
 

 

 University of Groningen

Genetic regulators of sputum mucin concentration and their associations with COPD
phenotypes
Van Buren, Eric; Radicioni, Giorgia; Lester, Sarah; O'Neal, Wanda K; Dang, Hong; Kasela,
Silva; Garudadri, Suresh; Curtis, Jeffrey L; Han, MeiLan K; Krishnan, Jerry A
Published in:
PLoS genetics

DOI:
10.1371/journal.pgen.1010445

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Van Buren, E., Radicioni, G., Lester, S., O'Neal, W. K., Dang, H., Kasela, S., Garudadri, S., Curtis, J. L.,
Han, M. K., Krishnan, J. A., Wan, E. S., Silverman, E. K., Hastie, A., Ortega, V. E., Lappalainen, T., Nawijn,
M. C., Berge, M. V. D., Christenson, S. A., Li, Y., ... Kelada, S. N. P. (2023). Genetic regulators of sputum
mucin concentration and their associations with COPD phenotypes. PLoS genetics, 19(6), Article
e1010445. https://doi.org/10.1371/journal.pgen.1010445

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1371/journal.pgen.1010445
https://research.rug.nl/en/publications/ceb7e16d-ffdc-4569-a182-01d100ee15bf
https://doi.org/10.1371/journal.pgen.1010445


RESEARCH ARTICLE

Genetic regulators of sputum mucin

concentration and their associations with

COPD phenotypes

Eric Van Buren1,2, Giorgia Radicioni3, Sarah LesterID
4, Wanda K. O’Neal3, Hong Dang3,

Silva Kasela5,6, Suresh Garudadri7, Jeffrey L. Curtis8,9, MeiLan K. Han8, Jerry

A. Krishnan10, Emily S. Wan11,12, Edwin K. Silverman11, Annette Hastie13, Victor

E. Ortega14, Tuuli Lappalainen5,6, Martijn C. Nawijn15,16, Maarten van den Berge16,17,

Stephanie A. Christenson7, Yun Li1,4, Michael H. Cho11, Mehmet Kesimer3, Samir N.

P. KeladaID
3,4*

1 Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of

America, 2 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts,

United States of America, 3 Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina,

United States of America, 4 Department of Genetics, University of North Carolina, Chapel Hill, North

Carolina, United States of America, 5 New York Genome Center, New York, New York, United States of

America, 6 Department of Systems Biology, Columbia University, New York, New York, United States of

America, 7 Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine,

University of California San Francisco, San Francisco, California, United States of America, 8 Pulmonary &

Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan, United States of America,

9 Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America,

10 Breathe Chicago Center, University of Illinois, Chicago, Illinois, United States of America, 11 Channing

Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston,

Massachusetts, United States of America, 12 VA Boston Healthcare System, Jamaica Plain, Massachusetts,

United States of America, 13 Department of Internal Medicine, Wake Forest School of Medicine, Winston-

Salem, North Carolina, United States of America, 14 Department of Internal Medicine, Division of Respiratory

Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America, 15 Department of Pathology and

Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands,

16 Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen,

the Netherlands, 17 Department of Pulmonary Diseases, University of Groningen, University Medical Center

Groningen, Groningen, the Netherlands

* samir_kelada@med.unc.edu

Abstract

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple

obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus

itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming

mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the con-

centrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis

(CB) and acute exacerbations (AE). We sought to determine whether common genetic vari-

ants influence sputum mucin concentrations and whether these variants are also associated

with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantita-

tive trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and

InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n =

215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with

CB and AE using regression modeling (n = 822–1300). Replication analysis was conducted

using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We
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identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for

MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with

rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite

being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk

of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10–1.80) as well as AE ascer-

tained over three years of follow up (OR = 1.41; 95% CI: 1.02–1.94). Associations between

rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank,

rs140324259 was associated with phenotypes that define CB, namely chronic mucus pro-

duction and cough, again with the C allele conferring increased risk. We conclude that spu-

tum MUC5AC and MUC5B concentrations are associated with common genetic variants,

and the top locus for MUC5B may influence COPD phenotypes, in particular CB.

Author summary

Chronic obstructive pulmonary disease (COPD) is characterized by presence of emphy-

sema and/or chronic bronchitis. Excessive mucus production is a defining phenotype of

chronic bronchitis, and is associated with several important features of COPD, including

exacerbations and loss of lung function. Recent studies have demonstrated that the

amount of mucus produced in COPD patients is an important marker of disease state. We

investigated whether common genetic variants are associated with the concentration of

two key proteins in mucus, MUC5AC and MUC5B, and whether the variants we identi-

fied are also associated with COPD outcomes. We identified multiple genetic variants that

were associated with MUC5AC or MUC5B concentration. The strongest association we

detected, for MUC5B on chromosome 11, was also associated with features of COPD,

including chronic bronchitis and acute exacerbations, in one COPD study population but

not another. Results from a much larger study, the UK Biobank, indicate that this variant

is associated with chronic mucus production and chronic cough, which are key features of

chronic bronchitis. Thus, we conclude that the concentration of key proteins in mucus

are influenced by genetic variation, and that a variant on chromosome 11 that affects

MUC5B may in turn alter COPD outcomes.

Introduction

Chronic obstructive pulmonary disease (COPD) is a smoking-related disease that affects more

than 200 million people and is the fourth leading cause of death worldwide [1,2]. The disease

is characterized by the presence of emphysema and/or chronic bronchitis (CB). Chronic

mucus hyper-secretion is a defining phenotype of CB and is associated with airway obstruction

due to mucus plugs [3], acute exacerbations (AE) [4], and accelerated loss of lung function

over time [5,6].

