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Abstract
Objective Reduced FOV-diffusion-weighted imaging (rFOV-DWI) allows for acquisition of a tissue region without back-
folding, and may have better fat suppression than conventional DWI imaging (c-DWI). The aim was to compare the ADCs 
obtained with c-DWI bilateral-breast imaging with single-breast rFOV-DWI.
Materials and Methods Breasts of 38 patients were scanned at 3 T. The mean ADC values obtained for 38 lesions, and 
fibro-glandular (N = 35) and adipose (N = 38) tissue ROIs were compared between c-DWI and higher-resolution rFOV-DWI 
(Wilcoxon rank test). Also, the ADCs were compared between the two acquisitions for an oil-only phantom and a combined 
water/oil phantom. Furthermore, ghost artifacts were assessed.
Results No significant difference in mean ADC was found between the acquisitions for lesions (c-DWI: 1.08 ×  10–3  mm2/s, 
rFOV-DWI: 1.13 ×  10–3  mm2/s) and fibro-glandular tissue. For adipose tissue, the ADC using rFOV-DWI (0.31 ×  10–3  mm2/s) 
was significantly higher than c-DWI (0.16 ×  10–3  mm2/s). For the oil-only phantom, no difference in ADC was found. How-
ever, for the water/oil phantom, the ADC of oil was significantly higher with rFOV-DWI compared to c-DWI.
Discussion Although ghost artifacts were observed for both acquisitions, they appeared to have a greater impact for rFOV-
DWI. However, no differences in mean lesions’ ADC values were found, and therefore this study suggests that rFOV can be 
used diagnostically for single-breast DWI imaging.

Keywords Diffusion-weighted imaging · Breast cancer · Resolution · Reduced field of view DWI

Introduction

Conventional MR diffusion-weighted imaging (c-DWI) of 
breast tissue is hindered by its low spatial resolution. This 
may be partly overcome by reducing the acquired Field Of 
View (FOV) to only one breast while keeping the same num-
ber of phase encoding lines. However, with conventional 
2D imaging techniques, this would result in back-folding in 
the phase encode direction. Although the frequency encode 
direction is free from back-folding, for single breast imaging, 
both the AP and RL directions are concerns for back-folding 
as tissue lies directly outside the FOV (Fig. 1).

Using a 2D radiofrequency (RF) acquisition pulse [1], 
only a selected volume is excited, allowing for a smaller 

volume to be encoded without back-folding. An additional 
potential advantage of 2D excitation techniques may be bet-
ter fat suppression because of reduced B1 and B0 inhomo-
geneity. A smaller volume in itself may contain less tissue 
susceptibility variations and thus improved B0 shimming. 
Furthermore, the 2D RF pulse may be optimized to partly 
mitigate B1 and B0 inhomogeneity [2]. Disadvantages of 2D 
RF excitation are generally the longer minimum echo time 
(TE) as a compromise in the occurrence of side lobe excita-
tions [3]. However, in MRI scanners equipped with multi-
channel transmit, the minimum echo time can be reduced 
using Transmit SENSE techniques [1, 4].

Reduced Field Of View (rFOV) DWI has been applied 
to multiple tissue regions, including Breast [5], Spinal Cord 
[6], Prostate [7], Cervix [8], and Brain [9]. The above-
mentioned breast study analysis was limited to lesions, 
without consideration of fibro-glandular and adipose tis-
sue [5]. Because of potential differences in image quality 
and fat suppression efficacy using rFOV-DWI compared to 
conventional DWI, the aim of this study was to compare 
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ADC values obtained in one breast with both acquisition 
techniques. This study was part of a larger clinical study, 
with ADC values obtained for the lesion, fibro-glandular, 
and adipose regions. Also, oil/water phantom experiments 
were conducted to study the influence of using a reduced 
FOV in more detail.

Methods

Patient study

In this prospective IRB approved study, 38 consecutive 
patients were included with 38 enhancing breast mass 
lesions of diameter ≥ 0.8 cm (16 malignant: 11 invasive car-
cinomas, 4 ductile carcinomas in situ, 1 inflammatory breast 
cancer; 22 benign: 8 adenoses, 6 metaplasia/cystic changes, 
5 fibro-adenomas, 2 fibrosis, and 1 Flat epithelial atypia), 
confirmed by pathology or follow-up.

