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CONVERGENCE ANALYSIS OF PRESSURE RECONSTRUCTION METHODS
FROM DISCRETE VELOCITIES

Rodolfo Araya1, Cristobal Bertoglio2, Cristian Carcamo1,2 , David Nolte2,3

and Sergio Uribe4,5

Abstract. Magnetic resonance imaging allows the measurement of the three-dimensional velocity
field in blood flows. Therefore, several methods have been proposed to reconstruct the pressure field
from such measurements using the incompressible Navier–Stokes equations, thereby avoiding the use of
invasive technologies. However, those measurements are obtained at limited spatial resolution given by
the voxel sizes in the image. In this paper, we propose a strategy for the convergence analysis of state-
of-the-art pressure reconstruction methods. The methods analyzed are the so-called Pressure Poisson
Estimator (PPE) and Stokes Estimator (STE). In both methods, the right-hand side corresponds
to the terms that involving the field velocity in the Navier–Stokes equations, with a piecewise linear
interpolation of the exact velocity. In the theoretical error analysis, we show that many terms of different
order of convergence appear. These are certainly dominated by the lowest-order term, which in most
cases stems from the interpolation of the velocity field. However, the numerical results in academic
examples indicate that only the PPE may profit of increasing the polynomial order, and that the
STE presents a higher accuracy than the PPE, but the interpolation order of the velocity field always
prevails. Furthermore, we compare the pressure estimation methods on real MRI data, assessing the
impact of different spatial resolutions and polynomial degrees on each method. Here, the results are
consistent with the academic test cases in terms of sensitivity to polynomial order as well as the STE
showing to be potentially more accurate when compared to reference pressure measurements.

Mathematics Subject Classification. 68U10, 65N30, 65N15, 76D05.
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1. Introduction

The intra-arterial spatial distribution of the blood pressure can be measured by means of catheterization [2].
This technique consists in inserting a catheter equipped with a pressure transducer into the vasculature of
the patient and manoeuvring it, under local anaesthesia and guided by fluoroscopy, to the location of interest.
Although it is the “clinical gold standard” for pressure quantification, the invasive nature of the method is
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Figure 1: Pressure map estimation from in an experimental phantom of a thoraxic aorta [22], adapted and
reprinted from [16]: Left: The 4D Flow MRI velocity measurements. Right: Relative pressure map computed
from velocity data. Shown: cuts through roughly the center of the vessels.

associated with a risk of complications [17, 25, 27]. Given that there are recommendations to avoid its use [24],
to compute the pressure difference from measured flow fields is strongly preferred.

Time-resolved 3D velocity encoded magnetic resonance imaging, or 4D flow MRI, offers measuring the com-
plete 3D velocity field within a region of interest [14, 20], Additionally, 4D flow MRI allows the computation
of several hemodynamic parameters, which can be used as new biomarkers [20]. Among those hemodynamic
outputs, relative pressures are one of the most popular ones due to its potential to replace the invasive catheter-
isation procedures.

When the full velocity field is measured as in 4D flow MRI – naturally at a finite spatio-temporal resolution –
it can be inserted in the linear momentum balance of the incompressible Navier–Stokes equations (NSE). Then,
the velocity terms laid in the right-hand-side while the pressure holds as an unknown, which needs to be found
using appropriate discretization approaches. An example of pressure map estimation from real 4D Flow MRI
data is shown in Figure 1.

In practice, and as it can be appreciated in Figure 1-Left, those measurements are obtained at limited spatial
resolution – given by the voxel size in the image – and therefore the velocity entering to the right-hand-side
corresponds to an interpolated version of the exact velocity. Therefore, there is not a unique numerical approach
to compute the reconstructed pressures. A review and preliminary numerical comparison of methods can be
found in [3]. Among those methods, only a few can compute pressure fields and not just averaged pressure
differences between two locations.

The first one is the so-called Pressure Poisson Estimator (PPE) [8,13] and it consists of applying the divergence
to the NSE obtaining a pressure Poisson equation, similarly as it is used in projection methods [11]. However, the
original PPE method cannot include the viscous contribution to the pressure gradient at the level of accuracy
of the measured data. Therefore, recently in [18] the PPE method was modified by adding a boundary term
with the viscous contribution.

Another more modern method corresponds to the Stokes Estimator (STE) was reported in [23]. The STE
consists in adding to the NSE the Laplacian of an artificial incompressible velocity field with null trace leading
to a linear Stokes problem for both pressure and artificial velocity fields. Such artificial velocity is supposed to be
zero for perfect velocity measurements. The STE has shown more accurate results than the PPE in numerically
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simulated data [3, 23] and in real phantom and patient data [16]. However, the STE method is considerably
more expensive computationally than the PPE.