Mucus itself is composed of a mixture of water, ions, salt and proteins, and mucin glycopro-

teins, most prominently the gel-forming mucins, MUC5AC and MUC5B. Their concentra-

tions and biochemical properties (e.g., size and oxidation state) largely determine the

viscoelastic properties of mucus in health and disease [7]. Recent studies emanating from the

Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS) have

provided compelling evidence that the concentration of mucin proteins in induced sputum is
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an important biomarker in COPD [8,9]. Kesimer et al. showed that mucin concentrations

(total, MUC5AC and/or MUC5B) was associated with smoking history, phlegm production,

CB, risk of AE, and disease severity [8]. A subsequent study showed that the concentration of

MUC5AC was associated with disease initiation and progression [9].

Here, we report our findings of a genome-wide search for common genetic variants associ-

ated with variation in sputum mucin protein concentration, that is, mucin protein quantitative

trait loci (pQTL). Previous studies have identified genetic variants associated with mucin gene

expression (eQTL) that are located within or near MUC5AC [10–12] (in asthma) and MUC5B
(in idiopathic pulmonary fibrosis, IPF [13]). That said, we conducted a genome-wide search

for mucin pQTL because our prior work in a mouse model system indicated distal (or trans)

pQTL for mucins were possible and perhaps even likely [14]. We leveraged quantitative mass

spectrometry-based measurements of induced sputum samples from SPIROMICS that were

generated previously [8,9] to identify main effect pQTL and pQTL that result from

genotype × smoking interactions. Subsequently, we tested whether the pQTL we identified

were associated with COPD outcomes, namely CB and AE, in SPIROMICS, followed by repli-

cation analysis in COPDGene and the UK Biobank.

Results

GWAS for Mucin pQTL

We conducted a GWAS of total and specific (MUC5AC and MUC5B) mucin concentrations

in sputum to identify novel regulators of these biomarkers in SPIROMICS. Descriptive statis-

tics of study participants are provided in Table 1. The mucin phenotype data represent a subset

of subjects described in two previous studies [8,9], and comprise a subset of participants in

SPIROMICS (S1 Fig). In this sample, there was a clear effect of smoking history on total mucin

concentration (S2 Fig), but among COPD cases, there was not a linear or monotonically

increasing relationship between total mucin concentration and disease severity (as reflected by

Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage). Similar patterns were

observed for MUC5AC and MUC5B (S2 Fig).

We did not detect any genome-wide significant loci (p<5.0x10-8) associated with total

mucin concentration based on data from SPIROMICS participants of European ancestry (EA,

N = 576) or African ancestry (AA, N = 132) participants (S3 and S4 Figs), nor in combined

analysis of EA and AA subjects (S5 Fig). Testing for joint effects of SNP and SNP × smoking

(pack-years) interactions did not reveal any loci associated with total mucin concentration

either. In contrast, despite relatively small sample size (N = 215 EA subjects), we identified

three genome-wide significant pQTL for MUC5AC or MUC5B (Figs 1, S6 and S7 and S1

Table). In addition to the pQTL for MUC5AC on chromosome (Chr) 7 (rs75401036), we iden-

tified one highly suggestive locus on Chr 2 (rs16866419, p = 7.2x10-8), thus both MUC5AC

pQTL are located on chromosomes other than Chr 11 where MUC5AC and MUC5B are

located (i.e., act in trans). We note that restricting our analysis to variants located in/near

MUC5AC, i.e., with a reduced multiple testing correction, did not reveal any local pQTL for

MUC5AC, and this includes testing variants previously associated with MUC5AC gene expres-

sion [10–12] including rs12788104, rs11602802, rs11603634, rs1292198170, and rs1132436.

Overall, SNP-based heritability estimates for MUC5AC (h2
SNP = 0.712; S.E. = 1.322) and

MUC5B (h2
SNP = 0.608, S.E. = 1.475) were high but imprecise, which is not surprising given

the relatively small sample size.

For MUC5B, one local pQTL was detected on Chr 11 (rs140324259), and one distal pQTL

was located on Chr 4 (rs10001928). One additional MUC5B pQTL (rs6043852), located in the

intron of KIF16B on chromosome 20 was detected by testing for the joint effects of SNP
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+ SNP × smoking interactions (joint test p-value = 1.3x10-9, Fig 2A). Further analysis revealed

that the interaction itself contributed substantially to the joint effect (pinteraction = 1.1x10-7),

such that rs6043852 was associated with MUC5B concentration only in subjects that are not

current smokers (Fig 2B). Given the relatively low minor allele frequency of rs6043852 (3%),

the number of subjects harboring genotypes with the minor allele (A) and of contrasting

smoking status was not large (n = 6 A allele carriers in current smokers and n = 6 in the com-

bined never plus former smoker group). Hence this SNP × smoking interaction pQTL must be

interpreted with caution.

The strongest pQTL we identified was for MUC5B on Chr 11. The lead variant,

rs140324259, is located approximately 100 kb upstream of MUC5B, in between MUC2 and

MUC5AC (Fig 3A). A second variant located in intron 6 of MUC5AC, rs28668859, was also

associated with MUC5B concentration; conditional analysis revealed this this signal was par-

tially dependent on linkage disequilibrium (LD, R2 = 0.20) with rs140324259 (conditional p-

value = 1.6x10-3). Neither rs140324259 nor rs28668859 are in LD (R2 = 0.02 and 0.01, respec-

tively) with the MUC5B promoter variant rs35705950 that is a well-known MUC5B eQTL and

is associated with IPF [13]. After adjusting for covariates, rs140324259 genotype explained

*14% of variation in sputum MUC5B, and each minor allele (C) contributed a *2.3 pmol/ml

unit decrease in MUC5B (Fig 3B), an effect size that is greater than the effect of current smok-

ing status (yes vs. no, *1.4 pmol/ml). Adjusting for disease severity (using GOLD stage) did

not materially change these results.

