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Abstract 

Background We developed models for tumor segmentation to automate the assessment of total tumor volume 
(TTV) in patients with colorectal liver metastases (CRLM).

Methods In this prospective cohort study, pre‑ and post‑systemic treatment computed tomography (CT) scans 
of 259 patients with initially unresectable CRLM of the CAIRO5 trial (NCT02162563) were included. In total, 595 CT 
scans comprising 8,959 CRLM were divided into training (73%), validation (6.5%), and test sets (21%). Deep learning 
models were trained with ground truth segmentations of the liver and CRLM. TTV was calculated based on the CRLM 
segmentations. An external validation cohort was included, comprising 72 preoperative CT scans of patients with 112 
resectable CRLM. Image segmentation evaluation metrics and intraclass correlation coefficient (ICC) were calculated.

Results In the test set (122 CT scans), the autosegmentation models showed a global Dice similarity coefficient (DSC) 
of 0.96 (liver) and 0.86 (CRLM). The corresponding median per‑case DSC was 0.96 (interquartile range [IQR] 0.95–0.96) 
and 0.80 (IQR 0.67–0.87). For tumor segmentation, the intersection‑over‑union, precision, and recall were 0.75, 0.89, 
and 0.84, respectively. An excellent agreement was observed between the reference and automatically computed 
TTV for the test set (ICC 0.98) and external validation cohort (ICC 0.98). In the external validation, the global DSC 
was 0.82 and the median per‑case DSC was 0.60 (IQR 0.29–0.76) for tumor segmentation.

Conclusions Deep learning autosegmentation models were able to segment the liver and CRLM automatically 
and accurately in patients with initially unresectable CRLM, enabling automatic TTV assessment in such patients.
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Relevance statement Automatic segmentation enables the assessment of total tumor volume in patients 
with colorectal liver metastases, with a high potential of decreasing radiologist’s workload and increasing accuracy 
and consistency.

Key points  
• Tumor response evaluation is time‑consuming, manually performed, and ignores total tumor volume.

• Automatic models can accurately segment tumors in patients with colorectal liver metastases.

• Total tumor volume can be accurately calculated based on automatic segmentations.

Keywords Artificial intelligence, Deep learning, Colorectal cancer, Liver neoplasms, Tomography (x‑ray computed)

Graphical Abstract

Background
Response to systemic treatment of solid tumors is cur-
rently assessed using the Response Evaluation Crite-
ria in Solid Tumors (RECIST1.1) [1, 2]. According to 
RECIST1.1, response to treatment is measured as the 
change in the sum of diameters in two target lesions 
per organ. RECIST1.1 aims to perform an objective 
assessment of tumor change, but the measurements are 
performed manually. This is not only tedious and time-
consuming, but also subjective. The subjective nature 
of RECIST 1.1 leads to nonnegligible inter- and intra-
observer variability [3, 4].

In patients with colorectal liver metastases (CRLM), the 
efficacy of RECIST1.1 has been questioned [5–7]. Colorec-
tal cancer is the third most common cancer and the second 

leading cause of cancer-related deaths for men and women 
globally [8]. Almost half of these patients develop CRLM 
during the course of their illness [9–11]. For patients with 
CRLM, treatment response evaluation is crucial, as approx-
imately 80% of these patients are not suitable for a potential 
curative local treatment at diagnosis [12, 13]. Patients with 
unresectable CRLM most often receive systemic treatment 
in a palliative setting or in a neoadjuvant setting to induce 
downsizing of the tumor load. Patients with initially unre-
sectable liver-only CRLM can become eligible for local 
treatment with curative intent by systemic induction treat-
ment in approximately 25% of cases [14–16].

Treatment decision-making for patients with CRLM 
is predominantly based on arguments involving tech-
nical resectability [17]. The question remains if local 
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treatment such as surgery is clinically relevant for the 
individual patient. There is a growing interest in how 
a shift can be made from technically driven surgery to 
biologically driven surgery. Biologically driven surgery 
aims to select patients for the most optimal treatment 
to achieve long-term survival, taking into considera-
tion tumor biology [18]. By doing so, the effects of sys-
temic therapy could be underestimated by RECIST1.1, 
as it ignores potentially valuable information about total 
tumor volume (TTV). Assessment of TTV response to 
systemic therapy could represent a clinically more reli-
able evaluation since baseline TTV has shown to be 
prognostic for overall survival and change in TTV for 
recurrence-free survival in patients with CRLM, whereas 
RECIST1.1 has not [6, 7, 19].