To the best of the authors’ knowledge, neither a mathematical convergence analysis of both PPE and STE
methods or a comparison among discretization schemes for each of the methods has been reported.

Therefore, the purpose of this work is to propose a strategy for performing a priori error analysis and applied
it to the PPE and STE methods. The strategy is based on the splitting of the solution in two components and
adding their contributions to the overall error. Moreover, for both methods we studied different discretization
strategies in order to verify the theoretical analysis and give insights on the cost-effectiveness of each approach.
In order to assess the impact of discretizations on each of the methods, calculations of pressure fields based on
experimental MRI data are also included.

The remainder of this work is organized as follows. In Section 2 we present and analyze the PPE method
in the standard and modified variants using Continuos Galerkin approaches. Section 3 introduces the STE and
analyzes the classical Taylor-Hood and a tailored PSPG discretization. Then, in Section 4 we show numerical
results using three known analytical solutions for the NSE, confirming the a priori error analysis. In Section 5
the methods are assessed under different spatial resolutions and polynomial degree on experimental MRI data.
Finally, in Section 6 we draw some interpretation of the results and give recommendations for the use of these
methods.

2. The Poisson Pressure Estimator

2.1. The continuous problem

The Poisson Pressure Estimator (PPE) consists in obtaining the pressure from the classical Navier–Stokes
equation by mean a Poisson equation. That is, by applying the divergence operator on the Navier–Stokes
equations one obtains ⎧⎪⎨⎪⎩

−∆𝑞 = ∇ · 𝑓𝑢, in Ω
− 𝜕𝑞

𝜕𝑛 = 𝑓𝑢 · 𝑛, on 𝜕Ω∫︀
Ω

𝑞 d𝑥 = 0.

(1)

Given measurements of the velocity 𝑢, with 𝑢 being free divergence [18], the term 𝑓𝑢 has the form 𝑓𝑢 :=
(𝑢 · ∇)𝑢− 𝜈∆𝑢, and 𝑛 corresponds to the outward normal vector of 𝜕Ω.

We will make use of the function spaces 𝐻 := [𝐻1(Ω)]𝑑,V := [𝐻1
0 (Ω)]𝑑 and

𝐻𝑗 :=

⎧⎨⎩
{︁

𝑣 ∈ 𝐻 : ∆𝑣 ∈
[︀
𝐿2(Ω)

]︀𝑑}︁ if 𝑗 = 1,{︁
𝑣 ∈ 𝐻 : ∇× (∇× 𝑢) ∈

[︀
𝐿2(Ω)

]︀𝑑}︁ if 𝑗 = 2,

𝑄 :=
{︂

𝑟 ∈ 𝐻1(Ω) :
∫︁

Ω

𝑟 d𝑥 = 0
}︂

.

Assuming 𝑢 ∈ 𝐻𝑗 , the weak formulation of the (1) is given by: find 𝑞 ∈ 𝑄 such that

𝒜(𝑞, 𝑟) = 𝐹 𝑗
𝑢(𝑟), ∀ 𝑟 ∈ 𝑄, (2)

where 𝒜(𝑞, 𝑟) = (∇𝑞,∇𝑟)Ω and

𝐹 𝑗
𝑢(𝑟) = − ((𝑢 · ∇)𝑢,∇𝑟)Ω + 𝛿1𝑗(𝜈∆𝑢,∇𝑟)Ω − 𝛿2𝑗 (∇𝑟, 𝜈∇× (∇× 𝑢))Ω , (3)

where 𝛿𝑖𝑗 is the Kronecker delta. We refer to Standard-PPE if 𝑗 = 1 and Modified-PPE if 𝑗 = 2 [18].
The uniqueness of the solution of Problem (2) follows from the Lax–Milgram Lemma [9]. Indeed, the coercivity

of the left-side is straightforward. The continuity of 𝐹 𝑗
𝑢 follows from

|𝐹 𝑗
𝑢(𝑟)| ≤ (‖(𝑢 · ∇)𝑢‖0,Ω + 𝛿1𝑗𝜈‖∆𝑢‖0,Ω + 𝛿2𝑗𝜈‖∇ × (∇× 𝑢)‖0,Ω) |𝑟|1,Ω.
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In spite of the last term of 𝐹 𝑗
𝑢, for 𝑗 = 2 is given as in (3), in the practice we will use the identity