We asked whether lead MUC5B pQTL, rs140324259, was associated with MUC5B gene

expression in SPIROMICS or other studies. In a subset of SPIROMICS participants (n = 144)

for whom airway brush RNA-seq data exist [15], we used a tagSNP for rs140324259, namely

rs55680540 (LD R2 = 0.72 in entire SPIROMICS population), but found no correlation

between genotype and MUC5B expression (S8A Fig). No other variants in the region were sig-

nificantly associated with MUC5B expression (S8B Fig). Additionally, rs140324259 was also

not associated with MUC5B expression in the nasal epithelium of subjects with cystic fibrosis

[16] or asthma [12], nor was it reported as an eQTL in any tissue in the GTEx dataset [17],

including homogenized lung tissue.

Given that power for eQTL detection could be an issue underlying the negative eQTL asso-

ciation results, we asked whether rs140324259 or four variants in LD (rs55680540, rs28668859,

rs11604917, and rs76498418) could potentially affect gene expression by altering transcription

factor binding or chromatin state using Haploreg [18]. As shown in S2 Table, rs140324259,

rs11604917, and rs55680540 are predicted to alter binding of transcription factors, and there is

some evidence that rs11604917 and rs55680540 alter chromatin state in relevant cell types or

tissues (S3 Table). Perhaps most notably, rs11604917 lies in an enhancer region in multiple cell

types and tissues and is predicted to alter binding of the transcription factor RBP-J. The alter-

nate allele (C) of rs11604917 disrupts the consensus sequence at the first position of an almost

invariant motif (S9 Fig). Given that RBP-J is part of the Notch signaling pathway that deter-

mines ciliated vs. secretory cell fate in murine airways [19], we asked whether rs11604917 was

associated with the frequencies of basal, secretory and ciliated epithelial cells, which were esti-

mated using a deconvolution approach on airway brush bulk RNA-seq data from 137 SPIRO-

MICS participants (largely overlapping with the eQTL dataset described above). We applied a

previously developed cell type deconvolution method [20] that was shown to perform well on

airway samples [21] (see Methods). We did not detect any associations between rs11604917

genotype and frequencies of these cell types, though smoking status was strongly associated

with cell type proportions (S4 Table).
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Association of MUC5B pQTL with COPD Phenotypes

Subsequently, we tested whether rs140324259 was related to clinically-relevant COPD pheno-

types, namely CB and AE. In the subset of SPIROMICS participants with complete phenotype,

genotype, sputum MUC5B, and clinical outcomes data (n = 141–143), we found that

rs140324259 was not associated with CB at baseline/enrollment (p = 0.25, S5 Table).

rs140324259 was not associated with AE in the year prior to enrollment (p = 0.14, Fig 4A)

unless we accounted for sputum MUC5B concentration (p = 0.02, Fig 4B and S6 Table). Sur-

prisingly, in this analysis, we found that while MUC5B concentration was positively associated

with AE (β1 = 0.45, p = 0.01, Fig 4B), the effect of rs140324259 genotype (β2 = 0.74, p = 0.02)

was directionally opposite our expectations based on pQTL analysis. That is, the C allele of

rs140324259, which was associated with lower MUC5B (γ = -0.77, p = 2.6 x10-6) and therefore

would be expected to confer decreased risk of AE, was associated with increased risk of AE

compared to the T allele.

These results suggested the possibility that rs140324259 may exert effects on AE through

both direct and indirect paths, the latter via MUC5B (Fig 4B). To examine this further, we

employed a mediation analysis approach, based on the framework developed by Baron and

Kenny [22], in which the effect of rs140324259 on AE is modeled as the sum of direct

(rs140324259! AE) and indirect paths (rs140324259! AE via MUC5B). We leveraged an

intersection union test [23] to jointly test that both components of the indirect path

(rs140324259!MUC5B and MUC5B! AE) are statistically significant. Indeed, we found

evidence that this is the case (p = 0.02), which is consistent with a model of partial mediation

Table 1. Descriptive Statistics of SPIROMICS Participants in Mucin GWAS.*
Non-smoking Controls At-risk GOLD 1 GOLD 2 GOLD 3

Study

Population

Total

Mucin

MUC5AC,

MUC5B

Total Mucin MUC5AC,

MUC5B

Total Mucin MUC5AC,

MUC5B

Total Mucin MUC5AC,

MUC5B

Total Mucin MUC5AC,

MUC5B

N 50 25 219 46 130 40 241 56 67 48

Age, mean

(range)

57.9 (40–80) 61.3 (42–80) 60.4 (40–79) 63.3 (40–79) 66.7 (45–80) 65.8 (49–79) 65.0 (42–80) 64.9 (48–80) 66.5 (48–80) 67.1 (52–80)

Males, n (%) 26 (51.0) 13 (52.0) 117 (53.2) 21 (45.7) 91 (70.0) 31 (77.5) 142 (58.9) 35 (62.5) 35 (52.2) 21 (43.8)

European

Ancestry, n

(%)

36 (72.0) 25 (100) 155 (70.8) 46 (100) 112 (86.2) 40 (100) 214 (88.8) 56 (100) 59 (88.1) 48 (100)

African

Ancestry, n

(%)

14 (28.0) NA† 64 (29.2) NA‡ 18 (13.9) NA‡ 27 (11.2) NA‡ 8 (11.9) NA‡

Chronic

Bronchitis†, n

(%)

