1.9 0.6− 0.02 sin(0.1x2)

0.5− 0.07 sin(0.1x1) 0.3

]
=

[
0.1 −0.9

0.1 −1.4

]
+

[
0.02 sin(0.1x1) 0

0 0.07 sin(0.1x2)

]
,

(2.74)
and

▽xf2(x, t)− ▽xu2(x, t) =

[
0.5 −0.9− 0.07 sin(0.1x2)

0.1− 0.02 sin(0.1x1) −1.4

]
=

[
−1.9 0.6

0.6 −0.1

]
+

[
0 −0.07 sin(0.1x2)

−0.02 sin(0.1x1) 0

]
.

(2.75)
It can be checked that for each mode, there exist a positive eigenvalue of ▽xf(x, t)−
▽xuσ(t)(x, t) which satisfies λ1 ⩾ 0.0130 (for the first mode) or λ2 ⩾ 0.0948 (for
the second mode). In other words, each individual system is non-contracting. As
a result, the methods used in [71, 94] are no longer applicable in this particular
case. We choose Γ1 and Γ2 in (2.42) as the following, respectively.[

0.005 0

0 0.0004

] [
0.0004 0

0 0.005

]
(2.76)

Using Theorem 2.13, where we fix m1 = m2 = 0.1, η1 = η2 = 0.3, µ1 = 0.65,
µ2 = 0.6, ϵ1 = ϵ2 = 1, it can be checked that using the following symmetric
constant matrices

Pi :

[
0.0398 −0.0071

−0.0071 0.0933

]
,

[
0.0881 −0.0208

−0.0208 0.0547

]
,

Qi :

[
0.0493 −0.0129

−0.0129 0.0326

]
,

[
0.0235 −0.0013

−0.0013 0.0554

]
,

Gi :

[
−0.0038 0.0013

0.0013 −0.0272

]
,

[
−0.0340 0.0107

0.0107 −0.0064

]
,

(2.77)

the LMI problem given by (2.43)-(2.48) is feasible. Correspondingly, we have
MDALTs as τa1 = 1.435, τa2 = 1.702, and the minimum dwell time for each mode
as τd1 = τd2 = 0.5.

To illustrate the synchronization property. We consider switching signals
with periodic switching time (each p mode has the same dwell time). The states
with three different switching signals are initialized as: w(0) = [10,−10]; (i).
x1(0) = [−30, 30], τa1 = 1, τa2 = 1, (ii). x2(0) = [30,−30], τa1 = 0.5, τa2 = 1.7;
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and (iii). x3(0) = [30, 30], τa1 = 1.43, τa2 = 0.5. As all switching signals that
satisfy hypotheses of Theorem 2.13, i.e. τa1 ∈ [0.5, 1.435], τa2 ∈ [0.5, 1.702], we
can conclude that ẋ = f(x(t), t)− uσ(t)(x(t)) is contracting (i.e. synchronization
occurs). The resulting three different trajectories are shown in Figure 2.4.
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Figure 2.4: State trajectories of w/xi. x1: τa1 = 1, τa2 = 1, x2: τa1 = 0.5, τa2 = 1.7,
x3: τa1 = 1.43, τa2 = 0.5.

2.6 Conclusion

In this chapter, the contraction property of switched systems with mixed contracting-
noncontracting modes have been studied. It is established based on a necessary
and sufficient condition that connects the contraction property of the original
switched systems and the UGES of its variational systems. A time-dependent
Lyapunov function and a mixed MDADT/MDALT method are introduced to
study the UGES of the switched variational systems. Furthermore LMI conditions
are presented that allow for numerical validation on the contraction property of
switched systems with computable mode-dependent average dwell-time. Our
results can be applied to stabilize linear switched systems with all unstable modes,
and solve the synchronization problem of switched systems.



3
Contraction analysis of time-varying

DAE systems via auxiliary ODE
systems

This chapter studies the contraction property of time-varying differential-algebraic
equation (DAE) systems by embedding them to higher-dimension ordinary differ-
ential equation (ODE) systems. The first result pertains to the equivalence of the
contraction of a DAE system and the uniform global exponential stability (UGES)
of its variational DAE system. Such equivalence inherits the well-known property
of contracting ODE systems on a specific manifold. Subsequently, we construct an
auxiliary ODE system from a DAE system whose trajectories encapsulate those of
the corresponding variational DAE system. Using the auxiliary ODE system, a
sufficient condition for contraction of the time-varying DAE system is established
by using matrix measure which allows us to estimate an upper bound on the
parameters of the auxiliary system. Finally, we apply the results to analyze the
stability of time-invariant DAE systems, and to design observers for time-varying
ODE systems.

3.1 Introduction

As a generalization of ordinary differential equation (ODE) systems, differential-
algebraic equation (DAE) systems have been studied for the past decades due
to their relevance in representing numerous modern engineering systems with
constraints. Some well-known examples of such engineering systems are electrical
networks with Kirchhoff’s laws [60] and mechanical systems with rigid body
constraints [68]. The DAE systems can also be used to model power systems [37]
and chemical processes [46]. Typically, DAE systems consist of a set of differen-
tial equations describing the system dynamics, and a set of algebraic equations
describing the constraints. Solving DAE systems is more challenging than solving
ODE systems due to the implicit relationship between the differential equations
and algebraic equations. DAE systems can be classified as either index-1 [37] or
higher index [29] by the degree of the highest derivative of the algebraic equation.
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Index-1 DAE systems are particularly important in control theory, because the
algebraic restriction can be substituted directly into the dynamics. Consequently,
they can numerically be solved by using standard techniques for solving ODE
[81], which allows numerical simulations to be carried out straightforwardly [76].

The analysis of DAE systems has been widely studied in the literature [16, 32,
37, 58, 63, 64, 67] with a large body of works concerned with index-1 DAE systems.
In [32], the authors show that any solvable DAE power systems are of index one.
By this result, robust H∞ observers for power networks are presented in [64], and
a load- and renewable-following control approach for power system is proposed
in [63]. There are several methods for analyzing the stability of DAE systems,
including the Lyapunov method [16, 37], the energy-based methods [67], as well as,
the eigenvalue analysis [58]. In [37], the DAE systems are embedded in reduced
ODE systems, where Lyapunov method can be applied to get the Lyapunov
stability. In [16], an incremental Lyapunov function is applied to analyze the
asymptotic stability and optimal resource allocation for a network preserved
microgrid model with active and reactive power loads. In [67], bifurcation theory
is used to characterize the stability boundary for power systems in DAE, and an
energy function method is developed to guarantee both rotor angular stability and
voltage stability. A method for defining the small-signal stability of delay DAE
systems based on eigenvalue analysis and an approximation of the characteristic
equation at equilibrium points are proposed in [58].

In all of the above results, the properties of time-invariant DAE systems are
analyzed, while the extension of these results to the time-varying DAE systems re-
mains non-trivial. The exponential stability and robustness of linear time-varying
DAE systems with index-1 are studied in [9, 11]. In [11], the Bohl exponent theory
for stability analysis of ODEs is extended to DAEs. When there are perturbations
in systems’ matrices, a stability radius has been investigated in [9], which includes
the lower bound computation of the stability radius.

As one of the stability analysis methods for time-varying systems, which has
gained popularity in recent years, contraction analysis focuses on the relative
trajectory of the nonlinear time-varying system rather than a specific equilibrium
point. There are many methods to analyze the contractivity of nonlinear time-
varying ODE systems in literature, such as, [5, 7, 27, 55, 100] among many others.
An ODE system is contracting if and only if the associated variational system
is uniformly globally exponentially stable (UGES) [7]. In [55], the contraction
property can be guaranteed if the largest eigenvalue of the symmetric part of the
variational systems is uniformly strictly negative. Finsler–Lyapunov functions are
introduced in [27] to analyze the incremental exponential stability of the system.
Mode-dependent Lyapunov functions for contracting switched nonlinear systems
are presented in [100]. In [5], the focus is on investigating transverse exponential
stability (a generalized notion of contraction) by employing a Lyapunov matrix
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transversal equation. In the context of DAE systems, the contraction analysis
thereof has recently been presented in [62]. In [62], the authors proved that if the
algebraic equation satisfies some sufficient conditions, the contractivity of time-
invariant DAE systems can be obtained through exponential stability analysis of
the corresponding reduced variational ODE systems using matrix measure. In
Section 3.3.2, we show that this approach can be restrictive and is not applicable
to some time-varying DAE systems.

In this chapter, we analyze the contraction property of index-1 nonlinear time-
varying DAE systems by using an ODE approach. As our first main result, we
establish that the uniform global exponential stability (UGES) of the variational
DAE dynamics is a sufficient and necessary condition to the contractivity of the
original DAE systems. This condition can be viewed as a DAE counterpart of the
results for ODE presented in [7, Prop. 1]. Subsequently, we construct an auxiliary
ODE system whose convergence property can encapsulate the same property
of the variational DAE dynamics. With this construction, we can analyze the
contractivity of the DAE systems by applying conventional control theory (such
as Lyapunov approach, matrix measure method) to the auxiliary ODE system. As
our second contribution, we provide sufficient conditions on the contraction of
nonlinear time-varying DAE system by using matrix measure method to analysis
the UGES property of the auxiliary ODE system. In general, these conditions
ensure the contraction of the DAE system without analysing its reduced system.
As our third contribution, we employ these conditions to design observers for time-
varying ODE systems by treating the output as an algebraic equation. Furthermore,
we investigate the exponential stability of time-invariant DAE systems by ensuring
that the DAE system is contractive and the equilibrium lies within its trajectory
set.

The chapter is organized as follows. In Section 3.2, we present preliminaries
and problem formulation. Our main results are proposed in Section 3.3, where we
present necessary and sufficient conditions for the contractivity of time-varying
DAE systems, and the ODE approach. The numerical simulations and applications
are provided in Section 3.4 and the conclusions are given in Section 3.5.

3.2 Preliminaries and problem formulation

Throughout this paper, we consider the following nonlinear time-varying DAE
systems {

ẇ = f(t, w, z),

0 = g(t, w, z),
(3.1)

where w(t) ∈ Rn is the state vector, z(t) ∈ Rm refers to the algebraic vector,
f : R+ × Rn × Rm → Rn is the vector field, and g : R+ × Rn × Rm → Rm
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describes the algebraic manifold. We assume that f is continuously differentiable
and g is twice-continuously differentiable. In this note, we consider only the

continuously differentiable solutions
{
w(t) = φ(t0, w0, z0)

z(t) = ψ(t0, w0, z0)
of (3.1) with admissible

initial conditions (w0, z0) ∈ Rn × Rm satisfying the algebraic constraint

g(t, w0, z0) = 0. (3.2)

We assume the DAE system (3.1) is of index-1, i.e. the (partial) Jacobian matrix
∂g
∂z (t, w, z) ∈ Rm×m is invertible for all (t, w, z). This assumption guarantees
the existence and uniqueness of a local solution to (3.1) for any initial condition
satisfying (3.2) (see also, [37]). Throughout the paper, we will assume that every
local solution can be extended to a solution defined on the whole time domain
[0,∞).

Note that the index-1 assumption allows to apply the implicit function theorem
to solve the constraint (3.2) for z0 for any given (t0, w0) and in the following we
will therefore write z0(w0) to denote the unique value for z0 which satisfies (3.2)
for an arbitrarily given w0 (we omit the dependency on t0 as we consider the initial
time as fixed in the following analysis).

Definition 3.1. A time-varying DAE system (3.1) is called contracting if there exists
positive numbers c and α such that for any pair of solutions Wi(t) =

[
wi(t)
zi(t)

]
∈ Rn

of (3.1) with i = 1, 2, we have

∥W1(t)−W2(t)∥ ⩽ ce−αt∥W1(t0)−W2(t0)∥, ∀t ⩾ t0. (3.3)

In order to study contractivity of the DAE system (3.1), we will analyse the
(uniform) stability of the corresponding variational DAE systems. The variational
system of system (3.1) is given by{

ξ̇ = ∂f
∂w (t, w(t), z(t)) · ξ +

∂f
∂z (t, w(t), z(t)) · ν,

0 = ∂g
∂w (t, w(t), z(t)) · ξ +

∂g
∂z (t, w(t), z(t)) · ν,

(3.4)

where w(t) and z(t) are solutions of (3.1). We omit the explicit parametrization
(t, w, z) whenever it is clear from the context.

Definition 3.2. The variational DAE system (3.4) is called uniformly globally
exponentially stable (UGES), if there exist positive numbers c, α (independent of
the solution W (·)) such that for every solution Ξ(t) :=

[
ξ(t)
ν(t)

]
∈ Rn of (3.4) the

inequality
∥Ξ(t)∥ ⩽ ce−αt∥Ξ(t0)∥, (3.5)

holds for all t ⩾ t0.
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Given the assumption of reversibility for ∂g∂z , we can express the reduced system
of equation (6) in the following form:

ξ̇ =
( ∂f
∂w

− ∂f

∂z

(∂g
∂z

)−1 ∂g

∂w

)
ξ. (3.6)

In [62, Proposition 1], a sufficient condition is introduced to analyse the con-
tractivity of time-invarient DAE systems by analysing its reduced systems (3.6).
However, this approach may not be applicable in the time-varying case. As a
simple example, consider the following time-varying DAE system{

ẇ = −w + e−3tz,

0 = e3tw + z,
(3.7)

which has the same form as its variational DAE system. Its reduced system is
given by ẇ = −2w, which is a contractive system. Consequently the trajectory

of the system is
{
w = w0e

−2t

z = −w0e
t , which shows the DAE system is not contracting

(z is not contracting). This is due to the unboundedness of
(
∂g
∂z

)−1
∂g
∂w = e3t,

which implies that the method proposed in [62] is not applicable when dealing
with time-varying systems. Notice that, in this particular case, the contraction
analysis problem can be effectively addressed by comparing the exponential rate
of the reduced system with an exponential bound on

∥∥∥(∂g∂z )−1 ∂g
∂w

∥∥∥. However, it
is worth acknowledging that obtaining information about the reduced system or
establishing a bound for

∥∥∥(∂g∂z )−1 ∂g
∂w

∥∥∥ can be a challenging task for certain systems.

The objective of this paper is to provide a sufficient condition that guarantees
the contractivity of time-varying DAE systems, even in situations where prior
knowledge about the DAE system is unavailable.

Before stating our main results, let us recall the matrix measure µq(A)[19]. For
a matrix measure µq(A), it follows that when q = 1, 2 or ∞, we have

µ1(A) = max
j

(
ajj +

∑
i ̸=j

|aij |
)
,

µ2(A) = max
i

(
λi{

A+A⊤

2
}
)
, or

µ∞(A) = max
i

(
aii +

∑
j ̸=i

|aij |
)
,

(3.8)

respectively. In this chapter, all the norms are defined using the p-norm
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3.3 Main results

In this section, we firstly establish an equivalent relationship between the contrac-
tion of a DAE system and the uniform global exponential stability (UGES) of its
variational DAE system. Secondly, we construct an auxiliary ODE system that
encapsulates the behaviors of the variational DAE system. Thirdly, a sufficient
condition is presented that guarantees the UGES of the auxiliary ODE system and
is numerically implementable.

3.3.1 A necessary and sufficient condition

Proposition 3.3. The DAE system (3.1) is contracting if and only if the corresponding
variational DAE system (3.4) is UGES.

Proof. Let us establish a relationship between the solutions of (3.1) and those of
(3.4). Let

[
w(t)
z(t)

]
=
[
φ(t,w0,z0(w0))
ψ(t,w0,z0(w0))

]
and

[
ŵ(t)
ẑ(t)

]
=
[
φ(t,w0+δξ0,z0(w0+δξ0))
ψ(t,w0+δξ0,z0(w0+δξ0))

]
be two

trajectories of (3.1) with initial conditions
[ w0

z0(w0)

]
and

[
w0+δξ0

z0(w0+δξ0)

]
, respectively,

where δ is a sufficiently small positive constant and ξ0 will be related later to the
initial condition of (3.1). As they are solutions of (3.1), they satisfy

g(t, w(t), z(t)) = 0, (3.9)

and
g(t, ŵ(t), ẑ(t)) = 0. (3.10)

Denote the partial Jacobian matrices of φ and ψ with respect to the second or
third argument evaluated at (t, w0, z0(w0)) by Φw0

(t),Φz0(t),Ψw0
(t),Ψz0(t), re-

spectively. By differentiating both sides of (3.9) with respect to w0, we have

0 = ∂g
∂w (t, w(t), z(t)) ·

(
Φw0(t) + Φz0(t) · z′0(w0)

)
+ ∂g

∂z (t, w(t), z(t)) ·
(
Ψw0(t) + Ψz0(t) · z′0(w0)

)
.

(3.11)

In the following, we will show thatξ(t) := lim
δ→0

φ(t,w0+δξ0,z0(w0+δξ0))−φ(t,w0,z0(w0))
δ ,

ν(t) := lim
δ→0

ψ(t,w0+δξ0,z0(w0+δξ0))−ψ(t,w0,z0(w0))
δ ,

(3.12)
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are a pair of solutions of (3.4) with initial value

ξ(t0) = ξ0,

ν(t0) = ν0 := lim
δ→0

z0(w0+δξ0)−z0(w0)
δ .

We can rewrite (3.12) asξ(t) :=
(
Φw0

(t) + Φz0(t) · z′0(w0)
)
· ξ0,

ν(t) :=
(
Ψw0

(t) + Ψz0(t) · z′0(w0)
)
· ξ0.

(3.13)

From (3.11) and (3.13), we know that (3.12) satisfies 0 = ∂g
∂w ξ +

∂g
∂z ν.

The flow φ(t, w0, z0(w0)) of (3.1) satisfies

φ(t, w0, z0(w0)) = w0 +

∫ t

0

f
(
φ(τ, w0, z0(w0)), ψ(τ, w0, z0(w0))

)
dτ, (3.14)

and similarly, the flow φ(t, w0 + δξ0, z0(w0 + δξ0)) satisfies

φ(t, w0 + δξ0, z0(w0 + δξ0)) = w0 + δξ0+∫ t

0

f
(
φ(τ, w0 + δξ0, z0(w0 + δξ0)), ψ(τ, w0 + δξ0, z0(w0 + δξ0))

)
dτ.