MR Protocol

All scans were conducted on a 3 Tesla MRI system (Mag-
netom Skyra, Siemens Medical Solutions, Erlangen, Ger-
many). The subjects were positioned in head-first prone 
position, and an 18-channel breast coil (Siemens Medical 
Solutions, Erlangen, Germany) was used for signal recep-
tion. All DWI scans were acquired in the axial orientation 
using a single-shot echo planar imaging (EPI) for readout. 
The parameters for c-DWI were: FOV = 350 × 210 mm, 
N = 140 × 84, ST/gap = 5  mm/20%, no interpolation, 
31 slices, TR/TE = 5400/60  ms, and scan time = 1  min 

53  s. For rFOV-DWI, the Siemens ZOOMit [10] tool 
was used, with FOV = 150 × 91.8 mm, N = 98 × 60, ST/
gap = 5 mm/10%, interpolated voxel size = 0.8 × 0.8 × 5 mm, 
20 slices, TR/TE = 4300/73 ms, multi-transmit Tx = 1, and 
scan time = 1 min 36 s. Both acquisitions used spectral 
adiabatic inversion recovery (SPAIR) for fat suppression, 
GRAPPA = 2, and three orthogonal diffusion directions with 
b values 0 (NSA = 1) and 1000 (NSA = 5) s/mm2.

To evaluate the SNR with the two protocols, repeated 
(N = 8) DWI (b = 0) scans were acquired from one volun-
teer’s breast with both rFOV-DWI and c-DWI. The SNR 
of fibro-glandular and adipose tissue was calculated as the 
mean over the repeated DWI magnitude images divided by 
the standard deviation over the DWI magnitude images.

Patient image analysis

The ADC calculation and ROI drawing were performed in 
MATLAB (2018, The Mathworks, Natick, MA, USA). The 
ADC was calculated as:

where  S1000 and  S0 are the DWI magnitude images at 
b = 1000 and 0 s/mm2, respectively. Preference was given 
to this calculation rather than using the vendor’s diffusion 
package software, which truncates ADC values to 0 for all 
ADC < 0.

Using whole lesion freehand tissue selection (Fig. 2), 
mean ADCs of c-DWI and rFOV-DWI were calculated. The 
ROI was drawn on the high b = 1000 image, with the DCE 

ADC = −ln

(

S
1000

S
0

)

/

1000

Fig. 1  Illustration of how rFOV 
was used to decrease the num-
ber of phase encoding lines and 
increase the spatial resolution
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perfusion scans (which were acquired in a prior session) 
used as reference. For fatty (N = 38) and fibro-glandular 
(N = 35, 3 were excluded due to insufficient amount), tis-
sue circular ROIs were used (Fig. 2, diameter = 6 mm). Due 
to the non-normal distribution median, ADC (± IQR) was 
given, and Wilcoxon rank test was used to compare ADCs. 
Additionally, the area under the curve of a ROC graph was 
determined for both acquisition protocols.

Assessment of Image ghost artifacts

The presence of ghost artifacts in the DWI images of the 38 
patients was reviewed by one MR physicist (P.B.) with more 
than 11 years of experience in MRI physics. The reviewer 
assessed ghost artifacts present in the tissue and air. Dif-
ferences in noise level, water/fat shift appearance, Gibbs 
artifacts, and artifacts appearing at the outer edges of the 
imaging volume were ignored. We defined the artifact score 
as follows: score 1, no ghost artifacts visible; Score 2, mini-
mally visible either in extent or intensity; Score 3, moder-
ately present either in extent or intensity. Score 4, severe. A 
Student’s t test was used to test for a significant (p < 0.05) 
difference between c-DWI and rFOV-DWI.

Phantom experiments

To investigate potential differences between rFOV-DWI and 
c-DWI in more detail, these scans were acquired of water/
oil phantoms. The same DWI protocol was used as for the 
clinical study. As a base measurement, diffusion scans with 
the two protocols were acquired of sunflower oil contained 

in a plastic ball (diameter = 50 mm). The  F0 was set to the 
frequency of the main  CH2 group plus 420 Hz.

Then the two DWI protocols were acquired of a phantom 
with a water and oil compartment. A 500 ml glass beaker 
was filled with 200 ml pineapple juice and then 200 ml 
of sunflower oil was added to create two adjacent water/
oil compartments. Pineapple juice was chosen as a natural 
aqueous contrast solution, with a T2 matching that of fibro-
glandular tissue of approximately 50 ms [11, 12].