3 (6.0) 2 (8.0) 89 (40.6) 15 (32.6) 52 (40.0) 19 (47.5) 134 (55.4) 35 (62.5) 29 (43.2) 20 (41.7)

Current

smoker, n (%)

0 (0) 0 (0) 113 (51.6) 21 (45.7) 45 (34.6) 17 (42.5) 114 (47.1) 26 (46.4) 18 (26.9) 11 (22.9)

Former

smoker, n (%)

0 (0) 0 106 (48.4) 25 (54.4) 85 (65.4) 23 (57.5) 127 (52.5) 30 (53.6) 49 (73.3) 37 (77.1)

Smoking,

pack-years

(range)

0 0 (0) 43.0 (20–

150)

44.0 (20–100) 51.9 (20–

160)

54.7 (20–117) 57.1 (20–

270)

55.8 (20–147) 51.8 (20–

126)

50.3 (21–

126)

*One subject with a GOLD stage of 4 was included in the total mucin analysis but is not shown here.
† Based on St. George’s Respiratory Questionnaire
‡Due to limited sample size of SPIROMICS participants of African ancestry with MUC5AC/MUC5B data, only data on European ancestry subjects were used in these

analyses.

https://doi.org/10.1371/journal.pgen.1010445.t001

PLOS GENETICS Sputum mucin pQTL and COPD

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010445 June 23, 2023 5 / 21

https://doi.org/10.1371/journal.pgen.1010445.t001
https://doi.org/10.1371/journal.pgen.1010445


by MUC5B. Thus, overall, we conclude from these results that rs140324259 likely affects AE in

two ways, both directly and indirectly, but with contrasting allele effects in each case, and over-

all the net effect is that rs140324259 C allele confers increased risk of AE. We note also that

contrasting direction of effects of rs140324259!MUC5B (-) and MUC5B! AE (+) likely

explains why the magnitude of the association between rs140324259 and AE (not accounting

for MUC5B) is weak and therefore not statistically significant (Fig 4A) [22].

We then examined associations between rs140324259 and clinical phenotypes in the larger

SPIROMICS population for which genotype and clinical data exist but there is not sputum

mucin concentration data (n�1,250). In this sample, rs140324259 was associated with CB at

baseline (p = 0.02, Table 2). Similar to results in the smaller subset of subjects described above,

the C allele was associated with increased risk of CB (odds ratio (OR) = 1.42; 95% confidence

interval (CI): 1.10–1.80). The effect of rs140324259 on AE in the larger SPIROMICS sample

with clinical data was examined using both retrospectively and prospectively ascertained data.

Fig 1. Distal and local pQTL for sputum MUC5AC and MUC5B concentration. Results of association analysis using sputum mucin concentration data from 215 EA

SPIROMICS participants are shown. Dashed red line denotes genome-wide significance threshold.

https://doi.org/10.1371/journal.pgen.1010445.g001
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rs140324259 was not significantly associated with AE in the year prior to enrollment (S7

Table), nor in the year following enrollment (S8 Table). However, in both of these analyses,

the results were suggestive and the direction of effect was again positive for the C allele.

We then asked whether rs140324259 genotype was associated with AE over a period of

three years of follow up. SPIROMICS participants’ exacerbation frequency was categorized

based on a previous study as never (n = 433), inconsistent (n = 331) or consistent (n = 58) over

the three years [24] (see Methods). Using a proportional odds model, we analyzed whether

rs140324259 genotype distinguished never exacerbators versus inconsistent and consistent

AE, and whether rs140324259 genotype distinguished consistent exacerbators versus never

and inconsistent exacerbators. We found that rs140324259 genotype was associated with the

former contrast (p = 0.03), with the C allele conferring increased risk of being either an incon-

sistent or consistent exacerbator (S9 and S10 Tables). rs140324259 genotype was not associated

Fig 2. A genotype x smoking interaction locus (rs6043852) for sputum MUC5B concentration on Chromosome 20. A. Locus zoom plot for the genotype x smoking

locus (rs6043852). B. MUC5B concentration as a function of both rs6043852 genotype and current smoking status. The not current smoker category includes never

smokers and former smokers. Numbers in parentheses on x-axis denote sample size per genotype. Note that while we plot carriers of the minor allele here as one group,

the regression model for MUC5B used genotype dosages.

https://doi.org/10.1371/journal.pgen.1010445.g002

Fig 3. The chromosome 11 MUC5B pQTL. A. Regional view of association test results. Four genes not shown due to small size. The lead variant, rs140324259, is

approximately 100 kb upstream of MUC5B. B. Effect of rs140324259 genotype on sputum MUC5B concentration. Numbers in parentheses on x-axis denote sample

size per genotype. Each C allele yields a 0.8 log (ln) unit decreased in MUC5B, equating to a 2.3 picomol/ml decrease in MUC5B concentration.

https://doi.org/10.1371/journal.pgen.1010445.g003
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with the contrast between consistent exacerbators versus never and inconsistent exacerbators.

To simplify the interpretation of the effect of rs140324259 on prospectively ascertained AE, we

then dichotomized subjects into two groups, those who experienced AE (inconsistent and con-

sistent) versus those who did not. As shown in Table 3, the rs140324259 C allele conferred

increased risk of AE over three years of follow up (OR = 1.41; 95% CI: 1.02–1.94).