(3.15)

Hence,

ξ(t) = ξ0+∫ t

0

lim
δ→0

1

δ
×
(
f
(
φ(τ, w0 + δξ0, z0(w0 + δξ0)), ψ(τ, w0 + δξ0, z0(w0 + δξ0))

)
− f

(
φ(τ, w0, z0(w0)), ψ(τ, w0, z0(w0))

))
dτ

(3.16)

Clearly,

lim
δ→0

1

δ
×
(
f
(
φ(τ, w0 + δξ0, z0(w0 + δξ0)), ψ(τ, w0 + δξ0, z0(w0 + δξ0))

)
− f

(
φ(τ, w0, z0(w0)), ψ(τ, w0, z0(w0))

))
= ∂f

∂w (τ, w(τ), z(τ)) ·
(
Φw0(τ) + Φz0(τ) · z′0(w0)

)
· ξ0

+ ∂f
∂z (τ, w(τ), z(τ))

(
Ψw0

(τ) + Ψz0(τ) · z′0(w0)
)
· ξ0

(3.13)
= ∂f

∂w (τ, w(τ), z(τ)) · ξ(τ) +
∂f
∂z (τ, w(τ), z(τ)) · ν(τ).

(3.17)
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Substituting this back to (3.16) and differentiating with respect to time gives us

ξ̇(t) =
∂f

∂w
ξ(t) +

∂f

∂z
ν(t). (3.18)

Altogether this shows that indeed ξ(t), ν(t) given by (3.12) is a solution of (3.4).
We can now show the sufficiency result.
Contracting ⇒ UGES. Let c and α be the constants corresponding to the con-

tractivity condition. Seeking a contradiction, assume the variational DAE system
(3.4) is not UGES. Then there exists a solution

[
w(·)
z(·)

]
of (3.1) and an initial value[ w0

z0(w0)

]
such that for the corresponding solution

[
ξ(·)
ν(·)

]
of (3.4) we have that for

c′ := 3
2c and α′ := α, there exists T > 0 such that∥∥∥∥[ξ(T )ν(T )

]∥∥∥∥ > c′e−α
′T

∥∥∥∥[ξ0ν0
]∥∥∥∥ =

3

2
ce−αT

∥∥∥∥[ξ0ν0
]∥∥∥∥ ∀ξ0. (3.19)

Let
[
ŵ(·)
ẑ(·)

]
be a solution of (3.1) with initial value

[
ŵ(t0)
ẑ(t0)

]
=
[

w0+δξ0
z0(w0+δξ0)

]
for

sufficiently small δ ∈ R. In the first part of the proof we have shown that{
ξ(t) := limδ→0

ŵ(t)−w(t)
δ

ν(t) := limδ→0
ẑ(t)−z(t)

δ

, then, for a sufficiently small δ > 0, we have that at

time T , ∥∥∥∥[ŵ(T )ẑ(T )

]
−
[
w(T )

z(T )

]∥∥∥∥
δ

>
4

5

∥∥∥∥[ξ(T )ν(T )

]∥∥∥∥ , (3.20)

where the lower-bound constant 4
5 is chosen arbitrarily for the following compu-

tation of bounds. Similarly, since ν0 := limδ→0
ẑ(t0)−z(t0)

δ , for a sufficiently small
δ > 0, we have that

∥ν0∥ >
5

6

∥ẑ(t0)− z(t0)∥
δ

. (3.21)

Combining (3.19), (3.20) and (3.21), we obtain∥∥∥∥[ŵ(T )ẑ(T )

]
−
[
w(T )

z(T )

]∥∥∥∥ (3.20)
>

4

5
δ

∥∥∥∥[ξ(T )ν(T )

]∥∥∥∥ (3.19)
>

6

5
ce−αT

∥∥∥∥[δξ0δν0

]∥∥∥∥
(3.21)
> ce−αT

∥∥∥∥[ 6
5 ŵ(t0)

ẑ(t0)

]
−
[
6
5w(t0)

z(t0)

]∥∥∥∥
> ce−αT

∥∥∥∥[ŵ(t0)ẑ(t0)

]
−
[
w(t0)

z(t0)

]∥∥∥∥ ,
for all ξ0, the last inequality arises from the property of the p-norm. This is in
contradiction to the contractivity of (3.1) and concludes the proof of sufficiency
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part.

UGES ⇒ Contracting. Let us consider two solutions
[
w(·)
z(·)

]
=
[
φ(·,w0,z0(w0))
ψ(·,w0,z0(w0))

]
and

[
ŵ(·)
ẑ(·)

]
=
[
φ(·,ŵ0,ẑ0(ŵ0))
ψ(·,ŵ0,ẑ0(ŵ0))

]
of (3.1). Consequently, we can utilize the fundamen-

tal theorem of calculus for line integrals to obtain{
ŵ(t)− w(t) =

∫ ŵ0

w0

dφ(t,ζ,z0(ζ))
dζ dζ

ẑ(t)− z(t) =
∫ ŵ0

w0

dψ(t,ζ,z0(ζ))
dζ dζ

. (3.22)

According to (3.12), one has[
ξ(t)

ν(t)

]
=

[
dφ(t,w0,z0(w0))

dw0
0

dψ(t,w0,z0(w0))
dw0

0

] [
ξ0
ν0

]
. (3.23)

Then, in (3.23),

[
dφ(t,w0,z0(w0))

dw0
0

dψ(t,w0,z0(w0))
dw0

0

]
is the (singular) state transition matrix of the

DAE (3.4). From the UGAS property of (3.4), it follows with similar arguments as
in the necessity proof of [44, Thm. 4.11] that∥∥∥∥∥

[
dφ(t,w0,z0(w0))

dw0
0

dψ(t,w0,z0(w0))
dw0

0

]∥∥∥∥∥ ⩽ ce−αt (3.24)

It follows1 from (3.24) that∥∥∥∥∥
[

dφ(t,w0,z0(w0))
dw0

dψ(t,w0,z0(w0))
dw0

]∥∥∥∥∥ ⩽ ce−αt (3.25)

Using (3.25) to get the upper bound of (3.22), we have∥∥∥∥[ŵ(t)ẑ(t)

]
−
[
w(t)

z(t)

]∥∥∥∥ =

∥∥∥∥∥
∫ ŵ0

w0

[
dφ(t,ζ,z0(ζ))

dζ
dψ(t,ζ,z0(ζ))

dζ

]
dζ

∥∥∥∥∥
⩽ ce−αt ∥ŵ0 − w0∥

⩽ ce−αt
∥∥∥∥[ ŵ0

z0(ŵ0)

]
−
[

w0

z0(w0)

]∥∥∥∥ ,
(3.26)

which implies that (3.1) is contracting. This completes the proof.

1In general, for any p-norm and its induced matrix norm we have
∥∥[M 0

]∥∥ =

sup∥∥∥[ x
y

]∥∥∥=1

∥∥∥∥[M 0
] [x

y

]∥∥∥∥ = sup∥∥∥[ x
y

]∥∥∥=1

∥Mx∥ ⩾ sup
∥x∥=1

∥Mx∥ = ∥Mx∥. The inequality follows from the

set inclusion {x| ∥x∥ = 1} = {x| ∥[ x0 ]∥ = 1} ⊆ {x|∃y :
∥∥[ x

y

]∥∥ = 1}.
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Proposition 3.3 shows that the contractivity of DAE systems inherit the prop-
erty of contracting ODE systems (i.e., [7, Proposition 1]) on a corresponding
manifold ∂g

∂w (t, w, z)ξ +
∂g
∂z (t, w, z)ν = 0. From (3.23) and (2.23), we can deduce

that ∥ξ(t)∥ ⩽ ce−αt∥ξ0∥, which means that when the system (3.4) is exponentially
stable, its reduced system (3.6) is exponentially stable. In the case of a time-
invariant system, the reverse implication holds automatically. This is due to the

fact that it becomes feasible to guarantee the boundedness of
[
∂g
∂z

]−1
∂g
∂w within a

particular invariant set. As a result, we can utilize Proposition 3.3 for analyzing
the stability of time-invariant DAE systems, as demonstrated in Corollary 3.8.
Apart from the time-invariant system, the presence of an invariant set might not

be guaranteed for a time-varying system, i.e.,
[
∂g
∂z

]−1
∂g
∂w could potentially become

unbounded. This implies that the contractivity of the time-varying DAE system
cannot be derived from the contractivity of the reduced system in the absence of

bounded condition on
[
∂g
∂z

]−1
∂g
∂w . In Lemma 3.4 below we relax the condition

on
(
∂g
∂z

)−1 ∂g
∂w by analysing the stability of an auxiliary ODE system instead of

analysing the contractivity of the reduced system. By adopting this approach, it
becomes unnecessary to have prior knowledge about the reduced system (3.6), as
demonstrated in Example 3.1.

3.3.2 The ODE approach

In this section, we present an ODE approach to analyze the contractivity of nonlin-
ear time-varying DAE systems. We present a construction of auxiliary ODE whose
trajectories can represent the convergence property of the variational DAE system.
As a consequence, we can apply traditional control theories to the auxiliary ODE
in order to analyze the UGES of (3.4).

For a given variational DAE system (3.4), replacing the algebraic equation with
its relative ordinary differential equation, we construct its auxiliary ODE system
by ξ̇γ = ∂f

∂w ξγ +
∂f
∂z νγ ,

ν̇γ = −
(
∂g
∂z

)−1[(
γ ∂g∂w + d

dt (
∂g
∂w ) +

∂g
∂w

∂f
∂w

)
ξγ +

(
γ ∂g∂z +

d
dt (

∂g
∂z ) +

∂g
∂w

∂f
∂z

)
νγ

]
,

(3.27)
where γ is a no-negative constant, d

dt (
∂g
∂w ) = ∂2g

∂w∂t +
∂2g
∂2wf − ∂2g

∂w∂z (
∂g
∂z )

−1(∂g∂t +
∂g
∂wf), and d

dt (
∂g
∂z ) = ∂2g

∂z∂t +
∂2g
∂w∂z f + ∂2g

∂2z (
∂g
∂z )

−1(∂g∂t − ∂g
∂wf). It is worth noting

that in various control problems that involve the system’s output, such as state
observer design and output feedback control, the output of the system, denoted
as z = h(w, t), can be considered as a time-varying constraint. In other words,
the function g(t, w, z) takes the form of z − h(w, t). In such cases, the term d

dt (
∂g
∂z )
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becomes zero, and d
dt (

∂g
∂w ) can be simplified to ∂2g

∂w∂t +
∂2g
∂2wf .

Lemma 3.4. The variational DAE system (3.4) is exponentially stable if there exist γ ⩾ 0

such that its auxiliary ODE system (3.27) is exponentially stable.

Proof. Consider an auxiliary system of (3.4) as follows, which is equivalent to
(3.27), 

ξ̇γ = ∂f
∂w ξγ +

∂f
∂z νγ ,

˙︷ ︸︸ ︷( ∂g
∂w

ξγ +
∂g

∂z
νγ

)
= −γ

(
∂g
∂w ξγ +

∂g
∂z νγ

)
.

(3.28)

From the second equation in (3.28), we have( ∂g
∂w

ξγ +
∂g

∂z
νγ

)
=
(∂g0
∂w

ξ0 +
∂g0
∂z

ν0

)
e−γt. (3.29)

where ∂g0
∂w = ∂g

∂w

∣∣∣
t=0

. It follows then that the solution of (3.4) is a particular case of

(3.28) with initial condition ∂g0
∂w ξ0 +

∂g0
∂z ν0 = 0.

In Lemma 3.4, we use the stability properties of (3.28) to derive the stability
properties of (3.4). In this regard, the constant γ must be chosen properly as
(3.28) may fail to capture the stability properties of (3.4), e.g., the system (3.28)
can be unstable while correspondingly the system (3.4) is stable. For instance,
let us consider the following contracting DAE system whose trajectories can be
calculated explicitly {

ẇ = −2etz,

0 = e−tw − z,
(3.30)

which again has the same form as its variational system. The trajectory of the

system is
{
w = w0e

−2t

z = w0e
−3t . If we choose γ = 1, (3.27) can be rewritten as

{
ẇ = −2etz,

ż = −3z,
(3.31)

which has the trajectory of
{
w = z0e

−2t + w0 − z0
z = z0e

−3t , i.e. it is not contracting (the

value of w depends on the initial condition w0 − z0). However, by choosing γ = 4,
(3.27) can be rewritten as {

ẇ = −2etz,

ż = 3e−tw − 6z,
(3.32)

its trajectory is given by
{
w = (3w0 − 2z0)e

−2t − 2(w0 − z0)e
−3t

z = (3w0 − 2z0)e
−3t − 3(w0 − z0)e

−4t , which is con-
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tracting. Based on this observation, it appears that in order to ensure the contrac-
tivity of the system, the parameter γ should be chosen appropriately.

In the following proposition, we establish a lower bound for γ based on a priori
information of the DAE system.

Proposition 3.5. For any given signals w and z, suppose that the reduced system (3.6) is
uniformly exponentially upper and lower bounded by the rates −α, −α, with α ⩾ α > 0,
and there exist positive constants lf (w0, z0), kf (w0, z0), lg(w0, z0), kg(w0, z0) such

that,
∥∥∥(∂f∂z)∥∥∥ ⩽ kfe

lf t and
∥∥∥∥(∂g∂z)−1

∥∥∥∥ ⩽ kge
lgt for all t ⩾ 0, where all gradients are

evaluated on the trajectory w(t) = φ(t, w0, z0) and z(t) = ψ(t, w0, z0) of (3.1). For
γ > l + α holds in the ODE system (3.27), where l = max{lg, lg + lf}, if the system
(3.4) is exponentially stable, then it can be concluded that (3.27) is asymptotically stable

Proof. Let us define q = ∂g
∂w ξ +

∂g
∂z ν, so that (3.28) can be rewritten as{

ξ̇γ =
(
∂f
∂w − ∂f

∂z

(
∂g
∂z

)−1 ∂g
∂w

)
ξγ +

∂f
∂z

(
∂g
∂z

)−1
q,

q̇ = −γq.
(3.33)

In this case, the solution of (3.33) is given by{
ξγ = Φ(t, 0)ξ0 + q0

∫ t
0
Φ(t, s)

(
∂f
∂z

(
∂g
∂z

)−1
e−γs

)
ds,

q = q0e
−γt,

(3.34)

where Φ(t, s) is the transition matrix of the reduced system. Since the reduced sys-
tem is exponentially bounded by the rates −α, −α, we use the bound ce−α(t1−t0) ⩽
||Φ(t1, t0)|| ⩽ ce−α(t1−t0) to arrive at the following estimation

∥ξγ∥ ⩽ ce−αt ∥ξ0∥+ ∥q0∥
∫ t

0

ce−α(t−s)
∥∥∥∥∂f∂z (∂g∂z )−1

∥∥∥∥ e−γsds
= ce−αt ∥ξ0∥+ ce−αt ∥q0∥

∫ t

0

kfe
lfskge

lgse−(γ−α)sds

⩽ ce−αt(∥ξ0∥+ k ∥q0∥).

(3.35)

The last equality is derived from lf + lg − γ + α ⩽ l − γ + α < 0 and for some
suitable k > 0. This implies that the convergence rate of ξ is at least α. By the
definition of q defined before (3.33), we have

∥νγ∥ ⩽ ∥q0∥

∥∥∥∥∥
(
∂g

∂z

)−1
∥∥∥∥∥ e−γt +

∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
ξγ

∥∥∥∥∥
⩽ kg ∥q0∥ e−αt +

∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
ξγ

∥∥∥∥∥ .
(3.36)
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Now, let us consider
∥∥∥∥(∂g∂z)−1

∂g
∂w ξγ

∥∥∥∥, by using ξγ in (3.34), we have

∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
ξγ

∥∥∥∥∥ ⩽

∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
Φ(t, 0)ξ0

∥∥∥∥∥+∥∥∥∥∥q0
(
∂g

∂z

)−1
∂g

∂w

∫ t

0

Φ(t, s)
(∂f
∂z

(∂g
∂z

)−1
e−γs

)
ds

∥∥∥∥∥
=

∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
Φ(t, 0)ξ0

∥∥∥∥∥+∥∥∥∥∥q0
∫ t

0

(
∂g

∂z

)−1
∂g

∂w
Φ(t, 0)Φ(0, s)

(∂f
∂z

(∂g
∂z

)−1
e−γs

)
ds

∥∥∥∥∥ .

(3.37)

Since the system (3.4) is exponentially stable, and

ν =

(
∂g

∂z

)−1
∂g

∂w
ξ =

(
∂g

∂z

)−1
∂g

∂w
Φ(t, 0)ξ0,

we have ∥∥∥∥∥
[

Φ(t, 0) 0(
∂g
∂z

)−1
∂g
∂wΦ(t, 0) 0

]∥∥∥∥∥ ⩽ c′e−α
′t,

for some positive c′ and α′ ⩾ α. Then, we have∥∥∥∥∥
[

Φ(t, 0)(
∂g
∂z

)−1
∂g
∂wΦ(t, 0)

]∥∥∥∥∥ ⩽ c′e−α
′t, (3.38)

It follows 2 from (3.38) that∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
Φ(t, 0)

∥∥∥∥∥ ⩽ c′e−α
′t, (3.39)

By using (3.39), we can rewrite (3.37) as∥∥∥∥∥
(
∂g

∂z

)−1
∂g

∂w
ξγ

∥∥∥∥∥ ⩽ c′ ∥ξ0∥ e−α
′t + c′ ∥q0∥

∥∥∥∥∫ t

0

eαs
(∂f
∂z

(∂g
∂z

)−1
e−γs

)
ds

∥∥∥∥ e−α′t.

(3.40)

2In general, for any p-norm and its induced matrix norm we have
∥∥∥∥[MN

]∥∥∥∥ = sup
∥x∥=1

∥∥∥∥[MN
]
x

∥∥∥∥ =

sup
∥x∥=1

∥∥∥∥[Mx
Nx

]∥∥∥∥ ⩾ sup
∥x∥=1

∥Nx∥ = ∥N∥.
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Combine (3.37), (3.40) and l + α− γ < 0, we arrive at

∥νγ∥ ⩽ kg ∥q0∥ e−αt + c′(∥ξ0∥+ kgkf ∥q0∥)e−α
′t. (3.41)

By (3.35) and (3.41), the system (3.27) is asymptotically stable.