In recent years, several studies demonstrated that volu-
metric assessment using algorithms increases the repro-
ducibility of response assessments [6, 20–22]. In most of 
these studies, semiautomatic segmentation models are 
used to perform volumetric assessments [6, 7, 20–22]. 
Segmentation is the delineation of tissue structures on 
diagnostic imaging, resulting in 3D contours of these 
structures. The use of semiautomatic models, however, is 
still time-consuming and would be too labor-intensive to 
perform in daily practice. Fully automatic segmentation 
models could enable the automation of TTV evaluation.

Numerous autosegmentation models have been devel-
oped for the segmentation of livers and liver tumors on 
computed tomography (CT) or magnetic resonance 
imaging (MRI) [23]. Most studies on autosegmentation 
of liver tumors used imaging data from the Liver Tumor 
Segmentation Challenge (LiTS) [24–27]. The LiTS was 
conducted to compare state-of-the-art automated liver 
and tumor segmentation methods, and the dataset con-
tained imaging data of various types of liver tumors [25]. 
For response monitoring of CRLM, it is far more impor-
tant to optimize the performance for this disease, than 
for a wide range of tumors. Focusing on autosegmenta-
tion of CRLM, Vorontsov et al. developed a deep learn-
ing model with variable performance with Dice similarity 
coefficient (DSC) ranging from 0.14 to 0.68, depending 
on lesion size [27]. This model was trained and validated 
on CT scans of various liver tumors and tested on a small 
dataset of 26 CT scans comprising patients with CRLM. 
We hypothesize that with a larger and homogeneous 
population of patients suffering from CRLM only, the 
performance of deep learning-based tumor and liver seg-
mentation can be improved.

In this study, we aim to develop deep learning models 
for automatic tumor segmentation of CRLM and the liver 
using a comprehensive training and test set of patients 
with initially unresectable CRLM. The secondary aim is 

to automate the assessment of TTV response to systemic 
therapy in such patients.

Methods
Development cohort
Study population
In this prospective cohort study, patients registered 
between November 2014 and April 2019 from the ongo-
ing multicenter randomized clinical trial of the Dutch 
Colorectal Cancer Group, CAIRO5 (NCT02162563), 
were included for model development and testing [28]. 
The CAIRO5 trial aims to select the optimal systemic 
induction therapy for patients with initially unresectable 
liver-only CRLM (Additional file 1: S1). Patients are rand-
omized between different systemic therapy combinations 
based on primary tumor site and genetic mutation sta-
tus (RAS/BRAF). Treatment regimens consist of doublet 
or triplet chemotherapy in combination with targeted 
therapy. All included patients signed a written informed 
consent form, also allowing side studies such as the cur-
rent one.

Imaging
Imaging data of this development cohort consisted of 
contrast-enhanced CT scans of the chest and abdomen 
at baseline and every 2 months during systemic therapy. 
All scans were performed in one of the 54 medical cent-
ers responsible for inclusion using different types of CT 
scanners and acquisition protocols. In the current study, 
only patients with contrast-enhanced abdominal CT 
scans in the portal venous phase were included (Fig. 1). 
Exclusion criteria were non-contrast enhanced or not 
portal venous CT scan, missing or incomplete CT scan, 
the use of MRI or 18F-fluorodeoxyglucose positron emis-
sion tomography instead of portal venous CT, and tech-
nical error in segmentation software. CT acquisition 
characteristics are summarized in Additional file 1: S2.