Replication analyses

Finally, we analyzed data from the COPDGene study population and UK Biobank in an

attempt to replicate results from SPIROMICS. For COPDGene, we utilized phenotype data

from COPD cases of European ancestry, and genotypes from whole genome sequencing. Sam-

ple sizes in these analyses ranged from 5300–5700 depending on the outcome. In this popula-

tion of COPD cases, rs140324259 was not associated with CB (OR = 1.08 (95% CI: 0.94–1.24),

nor AE (S11–S13 Tables), though we were unable to directly evaluate whether rs140324259

was associated with the exacerbation frequency categories (never, inconsistent, consistent)

described in SPIROMICS. In the UK Biobank, however, we found that rs140324259 was asso-

ciated with two CB-related phenotypes, namely bringing up phlegm/sputum/mucus on most

days and cough on most days (Table 4). Importantly, the C allele was enriched in cases vs. con-

trols for these two phenotypes, thus these results are directionally consistent with results from

SPIROMICS. Results for other variants in LD with rs140324259 are shown in S14 Table. As

UK Biobank results were not adjusted for smoking, we additionally assessed whether

rs140324259 was associated with smoking. rs140324259 was either not associated with smok-

ing history variables or was weakly associated, but in these cases the C allele frequency was

higher in controls than cases (Table 4), suggesting that the associations between rs140324259

and CB-related phenotypes in the UK Biobank are unlikely to be mediated by, or confounded

with, smoking.

In contrast to the associations we detected between COPD phenotypes and the lead

MUC5B pQTL variant, we did not detect any associations with the other MUC5B pQTL

(rs10001928), nor the two MUC5AC pQTL (rs75401036 and rs16866419), in SPIROMICS,

COPDGene, or the UK Biobank, as shown in S15–S17 Tables.

Discussion

Using quantitative measurements of sputum mucin concentrations, we identified three

genome-wide significant loci and one highly suggestive locus associated with MUC5AC or

MUC5B. The strongest signal we detected, with rs140324259, accounted for a large percent of

variation in MUC5B, and is independent of the common MUC5B promoter variant associated

with IPF. Surprisingly, rs140324259 does not appear to be an eQTL for MUC5B, though we

note that our sample size for eQTL analysis was not large and that the tagSNP we used is not in

very high LD with rs140324259. One nearby variant, rs11604917, is intriguing given that it

potentially disrupts binding of the transcription factor RBP-J, a key player in the Notch signal-

ing pathway that determines ciliated vs. secretory cell fate in murine airways [19]. This could

suggest that the MUC5B pQTL is a function of cell type composition of the airway epithelium,

an idea supported by the lack of an association with gene expression. However, this variant is

in low LD with rs140324259, and the association of rs11604917 with CB-related phenotypes in

the UK Biobank was not nearly as strong as for rs140324259, arguing against a causal role for

rs11604917. Additionally, rs11604917 genotype was not associated estimated secretory cell fre-

quency in airway brush samples, though power was also limited in this analysis. Thus, in total,

the mechanism underlying the MUC5B pQTL, including the causal variant(s), remains to be

determined.
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Given that previous studies have identified eQTL for MUC5AC [10–12] in asthma and

MUC5B [13] in IPF located near the genes themselves (“local eQTL”), one potential a priori
prediction could have been that these same variants would be associated with MUC5AC and

MUC5B protein concentrations. This was not the case, even in the context of a regional associ-

ation analysis (i.e., not a genome-wide significance threshold). This is perhaps not surprising

for at least two reasons. First, there are clear differences between our study and the previous

studies as a function of disease state (COPD vs. asthma vs. IPF) and anatomical location

(upper vs. lower airways). Second, mucin protein concentration is the product of several path-

ways beyond just mucin gene transcription, including protein synthesis, post-translation mod-

ifications, packaging into vesicles, secretion, airway hydration via ion transport, and

mucociliary clearance. Thus, one could reasonably expect that genetic variants that regulate

Fig 4. Mediation analysis reveals that rs140324259 exerts effects on exacerbations in the year prior to enrollment

through direct and indirect paths with contrasting allele effects. We leveraged the mediation analysis framework of

Baron and Kenny [22] to examine whether rs140324259 exerts effects on exacerbations through MUC5B. Using

complete data on 142 subjects, in (A) we tested for the total effect of rs140324259 on acute exacerbations of COPD

(“c”). In (B), the mediation analysis framework is shown in which the effect of rs140324259 on acute exacerbations is

modeled as the sum of direct (rs140324259 to exacerbations, c’) and indirect paths (rs140324259 to exacerbations via

MUC5B (a, b)). Statistical evidence of the indirect path assessed by jointly testing that both rs140324259!MUC5B

(a) and MUC5B! exacerbations (b) are significant using an intersection union test (which is equivalent to testing that

γ x β1 is not equal to 0). β1 (b) and β2 (c’) come from the same negative binomial regression model including both

rs140324259 and MUC5B as predictors of exacerbations. Note that in this mediation analysis framework, the total

effect (c) in part A is the sum of the direct (c’) and indirect paths (a!b) in part B, i.e., c = c’ + (a x b). Thus, because the

sign of path a is negative while both b and c’ are positive, the total effect c (in panel A) is necessarily weaker in

magnitude.

https://doi.org/10.1371/journal.pgen.1010445.g004

Table 2. Logistic Regression Model of Chronic Bronchitis at Baseline and rs140324259 genotype (n = 1257).

Parameter Odds Ratio 95% Confidence Interval

Age 0.99 0.98–1.00

Sex (M vs. F) 1.40 1.09–1.80

PC1 1.01 0.87–1.20

PC2 1.10 0.95–1.30

Smoking pack years 1.00 1.00–1.00

Current smoker 5.55 4.17–7.40

FEV1, % predicted 0.99 0.99–1.00

rs140324259 (C vs. T) 1.42 1.10–1.80

https://doi.org/10.1371/journal.pgen.1010445.t002
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any of these processes could be associated with mucin concentration. It remains to be deter-

mined whether any of the distal/off-chromosome pQTL identified here play a role in one or

more of these pathways. That we did not identify any associations in/near genes with known

roles in these processes suggests that either we were underpowered to detect these associations

and/or that there is limited functional genetic variation in/near these genes.