In Proposition 3.5, we have a mild assumption where the time varying func-

tions ∂f
∂z and

(
∂g
∂z

)−1

are bounded by kelt instead of by constants. Let us recall
again the previous example in (3.30), where the reduced system is ẇ = −2w, we

have
∥∥∥∂f∂z ∥∥∥ = 2et,

∥∥∥∥(∂g∂z)−1
∥∥∥∥ = 1. Thus the hypotheses in Proposition 3.5 hold with

α = 2, k = l = 1 and γ = 4 > l+ α = 3. Then, the ODE system (3.32) has the same
exponential convergence rate as the corresponding DAE system (3.31), namely
α′ = 2. By considering Proposition 3.5, it becomes evident that selecting γ > l + α

allows us to conclude that if (3.27) is unstable, then (3.4) is also unstable. This
proposition helps prevent any potential “misjudgment” similar to the previous
example (3.31). By examining (3.36), it shows that as γ increases, the estimation
performance of (3.28) w.r.t. (3.4) improves. If obtaining prior information about
the DAE system (3.3) is difficult, one can select a sufficiently large value for γ to
apply Proposition 3.5 and determine the contracting rate of the DAE system.

By utilizing the concept of matrix measure, we will examine the contractivity
of the time-varying DAE system (3.1) by focusing on the generalized Jacobian
matrix of the corresponding auxiliary ODE system (3.27). In order to simplify the
notation, we rewrite (3.27) into{

ξ̇ = A(t)ξ +B(t)ν,

ν̇ = −F−1(t)C(t)ξ − F−1(t)D(t)ν,
(3.42)

where A(t) = ∂f
∂w , B(t) = ∂f

∂z , F (t) = ∂g
∂z , C(t) = γ ∂g∂w + d

dt (
∂g
∂w ) +

∂g
∂w

∂f
∂w , and

D(t) = γ ∂g∂z +
d
dt (

∂g
∂z ) +

∂g
∂w

∂f
∂z . For a invertible matrix M(w, z, t), let us define

J(t) = ṀM−1 +M

[
A B

−F−1C −F−1D

]
M−1. (3.43)

Theorem 3.6. If there exist a invertible matrix M(w, z, t) satisfying the condition that∥∥M−1
∥∥ ∥M∥ is bounded, and let β be a positive constant such that µq

(
J(t)

)
⩽ −β,

where J(t) is given by (3.43) then the DAE system (3.1) is contracting.

Proof. For any M(w, z, t), we define differential coordinate transformations [ pr ] =



3.3. Main results 51

M
[
ξγ
νγ

]
, so that (3.42) can be rewritten as

˙︷︸︸︷[
p

r

]
=
(
ṀM−1 +M

[
A B

−F−1C −F−1D

]
M−1

)
︸ ︷︷ ︸

J(t)

[
p

r

]
. (3.44)

Its upper right Dini derivative satisfies

D+
t

∥∥∥∥[p(t)r(t)

]∥∥∥∥ = lim
h→0+

∥∥∥∥[p(t+ h)

r(t+ h)

]∥∥∥∥− ∥∥∥∥[p(t)r(t)

]∥∥∥∥
h

= lim
h→0+

∥∥∥∥∥∥∥
[
p(t)

r(t)

]
+ h

˙︷ ︸︸ ︷[
p(t)

r(t)

]∥∥∥∥∥∥∥−
∥∥∥∥[p(t)r(t)

]∥∥∥∥
h

(3.44)
= lim

h→0+

∥∥∥∥(I + hJ(t)
)[p(t)

r(t)

]∥∥∥∥− ∥∥∥∥[p(t)r(t)

]∥∥∥∥
h

⩽ lim
h→0+

∥I + hJ(t)∥ − 1

h

∥∥∥∥[p(t)r(t)

]∥∥∥∥ = µq

(
J(t)

)∥∥∥∥[p(t)r(t)

]∥∥∥∥
⩽ −β

∥∥∥∥[p(t)r(t)

]∥∥∥∥ .

(3.45)

By the comparison lemma, the inequality∥∥∥∥[p(t)r(t)

]∥∥∥∥ ⩽ e−βt
∥∥∥∥[p(0)r(0)

]∥∥∥∥ , (3.46)

holds, from which it follows3 that∥∥∥∥[ξγ(t)νγ(t)

]∥∥∥∥ =

∥∥∥∥M−1

[
p(t)

r(t)

]∥∥∥∥ (3.46)
⩽ e−βt

∥∥M−1
∥∥ ∥M∥

∥∥∥∥[ξγ(0)νγ(0)

]∥∥∥∥ ⩽ ce−βt
∥∥∥∥[ξγ(0)νγ(0)

]∥∥∥∥ ,
(3.47)

i.e., the system (3.42) is exponentially stable, the last inequality arises from the
boundedness of

∥∥M−1
∥∥ ∥M∥. By Lemma 1.1 and Proposition 3.3, we can conclude

that the DAE system (3.1) is contracting.

3In general, for any induced matrix norm, we have ∥Mx∥ = ∥x∥
∥∥∥M x

∥x∥

∥∥∥ ⩽

∥x∥ sup∥∥∥ x
∥x∥

∥∥∥=1

∥∥∥M x
∥x∥

∥∥∥ = ∥M∥ ∥x∥.
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In Theorem 3.6, the condition that
∥∥M−1

∥∥ ∥M∥ is bounded is less conservative
compared to the Lyapunov transformation [21, Def. 2.4]. Specifically, instead of re-
quiring both

∥∥M−1
∥∥ and ∥M∥ to be bounded, it only demands their product to be

bounded. As illustrated in Example 3.3, this less conservative condition allows for

cases where M =

[
e−t 0 0
0 e−t 0
0 0 e−t

]
, which has an unbounded inverse. Nevertheless,∥∥∥∥[ et 0 0

0 et 0
0 0 et

]∥∥∥∥ ∥∥∥∥[ e−t 0 0
0 e−t 0
0 0 e−t

]∥∥∥∥ = 1, satisfying the boundedness condition.

Remark 3.7. As a powerful tool to analyze the stability of ODE systems, the Lya-
punov method has been widely used in the analysis and control design of nonlinear
systems. By employing the 2-norm matrix measure, the hypotheses in Theorem
3.6, i.e., µ2

(
J(t)

)
⩽ −β can be expressed into solving the subsequent Riccati

inequality condition[
A⊤(t) C⊤(t)F−⊤(t)

B⊤(t) D⊤(t)F−⊤(t)

]
P (t) + P (t)

[
A(t) B(t)

F−1(t)C(t) F−1(t)D(t)

]
+ Ṗ (t)

⩽ −βP (t),
(3.48)

where P (t) =M⊤M for some M(w, z, t). Afterwards, Theorem 3.6 can be simpli-
fied to [55, Thm. 2]. As will be shown later in Example 3.3, such Riccati inequality
will be used for the design of an observer. Nevertheless, in certain scenarios, it
can be challenging to find a solution M⊤M that satisfies (3.48). By employing
the 1-norm (∞-norm) as matrix measure, we can arrive at a simple numerical test
to each column (or row) of the matrix J(t). We demonstrate this approach via
Example 3.1 and Example 3.2 later.

3.4 Simulation Setup and Applications

This section presents three numerical examples to illustrate different applications
of the proposed methods. In the first example, we examine the contraction prop-
erty of a nonlinear time-varying DAE system using Theorem 3.6. The second
example illustrates the practical application of Proposition 3.3 in stabilizing a
time-invariant DAE system, as demonstrated by Corollary 3.8. Subsequently, we
employ Corollary 3.8 to design a state feedback controller for a power source
system with an inverter interface, which can be modeled as a time-invariant
DAE system. Finally, the third illustration involves the application of Theorem
3.6 to devise an observer for a time-varying ODE system, namely, Corollary 3.9.
Subsequently, we employ Corollary 3.9 to create an observer for an unstable
time-varying ODE system.
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3.4.1 Contractivity of nonlinear time-varying DAE systems

Example 3.1. Consider a nonlinear time-varying DAE system
ẇ1 = −4w1 − 0.5 cos z,

ẇ2 = 4
3+sin tw1 − 3+cos t

3+sin tw2 − 4
3+sin t ,

0 = 4z + 0.5 sin z + w1 + (3 + sin t)w2.

(3.49)

where w(t) ∈ R2 is the state vector and z(t) ∈ R refers to the algebraic vector. Its
variational system is

ξ̇1 = −4ξ1 + (0.5 sin z)ν,

ξ̇2 = 4
3+sin tξ1 −

3+cos t
3+sin t ξ2,

0 = ξ1 + (3 + sin t)ξ2 + (4 + 0.5 cos z)ν.

(3.50)

In the given example (3.30), obtaining information about the system is a straight-
forward process. However, in this specific case, the existence of a time-varying
nonlinear constraint creates difficulties in obtaining information about (3.50), we
are unable to utilize Proposition 3.5 to select γ. Nevertheless, the simplest and
most direct option for γ in this instance is γ = 0 (if this choice proves ineffective,
a larger value of γ should be considered). As a result, the auxiliary ODE system
corresponding to (3.50) can be expressed as follows:

ξ̇1 = −4ξ1 + (0.5 sin z)ν,

ξ̇2 = 4
3+sin tξ1 −

3+cos t
3+sin t ξ2,

ν̇ = − 4
3+0.5 cos z ν.

(3.51)

It follows that

J(t) =

 −4 0 0.5 sin z
4

3+sin t − 3+cos t
3+sin t 0

0 0 − 4
3+0.5 cos z

 . (3.52)

Applying the 1-norm, we find that µ1

(
J(t)

)
< −0.5 holds, which implies that the

DAE system (3.53) is contracting according to Theorem 3.6. Figure 3.1 illustrates
the trajectories of the system with two distinct initial conditions. Hence, we can
conclude that the time-varying DAE system is contracting.

3.4.2 Stability of inverter-interfaced power source systems

It is well known that for a contracting time-invariant system, all trajectories con-
verge to an equilibrium exponentially. As an interesting particular case of our
main results above, we can prove stability of the time-invariant DAE systems
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Figure 3.1: The plot of trajectories of time-varying DAE system in Example 2.2

initialized at
[

3
−3
1.38

]
and

[ −3
3

−1.38

]
.

by using Proposition 3.3. The basic idea involves guaranteeing the contravtivity
of the DAE system while ensuring that its equilibrium point resides within its
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trajectory set. Consider a time-invariant DAE system given by{
ẇ = f(w, z),

0 = g(w, z),
(3.53)

where f(0, 0) = 0, and g(0, 0) = 0. The variational system of (3.53) is{
ξ̇ = ∂f

∂w (w(t), z(t)) · ξ +
∂f
∂z (w(t), z(t)) · ν,

0 = ∂g
∂w (w(t), z(t)) · ξ +

∂g
∂z (w(t), z(t)) · ν.

(3.54)

To ensure safety in engineering systems, it is imperative to establish bounds on
the states of (3.53). In the context of a power system, for example, the terminal
complex voltage V ∠θ is restricted within the range [0.95, 1.05]× [−π

2 ,
π
2 ] to ensure

operational stability and prevent undesirable conditions. In this section, we
investigate the time-invariant DAE system (3.53) within the set [W × Z], i.e.,
w(t) ∈ W ⊆ Rn and z(t) ∈ Z ⊆ Rm. Moreover, we assume that

(
∂g
∂z

)−1 ∂g
∂w is

bounded in [W ×Z]. In the subsequent corollary, we analyze the local exponential
stability of (3.54) through its reduced system ξ̇ =

(
∂f
∂w − ∂f

∂z

(
∂g
∂z

)−1 ∂g
∂w

)
ξ.

Corollary 3.8. The time-invariant DAE system (3.53) is locally exponentially stable in
[W ×Z] if there exist an invertible metric ρ(w, z), such that µq

(
J(w, z)

)
⩽ −β for some

positive constant β, where J(w, z) is given by

J(w, z) = ρ
( ∂f
∂w

− ∂f

∂z

(∂g
∂z

)−1 ∂g

∂w

)
ρ−1. (3.55)

Proof. If condition (3.55) is satisfied, the reduced system is exponentially stable,

i.e., ∥ξ∥ ⩽ c ∥ξ0∥ e−αt. By using the boundedness of
[
∂g
∂z

]−1
∂g
∂w in [W × Z], we can

derive ∥[ ξν ]∥ ⩽ c′ ∥ξ0∥ e−αt ⩽ c′
∥∥[ ξ0

ν0

]∥∥ e−αt. Consequently, the variational system
(3.54) is exponentially stable. Applying Proposition 3.3, we can conclude that the
DAE system (3.53) is contracting. As

[
w(t)
z(t)

]
= [ 00 ] represents one of admissible

trajectories of (3.53) and it is contracting, it follows that all the trajectories will
exponentially converge to

[
w(t)
z(t)

]
= [ 00 ].

Example 3.2. Consider an inverter-interfaced power source connected to the
infinite bus via a transmission line [96], as shown in Fig.3.2. The system dynamics
is given by the following Ṗ = 1

τ1

(
− P + P ref − d1(θ − θref )

)
,

Q̇ = 1
τ2

(
−Q+Qref − d2(V − V ref )

)
+ u.

(3.56)
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Figure 3.2: An inverter-interfaced power source connecting to the infinite bus.

where P , Q, and u are the terminal output active, reactive power, and control
input, respectively. The variable V ∠θ is the terminal complex voltage, 1∠0 is
the desired complex voltage. The symbols P ref , Qref , θref , and V ref are pre-
specified constant reference values. The constants τ1 > 0 and τ2 > 0 are time
constants while d1 > 0 and d2 > 0 are droop coefficients. For this particular case,
the algebraic equations are given by{

P −GV cos θ −BV sin θ = 0,

Q−GV sin θ +BV cos θ = 0.
(3.57)

In this example, a state feedback controller u = k1P + k2Q will be designed based
on Corollary 2.9. For numerical purposes, the parameters are given by τ1 = τ2 = 1

3 ,
d1 = d2 = 1

3 , P ref = 1, Qref = −1, θref = 0, V ref = 1, G = B = 1. In this case,
the whole system can be rewritten as{

Ṗ = −3P − θ + 3,

Q̇ = −3Q− V − 2 + k1P + k2Q,
(3.58)

{
P − V cos θ − V sin θ = 0,

Q− V sin θ + V cos θ = 0,
(3.59)

where W (t) =
[
P
Q

]
, Z(t) =

[
θ
V

]
. Its corresponding variational system is
δṖ = −3δP − δθ,

δQ̇ = −3δQ− δV + k1δP + k2δQ,

δP − (sin θ + cos θ)δV − V (cos θ − sin θ)δθ = 0,

δQ− (sin θ − cos θ)δV − V (cos θ + sin θ)δθ = 0.

(3.60)

The reduced system of (3.60) is{
δṖ = (−3 + sin θ−cos θ

2V )δP − sin θ+cos θ
2V δθ,

δQ̇ = (k1 − sin θ+cos θ
2 )δP + (−3 + k2 − sin θ−cos θ

2 )δQ.
(3.61)
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In power system, we have V ∈ [0.95, 1.05], and θ ∈ [−π
2 ,

π
2 ]. Then,

∥∥∥(∂g∂z )−1 ∂g
∂w

∥∥∥ =∥∥∥[ sin θ−cos θ
2V − sin θ+cos θ

2V

− sin θ+cos θ
2 − sin θ−cos θ

2

]∥∥∥ is bounded. So we can analysis the stability of (3.60) by

(3.61). The matrix measure of (3.61) is

J(V, θ) =

[
−3 + sin θ−cos θ

2V − sin θ+cos θ
2V

k1 − sin θ+cos θ
2 −3 + k2 − sin θ−cos θ

2

]
. (3.62)

We can determine the range of the elements in J(V, θ) within [0.95, 1.05]× [−π
2 ,

π
2 ].

By setting k1 = k2 = 0.5, and using 1-norm, we find that µ1

(
J(V, θ)

)
< −1.1.

According to Corollary 2.9, the DAE system (3.58), (3.59) is exponentially stable
with respect to the equilibrium [P ∗, Q∗]⊤ = [1,−1]⊤. The trajectories of inverter-
interfaced power source systems are depicted in Fig. 3.3. With the state feedback
controller, the terminal complex voltage V ∠θ converges to the desired complex
voltage 1∠0.
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Figure 3.3: The plot of solutions of P , Q, θ, and V in Example 2.3 initialized at[
P0

Q0

]
= [ 0.5

1.05 ].



58 3. Contraction analysis of time-varying DAE systems via auxiliary ODE systems

3.4.3 Observer design of time-varying ODE systems

By treating the output of the systems as an algebraic constraint, our approaches
can be effectively employed in various classical control problems, including output
feedback design, output regulation, and state observer design. In the following,
we deploy our methodologies to develop an observer for a time-varying ODE
system. Consider a time-varying ODE system{

ẇ = k(t, w),

z = h(t, w),
(3.63)

where w is the state and z is the output. The design problem of interest is to
determine an observer of the form{

˙̂w = k(t, ŵ) + l(t, ẑ, z),

ẑ = h(t, ŵ),
(3.64)

with l(t, z, z) = 0, such that

∥ŵ − w∥ ⩽ c ∥ŵ0 − w0∥ e−αt, (3.65)

holds for all t ⩾ 0 with some positive constants c and α. In literature, a commonly
used method for designing l(t, ẑ, z) is l(t, ẑ, z) = k(t)(ẑ − z). As a result, the
observer (3.64) can be simplified to the well-known Luenberger observer [72].

The time-varying observer (3.63) can be regarded as a time-varying DAE
system in the form of (3.1) with f(t, ŵ, ẑ) = k(t, ŵ) + l(t, ẑ, z), and g(t, ŵ, ẑ) =

h(t, ŵ)− ẑ. It is evident that w and z in (3.63) represent a solution of (3.64). If (3.64)
is contracting, both w and ŵ will satisfy (3.65). By applying Theorem 3.6 to (3.64),
we obtain the subsequent corollary.

Corollary 3.9. Given a system described by (3.63), the system (3.64) is an observer of
(3.63) if there exist invertible metrics θ(t) and ϑ(t), such that µq

(
J(t)

)
⩽ −β for some

positive constant β, where J(t) is in the form of (3.42), with A(t) = ∂k
∂ŵ , B(t) = ∂l

∂ẑ ,
F (t) = −I , C(t) = γ ∂h∂ŵ + d

dt (
∂h
∂ŵ ) +

∂h
∂ŵ

∂k
∂ŵ , and D(t) = −γI + ∂h

∂ŵ
∂l
∂ẑ .