− (∇𝑟, 𝜈∇× (∇× 𝑢))Ω = ⟨𝑛×∇𝑟, 𝜈∇× 𝑢⟩𝜕Ω . (4)

2.2. Continuous Galerkin discretizations

Let {𝒯ℎ}ℎ>0 be a shape-regular family of partitions of the polygonal domain Ω, composed by elements 𝐾 of
diameter ℎ𝐾 with mesh size ℎ = max

𝐾∈𝒯ℎ

ℎ𝐾 . ℰℎ denotes the set of all edges of 𝒯ℎ and 𝐹 the edges that compose

it. In addition, 𝒫𝑘(𝐾) denotes the polynomial function spaces defined on 𝐾 of total degree less than or equal
to 𝑘.

The finite element spaces for the pressure approximation and velocity interpolation are:

𝑄ℎ := {𝑞ℎ ∈ 𝑄 : 𝑞ℎ|𝐾 ∈ 𝒫𝑘(𝐾) ∀𝐾 ∈ 𝒯ℎ} ,

𝐻𝑗ℎ :=
{︀
𝑣ℎ ∈ 𝐻𝑗 ∩ [𝐻1(𝐾)]𝑑 : 𝑣ℎ|𝐾 ∈ 𝒫1(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
.

We will also consider the interpolation operators 𝒥ℎ : 𝑄∩𝐻𝑘+1(Ω) → 𝑄ℎ and ℒℎ : 𝐻𝑗 ∩ [𝐻2(Ω)]𝑑 → 𝐻𝑗ℎ such
that:

|𝑞 − 𝒥ℎ𝑞|𝑚,Ω ≤ 𝑎𝑘 ℎ𝑘+1−𝑚|𝑞|𝑘+1,Ω, ∀ 𝑞 ∈ 𝐻𝑘+1(Ω), 0 ≤ 𝑚 ≤ 𝑘 + 1,

|𝑣 − ℒℎ𝑣|𝑚,𝐾 ≤ 𝑎𝑘 ℎ2−𝑚
𝐾 |𝑣|2,𝐾 , ∀ 𝑣 ∈ 𝐻2(𝐾), 0 ≤ 𝑚 ≤ 2,

(5)

where 𝒥ℎ and ℒℎ corresponds to a modified Lagrange interpolator with average zero and the classical Lagrange
interpolator, respectively. Note that it is possible to prove that 𝒥ℎ satisfy the same error approximation prop-
erties than the classical Lagrange interpolator.

Thus, the Galerkin scheme associated with the continuous variational formulation (2) reads as follows: Find
𝑞ℎ ∈ 𝑄ℎ such that

𝒜(𝑞ℎ, 𝑟ℎ) := 𝐹 𝑗
𝑢ℎ

(𝑟ℎ) ∀ 𝑟ℎ ∈ 𝑄ℎ (6)

with

𝐹 𝑗
𝑢ℎ

(𝑟ℎ) = −
∑︁

𝐾∈𝒯ℎ

((ℒℎ𝑢 · ∇)ℒℎ𝑢,∇𝑟ℎ)Ω + 𝛿2𝑗

∑︁
𝐹∈ℰℎ∩𝜕𝛺

⟨𝑛×∇𝑟ℎ, 𝜈∇×ℒℎ𝑢⟩𝐹 . (7)

According to discrete Lax–Milgram Theorem, problem (6) has a unique solution 𝑞ℎ ∈ 𝑄ℎ .

Remark 2.1. Note that from the definitions (3) and (7) we can assure that the problem (6) is not a Galerkin
scheme of the continuous problem (2). Indeed, the scheme is not consistent.

The strategy to prove convergence is to use the known Strang’s lemma for conformal and non-consistent
cases.

In order to prove the convergence theorems, let us state the next result.

Lemma 2.2. Let us assume that 𝑢 ∈ 𝐻2(Ω). Then, there exists 𝐶 independent of ℎ such that

‖(𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢‖0,𝐾 ≤ 𝐶 ℎ𝐾 |𝑢|2,𝐾‖𝑢‖2,𝐾 . (8)

Proof. In this proof we will assume that 𝑎1, 𝑎2 are the error interpolation constants, 𝐶 is an injection constant
and 𝐶𝐼 an inverse inequality constant.