Our analysis of rs140324259 genotype and clinical outcomes produced intriguing results in

the SPIROMICS cohort, namely associations with CB and prospectively ascertained AEs.

These results did not replicate in COPDGene, but we did find an association with sputum pro-

duction and cough in a much larger dataset, the UK Biobank. These data argue in support of a

role for the MUC5B pQTL in CB-related phenotypes. However, we acknowledge that the

results of CB and AE association analyses with rs140324259 in SPIROMICS would not a sur-

vive multiple testing correction based on the number of outcomes/models we evaluated; in

addition, we were unable to replicate these results in COPDGene, thus raising the potential

that the results in SPIROMICS represent false positives. We note here that failure to replicate

genetic associations with AE is unfortunately common [25], and future studies in which stan-

dardized definitions of AE can be employed will certainly facilitate the best comparisons across

studies [25]. It is also worth noting that a previous study identified significant blood biomark-

ers of susceptibility for AE in SPIROMICS and separately in COPDGene, but there was essen-

tially no overlap in associations between the two populations [26], which points to the

difficulty in identifying reproducible predictors of exacerbations. The UK Biobank analysis,

while supportive of our results, did not have the same degree of detailed respiratory pheno-

types and was performed in a general population sample. Additional analyses adjusting for dis-

ease state and other covariates could be beneficial [27]. Further attempts to replicate these

finding in other populations would also be useful, in particular to address the question of gen-

eralizability across populations of different genetic ancestries.

In aggregate, the results of association tests between rs140324259 and COPD phenotypes

suggest an apparent paradox. While MUC5B concentration was positively associated with AE

and CB in SPIROMICS, and the C allele was associated with significantly reduced MUC5B,

the C allele overall was associated increased risk of AE and CB. This result suggests that higher

expression of MUC5B may in fact be protective against AE and CB, perhaps by virtue of nor-

malizing the ratio of elevated MUC5AC to MUC5B, making it more clearable, as has been sug-

gested before in relationship to the IPF-associated variant rs35705950 [28].

A recent study also based in SPIROMICS showed that MUC5AC concentration is a stron-

ger predictor of COPD initiation, disease progression, and exacerbations than MUC5B con-

centration [9]. As such, it is somewhat surprising that the MUC5AC pQTL we detected

Table 3. Logistic Regression Model Comparing Exacerbators Versus Non-Exacerbators Based on Prospectively

Ascertained Exacerbation Count Over a Three-Year Period (n = 822).

Parameter Odds Ratio 95% Confidence Interval

Age 1.00 0.97–1.20

Sex (M vs F) 0.65 0.47–0.89

PC1 0.95 0.78–1.15

PC2 1.11 0.90–1.37

Smoking, pack years 1.01 1.00–1.01

Current smoker 1.22 0.86–1.74

Exacerbations, year prior to enrollment 1.96 1.54–2.49

FEV1, % predicted 0.97 0.96–0.98

rs140324259 (C vs. T) 1.41 1.02–1.94

https://doi.org/10.1371/journal.pgen.1010445.t003
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(rs75401036 and rs16866419) were not associated with the COPD phenotypes assessed in this

study. In two cases (rs75401036), the minor allele frequency was quite low (2%), thus power to

detect an association was lower as well. In contrast, rs16866419 had an allele frequency (10%)

only slightly lower the lead MUC5B pQTL (11%), but was not as strongly associated with

MUC5AC protein as rs140324259 was with MUC5B.

While we examined associations between loci associated with mucins, CB, and AE in

COPD patients specifically, others have examined the genetics of CB/chronic mucin hyperse-

cretion in combined analysis of the general population and patients with COPD [27,29] or in

smokers without COPD [30]. In the study with COPD cases and the general population [29],

the most consistent association signal was for rs6577641, which was also shown to act as an

eQTL for the gene SATB1. In look up analysis, this variant was not associated with either spu-

tum MUC5B concentration or CB in the SPIROMICS population, nor was the lead variant

(rs10461985) from another study [30]. The most recent study reported an association of vari-

ants on proximal Chr 11 (near MUC2) with chronic sputum production using the same UK

Biobank phenotype codes we used [27], but the LD between lead variant in that study

(rs779167905) and rs140324259 is minimal (R2 = 0.08), making it unlikely that these are the

same signals.

In summary, we identified pQTL for MUC5AC and MUC5B in sputum, demonstrating

that common genetic variants influence these biomarkers. The lead MUC5B pQTL,

rs140324259, was associated with CB and prospectively ascertained AE in SPIROMICS and

was also associated with CB-related phenotypes in the UK Biobank. Additional studies are

needed to determine how this variant influences MUC5B concentration in sputum and to fur-

ther evaluate whether rs140324259 may be a biomarker of CB and AE susceptibility in COPD

in other populations.

Materials and methods

Ethics statement

Subjects provided informed written consent to participate in the studies described here.

Details and institutional review boards for each clinical site are provided in S2 File.