Example 3.3. Consider an unstable time-varying ODE system as presented in [44,
Ex. 4.22] [

ẇ1

ẇ2

]
=

[
−1 + 1.5 cos2 t 1− 1.5 sin t cos t

−1− 1.5 sin t cos t −1 + 1.5 sin2 t

] [
w1

w2

]
, (3.66)

with the output z = w1. For simplifying the design process, we assume l(t, ẑ − z)
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Figure 3.4: The plot of errors of ŵi − wi in Example 3.3 initialized at
[
ŵ1

ŵ2

]
=
[

2
−2

]
and [w1

w2
] =

[−2
2

]
.

in (3.64) takes the form of
[
k1(t)(ẑ−z)
k2(t)(ẑ−z)

]
. The Luenberger observer is given by

[
˙̂w1

˙̂w2

]
=

[
−1 + 1.5 cos2 t 1− 1.5 sin t cos t

−1− 1.5 sin t cos t −1 + 1.5 sin2 t

] [
ŵ1

ŵ2

]
+

[
k1(t)(ẑ − z)

k2(t)(ẑ − z)

]
, (3.67)
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where the output ẑ = ŵ1. By selecting γ = 1, the auxiliary ODE system (3.27) of
(3.67) is given by

ξ̇1 = (−1 + 1.5 cos2 t)ξ1 + (1− 1.5 sin t cos t)ξ2 + k1(t)ν

ξ̇2 = (−1− 1.5 sin t cos t)ξ1 + (−1 + 1.5 sin2 t)ξ2 + k2(t)ν

ν̇ = 1.5ξ1 cos
2 t+ (1− 1.5 sin t cos t)ξ2 + (k1(t)− 1)ν

. (3.68)

By choosing k1 = −1.5 cos2 t, k2 = −1+ 1.5 sin t cos t and by using the 2-norm, i.e.,

inequality (3.48) holds with M =

[
e−t 0 0
0 e−t 0
0 0 e−t

]
, we have

J(t) =

−4 + 3 cos2 t −3 sin t cos t 0

−3 sin t cos t −4 + 3 sin2 t 0

0 0 −3 cos2 t− 4

 e−2t ⩽ −I. (3.69)

The plots of error of ŵi − wi are shown in Fig. 3.4, where the tracking property of
the observer is ensured by the proposed methodologies.

3.5 Conclusion

In this chaper, the contraction property of time-varying DAE systems have been
studied by an ODE approach. It is established based on a necessary and sufficient
condition that connects the contraction property of the original DAE systems
and the UGES of its variational DAE systems. Subsequently, the variational
DAE systems are lifted to an higher dimension auxiliary ODE systems, and the
trajectories of these systems exhibit the same convergence property. The concept
of matrix measure is introduced to study the UGES of the auxiliary ODE system.
Moreover, the results obtained in this study can be applied to stabilize time-
invariant DAE systems, and to observer design for time-varying ODE systems.



4
Pinning synchronization of

heterogeneous multi-agent nonlinear
systems

This chapter revisit the pinning synchronization problem in nonlinear multi-agent
systems (MAS) by using recent results on the incremental stability analysis via
contraction and on internal model principle. We provide sufficient and necessary
conditions for both the pinned agents as well as the rest of the agents to guarantee
the state synchronization. For the non-pinned agents, we present a distributed
control framework based only on the relative local state measurement and we give
sufficient conditions for the contractivity of the individual virtual systems in order
to achieve pinning synchronization. Numerical simulation is given to illustrate
the main results.

4.1 Introduction

Distributed consensus control problem has been one of the most well-studied
control problems for multi-agent systems (MAS) for the past two decades. It is due
to its broad applications in engineering that involves interconnected autonomous
systems, such as, sensor networks [105], collaborative robots [82] and unmanned
aerial vehicles [22]. The basic problem setup is to design a distributed control
algorithm [91], which is implemented locally in each agent and is based only on
local information from the neighboring agents, such that the state of all agents con-
verges to each other. While many literature studies deal with the state convergence
to a common point (that depends on the initial state of all agents), we are interested
in this paper in the convergence of the agents’ state to a periodic trajectory of an
external oscillator or exosystem which is Poisson stable1. The synchronization
problem of a single agent to an oscillator is commonly known as entrainment
control problem [56] or pinning synchronization control problem in MAS setting
[79]. It is motivated by natural phenomena in biology, such as, circadian rhythm

1We refer to [38] for the definition of Poisson stable systems.
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[41] and central pattern generators [28], as well as, by engineering application, for
example, in power network systems [23]. The pinning control problem refers to a
distributed control problem of MAS where a subset of agents, referred to later as
the pinned agents, is assigned to synchronize to an exosystem (known as the pinner
agent) and the rest of the agents must synchronize themselves via the network to
these pinned nodes. We refer interested readers to the work of Song and Cao in
[79] for the pinning synchronization problem of linear MAS. Recent results on
pinning synchronization are, to name a few, [66], [85], [88] and [51]. In [66], the
controllability property of the pinning network for linear MAS is studied that is
relevant to determining important pinning nodes in the network for achieving the
synchronization. In recent years, the generalization of pinning synchronization to
the nonlinear MAS has been presented in [51, 85, 88].

In this chapter, a contraction-based control scheme is developed for solving the
pinning synchronization for heterogeneous MAS that incorporates both linear and
non-linear systems. In the literature of distributed control for MAS, contraction
analyses and contraction-based methods have been applied to homogeneous MAS
[73]-[34]. These synchronization approaches for homogeneous MAS pose non-
trivial challenges to achieve the synchronization of heterogeneous MAS due to the
heterogeneity among all agents. There are only a few research works that focus on
heterogeneous MAS, see for example, [3]. As typically considered in the pinning
synchronization approaches, our proposed control design is comprised of two
design steps. The first one pertains to the tracking control design for the pinning
nodes where the agents are connected to the external oscillator or virtual leader.
By employing standard regulator equation [38], some sufficient and necessary
conditions are given to guarantee the solvability of the synchronization problem
for the pinned agents. By employing these conditions, the pinning synchronization
problem of heterogeneous nonlinear MAS can be recasted as a contraction problem
of virtual systems. The control law for the pinned agents follows a contraction
approach [27] applied to the virtual systems. Subsequently, for the rest of the
agents, we put forward a distributed control law based only on relative local
state measurement in order to ensure the contractivity of the each agent’s virtual
systems where the synchronized state trajectory is also an admissible trajectory of
the virtual systems.

The chapter is organized as follows. In Section 4.2 we present preliminaries
and problem formulation. Our main results are presented in Sections 4.3. The
numerical simulation is provided in Section 4.4 and the conclusions are given in
Section 4.5.
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4.2 Preliminaries and problem formulation

4.2.1 Communication Graph

For the MAS, we denote V = {v1, v2, . . . , vN} as the set of N nodes in the network
and the associated set of K edges is denoted by E ⊂ V × V . We consider a
directed graph G(V, E) where the communication direction is embedded in E .
Correspondingly, we define the adjacency matrix A = [aij ] ∈ RN×N , where the
element aij = 1 for all (vj , vi) ∈ E and aij = 0 otherwise. The set of neighbors
of node vi, denoted by Ni, is the set of nodes vj ∈ V such that (vj , vi) ∈ E . The
Laplacian matrix is defined as L = D−A, where D = diag(di) is called the in-degree
matrix, with di =

∑
j∈Ni

aij as the in-degree of node vj . A directed graph contains
a directed spanning tree if there exists a node called the root such that there exists
a directed path (a sequence of nodes connected by directed edges, where each
edge has a direction from one node to another) from this node to every other
node. For defining the pinning synchronization problem later, we define Vpin ⊂ V
as the set of pinned nodes which are all directly connected (two nodes that are
linked or connected by an edge) to a virtual node v0 representing the exosystem
or external oscillator. Correspondingly, we can define the communication graph
G0 = (Vpin ∪ {v0}, E0) of the pinned nodes and the virtual node where E0 =

{(v0, vi)|vi ∈ Vpin}. All other nodes in V\Vpin are assumed to be accessible from
Vpin by the following assumption.

Assumption 4.1. The graph G ∪ G0 = (V ∪ {v0}, E ∪ E0) contains a spanning tree
where v0 is pinned to the root node.

4.2.2 Agent dynamics, dynamic distributed controller and exosys-
tem

Consider again the nodes of the graph G ∪ G0 as defined before. The oscillator
dynamics at node v0 is given by

ẇ = S(w), (4.1)

where w(t) ∈ Rn is the oscillator’s state and S is a smooth function with S(0) = 0

that generates a Poisson stable exosystem [38]. We recall from [38] that in this
case the eigenvalues of Sw(0) are all on the imaginary axis. For all nodes in V , we
consider (non-identical) agents described by

ẋi = fi(xi) + gi(xi)ui, ∀i ∈ V, (4.2)
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where xi(t) ∈ Rn, ui(t) ∈ Rmi are the state and control input variables, respectively,
and fi, gi are smooth functions with fi(0) = 0 and gi(xi) ̸= 0 are full-rank for all
xi. For each node in V , we will assign a distributed dynamic controller (according
to the communication graph G ∪ G0) as follows. For all pinned nodes i ∈ Vpin, the
dynamic controller for i-th agent is given by{

ξ̇i = Ci(ξi, xi − w)

ui = Di(ξi)
(4.3)

where ξi ∈ Rp is the controller state, Ci, Di are continuously differentiable with
Ci(0, 0) = 0 and Di(0) = 0. On the other hand, for the rest of the agents, e.g. for
all i ∈ V\Vpin, we consider the following dynamic controller{

ξ̇i = Ĉi(ξi, ei)

ui = D̂i(ξi)
(4.4)

where ξi ∈ Rp is the controller state, ei =
∑
j∈Ni

aij(xi − xj) is the local error state
and Ĉi, D̂i are continuously differentiable with Ĉi(0, 0) = 0 and D̂i(0) = 0.

4.2.3 Problem formulation

Based on the previous systems’ description, we can formulate the pinning syn-
chronization problem as follows.

Pinning synchronization problem: For a given exosystem and agents’ dynamics
given by (4.1) and (4.2), respectively, design the controllers (4.3) for the pinned
nodes Vpin and the controller (4.4) for the rest of the nodes V\Vpin such that

(O1). The origin of the closed-loop systems is locally exponentially stable; and

(O2). For all initial conditions w(0), xi(0), ξi(0) in W0 ×Xi0 ×Ξ0 ⊂ Rn ×Rn ×Rn

which contains the origin, the trajectories of the closed-loop systems are
bounded and satisfy

lim
t→∞

(xi(t)− w(t)) = 0, ∀i ∈ V. (4.5)

4.3 Main result

For solving the pinning synchronization problem via contraction approach, we
separate the distributed control design problem into two parts. The first part is
associated to the agents in the pinned nodes Vpin and the second one is designed for
the rest of the agents. On the one hand, as the pinned agents are directly connected
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to the exosystem, the error manifold can be defined directly as ei = xi − w. On
the other hand, for the rest of agents V\Vpin, the error manifold is defined by
ei =

∑
j∈Ni

(xj − xi).

4.3.1 Tracking control law for Vpin

In order to motivate the control design approach, we present firstly the control
law for the pinned agents Vpin, which are described as linear systems case, and
subsequently we propose the control design for the nonlinear ones. As our design
approach is based on making the corresponding virtual systems contractive, the
analysis on linear systems facilitates the discussion of contraction-based control
law in the subsequent sub-section.

Linear systems case

For all pinned agents i ∈ Vpin, let us represent it as a linear system as follows

ẋi = Aixi +Biui, (4.6)

where Ai, Bi are of appropriate dimension. Correspondingly, we also assume a
linear external oscillator as the pinner agent, which is given by

ẇ = Sw, (4.7)

where S has simple eigenvalues on the imaginary axis and is a generator of
sinusoidal and constant signals. Following the form in (4.3) with Ĉi = Kiξi +

Hi(xi − w), D̂i = Liξi, we have Proposition 4.2 where Ki, Hi, Li are matrices to
be designed.

Proposition 4.2. Consider the network of pinned agents Vpin and pinner agent v0 with
graph G0 which are represented by (4.6) and (4.7), respectively. Assume that the pair
(Ai, Bi) is stabilizable for all i ∈ Vpin. Then the pinning synchronization problem for Vpin

agents is solvable by the distributed controller (4.3) (i.e. there exists a controller (4.3) such
that the closed-loop system (4.3), (4.6) with the exosystem (4.7) satisfies (O1) and (O2)) if
and only if, for all i ∈ Vpin there exist Ki, Li and Σi satisfying{

Ai +BiLiΣi = S

KiΣi = ΣiS.
(4.8)

Proof. As each agent in Vpin is connected directly to v0 and they do not commu-
nicate with each other, we prove the proposition by analyzing the state synchro-
nization of an arbitrary agent i ∈ Vpin to the pinner agent and the arguments
hold mutatis mutandis for the other agents. Correspondingly, the claim of the
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proposition follows from classical results on linear output regulation via internal
model principle, e.g., [38] and [89].

Let us now relate the above result to the exponential incremental stability as
before, which will be instrumental later for our contraction-based control approach.
It can be observed that if (4.8) is satisfied,

[ xi

ξi

]
= [ w

Σiw ] is a particular solution of
the following virtual system(

q̇i
ξ̇i

)
=

(
Ai BiLi
Hi Ki

)(
qi
ξi

)
−
(

0

Hi

)
w, (4.9)

Nonlinear systems case

We will now consider the nonlinear system (4.2) with the controller (4.3), in which
case, the closed-loop system is given by(

ẋi
ξ̇i

)
=

(
fi(xi) + gi(xi)Di(ξi)

Ci(ξi, xi − w)

)
(4.10)

Let us define Ãi = f ixi
(0), B̃i = gi(0), S̃ = Sw(0), L̃i = Di

ξi
(0).

Proposition 4.3. Consider the network of pinned controlled agents Vpin and pinner agent
v0 with graph G0 which are represented by (4.10) and (4.1), respectively. Assume that for
all i ∈ Vpin, the pair (fi, gi) has a stabilizable linear approximation at 0. Then the pinning
synchronization problem for Vpin agents is solvable if and only if, for all i ∈ Vpin there
exist mappings xi = w, ξi = σi(w) with σi(0) = 0 satisfying

S(w) = fi(w) + gi(w)Di(σi(w))

σiwS(w) = Ci(σi(w), 0),

}
(4.11)

where σiw = ∂σi(w)
∂w . We remark that (4.11) is the standard Byrnes-Isidori

regulator equation [38] restricted to the state regulation case.

Proof. By Taylor expansion around the origin, the system (4.1), (4.2) and (4.3) can
be rewritten as

˙̃xci = Ãcix̃ci + B̃ciw + λi(ξi, xi, w)

ẇ = S̃w + ω(w)

}
(4.12)

where x̃ci =
( xi

ξi

)
, Ãci =

(
Ãi B̃iL̃i

H̃i K̃i

)
, B̃ci =

(
0

−H̃i

)
and with λi(ξi, xi, w) and ω(w)

are the remainder terms that vanish at the origin. The rest of the proofs can be
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found in [38] Theorem 2 by selecting the controller as
ξ̇i1 = fi(ξi1) + gi(ξi1)(Di(ξi2) +Hi(ξi1 − ξi2))−Gi1(ξi1 − ξi2 − ei)

ξ̇i2 = S(ξi2) +Gi2ξi2 − (Gi2 −Gi3)(ξi1 − ei)

u = Di(ξi2) +Hi(ξi1 − ξi2)

(4.13)

where ei = xi−w andKi, Hi, Gi1, Gi2, Gi3 are matrices to be chosen appropriately

such that
(
Ãi+B̃iHi B̃iHi B̃i(Li−Hi)

0 Ãi−Gi1 Gi1

0 −Gi2+Gi3 S̃+Gi2

)
is Hurwitz. Since the manifold xi = πi(w)

in [38] is locally attractive and invariant, then the error ei = xi − w = πi(w)− w

converges to 0 only if xi = πi(w) = w.

Equations (4.8) and (4.11) correspond to the necessary and sufficient conditions
for output synchronization of linear systems in [89]. In contrast to the existing
results for nonlinear systems case, such as the ones presented in [15, 39] where
there are information exchanges among the exosystems and the internal model
part of the controller, our controller uses only the relative measurement of state
variable with its neighbors and not that of the controller state variable. Instead of
designing the controller based on the linearization at the origin as in the proof of
Proposition 4.3 above, we will consider below the use of a virtual system that can
enlarge the region of attraction of the synchronization manifold. If the pinning
synchronization problem for Vpin is solvable then

[ xi

ξi

]
=
[ w
σi(w)

]
is a particular

solution of the following virtual system(
q̇i
ξ̇i

)
=

(
fi(qi) + gi(qi)Di(ξi)

Ci(ξi, qi − w)

)
. (4.14)

Its variational system is given by(
δq̇i
δξ̇i

)
=

(
∂(fi(qi)+gi(qi)Di(ξi))

∂qi
gi(qi)D

i
ξi

Ciei Ciξi

)
︸ ︷︷ ︸

Ãi

(
δqi
δξi

)
.

(4.15)

With the following proposition, we can ensure the zero error invariant manifold is
attractive.

Proposition 4.4. Consider the virtual system (4.14) with its associated variational
system (4.15) satisfying (4.11). If there exists a symmetric matrix Pi(qi, ξi) such that
c1iI ⩽ Pi(qi, ξi) ⩽ c2iI and

ÃTi Pi + Ṗi + PiÃi ⩽ −λPi (4.16)

hold for some λ > 0 and for all (qi, ξi) ∈ Q0 × Ξ0 with W0 ∪Xi0 ⊂ Q0, i ∈ Vpin then,
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for all i ∈ Vpin, the closed-loop systems (4.1), (4.2) and (4.3) satisfy (O1) and (O2).

Proof. By defining the Finsler-Lyapunov function

Vi(δqi, δξi) =
(
δqi δξi

)
Pi

(
δqi
δξi

)

we have c1i
∥∥∥[ δqiδξi

]∥∥∥2 ⩽ Vi(δqi, δξi) ⩽ c2i

∥∥∥[ δqiδξi

]∥∥∥2.

Its time derivative along (4.15) is given by

V̇i =
(
δqi δξi

) (
Ãi(qi, ξi)

TPi + Ṗi + PiÃi(qi, ξi)
)(δqi

δξi

)
⩽ −λi

(
δqi δξi

)
Pi

(
δqi
δξi

)
= −λiVi.

Based on Lemma 1.1, this inequality implies that the system (4.14) is exponentially
incrementally stable. In other words, we have∥∥xi(t)− w(t)

∥∥ ⩽ ke−λt
∥∥xi(0)− w(0)

∥∥
for all (xi(0), w(0)) ∈ Xi0 ×W0.