Mean ADCs were calculated for ROIs of the whole oil 
and water components in each slice (N = 12). A Student’s t 
test was subsequently used on these means, to compare the 
influence of the acquisition protocol.

Results

For the volunteer study, the SNR of fibro-glandular tis-
sue was 9.7 (number of voxels Nvoxels = 487) and 18.9 
(Nvoxels = 36) for rFOV-DWI and c-DWI, respectively. The 
SNR of adipose tissue was 4.4 (Nvoxels = 165) and 10.4 
(Nvoxels = 10) for rFOV-DWI and c-DWI, respectively.

Patient study

Figure 3A shows the mean ADCs of the 38 lesions for the 
rFOV protocol versus the conventional protocol. The ADC 
values of lesions (c-DWI: 1.08 ×  10–3  mm2/s (0.60–1.74), 
rFOV-DWI: 1.13 ×  10–3  mm2/s (0.56–1.77)) were not signifi-
cantly different (p = 0.34). This also applies to fibro-glandu-
lar tissue [p = 0.42, c-DWI: 1.61 ×  10–3  mm2/s (1.01–2.13), 
rFOV-DWI: 1.57 ×  10–3  mm2/s (0.97–2.08)]. The area under 

Fig. 2  rFOV-DWI and c-DWI example images for b = 0 s/mm2 (top row) and b = 1000 s/mm2 (bottom row). ROIs shown are freehand ROI for 
the lesion (shaded blue) and circular ROIs for adipose (yellow) and fibro-glandular tissue (red, cropped images on the right side).
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the curve of the ROC curve for differentiating between 
malignant and benign lesions (Fig. 3b) was 0.69 and 0.68 
for the rFOV and conventional protocol, respectively.

The measured ADC of the adipose tissue using rFOV-
DWI had a significantly (p < 0.002) higher ADC value than 
with the conventional DWI protocol. The mean (± SD) adi-
pose ADC values with rFOV and the conventional imaging 
were 0.31 (± 0.20) ×  10–3  mm2/s and 0.16 (± 0.21) ×  10–3 
 mm2/s, respectively.

Assessment of Image ghost artifacts

The average artifact score was 2.1 and 2.5 for c-DWI and 
rFOV-DWI respectively, which was significantly (p = 0.001) 
different. An example of increased ghosting intensity in 
rFOV-DWI compared with c-DWI is presented in Fig. 4. 
c-DWI had no score of 4, whereas rFOV-DWI had two cases 
with a score of 4 both in breasts which visibly appeared to 
have a large percentage of adipose tissue.

Phantom experiments

For the oil sphere (Fig.  5c), no significant difference 
(p = 0.07) was found in ADCs between the two protocols. 
For rFOV-DWI, the mean ADC = − 0.01 (± 0.28) ×  10–3 
 mm2/s, and for c-DWI, the mean ADC = 0.02 (± 0.01) ×  10–3 
 mm2/s.

Figure 5a, b shows the calculated ADC maps for the 
water/oil phantom for the rFOV and c-DWI protocols. For 
both protocols, ghost artifacts were visible (white arrows). 
A significantly higher (Fig. 5c, p < 0.001) ADC of oil was 

found for rFOV-DWI (ADC = 0.18 ×  10–3  mm2/s) compared 
to c-DWI (ADC = -0.04 ×  10–3  mm2/s). No significant differ-
ence (p = 0.34) was found between the ADCs calculated of 
the water component (ADC rFOV-DWI = 1.75 ×  10–3  mm2/s; 
ADC c-DWI = 1.76 ×  10–3  mm2/s).

Discussion

In this study, the ADC values obtained with rFOV-DWI 
imaging were compared to conventional DWI for breast tis-
sue and in an oil/water phantom. No difference was found 
between the ADCs of tumors and fibro-glandular tissue as 
measured by the two protocols. These results are consist-
ent with a previous study finding no differences when the 
mean (malignant) tumor ADC is used [13]. Other studies 
however reported a lower tumor mean ADC for rFOV-DWI 
compared with conventional DWI [5, 14, 15]. This differ-
ence has been attributed to less partial volume averaging 
with fibro-glandular and residual fat tissue with the higher-
resolution rFOV-DWI and therefore a clearer delineation of 
the tumor region [13]. In our study, it is possible that dif-
ference in exact slice positioning and slice gap between the 
two protocols caused a greater ADC variation, hiding the 
influence of in-slice partial volume effects.