Study subjects and genotype data

The primary analyses presented here are based on study participants in SPIROMICS (Clinical-

Trials.gov Identifier: NCT01969344), and a schematic of the SPIROMICS datasets used here is

shown in S1 Fig. The study design has been described previously [31]. SPIROMICS partici-

pants were genotyped using the Illumina OmniExpress Human Exome Beadchip [32]. Quality

controls included testing for sex concordance and removal of SNPs with high genotype miss-

ing rates (>5%) and/or violations of Hardy Weinberg equilibrium at p< 1x10-6. Genotype

Table 4. Association analysis results for lead MUC5B pQTL variant with CB-related phenotypes and smoking history in the UK Biobank.*
UK Biobank Phenotype # cases/controls rs140324259 C Allele Frequency Cases rs140324259 C Allele Frequency Controls p-value

Bring up phlegm/sputum/mucus on most days 9,250 / 97,072 0.150 0.143 9.80E-03

Cough on most days 14,606 / 91,635 0.149 0.143 4.50E-03

Current smoking status 43,192 / 375,625 0.141 0.143 9.40E-02

Ever smoked 253,507 / 165,353 0.143 0.143 9.73E-01

Smokes tobacco on all or most days 2,447 / 103,281 0.137 0.144 1.93E-01

*analysis limited to subjects of European Ancestry.

https://doi.org/10.1371/journal.pgen.1010445.t004
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imputation was performed using the Michigan Imputation Server [33] using haplotypes from

Phase3 of the 1000 Genomes Project [34]. Study participants were categorized into either

European ancestry (EA, N = 576 or African ancestry (AA, N = 132) groups based on principal

components analysis of genotype data and comparisons to 1000Genomes data. We used an

adaptive R2 threshold to filter imputed variants in each ancestry group based on the minor

allele frequency (MAF). For each MAF interval, the R2 value was chosen such that the average

R2 for variants with values larger than the threshold was at least 0.8 (S18 and S19 Tables). We

limited our analyses to SNPs with minor allele counts >8, resulting in *10 million SNPs in

EA and 12 million variants in AA subjects for association with total and specific mucin

concentrations.

In COPDGene [35] (ClinicalTrials.gov Identifier: NCT00608764), genotype data for

rs140324259 was obtained from whole genome sequencing performed through the TOPMed

consortium [36]. Results from the UK Biobank data were obtained from the Pan-UK Biobank

analysis (see further description below) [37].

Sputum mucin phenotype data

Sputum mucin concentration: sputum induction and measurement methods have been previ-

ously reported [8,9,38]. In brief, hypertonic saline was used to induce sputum, which was then

placed in a buffer containing 6 molar guanidine, and stored at 4 degrees. Total sputum mucin

concentration was determined using a size exclusion chromatography / differential refractom-

etry measurement approach. For a subset of subjects, MUC5AC and MUC5B concentration

was determined using stable isotope labeled mass spectrometry [38]. Data were generated in

two batches. In addition to SPIROMICS participants with COPD (n = 439), two additional

sets of subjects were also included in the mucin analyses: non-smoking controls (n = 50), and

smokers without COPD that are referred to as the “at-risk” group (n = 219). These subjects

were included in genetic analysis of sputum mucin concentration but were not included in the

analysis of COPD outcomes.

Clinical/phenotype data

We analyzed data on two COPD phenotypes, namely CB and AE, in SPIROMICS. The CB

phenotype was ascertained at the first study visit (“baseline”) and was categorized based on

participants’ responses to questions regarding frequency of cough and mucus/phlegm produc-

tion in the St. George’s Respiratory Questionnaire, as described in a previous publication [39].

More specifically, participants were categorized as having CB if they indicated they cough

either most days a week or several days a week and bring up phlegm/sputum either most days

a week or several days a week. If participants said they only cough or bring up phlegm with

respiratory infection or not at all, they were categorized as negative for CB.

The analysis of AE was based on previous work from SPIROMICS [24,31] in which AE

were defined as events that required health care utilization (i.e., office visit, hospital admission,

or emergency department visit for a respiratory flare-up) involving the use of antibiotics and/

or systemic corticosteroids. In COPDGene, the CB phenotype was based on chronic cough

and phlegm production for� 3 months/year for 2 consecutive years [5]. For AE, self-reported

moderate-to-severe exacerbations in the year prior to enrollment and the number of moder-

ate-to-severe exacerbations ascertained prospectively from longitudinal follow up data were

examined. In the Pan-UK Biobank (https://pan.ukbb.broadinstitute.org/), we evaluated results

of association analyses for two CB-related phenotypes, namely bringing up phlegm/sputum/

mucus daily (yes vs. no, phenocode 22504) and coughing on most days (yes vs. no, phenocode

22502), as well as smoking history variables, which were assessed by questionnaire.

PLOS GENETICS Sputum mucin pQTL and COPD

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010445 June 23, 2023 12 / 21

https://pan.ukbb.broadinstitute.org/
https://doi.org/10.1371/journal.pgen.1010445


Statistical models

Sputum mucin concentration

Data on total and specific (MUC5AC and MUC5B) mucin concentrations were log-trans-

formed prior to analysis. GWAS analysis was performed using version 0.5.0 of the ProbABEL

software [40]. Analysis of total mucin concentration was conducted in each ancestry group

separately (N = 576 EA and 132 AA), followed by a pooled analysis of both ancestry groups. In

ancestry-specific analyses, main effect SNP models of each mucin phenotype included covari-

ates for the top two principal components of ancestry (PC) obtained from EIGENSTRAT [41],

age, sex, batch of mucin quantitation analysis, current smoking status, smoking pack-years,

and CB. Results were not materially different when we included up to 10 genotype PCs. For

MUC5AC and MUC5B, GWAS was performed in EA subjects only (N = 215) with the same

covariates used for total mucin concentration. SNP-based heritability for MUC5AC and

MUC5B was estimated on an LD-pruned set of markers from the genotyped data (subsetting

to individuals with the relevant phenotype data) using GCTA version 1.92.1. We performed

exploratory genome-wide interaction studies of SNP × smoking interactions in which we

tested for the joint effects of SNP and SNP × smoking interactions (2 d.f. test) on mucin con-

centrations in models including the same covariates as above.