Data processing
Reference segmentations
All available pre- and post-treatment CT scans of the 
development cohort were used for semi-automatic seg-
mentation of the liver and CRLM in the Tumor Tracking 
Modality of IntelliSpace Portal 9.0® (Philips Healthcare, 
Best, the Netherlands). In all CT scans, the liver and all 
CRLM were segmented by one of three trained members of 
the research team (N.J.W., S.P., R.K.). Lesions were roughly 
outlined, which resulted in a semi-automatic contour or 
region of interest based on differences in density. These 
contours were subsequently manually adjusted in every 
slice for accurate segmentation. All segmentations per-
formed by the trained research team were verified and, if 
needed, adjusted by an abdominal radiologist with 18 years 
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of experience (J.H.T.M.W.). Three abdominal radiologists 
with 10 (J.E.B.), 2 (I.M.N.), and 1 (S.I.M.) years of experi-
ence also independently corrected and verified 41 scans of 
20 patients segmented by a member of the research team.

Image processing steps
The DICOM files of the CT scans and the DICOM-
RT files of the 3D semi-automatic segmentations were 
uploaded into the SAS Viya® Analytical Platform (SAS 
Viya 3.5, SAS Institute Inc.). The scans and segmentations 
were combined to create liver and tumor masks which 
were used as target segmentation maps. The density val-
ues were adjusted by clipping and histogram equaliza-
tion. Firstly, clipping between -100 and 400 Hounsfield 
units was performed to restrict the density values to a 
common range in the liver. Secondly, histogram equaliza-
tion was applied to better distribute the image histogram, 
utilizing the full range of Hounsfield units in the histo-
gram for every image evenly.

Development and testing of autosegmentation models
The U-net architecture was used for the segmentation 
models (Additional file  1: S3). Two U-nets were trained 
and tested, one for liver and one for tumor segmentation. 

Liver segmentation was performed to restrict the volume 
of interest for tumor segmentation. Model training, vali-
dation, and testing were performed within the SAS Viya® 
Analytical Platform. The radiologist’s segmentations of the 
liver and CRLM from the development cohort were used 
as reference data. A total of 434 (72.8%) CT scans with 
6,667 CRLM were randomly assigned to the training set, 
39 (6.5%) CT scans with 487 CRLM in the validation set, 
and 122 (20.6%) CT scans with 1,805 CRLM in the test 
set (Additional file 1: S4). The validation set was used for 
performance evaluation during training and to determine 
stop criteria. It was ensured that no image data of the 
same patient was included in both the training/validation 
set and the test set. This was done to prevent data leakage 
between the training/validation set and the test set. The 
automated liver segmentations were used as the volumes 
of interest for the autosegmentation tumor model (Fig. 2).

External validation
The tumor segmentation model performance was 
assessed with an external population of patients with 
CRLM. The CRLM dataset of the publicly available 
Workflow for Optimal Radiomics Classification, WORC, 

Fig. 1 Patient selection of development cohort. CT Computed tomography, MRI Magnetic resonance imaging. *The patients excluded 
because of “MRI scan” had a MRI scan instead of a CT scan for their diagnostic work‑up. For patients with “Missing CT,” the baseline or follow‑up CT 
scan was not available. The error in segmentation software occurred in the IntelliSpace Portal software of Philips
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was used. This dataset consists of preoperative CT scans 
in the portal venous phase of 77 patients, surgically 
treated at the Erasmus University MC Rotterdam, the 
Netherlands (Additional file 1: S5) [29, 30]. All CRLM in 
the CT scans were segmented by one of the members of 
the research team and verified and if needed adjusted by 
an abdominal radiologist (J.H.T.M.W.) using IntelliSpace 
Portal 9.0® [31]. In addition, all livers and CRLM were 
automatically segmented by the developed models in the 
SAS Viya® Analytical Platform [32].

Statistics
The performances of the autosegmentation models and 
the segmentation agreement between different observ-
ers were assessed using the Dice similarity coefficient 
(DSC) as an accuracy measure, ranging between 0 
(no overlap) and 1 (complete overlap) [33]. Two DSCs 
were calculated: the global DSC, which is the DSC of 
all CT scans combined, and the per-case DSC, which 
is the average per-CT scan DSC. Intersection-over-
union, precision, and recall were also calculated. The 
summary statistics were calculated with formulas pro-
posed by LiTS [25]. Total tumor volume was calculated 