Using properties of interpolation given by (5) and Young inequality we obtain

‖(𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢‖0,𝐾 ≤ ‖(𝑢 · ∇)(𝑢− ℒℎ𝑢)‖0,𝐾 + ‖((𝑢− ℒℎ𝑢) · ∇)ℒℎ𝑢‖0,𝐾

≤ |𝑢− ℒℎ𝑢|1,𝐾‖𝑢‖∞,𝐾 + ‖∇ℒℎ𝑢‖∞,𝐾‖𝑢− ℒℎ𝑢‖0,𝐾
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≤ 𝑎1ℎ𝐾 |𝑢|2,𝐾𝐶‖𝑢‖2,𝐾 + 𝐶𝐼ℎ
−1
𝐾 ‖ℒℎ𝑢‖∞,𝐾𝑎2ℎ

2
𝐾 |𝑢|2,𝐾 (9)

≤ 𝐶 𝑎1 ℎ𝐾 |𝑢|2,𝐾‖𝑢‖2,𝐾 + 𝑎2 𝐶 𝐼ℎ𝐾‖𝑢‖∞,𝐾 |𝑢|2,𝐾

≤ 𝐶 𝑎1 ℎ𝐾 |𝑢|2,𝐾‖𝑢‖2,𝐾 + 𝑎2 𝐶 𝐶𝐼 ℎ𝐾 ‖𝑢‖2,𝐾 |𝑢|2,𝐾

= 𝐶 (𝑎1 + 𝑎2 𝐶𝐼) ℎ𝐾 |𝑢|2,Ω ‖𝑢‖2,𝐾 .

�

Lemma 2.3. Assume that 𝑢 ∈ 𝐻𝑗 ∩𝐻2(Ω)𝑑 if 𝑗 = 1 and 𝑢 ∈ 𝐻𝑗 with 𝑢
⃒⃒
𝜕Ω
∈ [𝐻2(𝜕Ω)]𝑑 if 𝑗 = 2. Then, there

exists 𝐶2 and 𝐶3 independent of ℎ such that

sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

|𝐹 𝑗
𝑢(𝑟ℎ)− 𝐹 𝑗

𝑢ℎ
(𝑟ℎ)|

|𝑟ℎ|1,Ω
≤ 𝐶1ℎ|𝑢|2,Ω‖𝑢‖2,Ω + 𝛿1,𝑗‖∆𝑢‖0,Ω + 𝛿2,𝑗𝐶2𝜈ℎ1/2|𝑢|2,𝜕Ω.

Proof.

sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

|𝐹 𝑗
𝑢(𝑟ℎ)− 𝐹 𝑗

𝑢ℎ
(𝑟ℎ)|

|𝑟ℎ|1,Ω
≤
∑︁

𝐾∈𝒯ℎ

‖(𝑢 · ∇)𝑢− (ℐℎ𝑢 · ∇)ℐℎ𝑢‖0,𝐾 + 𝛿1,𝑗‖∆𝑢‖0,Ω

+ 𝛿2,𝑗 sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

∑︀
𝐹∈ℰℎ∩𝜕Ω |⟨𝑛×∇𝑟ℎ, 𝜈∇× (𝑢− ℐℎ𝑢)⟩𝜕Ω|

|𝑟ℎ|1,Ω
·

For the first term in the above inequality, we use Lemma 2.2 and for the third term we have∑︀
𝐹∈ℰℎ∩𝜕𝛺 |⟨𝑛×∇𝑟ℎ, 𝜈∇× (𝑢− ℐℎ𝑢)⟩𝐹 |

|𝑟ℎ|1,Ω
≤
∑︀

𝐹∈ℰℎ∩𝜕𝛺 𝜈 ‖∇𝑟ℎ‖0,𝐹 ‖∇ × (𝑢− ℐℎ𝑢)‖0,𝐹

|𝑟ℎ|1,Ω
· (10)

Now, thanks to [7, Lemma 1.46], we have

‖∇𝑟ℎ‖0,𝐹 ≤ 𝐶1ℎ
−1/2
𝐾 |𝑟ℎ|1,𝐾 , (11)

where 𝐶1 =
(︁

(𝑘+1)(𝑘+2)
2

)︁1/2

(see [26, Theorem 3]). Besides, from [21, Lemma 10.8] we get

‖∇ × (𝑢− ℐℎ𝑢)‖0,𝐹 ≤ 𝐶2 |𝑢− ℐℎ𝑢|1,𝐹 ≤ 𝐶3 ℎ𝐾 |𝑢|2,𝐹 . (12)

and then, from (10) to (12) we arrive to∑︀
𝐹∈ℰℎ∩𝜕Ω |⟨𝑛×∇𝑟ℎ, 𝜈∇× (𝑢− ℐℎ𝑢)⟩𝐹 |

|𝑟ℎ|1,Ω
≤ 𝐶3 𝜈 ℎ1/2|𝑢|2,𝜕𝛺 ,

which allows us to arrive at the desired result, wherefrom Lemma 2.2, 𝐶2 = 𝐶(𝑎1 + 𝑎2𝐶𝐼). �

Finally, the next theorem holds.