eQTL analysis

Airway epithelial gene expression from 144 SPIROMICS participants was analyzed to test

whether rs140324259 is an eQTL for MUC5B by performing a genome-wide eQTL mapping as

described before in Kasela et al. [15]. Briefly, RNA-seq data from the airway epithelium was

normalized, filtered, and transformed using inverse normal transformation. Genotype data

was obtained from TOPMed (Freeze 9) [36]. The eQTL regression model for a given gene

included sex, four genotype PCs, and 15 PEER factors (probabilistic estimation of expression

residuals [42]) as covariates. eQTL mapping was performed using tensorQTL [43] and 10,000

permutations were used to control for multiple testing at false discovery rate (FDR) < 0.05. To

look up the eQTL association with MUC5B, we used the proxy SNP rs55680540 because

rs140324259 did not pass variant filter quality control.

Cell type deconvolution

Using the same original dataset as was used for eQTL detection in bronchial epithelial brush

samples, we performed cell type deconvolution using the non-negative least squares (NNLS)

method (R package nnls) [44], which has been shown to perform well in comparison to other

deconvolution methods [20]. Application of this method in a previous study of COPD subjects

[21] showed good correlations between goblet cell proportions estimated in bulk sequencing

data using NNLS and goblet cell numbers based on histological scoring. NNLS bulk deconvo-

lution was carried out using cell type specific signatures derived from bronchial biopsies in six

subjects with asthma (in which a larger proportion of goblet cells is identified than in healthy

controls [45]). Cell type signature derivation of 14 known cell types was done in the scRNAseq

data using AutoGeneS (Automatic gene selection using multi-objective optimization for RNA-

seq deconvolution [46]). NNLS was then used to estimate the proportions of these cell types in

the bronchial epithelial brush bulk RNA-seq samples of 137 SPIROMICS participants. Cell

types included six epithelial cell populations (Ciliated cells, Goblet/Club cells, Submucosal

Secretory cells, Basal cells, Basal cycling cells, and Ionocytes), two stromal cell populations

(Endothelial cells and Fibroblasts), and six white blood cell populations (Mast cells, Dendritic

cells, Alveolar macrophages, T cells, Monocytes, B cells).
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We then performed analyses with both rs140324259, the lead MUC5B pQTL, and

rs11604917, the variant in LD that is predicted to alter RBP-J transcription factor finding, test-

ing for genotype associations with the frequency of goblet cells, ciliated cells, and basal cells,

which are the cell types one would hypothesize should be most relevant to mucin gene expres-

sion (we did not test for association with submucosal secretory cells because all values were 0).

We used a beta regression model with a data transformation applied to cell type frequencies (y’

= (y(n-1)+0.5)/n) to avoid having values of 0 or 1.

Clinical phenotypes

Chronic Bronchitis (CB): Following the analyses of sputum mucin concentration data, we

tested for an association between the lead variant for sputum MUC5B concentration

(rs140324259) and CB in the larger SPIROMICS population (N = 1257). Logistic regression

models were used for CB, accounting for the top two genotype PCs, age, sex, current smoking

status, pack-years of smoking, and FEV1 (% predicted).

Acute Exacerbations (AE): Exacerbation outcomes were modeled using negative binomial

regression models including the same covariates as above. Additionally, in the analysis of pro-

spectively ascertained AE, we included AE in the year prior to enrollment as a predictor.

Because prior work showed that exacerbation frequency among subjects with COPD in

SPIROMICS is not stable [24], we leveraged a previously developed classification system

which categorized SPIROMICS participants as never, inconsistent or consistent exacerbators

using three years of follow up data [24]. Consistent exacerbators were subjects who experi-

enced at least one acute exacerbation in each of the three years; subjects who had an exacerba-

tion during some but not all of the three years of follow up were defined as inconsistent

exacerbators. We analyzed the association between rs140324259 genotype and these three

exacerbation groups using a proportional odds model, comparing (1) never exacerbators ver-

sus inconsistent and consistent exacerbators, and (2) consistent exacerbators versus never and

inconsistent exacerbators. Based on the results of these analyses, we collapsed the exacerbation

groups into two categories: ever (combining inconsistent and consistent exacerbators) vs.

never exacerbators, then modeled this outcome using logistic regression with covariates for

the top two genotype PCs, age, sex, current smoking status, pack-years of smoking, FEV1 (%

predicted), and the number of AE in the year prior to enrollment.

Mediation analysis

In the subset of SPIROMICS subjects for which there is complete phenotype data on genotype,

sputum MUC5B, and clinical outcomes (N = 141), we tested for evidence of that MUC5B

mediates an association between rs140324259 and AE (i.e. rs140324259!MUC5B! AE),

invoking the overall mediation analysis framework of Baron and Kenny [22].

We evaluated a direct path from rs140324259! AE (c), and an indirect path from

rs140324259!MUC5B (a) and MUC5B! AE (b), while also examining the path from

rs140324259! AE conditional on MUC5B (c’). All regression models included age, sex, two

ancestry PCs, current smoking status, pack-years of smoking, and FEV1 (% predicted) as pre-

dictors. For (a), we used a linear model for MUC5B in which rs140324259 was coded linearly

(0,1,2). For (b), (c), and (c’), we used negative binomial regression models of AE that included

rs140324259 (c), MUC5B (b), or both (c’). To formally test for mediation, we leveraged the

SNP mediation intersection-union test (SMUT) [23] which jointly tests for non-zero parame-

ter estimates from models for (a) and (b), which is equivalent to testing that a x b is not equal

to 0 in the Baron and Kenny framework.
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