in the SAS Viya® Analytical platform using the quan-
tifyBioMedImages action [7, 34]. Total tumor volume 
was determined as the product of the voxel volume and 
the number of segmented voxels of all CRLM present 
in the liver and was reported as a continuous variable 
in cubic centimeters. A two-way mixed effect intraclass 
correlation coefficient (ICC) for absolute agreement 
was calculated to compare the reference and automati-
cally computed TTV. The ICC was categorized as hav-
ing either poor (ICC < 0.40), fair (ICC 0.40–0.59), good 
(ICC 0.60–0.74), or excellent (ICC 0.75–1.0) agree-
ment [35, 36]. The distribution of normality of continu-
ous variables was checked by visually inspecting the 
histograms and boxplots. Continuous variables were 
reported as median with interquartile range (IQR) and 
compared with Mann–Whitney U or t test, as appro-
priate. Categorical variables were displayed as frequen-
cies and percentages and compared with chi-square 
test or Fisher’s exact test, as appropriate. Test results 
were considered statistically significant with a p < 0.05. 
Statistical analyses were performed using SAS® Studio 
(version 5.2, SAS Viya® 03.05).

Fig. 2 Automatic segmentation process. a The liver U‑net model receives the computed tomography scan as input image. The output of the liver 
U‑net model is the automatic liver segmentation. b The automatic liver segmentation is used as the volume of interest for the tumor U‑net model. 
The output of the tumor U‑net model is the automatic tumor segmentation
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Results
Study population
In total, 259 of 407 patients from the CAIRO5 trial were 
included in the development cohort of this study. The 
most common reason for exclusion was a missing CT 
scan, and 39 patients were not eligible because of not 
meeting inclusion criteria or withdrawal from the study 
(Fig. 1). Of all 259 patients, a baseline and first follow-up 
CT scan were available for analysis. In some cases, two 
or three follow-up scans were available and included. 
In total, 595 CT scans were included and 8,959 CRLM 
were segmented. In the development cohort, the median 
age was 62 (IQR 55−71) years and 36% (94/259) of the 
patients were female. Per patient, the median number of 
CRLM at baseline was 11 (IQR 7−21), with a median of 
six liver segments involved (IQR 4−7). Significant dif-
ferences between training/validation and test set were 
observed, as a larger number of males were allocated in 
the training cohort, and the largest diameter of CRLM 
was smaller in the test set (Table 1). In the external vali-
dation cohort, a total of 72 patients with 112 CRLM were 

included. Five patients were excluded (Additional file  1: 
S5). The median age was 68 (IQR 59−77) years, 42% 
(30/72) of the patients were female, and the median num-
ber CRLM was 1 (IQR 1−2).

Table 1 Baseline patient and tumor characteristics of development CAIRO5 cohort

Values are shown as median (interquartile range, 25th − 75th percentile) or number of participants (percentage). Training cohort consists of CT scans from the training 
set and validation set, as both sets were used for model training. BRAF v-Raf murine sarcoma viral oncogene homolog B, FOLFIRI 5-fluoracil with leucovorin and 
irinotecan, FOLFOX 5-fluoracil with leucovorin and oxaliplatin, FOLFOXIRI 5-fluoracil with leucovorin, oxaliplatin and irinotecan, RAS Rat sarcoma oncogene

Baseline parameters Total cohort Training cohort Test set p value
n = 259 n = 206 n = 53

Age (years) 62 [55–71] 62 [55–71] 63 [56–71] 0.956

Sex

 Male 165 (63.7) 123 (59.7) 42 (79.2) 0.008

 Female 94 (36.3) 83 (40.3) 11 (20.8)

Site of the primary tumor

 Right colon 74 (28.6) 61 (29.6) 13 (24.5) 0.465

 Left colon or rectum 185 (71.4) 145 (70.4) 40 (75.7)

Time to metastases

 Synchronous 228 (88.0) 182 (88.3) 46 (86.8) 0.755

 Metachronous 31 (12.0) 24 (11.7) 7 (13.2)

Mutational status

 RAS/BRAF mutation 154 (59.5) 125 (60.7) 29 (54.7) 0.430

 RAS/BRAF wild‑type 105 (40.5) 81 (39.3) 24 (45.3)

 Number of liver metastases 11 [7–21] 11 [7–23] 12 [7–20] 0.890

 Diameter of largest metastasis (mm) 41 [28–72] 46 [29–73] 34 [26–50] 0.011
 Number of liver segments 6 [4–7] 6 [4–7] 6 [5–7] 0.397