For the ADC measurements in adipose tissue and oil, 
these measurements were essentially of the residual olefinic 
signal, as the main ‘fat-suppressed’ methylene group had a 
large water/fat displacement of around 2–3 cm, well known 
for EPI sequences. The ADC measured in adipose tissue 
using c-DWI is in the same range (0.12—0.54 ×  10–3  mm2/s) 

Fig. 3  a Mean ADC of lesions with rFOV versus conventional DWI. Blue dots represent benign and red dot malignant lesions. The black line is 
the x = y. b ROC curve using the rFOV and conventional protocol.
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as measured by previous studies [16, 17]. A significantly 
higher ADC was found in adipose tissue for the rFOV-DWI 
compared to c-DWI.

A possible reason is that the rFOV-DWI has improved fat 
suppression and thus reveals the small water signal compo-
nent (blood vessels, organelles) of adipose tissue. However, 
similar results were found in the water/oil phantom, thus 
excluding this explanation. Bias in ADC may also result 
from low SNR [18]. However, rFOV with its higher resolu-
tion has a lower SNR compared to c-DWI, and would there-
fore show a lower measured ADC, not a higher one. Another 
possible explanation is due to ghost artifacts which appear 
to be partially present in Fig. 5a, b (white arrows). However, 
why this appears inhomogeneous for rFOV-DWI, and only 
influences the ADC of oil for rFOV-DWI and not c-DWI is 
unclear. Hence, the exact origin of why a higher ADC was 
found in adipose tissue for rFOV-DWI compared to c-DWI 
requires further investigation.

Despite the differences in how the ghost artifacts appear 
in the two protocols, we found no difference in mean 
lesions’ ADC values, and therefore lack of significant clini-
cal impact. This study does suggest that rFOV can be used 
diagnostically for higher-resolution breast DWI imaging. 
However, rather than using mean ADC values, measuring 
other DWI parameters and spatial heterogeneity may be 
more informative.

Our study has several limitations. First, the rFOV proto-
col differed in having both a higher resolution and use of a 

2D RF pulse when compared to c-DWI. Too many differ-
ences in protocol settings (including TR, TE, and slice gap) 
can make it more difficult to elucidate the impact of a single 
setting on the results. However, the protocol was constructed 
for implementation in the current clinical setting. Addition-
ally, only the mean ADC was measured for the ROIs, while 
the main clinical advantage of having a higher spatial resolu-
tion would be parameters related to the heterogeneity of the 
region. Because imaging with rFOV-DWI only covers one 
breast, it would not be suitable for breast cancer screening. 
Lastly, no noise-floor correction was performed, which may 
cause bias in the obtained ADC value for the rFOV-DWI 
protocol for tissue with high (> 1.6 ×  10–3  mm2/s) ADC.

This study included both measurements in adipose and 
fibro-glandular tissue. The inclusion of adipose tissue is 
unique, as it is mainly a measurement of the olefinic peak, 
with a frequency (at 3 T) of about 75 Hz separation from the 
water peak. Given that this residual fat peak has a low inten-
sity with expected ADC close to zero (< 0.5 ×  10–3  mm2/s), 
it could function as a sensitive internal probe to image qual-
ity difference, including artifacts, between DWI protocols. 
This is in fact what we have observed, highlighting differ-
ences between the protocols, that would otherwise have been 
overlooked. For future DWI comparison studies, including 
measurements in adipose tissue is therefore recommended.

To conclude, this study found no significant difference 
in the ADCs of fibro-glandular tissue and lesions when 
using rFOV-DWI compared to c-DWI, despite the higher 

Fig. 4  Diffusion images show-
ing an example of increased 
ghosting intensity in rFOV-DWI 
compared with c-DWI. Images 
of b = 0, 1000 s/mm2 pairs are 
shown with the same window/
level settings
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resolution and more accurate ROIs in the rFOV method. 
Ghost artifacts appeared to have a greater influence on the 
measured ADC when using rFOV, as detected in adipose 
regions. These artifacts however appeared to have no influ-
ence on the measured ADC of aqueous tissue.

Data Availability The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.
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