We note that the closed-loop system (4.2)-(4.3) satisfying all hypotheses in
Proposition 4.4 can be written as ẋr = f(xr, t), where xr =

[ xi

ξi

]
and t represents its

dependence to external signal w(t). As shown in the proof above, it is contractive
with a contraction rate λ. Let us consider a “perturbed” system ẋp = f(xp, t) +

d(xp, t) where
∣∣d(xp, t)∣∣ ⩽ d. In this case any trajectory of the perturbed system

satisfies
∣∣xd(t)− xr(t)

∣∣ ⩽ (
∣∣xd(0)− xr(0)

∣∣ − d
λ )e

−λt + d
λ (for generalisation, we

refer to Section 3.7 in [55].

4.3.2 Distributed control law for V\Vpin

After we have designed the control law for the pinned nodes in the previous
sub-section, we can present now the control design for the rest of the agents.

Proposition 4.5. Under Assumption 4.1 the synchronization problem is solvable if and
only if for all i ∈ V\Vpin there exist mappings xi = w, ξi = σ̂i(w) with σ̂i(0) = 0

satisfying
S(w) = fi(w) + gi(w)D̂i(σ̂i(w))

σ̂iwS(w) = Ĉi(σ̂i(w), 0),

}
(4.17)

where σ̂iw = ∂σ̂i(w)
∂w .
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Proof. By Proposition 4.3, we have established the necessary and sufficient condi-
tions of pinning synchronization for the pinned nodes. In the following, we will
extend the analysis to the rest of the agents based on their connectivity to these
pinned agents.

(If part): By Assumption 4.1, the graph G ∪ G0 contains a spanning tree with v0 be
at the root node. For the nodes Vpin, we have established before that we can design
a control law such that xi − w → 0 for all i ∈ Vpin. Thus we can now consider the
rest of the agents. Suppose now, for all agents i ∈ V\Vpin, there exist mappings
xi = w and ξi = σ̂i(w) satisfying (4.17). Since Ĉi(σ̂i(w), 0), D̂i(σ̂i(w)) in (4.17) and
Ci(σi(w), 0), Di(σi(w)) in (4.11) (for the pinned agents) are all functions of w, we
can take D̂i(σ̂i(w)) = Di(σi(w)), Ĉi(σ̂i(w), 0) = Ci(σi(w), 0). Following similar
arguments as in the if part of Proportion 4.3, we can define the controller for agent
i as in (4.13) with e =

∑
j∈Ni

(xi − xj) such that the linearization at the origin can
be made Hurwitz and the mappings xi = w and ξi = σ̂i(w) are attractive center
manifold.

(Only if part): Let us define Âi = f ixi
(0), B̂i = gi(0), K̂i = Ĉiξi(0, 0), Ĥi = Ĉixi

(0, 0),

and Ĝi = D̂i
ξi
(0), ŵ =

[
w 0

]T
. Then the composite system with the correspond-

ing dynamic controller can be linearized as follows(
˙̂xipin
˙̂xirest

)
=

(
Âipin 0

0 diag(Âirest)

)(
x̂ipin

x̂irest

)

+

(
Lpin ⊗ I

pin
n 0

L′ ⊗ I
pin
n Lrest ⊗ Irest

n

)(
diag(Ĥi

pin) 0

0 diag(Ĥi
rest)

)(
x̂ipin

x̂irest

)

where x̂ipin =
(
ŵT xipin

T
ξipin

T
)T

, x̂irest =
(
xirest

T
ξirest

T
)T

,

Âipin = diag(Ŝ, {diag(Aipin)}), Ĥi
pin or Ĥi

rest =
(

0 0
Ĥi 0

)
, Âipin or Âirest =

(
Âi B̂iĜi

0 K̂i

)
,

the Laplacian matrix L =

(
Lpin 0

L′ Lrest

)
. According to Assumption 4.1, the Lapla-

cian matrix L has exactly one zero eigenvalue and the rest eigenvalues are all have
positive real parts [70]. Since the first row of Lpin are all zero, Lrest has eigenvalues
with positive real parts. The rest agents can be linearized at the origin as follows

˙̂xirest = diag(Âirest)x̂
i
rest + (L′ ⊗ Ipin

n )diag(Ĥi
pin)x̂

i
pin + (Lrest ⊗ Irest

n )diag(Ĥi
rest)x̂

i
rest

Since the pinned agents are stabilizable and synchronized to w, we can consider
the state of pinned agents as bounded input for the rest of the agents. Then the
whole system is stable if and only if the system

˙̂xirest = diag(Âirest)x̂
i
rest + (Lrest ⊗ Irest

n )diag(Ĥi
rest)x̂

i
rest + (L′ ⊗ Ipin

n )diag(Ĥi
pin)u
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is input-to-state stable (see Lemma 5.6 in [44]). We recall that for a linear system
ẋ = Ax + Bu, it is input-to-state stable if and only if ẋ = Ax is stable. Thus it
follows then that

˙̂xirest = diag(Âirest)x̂
i
rest + (Lrest ⊗ Irest

n )diag(Ĥi
rest)x̂

i
rest (4.18)

is stable. The system (4.18) can compactly be written as(
Ẋ

Ξ̇

)
=

(
Â B̂Ĝ

(L̂rest ⊗ In)Ĥ K̂

)(
X

Ξ

)

where X = (xirest
T
)T , Ξ = (ξirest

T
)T , Â = diag(Âi), B̂ = diag(B̂i), K̂ = diag(K̂i),

Ĝ = diag(Ĝi), Ĥ = diag(Ĥi), and L̂rest has the same eigenvalues as Lrest. The
latter means that there exists an Ĥ such that Â − (L̂rest ⊗ In)Ĥ is Hurwitz. If
pinning synchronization problem is solvable then there exist controllers ui for
all i ∈ V that locally exponentially stabilize the multi-agent systems (4.2). Since

Âc =
(

Â B̂Ĝ
(L̂rest⊗In)Ĥ K̂

)
is similar to

(
Â+ B̂Ĝ B̂Ĝ

(L̂rest ⊗ In)Ĥ + K̂ − Â− B̂Ĝ K̂ − B̂Ĝ

)
,

then Âc can be made Hurwitz by choosing appropriate Ĝi, K̂i, Ĥi such that (L̂rest⊗
In)Ĥ + K̂ − Â− B̂Ĝ = 0, Â+ B̂Ĝ is Hurwitz and K̂ − B̂Ĝ = Â− (L̂rest ⊗ In)Ĥ

is Hurwitz. This, in combination with the dynamics of the exosystem (4.1) and
by Center Manifold Theorem[44], implies that there exists a center manifold which

is the graph of
(
X

Ξ

)
=

(
π̂(w)

σ̂(w)

)
, where σ̂(w) = diag(σ̂i(w)), π̂(w) = diag(π̂i(w)).

Since the manifold X = π̂(w) is locally attractive and invariant, then the error
converges to 0 only if π̂(w) = w. The graph of (X,Ξ) in the manifold is given by(
X

Ξ

)
=

(
W

σ̂(W )

)
satisfying (4.17).

If pinning synchronization problem is solvable, the dynamics of each agent in
V\Vpin can be rewritten as{

ẋi = S(xi) + gi(xi)(D̂i(ξi)− D̂i(σ̂i(xi))

ξ̇i = Ĉi(ξi,
∑
aij(xi − xj))

(4.19)

Consequently the following virtual system has a particular solution qi = xi =

x1 = · · · = xN = w {
q̇i = fi(qi) + gi(qi)D̂i(ξi)

ξ̇i = Ĉi(ξi,
∑
aij(qi − xj))

(4.20)
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The variational system of (4.20) is(
δq̇i
δξ̇i

)
=

(
∂(fi(qi)+gi(qi)D̂i(ξi))

∂qi
gi(qi)D̂

i
ξi

Ĉiei
∑
aij Ĉiξi

)
︸ ︷︷ ︸

Âi

(
δqi
δξi

)
(4.21)

According to Proposition 4.5, by solving (4.17) we have
D̂i(ξi)

∣∣∣
ξi=σ̂i(w)

= (gTi (w)gi(w))
−1gTi (w)(S(w)− fi(w))

Ĉi(ξi, 0)
∣∣∣
ξi=σ̂i(w)

= σ̂iwS(w)

We note again that in our distributed controllers (4.3) and (4.4), there is no infor-
mation exchange of the controller state variable among the agents. Each local
controller uses only the relative plant state measurement with its neighbors as
opposed to the one considered in [15, 39] which assume information exchanges
among the local nonlinear oscillators. The local reference generator in [39] can be
regarded as a particular case of (4.19) with a linear input term.

Proposition 4.6. Assume that for the pinned agents i ∈ Vpin, the hypotheses in Propo-
sition 4.4 hold. For the rest of the agents, consider the virtual system (4.20) with its
variational system (4.21) satisfying (4.17) and Assumption 4.1. If there exists a symmet-
ric matrix Pi(qi, ξi) s.t. c1I ⩽ Pi(qi, ξi) ⩽ c2I , and

ÂTi Pi + Ṗi + PiÂi ⩽ −λPi (4.22)

or (4.16) holds for some λ > 0 and for all (qi, ξi) ∈ Q0 ×Ξ0 with W0 ∪Xi0 ⊂ Q0, i ∈ V
then the closed-loop systems (4.1), (4.2), (4.3) and (4.4) satisfy (O1) and (O2).

Proof. The system (4.20) is exponentially IS if condition (4.22) is satisfied. Since
qi = xi = x1 = · · · = xN = w is a particular solution of the virtual system (4.20),
then (O2) is satisfied and the zero-error invariant manifold is locally attractive.
Since (0, 0) is a particular solution of (4.20) with xj = 0, all trajectories converge to
(0, 0) asymptotically, i.e. (O1) is satisfied.

In Proposition 4.6 above, we have presented sufficient conditions on each node
that allow us to enlarge the region of attraction to W0 ×Xi0 via the contraction
analysis on the virtual systems.
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4.4 Simulation setup and results

For the simulation setup, we consider four agents with two pinned nodes, e.g.,
V = {v1, v2, v3, v4} and Vpin = {v1, v2}. The nonlinear exosystem is given by{

ẇ1 = w2

ẇ2 = −w1 + cos(w1).
which is Poisson stable whose orbit may not revolve

around the origin. We assume the following dynamics for each node:

v1 :

{
ẋ11 = x12

ẋ12 = −3x11 − 2x12 + u1
, v2 :

{
ẋ21 = x22

ẋ22 = −5x21 − x22 + sin(x21) + u2

v3 :

{
ẋ31 = x32

ẋ32 = −3x31 − x32 − x332 + u3
, v4 :

{
ẋ41 = x42

ẋ42 = −3x41 − x42 + 2 cos(x41) + u4

The nodes v1 and v2 are connected to the pinner agent v0, while the agents v3 and
v4 are connected to all other agents (except v0). Correspondingly, we consider the
following controllers:

v1 :


ξ̇11 = ξ12

ξ̇12 = −ξ11 + 2 cos(0.5ξ11)− 3e11 − 3e12
u1 = ξ11 + ξ12 + cos(0.5ξ11)

(4.23)

v2 :


ξ̇21 = ξ22 − 5e22

ξ̇22 = −ξ21 + 2 cos(0.5ξ21)− 5e21 − 5e22
u2 = 2ξ21 + 0.5ξ22 − sin(0.5ξ21) + cos(0.5ξ21)

(4.24)

v3 :


ξ̇31 = ξ32

ξ̇32 = −ξ31 + 2 cos(0.5ξ31)− 0.167e31 − 0.267e32
u3 = ξ31 + 0.5ξ32 + 0.125ξ332 + cos(0.5ξ31)

(4.25)

v4 :


ξ̇41 = ξ42 − 0.5e42

ξ̇42 = −ξ41 + 2 cos(0.5ξ41)− 0.5e41 − 0.5e42
u4 = ξ41 + 0.5ξ42 − cos(0.5ξ41)

(4.26)

where ei,j = xi,j − wi, for i = 1, 2 and j = 1, 2 and e3j = 3x3j − x1j − x2j − x4j ,
e4j = 3x4j − x1j − x2j − x3j for j = 1, 2. The conditions (4.11) and (4.17) in
Propositions 4.3 and 4.5 hold with σ̂i(w) = 2w for all i = 1, 2, 3, 4. It can be
checked that using the following positive definite constant matrices for P1, P2, P3
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and P4, respectively:
4.16 1.83 −1.33 −1.66

1.83 3.16 0.33 −1.33

−1.33 0.33 2.5 0.83

−1.66 −1.33 0.83 1.5

 ,

40.25 −1.36 3.45 1.27

−1.36 4.75 −0.65 −0.47

3.45 −0.65 2.62 −0.26

1.27 −0.47 −0.26 0.96

 ,


5.54 0.25 −3.89 −0.52

0.25 2.20 0.28 −1.81

−3.89 0.28 6.68 0.40

−0.52 −1.81 0.40 3.34

 ,

11.87 −0.58 1.95 2.04

−0.58 1.56 −0.83 −0.26

1.95 −0.83 3.91 −0.36

2.04 −0.26 −0.36 1.87

 ,
the conditions (4.16) and (4.22) hold with Q0 = [0.4, 0.9] × [−0.7, 0.7] and Ξ0 =

[1.2, 1.9] × [−0.7, 0.7]. By taking initial conditions within Q0 × Ξ0, we will have
exponential incremental stability property and the agents’ trajectories converge
to w according to Proposition 4.6. For numerical simulation, we take w(0) = [ 0.70 ]

whose orbit is shown in Figure 4.1 (shown in solid black). Using initial conditions
x1(0) = [ 0.50.5 ], x2(0) = [ 0.50 ], x3(0) = [ 0.80.1 ], x4 =

[
0.6
−0.1

]
and ξi(0) = [ 1.40 ] for all

i = 1, 2, 3, 4, the phase plot of each agent’s trajectories is shown in Figure 4.1(a)
and (b) where pinning synchronization is achieved as expected.

4.5 Conclusion

In this chaper, the pinning synchronization problem of heterogeneous multi-
agent systems is studied. When only the relative state measurement is available,
we present sufficient and necessary conditions for the solvability of the problem.
Subsequently, sufficient conditions are given to guarantee pinning synchronization
based on establishing contraction of each agent’s virtual systems.
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(a) Synchronization of pinned agents x1 and x2 to w

(b) Pinning synchronization of x3 and x4 to w

Figure 4.1: The phase plot of pinning agents’ state x1, x2, x3, x4 and of the pinner
agent w. The simulation results are based on the controllers in (4.23)-(4.26).



5 Stability of switched systems with
multiple equilibria

This chapter studies the stability of switched systems that are composed of a mix-
ture of stable and unstable modes with multiple equilibria. The main results of this
paper include some sufficient conditions concerning set convergence of switched
nonlinear systems. We show that under suitable dwell-time and leave-time switch-
ing laws, trajectories converge to an initial set and then stay in a convergent set.
Based on these conditions, Linear Matrix Inequality (LMI) conditions are derived
that allow for numerical validation of the practical stability of switched affine
systems, which include those with all unstable modes. Two examples are provided
to verify the theoretical results.

5.1 Introduction

Many complex engineering systems operate as finite-state machines with different
modes of operations and functions. These modes can correspond to the multitude
of tasks designed for these systems and to the adaptability of these systems in
dealing with the dynamic environment. In this regard, these systems can be
modeled as switched systems, which have received much attention in the past
few decades. Some well-known examples of engineering systems described by
switched systems are aircraft systems [25], power electronics [59], and electrical
circuits [77].

Typically, a switched system is described by a finite set of continuous-time
or discrete-time dynamic subsystems/modes and a switching law/signal that
determines which subsystem/mode is active at any given moment of time. Such
switching laws can depend on particular state values, time events, or an external
state as a memory.

In the time-dependent switching signal, the dwell-time (DT) as studied in
[61] provides an important notion that gives us the minimal time where the
switched systems must remain in a subsystem before switching to another one.
Correspondingly, a significant amount of literature has been directed towards
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the stability of switched systems [1, 13, 49, 50, 61, 92, 95, 104]. In [13, 50] the
common Lyapunov function and multiple Lyapunov function techniques are
used to analyze the stability of switched systems with all stable subsystems. In
recent years, some results have also been reported on switched systems with
both stable and unstable subsystems [95, 104]. The main idea of these studies is
to make the dwell-time of the stable subsystems long enough while shortening
the dwell time of the unstable subsystems to offset the divergent trajectory of
the unstable subsystem. This approach of having a trade-off between stable and
unstable subsystems is no longer applicable when all subsystems are unstable. In
[1, 49, 92], a discretized Lyapunov function technique is presented that can be used
to analyze the stability of switched systems with all unstable subsystems. The
switched systems considered in these papers all share a common equilibrium point
and they provide analysis on the convergence of the trajectories to the common
equilibrium.

On the contrary, in some engineering applications, there may not be a common
equilibrium among subsystems. Some well-known examples are neural networks
[106] and bipedal walking robots [31]. In these systems, it has been shown that
the trajectories converge to a set rather than to a specific equilibrium point. The
property of convergent sets has been studied and estimated in [2, 24, 84]. When
all subsystems are stable, dwell-time criteria was investigated in [2] to guarantee
that the trajectories converge globally to a superset and remain in such a superset.
This work was extended to switched systems satisfying the input-to-state stability
property with bounded disturbance in [84], and to switched discrete systems in
[84]. Another extension of [2] was presented in [24], which allows each subsystem
to have multiple stable equilibria. The minimal invariant convergent superset for
switched affine systems is studied in [18]. However, the studies in [2, 18, 24, 84]
have not yet considered the case where the switched systems can contain unstable
subsystems.

Inspired by the previous study in [2], we study in this paper the set convergence
property of switched systems with distinct equilibria in a more general case. The
switched systems can contain both stable and unstable subsystems. Such situations
can be found, for instance, in aeroengine systems [78] or in RLC circuit systems
[52], where a component failure or external disturbance can render a subsystem
to be unstable. In power systems [54], DoS attacks are aimed at creating a power
blackout through cascading failure by inducing instability in a subsystem. In the
game theoretic setting [8, 10, 93], each game’s Nash equilibria may be different
and unstable.

This chapter provides theoretical tools relevant to ensuring set stability for
switched systems with stable and unstable subsystems. Multiple Lyapunov func-
tions techniques are applied to obtain dwell/leave time conditions. With these
conditions, the trajectories of switched systems are ultimately bounded by a com-
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pact set. Instead of finding multiple Lyapunov functions for the entire state space
as studied recently in [2], we only need to find multiple Lyapunov-like functions
in the state space outside some compact sets, which is less conservative than the
former in [2]. Consequently, we have enlarged the superset of the equilibria as
reported in [2]. The generalization allows us to consider switched systems with all
unstable subsystems as well.