Distribution of liver metastases

 Unilobar 19 (7.3) 18 (8.7) 1 (1.9) 0.088

 Bilobar 240 (92.7) 188 (91.3) 52 (98.1)

Induction systemic therapy

 FOLFOX/FOLFIRI and Bevacizumab 129 (49.8) 105 (51.0) 24 (45.3) 0.751

 FOLFOX/FOLFIRI and Panitumumab 51 (19.7) 40 (19.4) 11 (20.8)

 FOLFOXIRI and Bevacizumab 79 (30.5) 61 (29.6) 18 (34.0)

Table 2 Image segmentation evaluation metrics of the tumor 
model in the development cohort and external validation cohort

DSC Dice similarity coefficient, IQR Interquartile range

Development 
cohort (test 
set)

External validation cohort

Global DSC 0.86 0.82

Per‑case DSC (IQR) 0.80 (0.67−0.87) 0.60 (0.29−0.76)

Intersection‑over‑union 0.75 0.69

Precision 0.89 0.85

Recall 0.84 0.78

True positive (voxels) 13,170,769 733,046

False positive (voxels) 1,755,261 127,677

False negative (voxels) 2,553,727 203,102

True negative (voxels) 96,3282,7315 2,631,648,367
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Accuracy of autosegmentation models
In the test set, the spatial agreement assessment of the 
autosegmentation models had a global DSC of 0.96 and 
0.86 for liver and CRLM segmentation, respectively. 

The corresponding median per-case DSCs were 0.96 
(IQR 0.95–0.96) and 0.80 (IQR 0.67–0.87). The inter-
section-over-union, precision, and recall were 0.75, 
0.89, and 0.84 for tumor segmentation, respectively 

Fig. 3 Automatic segmentations of the liver and colorectal liver metastases in three patients of the development cohort. a, d, g Computed 
tomography scans before automatic segmentation. b, e, h Radiologist’s liver segmentation (pink) and automatic liver segmentation (blue). c, f, i 
Radiologist’s tumor segmentation (dark green) and automatic tumor segmentation (red)
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(Table  2). In Fig.  3, examples of the automatic seg-
mentations of the liver and CRLM in the development 
cohort are depicted. Figure  4 illustrates a 3D visuali-
zation of automated liver and CRLM segmentations 
for three patients. The external validation cohort con-
tained 72 CT scans. The autosegmentation tumor 
model resulted in a global DSC of 0.82 for CRLM seg-
mentation, with a corresponding median per-case DSC 
of 0.60 (IQR 0.27–0.76). The intersection-over-union, 
precision, and recall were 0.69, 0.85, and 0.78 for tumor 
segmentation, respectively (Table  2). Figure  5 shows 
examples of the CRLM segmentation in two patients of 
the external validation.

Total tumor volume assessment
An excellent agreement was found between reference 
and automated TTV in the test set of the development 
cohort (ICC 0.97, confidence interval 95% 0.96–0.98) 
and in the external validation cohort (ICC 0.98, con-
fidence interval 95% 0.96–0.99). In the development 
cohort, no significant difference (p = 0.632) was found 
in the reference TTV between the training cohort and 
the test set (Table 3).

Agreement between different observers
An excellent agreement in segmentation was found 
between the four independent expert abdominal radi-
ologists in 41 scans of 20 patients. The per-case DSC 
ranged between 0.90 and 0.94 and the global DSC ranged 
between 0.91 and 0.94. The per-case DSC between the 
radiologist determining the ground truth and the three 
independent expert abdominal radiologists was 0.90, 
0.92, and 0.91 (Table  4). In addition, a median per-case 
DSC of 0.99 was observed between the segmentations of 
the research team and the expert radiologist determining 
the ground truth.

Discussion
In this study, deep learning models were successfully 
developed to segment the liver and CRLM automatically 
and accurately in CT scans of patients suffering from ini-
tially unresectable CRLM. Moreover, the models enabled 
automatic assessment of TTV of all the CRLM in those 
CT scans with an excellent agreement with the radiolo-
gist’s assessment. In the external validation cohort, con-
sisting of patients with upfront resectable CRLM, the 
models performed less accurately than in the test set of 
the development cohort.