Theorem 2.4 (Main Result I). Let 𝑞 ∈ 𝑄 ∩ 𝐻𝑘+1(Ω) and 𝑞ℎ ∈ 𝑄ℎ solutions of (2) and (6), respectively.
In addition, we assume that 𝑢 ∈ 𝐻𝑗 ∩ [𝐻2(Ω)]𝑑 and 𝑢 ∈ 𝐻𝑗 with 𝑢

⃒⃒
𝜕Ω

∈ [𝐻2(𝜕Ω)]𝑑, for 𝑗 = 1 and 𝑗 = 2
respectively. Then, there exists constants 𝐶1, 𝐶2 and 𝐶3 such that

|𝑞 − 𝑞ℎ|1,Ω ≤ 𝐶1 ℎ𝑘|𝑞|𝑘+1,Ω + 𝐶2 ℎ|𝑢|2,Ω‖𝑢‖2,Ω + 𝛿1,𝑗‖∆𝑢‖0,Ω + 𝛿2,𝑗 𝐶3 𝜈ℎ1/2|𝑢|2,𝜕Ω

with 𝑘 ≥ 1.
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Proof. Thanks to the Strang’s Lemma (see [9, Lemma 2.27]) we have that

|𝑞 − 𝑞ℎ|1,Ω ≤ sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

|𝐹 𝑗
𝑢(𝑟ℎ)− 𝐹 𝑗

𝑢ℎ
(𝑟ℎ)|

|𝑟ℎ|1,Ω
+ 2 inf

𝑟ℎ∈𝑄ℎ

|𝑞 − 𝑟ℎ|1,Ω.

The bound for the first term on the right-hand side follows directly from Lemma 2.3. For the second term,
we will consider the interpolation operator, and then

inf
𝑟ℎ∈𝑄ℎ

|𝑞 − 𝑟ℎ|1,Ω ≤ |𝑞 − 𝒥ℎ𝑞|1,Ω ≤ 𝐶1 ℎ𝑘|𝑞|𝑘+1,Ω.

�

Theorem 2.5. Let the hypothesis of Theorem 2.4 hold with Ω is a convex polygonal domain. Then,

‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶1 ℎ𝑘+1|𝑞|𝑘+1,Ω + 𝐶2 𝐶𝑝ℎ|𝑢|2,Ω‖𝑢‖2,Ω + 𝛿1,𝑗 𝐶𝑝‖∆𝑢‖0,Ω + 𝛿2,𝑗 𝐶3 𝐶𝑝 𝜈ℎ1/2|𝑢|2,𝜕Ω

with 𝐶𝑝 is the Poincaré inequality constant and 𝑘 ≥ 1.

Proof. The proof starts taking 𝑞ℎ ∈ 𝑄ℎ such that satisfies the equation

(∇𝑞ℎ,∇𝑟ℎ)Ω = 𝐹 𝑗
𝑢(𝑟ℎ), (13)

where 𝑢 is the continuous vector function representing the measured velocity field. It follows from the triangle
inequality that

‖𝑞 − 𝑞ℎ‖0,Ω ≤ ‖𝑞 − 𝑞ℎ‖0,Ω + ‖𝑞ℎ − 𝑞ℎ‖0,Ω. (14)

Given that 𝑞 − 𝑞ℎ ∈ 𝑄 ∩𝐻𝑘+1(Ω), there exists a unique 𝜙 ∈ 𝐻2(Ω) such that (see [4])

−∆𝜙 = 𝑞 − 𝑞ℎ, in Ω
𝜕𝑛𝜙 = 0, on 𝜕Ω∫︁

𝜙 dΩ = 0.