Related work on the study of switched systems with multiple equilibria is the
practical stability analysis of switched affine systems in [17, 18, 36, 42, 43, 45, 75].
In [17, 18, 45, 75], time dependent switching laws are given to guarantee the
stability with respect to a set. In these studies, they analyze switched affine sys-
tems with all stable subsystems [45] or with stable switching condition among
subsystems [17, 75]. In [36, 42, 43], a stabilization problem is studied for the
switched systems with unstable mode. Quadratic and non-quadratic Lyapunov
functions are used to develop the state dependent switching laws to compute
the domain-of-attraction. However, as pointed out in [18], such computation
of domain-of-attraction does not exist when time dependent switching laws are
applied to such systems. Related to this, we present the practical stability analysis
for mixed stable-unstable switched affine systems with time dependent switch-
ing laws. Based on the obtained sufficient conditions for set convergence, we
present a numerical construction of such multiple Lyapunov functions using
time-dependent multiple quadratic Lyapunov functions. It leads to Linear Matrix
Inequality (LMI) conditions that can be numerically implemented.

The chapter is organized as follows. In Section 5.2, we present preliminaries
and problem formulation. The construction of the convergent set and some
sufficient conditions for the set convergence property of switched systems are
presented in Sections 5.3 along with an example. Application of such sufficient
conditions to the practical stability analysis of switched affine systems that include
examples with all unstable subsystems are provided in Section 5.4. Finally, we
present the conclusions in Section 5.5.

5.2 Preliminaries and problem formulation

Consider switched systems in the form of

ẋ(t) = fσ(t)(x(t), t), x(t0) = x0, (5.1)

where x(t) ∈ X ⊆ Rn is the state vector, t0 ∈ R is the initial time and x0 ∈ X is the
initial value. Define an index set Q :=

{
1, 2, · · · ,M

}
, where M is the number of

modes. The signal σ : [t0,∞) → Q denotes the switching signal, which is assumed
to be a piecewise constant function and continuous from the right. The vector field
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fi : X × [t0,∞) → Rn, i ∈ Q, is continuous in t and continuously differentiable in
x. The switching instants are expressed by a monotonically increasing sequence
S :=

{
t1, t2, · · · , tk, · · ·

}
, where tk denotes the k-th switching instance. We assume

that (5.1) is forward complete, which means for each x0 ∈ X there exists a unique
solution of (5.1) on [t0,∞) and no jump occurs in the state at a switching time.

In this paper, we don’t assume that there is common equilibria for the switched
systems (5.1). In addition, we allow each subsystem has multiple equilibria. Since
the equilibria are different, trajectories will converge to a set rather than a specific
point.

The set convergence problem for switched systems with all stable modes has
attracted considerable attentions. For example, in [2, 24, 84], a convergent set is
constructed by the level sets of multiple Lyapunov functions. Then, convergence
can be achieved by activating the stable subsystems for a sufficient long time. In
contrast to previous works, reference [33] permits arbitrary switching between
subsystems without imposing any dwell-time constraints. However, for unstable
subsystems, we can not find such multiple Lyapunov functions that limit the
application of results in [2, 24, 33, 84]. Correspondingly, the main objective of this
paper is to propose a sufficient condition that guarantees the switched system (5.1)
is set convergent with respect to any switching law σ(t) satisfying the dwell/leave
time constraints, which includes the case when not all modes of (5.1) are stable
and when none of the modes are stable.

5.3 Main result

In this section, the sets construction is introduced and some sufficient conditions
are given to guarantee the set convergence of the switched system (5.1).

We denote the subset of modes in Q that compose of unstable sub-systems by
U and its complement (i.e., the stable ones) by S. Hence, Q = U∪̇S. Consider the
switched system (5.1) under a certain switching signal σ(t). Suppose that there
exists a compact set K such that for each mode q ∈ Q there exists a continuously
differentiable function Vq : X \K × [0, τq,max) → R⩾0, where τq,max ∈ R⩾0 ∪ {∞}
represents the maximal local time, such that the following inequality holds for all
ξ ∈ X \K and τ ∈ [0, τq,max)

V̇q(ξ, τ) :=
∂Vq(ξ, τ)

∂ξ
fq(ξ, τ) +

∂Vq(ξ, τ)

∂τ
⩽ ηqVq(ξ, τ), (5.2)

with ηq ⩾ 0 if q ∈ U or ηq < 0 otherwise. This mode-dependent locally time-
varying Lyapunov function provides us with a means to describe the stability
of the compact set K in a local time-interval whenever mode q is activated. For
facilitating the numerical computation later via LMI conditions, we will use an
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explicit relation of the compact set K with the Lyapunov function Vq through a
parametrized compact set N(k), where the parameter k > 0 gives us the degree-
of-freedom to check the Lyapunov condition.

We introduce this locally time-varying Lyapunov function in order to relax the
requirement of finding a common time-invariant Lyapunov function for switched
systems, which may be hard to find. The maximal time of definition τq,max can be
∞ and we do not exclude the usual time-invariant Vq in this definition by taking
Vq(ξ, τ) to be time-invariant for all τ ∈ [0, τq,max) with arbitrary τq,max > 0. As will
be clear later, such maximal time τq,max must necessarily be greater than the usual
required dwell-time condition. In our previous work [100], we have shown the
applicability of such locally time-varying Lyapunov functions in order to set up
verifiable LMI conditions for establishing stability of switched systems comprising
(un)stable modes. The function constructed in [100] is based on time interpolation
of two time-invariant quadratic Lyapunov function.

In the following, we will define N(k), Nα(k), L(k), which are a subset of X
and parametrized by positive constant k > 0. These sets will be used in our main
result to define the attractive invariant set of the switched systems. For a given
positive constant k > 0 and for any given mode q ∈ Q, we define Nq(k) as a level
set of Vq(ξ, τ) given by

Nq(k) := {ξ ∈ X : Vq(ξ, τ) ⩽ k, ∀τ ∈ [0, τq,max)}. (5.3)

The supersetN(k) is defined by the union ofNq(k) over all modes q ∈ Q as follows

N(k) :=
⋃
q∈Q

Nq(k). (5.4)

Since N(k) is generally larger than any of the individual Nq(k), let us define the
maximum range of Vq in N(k) by

αq(k) := max
ξ∈N(k)

τ∈[0,τmax)

Vq(ξ, τ), (5.5)

and
α(k) := max

q∈Q
αq(k). (5.6)

For every q ∈ Q, we define a level set Nα
q (k) by

Nα
q (k) := Nq(α(k)), (5.7)
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where Nq(·) is given by (5.3). And we define Nα(k) by

Nα(k) :=
⋂
q∈Q

Nα
q (k). (5.8)

Note that Nα(k) ̸= N(α(k)) because the former is the intersection, while the latter
is the union of all Nq(α(k)).

Now, using the above notions of Vq and the sets U ,S, and N(k), we will
consider the following locally time-varying Lyapunov characterisation for estab-
lishing the set stability of (5.1). For each mode q ∈ Q, we assume that (5.2) holds
for K = N(k), i.e.

V̇q(ξ, τ) ⩽ ηqVq(ξ, τ),∀ξ ∈ X \N(k),∀τ ∈ [0, τq,max) (5.9)

with ηq > 0 if q ∈ U or ηq < 0 otherwise, and with τq,max > 0. Additionally,
we assume that the mode-dependent functions Vq are bounded by each other as
follows: there exists 0 < µq < 1 if q ∈ U or µq > 1 otherwise, such that

Vp(ξ, 0) ⩽ µqVq(ξ, τ),∀ξ ∈ X \ N(k)∀p, q ∈ Q,∀τ ∈ [τq,min, τq,max), (5.10)

with τq,min > 0.
Notice that, for a stable subsystem, there exists ηq that satisfies (5.9) globally.

For an unstable subsystem, inequality (5.9) implies that the value of Vq(ξ, τ) may
increase in some time interval with a bounded rate ηq > 0. In such case, the
divergence can be compensated by the switched event according to (5.10) with
0 < µq < 1.

Finally, let us introduce the set L(k), in which the trajectories will eventually
remain in. Firstly, we denote for every q ∈ Q

βq(k) := α(k) ·max

{
1

µq
, 1

}
, (5.11)

Mq(k) := {x ∈ X : Vq(ξ, τ) ⩽ βq(k),

∀τ ∈ [0, τq,max)}, (5.12)

Accordingly, we define L(k) by

L(k) :=
⋃
q∈Q

Mq(k). (5.13)

For an unstable sub-system, it follows from (5.11) that βq(k) = 1
µq
α(k) ⩾ α(k)

which implies that Nα
q (k) ⊆Mq(k).

In the following, the relations among the above defined sets are discussed and
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illustrated. For every ξ ∈ N(k), according to (5.3)-(5.6), we have Vq(ξ, τ) ⩽ α(k),
for every q ∈ Q. Then, by the definition of Nα

q (k) in (5.7), for every q ∈ Q, we have
ξ ∈ Nα

q (k), i.e., ξ ∈
⋂
q∈QN

α
q (k). Combining this with the definition of Nα(k)

in (5.8), we can conclude that N(k) ⊆ Nα(k). In addition, for every ξ ∈ Nα(k),
i.e., Vq(ξ, τ) ⩽ α(k), according to (5.11), (5.12), we have Vq(ξ, τ) ⩽ βq(k), i.e.,
ξ ∈

⋃
q∈QMq(k). In combination with the definition of L(k) in (5.13), we conclude

that Nα(k) ⊆ L(k). Hence, we have that N(k) ⊆ Nα(k) ⊆ L(k). An illustration of
this construction for two modes can be seen in Fig.5.1. In this illustration, N1(k)

and N2(k) are disconnected; however, they can also be connected as shown later
in Example 3.

Figure 5.1: An illustration of the set constructions for two modes.

Remark 5.1. There are two main differences between our results and those in [2, 84].
Firstly, the results in this paper can include unstable subsystems; moreover, we
do not exclude the case of all unstable subsystems. To cater for the presence of
unstable subsystems, we use piecewise time-varying Lyapunov functions instead
of time-invariant Lyapunov functions as used in [2, 84] with the restriction of (5.10).
Secondly, the time-varying Lyapunov characterization of the sub-systems are
applied outside a compact set N(k) instead of the whole state space X as assumed
in [2, 84]. It will be shown later in Example 1 that checking these Lyapunov
conditions outside a compact set in (5.9) is easier that checking the counterparts in
the whole state space X .
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Before we present our main result, we introduce the following definition of the
mode dependent dwell (leave) time.

Definition 5.2. A constant τp > 0 is called mode dependent dwell (leave) time
for stable (unstable) mode p ∈ Q of a switching signal σ : [t0,∞) → Q if the time
interval between two consecutive switches or jumps being no smaller (or larger)
than τp.

We present now the main result of this section for the set convergence of
switched systems (5.1).

Theorem 5.3. Suppose that for every q ∈ Q there exists Vq : X × [0, τq,max) → R+

satisfying (5.9) and (5.10) with a given ηq, µq and k > 0. Then, for every switching
signal σ : R+ → Q satisfying the following dwell and leave time condition

τq > max
{
− lnµq

ηq
, τq,min

}
∀q ∈ S, and

τq < min
{
− lnµq

ηq
, τq,max

}
, ∀q ∈ U .

 (5.14)

the following properties hold for the state trajectory of the switched system (5.1):

(i) there exists T = T (x0) > 0 such that x(T ) ∈ N(k);

(ii) for any time t ∈ [T,+∞), the trajectory will stay in L(k), i.e. x(t) ∈ L(k);

(iii) for all starting points x0 ∈ Nα(k), the trajectory of switched system (5.1) remains
in the set L(k), i.e. x(t) ∈ L(k).

Proof. Let us consider a given switching signal σ satisfying the hypotheses of
the theorem with the switching time {t0, t1, t2, . . .}. For such switching signal σ,
we can construct a piecewise time-varying Lyapunov function, by piecing all Vq
together, as follows

V (x(t), t) = Vq(x(t), t− ti),

where ti is the latest switching moment before time t and q is the current mode.
Proof of part (i): Trivially, if x0 ∈ N(k) then T = 0. Let us now consider

x0 ∈ X \N(k). In the following, we will show that under the condition (5.14), the
function V (x(t), t) will converge to an arbitrarily small constant. This implies that
there exists a time T > 0 s.t. at which the trajectory enters N(k), i.e. V (x(T ), T ) ⩽
k.
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Firstly, for any t ∈ [ti, ti+1) and q := σ(ti), according to (5.2), we have

d
dt
V (x(t), t) =

d
dt
Vq(x(t), t− ti) t ∈ [ti, ti+1)

=
∂Vq(x(t), τ)

∂x
fq(x(t)) +

∂Vq(x(t), τ)

∂τ
τ ∈ [0, ti+1 − ti)

⩽ ηqVq(x(t), τ)

where we have introduced a time transformation of τ = t − ti in the second
equality. The comparison lemma implies

V (x(t), t) ⩽ eηq(t−ti)V (x(ti), ti) (5.15)

for all t ∈ [ti, ti+1). Using (5.9) and (5.10), and by denoting now p := σ(ti) and
q := σ(ti−1),

V (x(ti), ti) = Vp(x(ti), 0)

⩽ µqVq(x(t), t− ti−1) t ∈ [ti−1 + τp,min, ti)

⩽ µqe
ηq(ti−ti−1)Vq(x(ti−1), 0),

where the last inequality follows a similar line as in (5.15). By recursively com-
puting the inequality bound down to t0, for t = ti+1 we arrive at the following
inequality

V (x(ti+1), ti+1) = Vσ(ti+1)(x(ti+1), 0)

⩽ Vσ(t0)(x(t0), 0)

i∏
j=0

µσ(tj) exp
(
ησ(tj)(tj+1 − tj)

)
= Vσ(t0)(x(t0), 0)

i∏
j=0

exp
(
ησ(tj)(tj+1 − tj) + lnµσ(tj)

)
.

(5.16)

It follows from the dwell and leave time condition (5.14) that for all q ∈ S ∪ U ,
the inequality lnµq + ηqτq =: dq < 0 holds. This implies immediately for
d := maxq dq < 0 that exp

(
ησ(tj)(tj+1 − tj) + lnµσ(tj)

)
⩽ ed < 1. If σ has in-

finitely many switches, it therefore follows from (5.16) that V (x(ti), ti) converges
to zero for i → ∞. Together with (5.15), we conclude that for t ∈ [ti, ti+1) ei-
ther V (x(t), t) ⩽ V (x(ti), ti)) if σ(ti) ∈ S or V (x(t), t) ⩽ eηmaxτmaxV (x(ti), ti) if
σ(ti) ∈ U and where ηmax := maxq∈U ηq, τmax := maxq∈U τq,max. Consequently,
t 7→ V (x(t), t) converges also to zero as t→ ∞. In the case that σ only has finitely
many switches, the last mode most be a stable mode (because each unstable mode
has a maximal leave time by assumption), hence (5.15) considered for the last
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(stable) mode also implies that t 7→ V (x(t), t) converges to zero.
Particularly, for any given k > 0, there exists T > 0 and q such that V (x(T ), T ) =

Vq(x(T ), T ) ⩽ k.
Proof of part (ii): The proof is decomposed in two steps. In the first step, we

show that once the trajectory enters N(k), i.e. V (x(T ), T ) ⩽ k with the switch
time ti ⩽ T , it stays in L(k) before the next switch at ti+1, i.e. V (x(t), t) ⩽ β(k)

for all T ⩽ t < ti+1. Thereafter it stays in Nα(k) after the next switch time ti+1,
i.e. V (x(ti+1), ti+1) ⩽ α(k). In the second step, we show that when the trajectory
starts in Nα(k), it stays in L(k) for all forward time.

First step: Let us consider the time interval [ti, ti+1), and T ∈ [ti, ti+1), i.e. the
trajectory enters N(k) in [ti, ti+1). Let us first show that during the subsequent
switch time ti+1, we have V (x(ti+1), ti+1) ⩽ α(k). It follows from (5.5) and (5.6)
that when the trajectory enters N(k) at time T , we have V (x(T ), T ) ⩽ ασ(ti)(k) ⩽
α(k).

We first show for a stable mode, by means of contradiction, that once the tra-
jectory enters N(k) at time T , it will stay in N(k) in the time interval [T, ti+1).
Let us assume there exists T ′′ > T such that x(T ′′) /∈ N(k). According to
the continuity of the trajectory, there exists T ′ > T such that T < T ′ < T ′′

and x(T ′) ∈ ∂N(k). According to (5.9), outside N(k), we have V (x(T ′′), T ′′) =

Vq(x(T
′′), T ′′−ti) ⩽ eηq(T

′′−T ′)Vq(x(T
′), T ′−ti). Using (5.14) and T ′′−T ′ ⩽ τq , we

have eηq(T
′′−T ′)Vq(x(T

′), T ′ − ti) ⩽ eηqτqVq(x(T
′), T ′ − ti) ⩽ e

ln 1
µq Vq(x(T

′), T ′ −
ti) = 1

µq
Vq(x(T

′), T ′ − ti). Since we are in a stable mode with µq > 1, it fol-
lows that Vq(x(T ′′), T ′′ − ti) < Vq(x(T

′), T ′ − ti). In other words, x(T ′′) ∈ N(k),
which is a contradiction. Since x(t) ∈ N(k), for all t ∈ [T, ti+1), it follows from
(5.5) and (5.6) that in the subsequent switch time ti+1, we have V (x(ti+1), ti+1) =

Vσ(ti+1)(x(ti+1), 0) ⩽ ασ(ti+1)(k) ⩽ α(k). This means that the trajectory stays in
Nα(k) at the subsequent switch time ti+1.

Now let us consider the other case when an unstable mode is active during
the time interval [T, ti+1). For this situation, there are two further possible cases:
x(ti+1) ∈ N(k) and x(ti+1) /∈ N(k).

For the first case, with x(ti+1) ∈ N(k), we will show that x(t) ∈ L(k) for
all t ∈ [T, ti+1) and x(ti+1) ∈ Nα(k). Since it is an unstable mode, in the time
interval [T, ti+1), there can be a moment T ′ > T such that x(T ′) /∈ N(k). It
follows from (5.9), (5.14), and T ′ − T < τq that V (x(T ′), T ′) = Vq(x(T

′), T ′ −
ti) ⩽ eηq(T

′−T )Vq(x(T ), T − ti) < eηqτqVq(x(T ), T − ti) <
1
µq
Vq(x(T ), T − ti) <

1
µq
αq(k) ⩽ βq(k). This inequality implies that x(T ′) ∈ L(k),∀T ′ ∈ [T, ti+1). Since

x(ti+1) ∈ N(k), according to (5.5) and (5.6), after the switching at ti+1 we have
V (x(ti+1), ti+1) = Vσ(ti+1)(x(ti+1), 0) ⩽ αq(k) ⩽ α(k).