The performances of the autosegmentation models 
in the CAIRO5 test set of this study were comparable 
or superior to autosegmentation models for liver and 
liver tumor segmentation in earlier studies [24–26]. In 
the LiTS, the best liver segmentation model scored a 
per-case DSC of 0.97, and the best tumor segmentation 
model scored a per-case DSC of 0.83 [25]. In contrast to 
this study, the LiTS Benchmark dataset contained imag-
ing data of patients with different types of liver tumors.

The autosegmentation tumor model in the current 
study obtained lower DSCs in the external validation 
cohort. This could be explained by the different types of 
patients in the two data sets. The autosegmentation mod-
els were trained and tested on data consisting of pre- and 
post-treatment CT scans of patients with initially unre-
sectable CRLM [28]. This patient group was initially not 
suitable for local therapy because of disease extensiveness 
and the liver CT scans were often complicated by conflu-
ent tumors and extensive numbers of CRLM. As a result, 

Fig. 4 Three‑dimensional visualizations of the automatic 
segmentation of three patients in the development cohort in coronal 
posterior‑anterior view. a–c Automatic liver segmentation (blue); 
automatic tumor segmentation (red)
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Fig. 5 Automatic segmentations in two patients of the external validation cohort. a, c Computed tomography scans before automatic 
segmentation. b, d Radiologist’s tumor segmentation (dark green) and automatic tumor segmentation (red)

Table 3 Total tumor volume assessment

Values are shown as median (interquartile range, 25th−75th percentile). The training cohort consisted of CT scans from the training set and validation set, as both sets 
were used for model training. CT Computed tomography

Number of CT scans Total tumor volume (cm3)

Radiologist

 Training cohort 473 67.64 (16.77–302.36)

 Test set 122 66.99 (15.84–204.67)

 External validation cohort 72 5.65 (2.29–17.19)

Autosegmentation tumor model

 Test set 122 58.49 (14.61–195.97)

 External validation cohort 72 7.91 (2.96–20.50)

Difference reference and automatic volume

 Test set 122 7.34 (2.82–21.67)

 External validation cohort 72 2.42 (0.80–6.06)
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patients with a small number of metastases were under-
represented. We hypothesized that the autosegmentation 
tumor model capable of segmenting patients with exten-
sive CRLM would also be capable of segmenting patients 
with less extensive disease.

The median smaller size of CRLM included in the 
external validation cohort could also be a reason for the 
lower DSCs. This was also demonstrated in the study of 
Vorontsov et al. [27], who developed deep learning mod-
els with the same U-net-architecture for automatic seg-
mentation of CRLM in CT scans. In the test set of their 
study, the automatic model performed better in lesions 
larger than 20  mm as compared to lesions smaller than 
10 mm or between 10 and 20 mm, obtaining per-lesion 
DSCs of 0.68, 0.14, and 0.53, respectively.

Autosegmentation remains a challenging task due 
to variable image parameters, patient variability, and 
tumor morphology. Therefore, autosegmentation mod-
els should be trained on CT scan data that is as realis-
tic and robust as possible. In the current study, the CT 
acquisition parameters varied considerably across the 
54 centers in the development cohort, since scans were 
performed using different CT scanners and acquisition 
protocols. However, all scans were of adequate qual-
ity to be used for patient management. The variety in 
CT acquisition parameters is a good representation of 
CT scans in daily practice and could be considered as a 
strength with respect to external validity.

The autosegmentation models allowed for the auto-
matic assessment of TTV, not only leading to a more 
advanced interpretation of change in tumor size, as 
the effect on all tumorous tissue of all metastases is 
taken into account. In addition, this method is poten-
tially also less subjective, tedious, and time-consuming 
than tumor response assessments by radiologists in 
the future. Assessment of TTV response to systemic 
therapy could represent a clinically more reliable tumor 
evaluation than RECIST1.1, as it was shown to be prog-
nostic for recurrence-free survival, whilst RECIST1.1 
was not [7]. Moreover, the autosegmentation models 
can enable the automatic assessment of other relevant 
imaging features for tumor response evaluation, such 
as morphological changes [5, 37]. Besides improving 

tumor response evaluation, the autosegmentation mod-
els could also play a role in radiomics research. Tumor 
segmentation forms an important step in the process of 
radiomics, in which hundreds of imaging features can 
be analyzed out of tumor segmentations and used in 
predictive modeling through machine learning [38–40].