(15)

In addition, thanks to the convexity of Ω, by elliptic regularity we have there exists 𝐶Ω > 0 such that

|𝜙|2,Ω ≤ 𝐶Ω‖𝑞 − 𝑞ℎ‖0,Ω. (16)

Notice, the weak formulation for (15) is given by

(∇𝜙,∇𝜑)Ω = (𝑞 − 𝑞ℎ, 𝜑)Ω ∀ 𝜑 ∈ 𝑄. (17)

Now, replacing 𝜑 by 𝑞 − 𝑞ℎ, using the orthogonality property of (17), Cauchy–Schwarz inequality and interpo-
lation properties given in (7), we get

‖𝑞 − 𝑞ℎ‖20,Ω = (𝑞 − 𝑞ℎ, 𝑞 − 𝑞ℎ)0,Ω

= (∇𝜙,∇(𝑞 − 𝑞ℎ))0,Ω

= (∇(𝜙− 𝒥ℎ𝜙),∇(𝑞 − 𝑞ℎ))0,Ω

≤ |𝜙− 𝒥ℎ𝜙|1,Ω|𝑞 − 𝑞ℎ|1,Ω

≤ 𝐶ℎ|𝜙|2,Ω 𝐶 ℎ𝑘|𝑞|𝑘+1,Ω.

Applying the inequality (16) we arrive to

‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶 ℎ𝑘+1|𝑞|𝑘+1,Ω. (18)
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For the second term of the right-hand side in (14) we proceed as follows:

|𝑞ℎ − 𝑞ℎ|1,Ω ≤ sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

𝒜(𝑞ℎ − 𝑞ℎ, 𝑟ℎ)
|𝑟ℎ|1,Ω

≤ sup
𝑟ℎ∈𝑄ℎ
𝑟ℎ ̸=0

𝐹 𝑗
𝑢(𝑟ℎ)− 𝐹 𝑗

𝑢ℎ
(𝑟ℎ)

|𝑟ℎ|1,Ω
·

From Lemma 2.3 and Poincaré inequality, we get

‖𝑞ℎ − 𝑞ℎ‖0,Ω ≤ 𝐶𝑝|𝑞ℎ − 𝑞ℎ|1,Ω ≤ 𝐶2 𝐶𝑝ℎ|𝑢|2,Ω‖𝑢‖2,Ω + 𝛿1,𝑗 𝐶𝑝‖∆𝑢‖0,Ω + 𝛿2,𝑗 𝐶3 𝐶𝑝 𝜈ℎ1/2|𝑢|2,𝜕Ω. (19)

Hence, the result is a direct consequence of the estimates (18) and (19).
�

3. The Stokes Estimator

3.1. The continuous problem

The STE consists then in adding the Laplacian of an incompressible auxiliary velocity 𝑤 ∈ V and to the
left-hand side of the Navier–Stokes equations, i.e.:

−∆𝑤 +∇𝑞 = −𝑓𝑢 in Ω
∇ ·𝑤 = 0 in Ω. (20)

Let us define the space 𝑃 = 𝐿2
0(Ω). Hence, we can define the weak problem of (20) as: Find (𝑤, 𝑞) ∈ V × 𝑃

such that
ℬ((𝑤, 𝑞), (𝑣, 𝑟)) = 𝒢𝑢(𝑣, 𝑟) ∀(𝑣, 𝑟) ∈ V × 𝑃, (21)

where
ℬ((𝑤, 𝑞), (𝑣, 𝑟)) := (∇𝑤,∇𝑣)Ω − (𝑞,∇ · 𝑣)Ω + (𝑟,∇ ·𝑤)Ω

𝒢𝑢(𝑣, 𝑟) := −((𝑢 · ∇)𝑢, 𝑣)Ω − 𝜈(∇𝑢,∇𝑣)Ω.
(22)

For the analysis, we will use the following norm

‖(𝑣, 𝑟)‖V×𝑃 := |𝑣|1,Ω + ‖𝑟‖0,Ω

and if 𝐹 is an linear functional operator we use the norm

‖𝐹‖(V×𝑃 )′ := sup
(𝑣,𝑟)∈V×𝑃

(𝑣,𝑟)̸=0

|𝐹 (𝑣, 𝑟)|
‖(𝑣, 𝑟)‖V×𝑃

· (23)

Note that the problem (21) is well posed thanks to the V-ellipticity of the bilinear form (∇𝑤,∇𝑣)Ω, and
(𝑞,∇ ·𝑤)Ω satisfy an inf-sup condition (cf. [9, Prop. 2.36]).

Lemma 3.1. There exists a positive constant 𝐶ℬ such that

‖ℬ‖ ≤ 𝐶ℬ.