For the second case, with x(ti+1) /∈ N(k), following the same arguments as in
the first case, we have that x(t) ∈ L(k), for all t ∈ [T, ti+1). Accordingly, at ti+1,
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with x(ti+1) /∈ N(k), p := σ(ti+1) and q := σ(ti), we can apply (5.9)-(5.10), which
gives us

V (x(ti+1), ti+1) = Vp(x(ti+1), 0)

⩽ Vq(x(ti+1), ti+1 − ti)

⩽ elnµq+ηq(ti+1−T )Vq(x(T ), T − ti).

Using (5.14), it follows that lnµq < −ηq(ti+1 − ti). Hence the above inequality can
be further upper-bounded by

V (x(ti+1), ti+1) < e−ηq(ti+1−ti)+ηq(ti+1−T )Vq(x(T ), T − ti)

= eηq(ti−T )Vq(x(T ), T − ti).

Since ti ⩽ T and ηq > 0, we have V (x(ti+1), ti+1) < Vq(x(T ), T − ti) ⩽ αq(k) ⩽
α(k). This implies that the trajectory remains in Nα(k).

In summary, for all t ∈ [T, ti+1), the trajectory always stays in L(k), and at ti+1,
the trajectory remains in Nα(k).

Second step: Let us now consider the subsequent time interval [ti+1, ti+2). Fol-
lowing the previous step, we have established that V (x(ti+1), ti+1) ⩽ α(k). We
will now show that also x(t) ∈ L(k), for all t ∈ [ti+1, ti+2). On the one hand,
if the active mode in [ti+1, ti+2) is a stable one, the maximal value of V (x(t), t)

occurs at ti+1 since V (x(t), t) is non-increasing in [ti+1, ti+2). In this case, we have
V (x(t), t) ⩽ V (x(ti+1), ti+1) ⩽ α(k).

On the other hand, if the active mode in [ti+1, ti+2) is an unstable one then
the upper bound of V (x(t), t) occurs at ti+2. By denoting q := σ(ti+1) then for all
t ∈ [ti+1, ti+2)

V (x(t), t) = Vq(x(t), t− ti+1)

⩽ Vq(x(ti+2), ti+2 − ti+1)e
ηq(t−ti+1)

⩽
1

µq
Vq(x(ti+2), ti+2 − ti+1)

⩽
1

µq
α(k) ⩽ βq(k),

where we have used (5.14) in the second inequality above to establish that eηq(t−ti+1) <

e
ηq

− lnµq
ηq = 1

µq
for all t ⩽ ti+2 < ti+1 + τq .

It follows from (5.12) and (5.13) that x(t) ∈ L(k),∀t ∈ [ti+1, ti+2).

Finally, let us consider the trajectory at the switch-time ti+2. When x(ti+2) ∈
N(k), it immediately holds that V (x(ti+2), ti+2) ⩽ α(k). Otherwise, using (5.9),
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(5.10) and (5.14) and by denoting p := σ(ti+2), we have

V (x(ti+2), ti+2) = Vp(x(ti+2), 0)

⩽
1

µq
Vq(x(ti+2), ti+2 − ti+1)

⩽ e− lnµq+ηq(ti+2−ti+1)Vq(x(ti+1), 0)

⩽ e− lnµq+ηqτqVq(x(ti+1), 0)

< Vq(x(ti+1), 0) ⩽ α(k).

Thus the trajectory x(t) remains in Nα(k) at ti+2.
By computing recursively for the subsequent time intervals, we can conclude

that the trajectory x(t) remains in L(k) for all t ⩾ T .
Proof of part (iii): The proof of part (iii) follows directly from the second step

of the proof of part (ii).

Remark 5.4. The results presented in [2], which deals with all stable modes, can
be considered as a particular case of our results. In particular, if we assume that
the subsystems in Theorem 5.3 are all stable, i.e. Q = S , the trajectory of switched
nonlinear system (5.1) is in L(k) after time T for any switching signals satisfying
τq > − lnµq

ηq
. In this regards, part (i) and (ii) of Theorem 5.3 coincide with [2,

Theorem 1] with a common µ = maxµq and a common η = max ηq. For part (iii)
of the theorem, we established that for all trajectories starting in Nα(k), which is
larger than N(k) used in [2, Corollary 2], will stay in the same level set L(k). This
shows that our result is less conservative.

For switched system (5.1), if all subsystems are unstable, which represents the
worst case scenario, the trajectories will not converge to any of the modes and
the divergence can only be compensated by the switching events as shown in the
following corollary.

Corollary 5.5. Assume that Q = U (i.e., all modes are unstable). Suppose that for
every q ∈ Q there exists Vq(ξ, τ) : X × [0, τq,max) → R+ satisfying (5.9) and (5.10)
with a given ηq and µq. Then for any trajectory of switched nonlinear system (5.1) with
switching signals σ satisfying

τq < min

{
− lnµq

ηq
, τq,max

}
,∀q ∈ U , (5.17)

there exists T > 0 such that x(t) remains in L(k) for all t ⩾ T .

From (5.17), the term − lnµq

ηq
gets closer to 0 as ηq gets larger, in which case the

unstable mode must switch sufficiently fast. Alternatively, it can be compensated
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by having a small µq, which increases the difficulty of designing the Lyapunov
function. From this point of view, it is desirable to have a small ηq .

Example 1: Let us consider a switched system (5.1) composed of two scalar
subsystems as follows

q = 1 : ẋ = x+ 4,

q = 2 : ẋ = −x(1 + x)2.
(5.18)

The mode q=1 is an unstable system and the mode q=2 is a stable system with
multiple equilibria. Both systems do not have common equilibria. For these
sub-systems, we can define V1 and V2 that satisfy (5.9) and (5.10). Indeed, by
using V1(x(t), t) = 2x2 and V2(x(t), t) = 1

2x
2, we have µ1 = V2(x(t),t)

V1(x(t),t)
= 1

4 and

µ2 = V1(x(t),t)
V2(x(t),t)

= 4; thus (5.10) is satisfied globally.

Let us fix k = 2 in (5.3) so that N1(2) = (−1, 1), N2(2) = (−2, 2), N(2) =

(−2, 2), and X \N(2) = (−∞,−2]
⋃
[2,+∞). In X \N(2), one can obtain that (5.9)

holds with η1 = 6 and η2 = −2. Following the computation in (5.5), we have
α(2) = 8 in N(2). Subsequently, using (5.11), we can obtain that β1 = 32 and
β2 = 8. Consequently, M1(2) = [−4, 4], M2(2) = [−4, 4], so that L(2) = [−4, 4].
Thus N(α) = N(k) = [−2, 2], L(k) = [−4, 4]. According to the main dwell-time
condition (5.14) in Theorem 3.6, the dwell-time for each subsystem is given by
τ1 ⩽ 0.231, τ2 ⩾ 0.693.

For numerical simulation, we consider τ1 = 0.231 and τ2 = 0.693, and the
switched system is initialized at two different position: x(0) = −6, which is
outside L(2), and x(0) = 2, which is on the boundary of Nα(k). Figure 5.2 shows
the resulting trajectories where the blue line gives the trajectory initialized at −6

while the red one is the trajectory initialized at 2. According to part (i) and part
(ii) in Theorem 3.6, there exists T > 0 such that the trajectory will enter N(k) and
remains in L(k) for all t ⩾ T . As shown in Figure 5.2, the trajectory that starts at
-6 enters N(k) at T = 0.52s, and remains in L(k) afterwards. On the other hand,
when the state is initialized at 2, which is in Nα(k), the trajectory will remain in
L(k) for all t ⩾ 0.

The analysis tools provided by Theorem 5.3 only require us to get Lyapunov
characterization for each sub-system outside a given compact set. For instance,
the Lyapunov inequality (5.9) does not need to be fulfilled in the neighborhood of
the equilibria. In the example above, one can check for the second subsystem that
by using the given Lyapunov function V2(x(t), t) = 1

2x
2, we have V̇2(x(t), t) =

−x2(1 + x)2 ⩽ 0. However, it is not possible to fulfill the inequality (5.9) for all R.
By letting k = 2, −2(1 + x)2 ⩽ −2 holds for all x in (−∞,−2)

⋃
(2,+∞) (which

is a state domain outside the compact interval [−2, 2]). Thus, in this domain, we
have V̇2(x(t), t) ⩽ −2V2(x(t), t) fulfilling (5.9) with the dissipation rate η2 = −2.
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Figure 5.2: The plot of trajectories of switched system in Example 1 initialized at
x(0) = −6, x(0) = 2, and using a periodic switching signal with τ1 = 0.231 and
τ2 = 0.693, x(t) : x(0) = −6 enters N(k) at 0.52s.

5.4 Practical stability for the switched affine systems

In this section, we focus on the application of Theorem 5.3 in the practical stability
analysis of switched affine systems with mixed stable-unstable subsystems. Let us
consider a switched affine system in the form of

ẋ(t) = Aqx(t) +Bq, ∀q ∈ Q, (5.19)

where x(t) and σ(t) are as in (5.1). Here we do not restrict Aq to be stable matrices,
nor they have stable matrix combination as pursued in [17, 75].

Following [45], the switched affine system (5.19) is said to be practically stable
with respect to the sets Ω1 ⊆ X and Ω2 ⊆ X (Ω1 ⊆ Ω2) for any switching signal σ(t)
from the given class, if the implication x(t0) ∈ Ω1 ⇒ x(t) ∈ Ω2 holds for all t ⩾ 0.

In Theorem 5.3, it is assumed that there exist multiple Lyapunov functions
Vq(ξ, τ) in X \N(k)× [0, τq,max) satisfying (5.9) and (5.10). In general, checking the
existence of such Lyapunov functions is not trivial. In the following lemma, we
present a sufficient condition that can simplify the construction of such Lyapunov
functions.

Lemma 5.6. Suppose that for each mode q ∈ Q there exists a continuously differentiable
function Vq : X × [0, τq,max) → R⩾0 such that the following inequalities

V̇q(ξ, τ) ⩽ ηqVq(ξ, τ) + γq

(
k − Vq(ξ, τ)

)
, ∀ξ ∈ X ,∀τ ∈ [0, τq,max) (5.20)
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Vp(ξ, 0) ⩽ µqVq(ξ, τ) + γ′q

(
k − Vq(ξ, τ)

)
, ∀ξ ∈ X ,∀p, q ∈ Q,∀τ ∈ [τq,min, τq,max),

(5.21)
hold with 0 < τq,min < τq,max, where γq ⩾ 0, γ′q ⩾ 0, and the constant k is as used before
in (5.3). Then the statements of Theorem 3.6(i), (ii) and (iii) hold for any switching signals
σ satisfying (5.14).

Proof. It follows from (5.20) and (5.21) that Vq(ξ, τ) > k ⇒ V̇q(ξ, τ) ⩽ ηqVq(ξ, τ)

and Vp(ξ, 0) ⩽ µqVq(ξ, τ). This implies that Vq(ξ, τ) and Vp(ξ, 0) as given in (5.20)
and (5.21) satisfy (5.9) and (5.10) outside the compact set N(k), i.e. in the set⋂
q∈Q{ξ ∈ X | Vq(ξ) ⩾ k)}. In this case, all hypotheses of Theorem 5.3 are satisfied

and hence the claim of the lemma follows immediately. Moreover, it holds globally
if k = 0.

For switched linear systems, it is common to use a quadratic Lyapunov function
Vq(ξ, τ) = ξ⊤Rqξ, where Rq is a positive definite matrix. The use of such quadratic
form may not be suitable, particularly when the systems switch consecutively
between unstable modes. For instance, when the system switches from an unstable
mode q to another unstable mode p and then back to mode q again, for constant
matrices Rq and Rp, (5.10) becomes Rp ⩽ µqRq ⩽ µqµpRp with 0 < µq < 1,
0 < µp < 1, which cannot be satisfied. This shows that the matrix Rq can not be a
constant matrix when switching between unstable modes are admitted, such as the
switched systems considered in our main result above. In order to compensate the
conservativity brought by the affine term Bq , we construct a shifted time-varying
quadratic Lyapunov function given by

Vq(ξ, τ) = (ξ − x⋆)⊤Rq(τ)(ξ − x⋆), ∀q ∈ Q, (5.22)

where x⋆ ∈ Rn is the centroid of the level set Vq . By defining x̃(t) = x(t)− x⋆, we
can rewrite (5.19) as

˙̃x(t) = Aqx̃(t) + Lq, ∀q ∈ Q, (5.23)

where Lq = Aqx
⋆ + Bq. Note that for estimating the domain-of-attraction, it is

desirable to have ||Lq|| as small as possible. Otherwise, the LMI conditions, which
we will present later in Lemma 5.7, may not be feasible, i.e., the determinant
Ξq,i+γqkPqLqL

T
q Pq in (5.24)-(5.25) may not be negative for large Lq . By tuning x⋆,

we can obtain a minimal value of Lq by minimizing the cost function
∑
p,q∈Q ||Lq||.

In other words, x⋆ can be determined as x⋆ := argmin
x∈X ,p,q∈Q

∑
||Aqx+Bq||.

For the time-varying matrix Rq(τ), the inequality (5.10) is not trivial to solve. A
well-known technique to solve such problem is the discretized Lyapunov function
technique, which is widely used in the stabilization of linear switched systems
[1, 49, 92]. The basic idea of the discretized Lyapunov function technique is to
linearize Rq(τ) into the form of τ

τq,min
Pq + (1 − τ

τq,min
)Qq for all τ ∈ [0, τq,min),
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and Rq(τ) = Pq elsewhere. In the following, we transform Lemma 5.6 into LMI
conditions by using the discretized Lyapunov function technique and coordinate
transformation.

Lemma 5.7. Suppose that for each mode q ∈ Q there exist positive symmetric matrices
Pq, Qq, and constants µq > 0, γq > 0, γ′q > 0, τq,min > 0, and ηq ̸= 0, such that the
following inequalities [

Ξq,1 PqLq
∗ −γqk

]
⩽ 0, ∀q ∈ Q,

[
Ξq,2 QqLq
∗ −γqk

]
⩽ 0, ∀q ∈ Q,

(5.24)

[
Ξq,3 PqLq
∗ −γqk

]
⩽ 0, ∀q ∈ Q, (5.25)

Qp ⩽ (µq − γ′q)Pq, ∀q ∈ Q (5.26)

hold, where Ξq,1 = A⊤
q Pq + PqAq +

1
τq,min

(Pq − Qq) + (γq − ηq)Pq, Ξq,2 = A⊤
q Qq +

QqAq− 1
τq,min

(Pq−Qq)+(γq−ηq)Qq , and Ξq,3 = A⊤
q Pq+PqAq+(γq−ηq)Pq . Then

the statements of Theorem 3.6(i), (ii) and (iii) hold for any switching signals σ satisfying
(5.14).

Proof. We will prove the lemma by constructing the matrix Rq(τ) used in (5.22)
such that Vq(ξ, τ) in (5.22) satisfies the hypotheses in Theorem 3.6. Let us define
Rq(τ) by

Rq(τ) =

{
τ

τq,min
Pq + (1− τ

τq,min
)Qq ∀τ ∈ [0, τq,min)

Pq otherwise,
, (5.27)

so that Rq(0) = Qq and Rq(τq,min) = Pq. For τ ⩾ τq,min, (5.20) is guaranteed
according to (5.25). Now, let us consider Rq(τ) in the interval [0, τq,min) where the
time-derivative of Rq(τ) satisfies

dRq(τ)

dτ
=

1

τq,min
(Pq −Qq). (5.28)

Correspondingly, using (5.23), (5.20), (5.27) and (5.28) we can compute the time-
derivative of Vq in (5.22) on [0, τq,min] as follows

V̇q(x, τ)− ηqVq(x, τ)− γq

(
k − Vq(x, τ)

)
=

τ

τq,min

[
x̃⊤Ξq,1x̃+ x̃⊤PqLq + L⊤

q Pqx̃−

γqk
]
+

(
1− τ

τq,min

)[
x̃⊤Ξq,2x̃+ x̃⊤QqLq + L⊤

q Qqx̃− γqk
]
,

(5.29)
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where we have used the relation x̃ = x− x⋆ in Vq(x, τ) above. The right-hand side
of (5.29) can be written compactly as

τ

τq,min

[
x̃⊤ 1

] [Ξq,1 PqLq
∗ −γqk

] [
x̃

1

]
+

(
1− τ

τq,min

)[
x̃⊤ 1

] [Ξq,2 QqLq
∗ −γqk

] [
x̃

1

]
.

(5.30)
Correspondingly, using (5.24) and (5.30), it follows that

V̇q(x, τ)− ηqVq(x, τ)− γq

(
k − Vq(x, τ)

)
⩽ 0, (5.31)

for all τ ∈ [0, τq,min). According to (5.26), it implies that

Vq(x, τ) ⩽ (µq − γ′q)Vq(x, τ) ⩽ µqVq(x, τ) + γ′q

(
k − Vq(x, τ)

)
. (5.32)

Similarly, for all τ ⩾ τq,min, V̇q(x, τ) − ηqVq(x, τ) − γq(k − Vq(x, τ)) is negative
definite according to (5.25). Consequently, in combination with (5.26) and (5.14),
all hypotheses in Theorem 5.3 are satisfied and the claim of the lemma follows
immediately.

In general switched affine systems, Lq in (5.23) is not equal to zero and may
not be identical among the different modes q when each mode has a different
equilibrium point. The possibility of admitting a different equilibrium point for
every mode makes it impossible to find a global quadratic common Lyapunov
function given by (5.22).

Remark 5.8. Since Rq is a convex combination of Pq and Qq, then for any given
k > 0, α(k) in (5.6) can be upperbounded by

α(k) ⩽ α(k) :=
λmax
λmin

k, (5.33)

where λmax = max{λ(Pq), λ(Qq)}, and λmin = min{λ(Pq), λ(Qq)}, ∀q ∈ Q.

Equipped with the LMI conditions in Lemma 5.7, the following theorem pro-
vides sufficient conditions for practical stability of the switched affine system
(5.19).

Theorem 5.9. (Practical stability) Let the sets Ω1 = Nα(k) and Ω2 = L(k) (Ω1 ⊂ Ω2).
Suppose that the hypotheses in Lemma 5.7 hold. Then for all initial states in Ω1, i.e.
x(t0) ∈ Nα(k), the trajectories of switched system (5.19) remain in the set Ω2, i.e.
x(t) ∈ L(k), for every switching signals σ(t) satisfying (5.14).