It is important to emphasize that the autosegmenta-
tion models in the current study have been developed 
to improve tumor response evaluation of CRLM and 
not to diagnose CRLM. Models capable of diagnosing 
CRLM require a different approach with an extensive 
amount of data comprising different benign and malig-
nant types of liver lesions.

During the design of the current study, the U-net was 
the state-of-the-art architecture, and a 2D U-net was 
employed instead of a 3D U-net. Recently, other archi-
tectures like the U-net +  + and Trans U-net were devel-
oped, so it could be considered to make use of such 
architectures in the future. Moreover, the 2D U-Net 
was preferred over the 3D U-Net as it is more accurate 
specifically for the liver and requires less computational 
power [41].

The present study has several limitations. Firstly, the 
ground truth was based on the evaluation and adjustment 
of one expert radiologist. Consequently, the ground truth 
of one observer had a large influence on model training 
and ultimately model performance. The original study 
of the external CRLM cohort already reported signifi-
cant differences between the segmentations of different 
observers [30]. However, excellent agreement in tumor 
segmentation was observed between four independent 
expert radiologists and it was not logistically feasible to 
base the ground truth on the segmentations of multiple 
radiologists. Therefore, it was chosen to determine the 
ground truth based on one radiologist. Secondly, a selec-
tion of patients with initially unresectable CRLM was used 
for model training. This may have influenced the general-
izability of the developed autosegmentation tumor model, 
as it performed less in the external cohort consisting of 
patients with resectable and fewer number of CRLM. 
However, the autosegmentation models are developed 
to improve the evaluation of CRLM to systemic therapy. 
Patients with CRLM receiving systemic treatment often 

Table 4 Per‑case Dice similarity coefficients [IQR]/global) between couples of four independent expert abdominal radiologists

Radiologist 1 is the observer determining the ground truth in the development of the model

Radiologists 2, 3, and 4 are the three additional abdominal radiologists. IQR Interquartile range (25th−75th percentile)

Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4

Radiologist 1  − 0.90 (0.87−0.93)/0.91 0.92 0.90−0.95)/0.92 0.91 (0.89−0.94)/0.94

Radiologist 2 0.90 (0.87−0.93)/0.91  − 0.94 (0.90−0.96)/0.92 0.93 (0.88−0.96)/0.93

Radiologist 3 0.92 (0.90−0.95)/0.92 0.94 (0.90−0.96)/0.92  − 0.94 (0.90−0.97)/0.93

Radiologist 4 0.91 (0.89−0.94)/0.94 0.93 (0.88−0.96)/0.93 0.94 (0.90−0.97)/0.93  − 
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have more extensive disease or large tumors. Finally, to 
enhance density differences between the liver and tumors 
we have applied histogram equalization. However, this 
approach may have reduced the (calibrated) intensity val-
ues in the images for the segmentation steps. With the 
high accuracies obtained in our study, we do not expect 
that this pre-processing step has negatively influenced the 
segmentation agreement.

In the future, the actual implementation of an automatic 
tumor response pipeline into clinical care will face chal-
lenges such as technical feasibility, ethical concerns, and 
regulatory aspects [42, 43]. A potential first step to imple-
mentation is to conduct a prospective clinical study with an 
integrated tumor response pipeline with a human-in-the-
loop situation. Moreover, if the automatic tumor response 
pipeline is implemented successfully and has proven to be 
clinically relevant, the autosegmentation model could be 
translated to other imaging modalities (e.g., MRI).

In conclusion, the deep learning models developed in 
this study were able to automatically segment the liver 
and CRLM with high accuracy in patients with ini-
tially unresectable CRLM. This has a high potential of 
decreasing radiologist’s workload and increasing accu-
racy by lowering interobserver variability. Moreover, 
the models enabled automatic assessment of TTV and 
the response of TTV to systemic treatment. This and 
other potentially highly relevant imaging features, such 
as tumor morphological response could potentially con-
tribute to more consistent and clinically relevant tumor 
response assessments for patients with CRLM receiving 
systemic treatment in future clinical care and research.
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