Proof. Using triangular inequality, Cauchy–Schwarz inequality, together to the inequalities 1 ≤
√

𝑑 and√
𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏, with 𝑎, 𝑏 ≥ 0, we get

|ℬ((𝑤, 𝑞), (𝑣, 𝑟))| ≤ |𝑤|1,Ω|𝑣|1,Ω +
√

𝑑‖𝑞‖0,Ω|𝑣|1,Ω +
√

𝑑‖𝑟‖0,Ω|𝑤|1,Ω

≤
√

𝑑|𝑤|1,Ω|𝑣|1,Ω +
√

𝑑‖𝑞‖0,Ω|𝑣|1,Ω +
√

𝑑‖𝑟‖0,Ω|𝑤|1,Ω

≤
√

𝑑
(︀
|𝑤|21,Ω + |𝑤|21,Ω + ‖𝑞‖0,Ω

)︀1/2 (︀|𝑣|21,Ω + |𝑣|21,Ω + ‖𝑟‖0,Ω

)︀1/2

≤ 𝐶ℬ
(︀
|𝑤|21,Ω + ‖𝑞‖20,Ω

)︀1/2 (︀|𝑣|21,Ω + ‖𝑟‖20,Ω

)︀1/2

≤ 𝐶ℬ‖(𝑤, 𝑞)‖V×𝑃 ‖(𝑣, 𝑟)‖V×𝑃

and the result is obtained straightforwardly, with 𝐶ℬ = 2
√

𝑑. �
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3.2. Discrete spaces

Now, for each ℎ let Wℎ and 𝑃ℎ be finite-dimensional spaces such that:

Wℎ :=
{︀
𝑣ℎ ∈ [𝐻1(Ω)]𝑑 : 𝑣ℎ|𝐾 ∈ [𝒫𝑙(𝐾)]𝑑 ∀𝐾 ∈ 𝒯ℎ

}︀
,

𝑃ℎ := {𝑞ℎ ∈ 𝑃 : 𝑞ℎ|𝐾 ∈ 𝒫𝑘(𝐾) ∀𝐾 ∈ 𝒯ℎ} ,

𝐻ℎ :=
{︀
𝑤ℎ ∈ 𝐻 : 𝑤ℎ|𝐾 ∈ [𝒫1(𝐾)]𝑑 ∀𝐾 ∈ 𝒯ℎ

}︀
.

For our error analysis, we will need to make use of some known results.

Theorem 3.2. There exists 𝐶𝐼 independent of ℎ such that

‖∇𝑤‖0,𝐾 ≤ 𝐶𝐼ℎ
−1
𝐾 ‖𝑤‖0,𝐾 . (24)

Proof. See [4, Lemma 4.5.3]. �

3.3. Taylor-Hood discretization

For the discrete STE we set Vℎ = Wℎ ∩V where inf-sup stable pairs of finite elements require the use of
different spaces for velocity and pressure and for this reason, we take Taylor-Hood, where 𝑙 = 𝑘 + 1. Otherwise,
it is not possible to use conforming spaces of the lowest order for the discrete velocity. Furthermore, we will
consider the property of the interpolation operator ℐℎ : V ∩ [𝐻𝑘+1(Ω)]𝑑 → Vℎ:

|𝑤 − ℐℎ𝑤|𝑚,Ω ≤ 𝑎𝑘 ℎ𝑘+1−𝑚|𝑤|𝑘+1,Ω, ∀ 𝑤 ∈ [𝐻𝑘+1(Ω)]𝑑, 0 ≤ 𝑚 ≤ 𝑘 + 1. (25)

Thereby, the discrete version of the problem (21) reads as follows: Find (𝑤ℎ, 𝑞ℎ) ∈ Vℎ × 𝑃ℎ such that

ℬ((𝑤ℎ, 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) = 𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ) ∀ (𝑣ℎ, 𝑟ℎ) ∈ Vℎ × 𝑃ℎ, (26)

where the bilinear form ℬ is like in the continuous case, and

𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ) := − ((ℒℎ𝑢 · ∇)ℒℎ𝑢, 𝑣ℎ)Ω − 𝜈 (∇ℒℎ𝑢,∇𝑣ℎ)Ω , (27)

with ℒℎ : [𝐻2(Ω)]𝑑 −→ 𝐻ℎ a Lagrange interpolant.

Lemma 3.3. There exists a constant 𝛽1, independent of ℎ, such that

sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

ℬ((𝑤ℎ, 𝑞ℎ), (𝑣ℎ, 𝑟ℎ))
‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

≥ 𝛽1‖(𝑤ℎ, 𝑞ℎ)‖V×𝑃 , ∀ (𝑤ℎ, 𝑞ℎ) ∈ Vℎ × 𝑃ℎ.