Similar to Corollary 5.5, if all subsystems of (5.19) are unstable, the results in
Lemma 2.12 can be used to establish the following remark.
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Remark 5.10. Suppose that the hypotheses in Lemma 5.7 hold with Q = U . Then
the trajectories of switched affine system (5.23) will remain in L(k) after time T > 0

for any switching signals satisfying (5.17). In addition, if Pq > Qq then Ω1 and Ω2

can be estimated by
⋂
q∈Q{x̃q | x̃⊤q Qqx̃q ⩽ α(k)} and

⋃
q∈Q{x̃q | x̃⊤q Qqx̃q ⩽ βq(k)},

respectively. Since the LMI may have multiple solutions, there may be different Ω1

and Ω2 with the same parameter setting. To reduce the region of Ω1 and Ω2, we
can use some positive matrices ciI to bound Qi and Pi, thus enlarging the terms
in Qi.

Let us illustrate the applicability of the LMI conditions in Lemma 5.7. By a
direct application of Lemma 5.7, we establish the stability of a switched system
with stable and unstable subsystems in Example 2 below, and it is followed by the
stability of a switched system with all unstable subsystems in Example 3.

Example 2: Let us consider the switched system (5.19) composed of both
unstable (q = 1) and stable (q = 2) subsystems as follows

q = 1 : ẋ =

[
−2 0.5

0.5 0

]
x+

[
1.4

−0.4

]
,

q = 2 : ẋ =

[
0 1

−0.5 −2

]
x+

[
−0.9

2.4

]
,

(5.34)

and we set the parameter k = 2. Then by applying Lemma 2.12 to this switched
affine system, where we fix x⋆ =

[
1 1

]⊤
, γ1 = γ2 = 0.05, η1 = 0.34, η2 = −0.24,

µ1 = 0.5, µ2 = 2, γ′1 = γ′2 = 0, it can be checked that using the following symmetric
constant matrices

Pi :

[
0.9160 −0.0841

−0.0841 0.3847

]
,

[
0.0788 0.0296

0.0296 0.1767

]
,

Qi :

[
0.1350 0.0624

0.0624 0.3511

]
,

[
0.1596 0.0186

0.0186 0.1789

]
,

(5.35)

the LMI problem given by (2.43)-(2.48) is feasible. Correspondingly, we have
τ1,min = 2, τ1,max = 2.04, τ2,min = 2.89. An upper bound of α(2) is given by
(5.33) as α(2) = 26.3546 and λmax

λmin
= 13.1773. According to (5.11), β1 = 52.7092,

β2 = 26.3546. Then, we have,

N(2) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 2
}
∪
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
P2

[
x1 − 1

x2 − 1

]
⩽

2
}

,

Nα(2) ⊆ Nα(2) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 26.3546

}
∩
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
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P2

[
x1 − 1

x2 − 1

]
⩽ 26.3546

}
;

L(2) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 52.7092

}
∪
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
P2

[
x1 − 1

x2 − 1

]
⩽ 26.3546

}
.

Figure 5.3 shows the trajectories of switched system (5.34) with a periodic
switching signal σ satisfying τ1 = 2, τ2 = 3 and with four different initial condi-

tions
[
2.584

−7.86

]
,
[
−0.056

9.848

]
,
[
−13.432

4.92

]
,
[
15.608

−2.36

]
.
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Figure 5.3: The plot of trajectories of switched system in Example 3 initialized at[
2.584
−7.86

]
,
[
−0.056
9.848

]
,
[
−13.432
4.92

]
,
[
15.608
−2.36

]
, and using a periodic switching signal

with τ1 = 2, τ2 = 3, the green solid line is L(k), the red solid line is Nα(k), the
orange line is N(k).

Example 3: Let us consider the switched system (5.19) composed of two unsta-
ble subsystems as follows

q = 1 : ẋ =

[
−1.9 0.6

0.6 −0.1

]
x+

[
1.4

−0.6

]
,

q = 2 : ẋ =

[
0.1 −0.9

0.1 −1.4

]
x+

[
0.7

1.4

]
,

(5.36)

and let us set k = 5. Then by applying Lemma 2.12 to this switched affine system,
where we fix x⋆ =

[
1 1

]⊤
, γ1 = γ2 = 0.06, η1 = η2 = 0.34, µ1 = µ2 = 0.5,

γ′1 = γ′2 = 0, it can be checked that using the following symmetric constant
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Figure 5.4: The plot of trajectories of switched system in Example 3 initialized

at
[
−3.3
0.49

]
,
[
5.35
1.58

]
,
[
−0.37
−2.26

]
,
[
1.65
4.26

]
, and using a periodic switching signal with

τ1 = τ2 = 2, the green solid line is L(k), the red solid line is Nα(k), the orange line
is N(k).

matrices

Pi :

[
6.6543 −1.0418

−1.0418 3.7555

]
,

[
2.0998 −0.6941

−0.6941 6.8937

]
,

Qi :

[
1.0475 −0.3351

−0.3351 3.3797

]
,

[
2.0716 −0.9015

−0.9015 1.7611

]
,

(5.37)

the LMI problem given by (2.43)-(2.48) is feasible. Correspondingly, we have
τ1,min = τ2,min = 2, τ1,max = τ2,max = 2.04. An upper bound for α(5) is given by
(5.33) as α(5) = 34.95 and λmax

λmin
= 6.99. According to (5.11), β1 = β2 = 69.9. Ac-

cording to Remark 5.10, N(5) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 5
}
∪
{
x1, x2 :[

x1 − 1

x2 − 1

]⊤
Q2

[
x1 − 1

x2 − 1

]
⩽ 5
}

;

Nα(5) ⊆ Nα(5) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 34.95

}
∩
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q2

[
x1 − 1

x2 − 1

]
⩽ 34.95

}
;

L(5) =
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q1

[
x1 − 1

x2 − 1

]
⩽ 69.9

}
∪
{
x1, x2 :

[
x1 − 1

x2 − 1

]⊤
Q2

[
x1 − 1

x2 − 1

]
⩽ 69.9

}
. Figure 5.4 shows the plot of trajectories of the switched system with

periodic switching signal σ satisfying τ1 = τ2 = 2 and with four different initial
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conditions
[
−3.3

0.49

]
,
[
5.35

1.58

]
,
[
−0.37

−2.26

]
,
[
1.65

4.26

]
. The figure shows that when the tra-

jectory starts on the boundary of N(α), the trajectory stays in L(k) for all time. We

note that the first switching moment in the trajectory, which starts from
[
1.65

4.26

]
,

illustrates the second case of step one in the proof of Theorem 3.6, i.e. for an
unstable system, the trajectory can go into N(k) and later escape from N(k) on the
next switching moment.

5.5 Conclusion

In this chaper, the set convergence properties of switched systems with mixed
stable-unstable modes have been studied. Based on the dwell-time and leave-
time property of the switching signals, multiple Lyapunov functions are defined
and used to characterise the set of initial conditions that admits an attractive set,
to which all trajectories will converge to. Based on these sufficient conditions,
LMI conditions are presented that allow for numerical validation on the practical
stability of switched affine systems with computable dwell-time.





6 Conclusions and Outlook

In this thesis, we undertake an investigation into the contractility and stabil-
ity of both switched systems and differential-algebraic equation (DAE) systems.
Subsequently, we apply these analyses to address a range of control challenges,
including state observer, pinning synchronization, and practical stability. In the
present chapter we will discuss the main results presented in Chapters 2- 5. We
will also provide directions for possible future research.

6.1 Conclusions

Throughout Chapter 2 to Chapter 4, our main focus is on contraction theory and
its practical applications. Specifically, in Chapter 2, we conduct an analysis of the
contractivity of switched systems that contain noncontracting subsystems. This
analysis involves a thorough examination of the associated switched variational
systems. We establish that the switched systems are contractive if and only if
the switched virtual systems are uniformly globally exponentially stable (UGES).
Building upon this discovery, we proceed to design a time-dependent switching
law that effectively stabilizes the virtual system. A noteworthy conclusion from
our research is that, even in scenarios where all subsystems are noncontractive,
it is possible to achieve contractivity in the switched systems by appropriately
setting an upper bound for the active time. In addition, our approach can be
transformed into Linear Matrix Inequality (LMI) conditions, facilitating numerical
validation, for specific types of switched systems such as switched Lipschitz sys-
tems and switched Lur’e systems. This conversion into LMI conditions enhances
the feasibility of practical implementation and verification of our method.

In Chapter 3, we analyze the contractivity of time-varying differential-algebraic
equation (DAE) system. Through the analysis of the corresponding virtual DAE
system, we reached the conclusion that the DAE system exhibits contractivity
if and only if its associated virtual DAE system is UGES. To achieve UGES, we
lift the variational DAE system to a higher-dimension variational ODE system.
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This higher-dimension system encompasses the trajectory set that includes the
trajectory of the variational DAE system. Based on this analysis, we can conclude
that if the variational DAE system is UGES, the DAE system is contractive. A
significant application of this approach lies in effectively utilizing our methods
in various classical control problems by considering the system’s output as an
algebraic constraint. These control problems include output feedback design,
output regulation, and state observer design. We employ our approach to design
a time-varying observer.

In Chapter 4, we apply contraction theory to solve the state synchronization
problem of heterogeneous time-invariant multi-agent systems. Our conclusion is
that the synchronization problem is solvable if and only if there is a mapping that
allows the embedding of the agents’ dynamics into the exosystem. By employing
these conditions, we apply contraction theory to design dynamic controllers for
the agents, guaranteeing the contractivity of each agent’s system and ensuring
that the desired trajectory is included among the controlled dynamics’ trajectories.
Furthermore, for the pinned agents, we establish a control law only depend on
the exosystems’ information. On the other hand, for the remaining agents, we
propose a distributed control law that exploits relative local state measurements.

In Chapter 2 and Chapter 3, we also address the stabilization problem by
designing control laws that render contractivity in the systems. We apply our
approaches to stabilize the linear switch systems with all unstable subsystem
in Chapter 2. Additionally, in Chapter 3, we focus on stabilizing time-invariant
DAE systems. This is feasible due to the fact that the equilibrium represents one
of the trajectories of the contractive system. However, in cases where multiple
equilibrium exist within the systems, achieving contractivity becomes challenging.
In order to rectify this gap, in Chapter 5, we focuses on the investigation of
switched systems without common equilibrium. We establish dwell/leave time
conditions to ensuring set stability for switched systems comprising both stable
and unstable subsystems. Based on the obtained sufficient conditions for set
convergence, we propose a method utilizing time-dependent multiple quadratic
Lyapunov functions to establish practical stability for switched affine systems.
This approach results in LMI conditions that can be easily implemented through
numerical computations.

6.2 Future research

Future studies will focus on the following aspects.

• In Chapter 2, we conducted an analysis of the contractivity of time event
dependent switched systems. However, there exist various types of state
event dependent switched systems, which require a different approach. The



6.2. Future research 99

contraction analysis of state event dependent switched systems, where all
subsystems are contractive, was explored by Fiore et al. in [26]. When a
noncontractive subsystem is introduced into the system, it disrupts the over-
all contractivity of the switched systems, presenting a challenging analysis
task. Consequently, a potential avenue for further study would be to analyze
state event dependent switched systems that incorporate noncontractive
subsystems.

• In Chapter 3, the contractivity of index-1 DAE system is analyzed, where
the DAE system can be viewed as an ODE system subject to an equality
constraint. There are two potential avenues for future investigation. Firstly,
it is possible to convert the equality constraint into an inequality constraint.
In this case, it is not a DAE system anymore but an underdetermined ODE
system. Secondly, an analysis of the contraction properties of the DAE
system in a more general from can be pursued, specifically considering the
form E(x)ẋ = f(x).

• In Chapter 4, the focus lies on the application of the contraction theory to
address the state synchronization problem. However, a more complicate
challenge arises in the form of the output synchronization problem. One
potential approach to address this issue is to advance an output contraction
theory, which aims to attain convergence of the outputs rather than the
states. By establishing such a theory, we can subsequently apply this novel
approach to effectively tackle the output synchronization problem.

• In Chapter 5, we study the set convergence of switched systems that exhibit
multiple equilibrium. The utilization of contraction theory to address this
challenge becomes intricate, as achieving contractivity in such scenarios
is not feasible. However, an alternative approach called k-contraction has
been introduced in [90] as a generalized concept of contraction, specifically
designed to analyze the contractivity of ODE systems with multiple equilib-
rium. Exploring the application of k-contraction theory to analyze switched
systems with multiple equilibrium could be a potential avenue for future
research.
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synchronization of nonlinear coupled lur’e networks under hybrid impulses.
IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3):432–436, 2018.

[89] Peter Wieland, Rodolphe Sepulchre, and Frank Allgöwer. An internal
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Summary

The convergence properties of nonlinear dynamics are deeply influenced by the
characteristics of the specific system or model under investigation, resulting in
significant variations. Many attempts have been made to understand these prop-
erties, which have also inspired a lot of applications. The thesis addresses various
issues concerning the convergence properties of switched systems and differential-
algebraic equation (DAE) systems. Specifically, we focus on contraction analysis
problem, as well as tackling problems related to stabilization and synchronization.

We first consider the contraction analysis of switched systems and DAE sys-
tems. To address this, a transformation is employed to convert the contraction
analysis problem into a stabilization analysis problem. This transformation in-
volves the introduction of virtual systems, which exhibit a strong connection with
the Jacobian matrix of the vector field. Analyzing these systems poses a significant
challenge due to the distinctive structure of their Jacobian matrices. Regarding
the switched systems, a time-dependent switching law is established to guarantee
uniform global exponential stability (UGES). As for the DAE system, we begin by
embedding it into an ODE system. Subsequently, the UGES property is ensured
by analyzing its matrix measure. As our first application, we utilize our approach
to stabilize time-invariant switched systems and time-invariant DAE systems,
respectively. This involves designing control laws to achieve system contractivity,
thereby ensuring that the trajectory set encompasses the equilibrium point. In our
second application, we propose the design of a time-varying observer by treating
the system’s output as an algebraic equation of the DAE system.

In our study on synchronization problems, we investigate two types of synchro-
nization issues: the trajectory tracking of switched oscillators and the pinning state
synchronization. In the case of switched oscillators, we devise a time-dependent
switching law to ensure that these oscillators effectively follow the trajectory of
a time-varying system. As for the pinning synchronization problem, we define
solvable conditions and, building upon these conditions, we utilize contraction
theory to design dynamic controllers that guarantee synchronization is achieved
among the agents.

Finally, we study the set convergence of a particular class of switched systems
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that lack a common equilibrium point. Applying contraction theory to this cat-
egory of systems proves impractical. To overcome this challenge, we develop
switching laws based on mode-dependent dwell/leave times, effectively ensuring
the set convergence of the switched systems. Moreover, we extend this approach to
establish a condition, employing Linear Matrix Inequalities (LMIs), for achieving
practical stability in switched affine systems.



Samenvatting

De convergentie-eigenschappen van niet-lineaire dynamica worden diepgaand
beı̈nvloed door de kenmerken van het specifieke systeem of model dat wordt
onderzocht, wat leidt tot aanzienlijke variaties. Er zijn veel pogingen gedaan om
deze eigenschappen te begrijpen, die ook veel toepassingen hebben geı̈nspireerd.
De scriptie behandelt verschillende kwesties met betrekking tot de convergentie-
eigenschappen van geschakelde systemen en differentiaal-algebraı̈sche vergelij-
king (DAE) systemen. Specifiek richten we ons op het probleem van contractie-
analyse, evenals het aanpakken van problemen met betrekking tot stabilisatie en
synchronisatie.

Als eerste overwegen we de contractieanalyse van geschakelde systemen en
DAE-systemen. Om dit aan te pakken, wordt een transformatie gebruikt om
het contractieanalyseprobleem om te zetten in een stabilisatieanalyseprobleem.
Deze transformatie houdt in dat virtuele systemen worden geı̈ntroduceerd, die
een sterke verbinding vertonen met de Jacobiaanse matrix van het vectorveld.
Het analyseren van deze systemen vormt een aanzienlijke uitdaging vanwege de
kenmerkende structuur van hun Jacobiaanse matrices. Wat betreft de geschakelde
systemen wordt een tijdsafhankelijke schakelwet vastgesteld om uniforme we-
reldwijde exponentiële stabiliteit (UGES) te garanderen. Wat het DAE-systeem
betreft, beginnen we ermee door het in te bedden in een ODE-systeem. Vervolgens
wordt de UGES-eigenschap gewaarborgd door de matrixmaat te analyseren. Als
onze eerste toepassing gebruiken we onze aanpak om respectievelijk tijdinvariante
geschakelde systemen en tijdinvariante DAE-systemen te stabiliseren. Dit omvat
het ontwerpen van regels om systeemcontractiviteit te bereiken, waardoor ervoor
wordt gezorgd dat de trajectenset het evenwichtspunt omvat. In onze tweede
toepassing stellen we het ontwerp van een tijdvariërende waarnemer voor door
de uitvoer van het systeem te behandelen als een algebraı̈sche vergelijking van
het DAE-systeem.

In onze studie naar synchronisatieproblemen onderzoeken we twee typen
synchronisatiekwesties: het trajectvolgen van geschakelde oscillatoren en het
vastzetten van toestandssynchronisatie. In het geval van geschakelde oscilla-
toren ontwerpen we een tijdafhankelijke schakelwet om ervoor te zorgen dat
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deze oscillatoren effectief het traject van een variërend systeem volgen. Wat
betreft het probleem van het vastzetten van synchronisatie, definiëren we oplos-
bare voorwaarden en, op basis van deze voorwaarden, maken we gebruik van
contractietheorie om dynamische controllers te ontwerpen die garanderen dat
synchronisatie wordt bereikt tussen de agenten.

Uiteindelijk bestuderen we de verzamelconvergentie van een specifieke klasse
van geschakelde systemen die geen gemeenschappelijk evenwichtspunt hebben.
Het toepassen van contractietheorie op deze categorie van systemen blijkt on-
praktisch. Om deze uitdaging te overwinnen, ontwikkelen we schakelwetten op
basis van modusafhankelijke verblijfs/vertrektijden, wat effectief zorgt voor de
verzamelconvergentie van de geschakelde systemen. Bovendien breiden we deze
aanpak uit om een voorwaarde te stellen, met behulp van lineaire matrixongelijk-
heden (LMIs), voor het bereiken van praktische stabiliteit in geschakelde affiene
systemen.
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