Proof. See equation [10, (1.39)] and [10, Corollary 4.1] �

For the next result, we consider the pair (𝑤̃ℎ, 𝑞ℎ) ∈ Vℎ × 𝑃ℎ, such that

ℬ((𝑤̃ℎ, 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) = 𝒢𝑢(𝑣ℎ, 𝑟ℎ) ∀(𝑣ℎ, 𝑟ℎ) ∈ Vℎ × 𝑃ℎ, (28)

where 𝒢𝑢(𝑣ℎ, 𝑟ℎ) = − ((𝑢 · ∇)𝑢, 𝑣ℎ)0,Ω−𝜈(∇𝑢,∇𝑣ℎ)Ω with the continuous velocity 𝑢. Let us recall the following
convergence result.

Lemma 3.4. Let (𝑤, 𝑞) and (𝑤̃ℎ, 𝑞ℎ) solutions of (21) and (28) respectively. Assume that (𝑤, 𝑞) ∈ [𝐻1
0 (Ω) ∩

𝐻𝑘+1(Ω)]𝑑 × [𝐿2
0(Ω) ∩𝐻𝑘(Ω)], with 𝑘 ≥ 1. Then, there exists 𝐶 > 0 independent of ℎ such that

‖(𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ)‖V×𝑃 ≤ 𝐶 ℎ𝑘 (|𝑤|𝑘+1,Ω + |𝑞|𝑘,Ω) .
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Proof. See [9, Lemma 2.44] �

In order to show the convergence of 𝑞ℎ (Main Result II, see later Theorem 3.7), we set the following Lemma.

Lemma 3.5. Let (𝑤ℎ, 𝑞ℎ), (𝑤̃ℎ, 𝑞ℎ) ∈ Vℎ × 𝑃ℎ, solutions of (26) and (28) respectively, and 𝛽1 the constant
given in Lemma 3.3. Then,

‖(𝑤̃ℎ −𝑤ℎ, 𝑞ℎ − 𝑞ℎ)‖V×𝑃 ≤ 𝛽−1
1 ‖𝒢𝑢 − 𝒢𝑢ℎ

‖(V×𝑃 )′

with (𝒢𝑢 − 𝒢𝑢ℎ
)(𝑣ℎ, 𝑟ℎ) := −

∑︀
𝐾∈𝒯ℎ

((𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢, 𝑣ℎ)𝐾 − 𝜈 (∇𝑢−∇ℒℎ𝑢,∇𝑣ℎ)𝐾 .

Proof. By Lemma 3.3 together with the Cauchy–Schwarz inequality, we arrive to the inequality

𝛽1‖(𝑤̃ℎ −𝑤ℎ, 𝑞ℎ − 𝑞ℎ)‖V×𝑃 ≤ sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ) ̸=0

ℬ((𝑤̃ℎ −𝑤ℎ, 𝑞ℎ − 𝑞ℎ), (𝑣ℎ, 𝑟ℎ))
‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

= sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ) ̸=0

𝒢𝑢(𝑣ℎ, 𝑟ℎ)− 𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ)

‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

= sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ) ̸=0

(𝒢𝑢 − 𝒢𝑢ℎ
)(𝑣ℎ, 𝑟ℎ)

‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

≤ ‖𝒢𝑢 − 𝒢𝑢ℎ
‖(V×𝑃 )′.

�

Lemma 3.6. Let 𝒢𝑢 and 𝒢𝑢ℎ
be as in (22) and (27) respectively and denote by (V× 𝑃 )′ the dual space of the

product space V × 𝑃 . In addition, we assume that 𝑢 ∈ [𝐻2(Ω)]𝑑. Then, there exists 𝐶 independent of ℎ such
that

‖𝒢𝑢 − 𝒢𝑢ℎ
‖(V×𝑃 )′ ≤ ℎ|𝑢|2,Ω [𝐶 ‖𝑢‖2,Ω + 𝜈 𝑎1] .

Proof.

‖𝒢𝑢(𝑣ℎ, 𝑟ℎ)− 𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ)‖0,Ω ≤‖(𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢)‖0,Ω‖𝑣ℎ‖0,Ω

+ 𝜈‖∇𝑢−∇ℒℎ𝑢‖0,Ω‖∇𝑣ℎ‖0,Ω.

For the first term of the right-hand side, we use Lemma 2.2.
For the second term of the right-hand-side, we have from the interpolation bounds:

‖∇(𝑢− ℒℎ𝑢)‖0,Ω ≤ 𝑎1ℎ|𝑢|2,Ω.

Finally, using the above inequalities and Poincaré inequality we get

‖(𝒢𝑢 − 𝒢𝑢ℎ
)(𝑣ℎ, 𝑟ℎ)‖0,Ω ≤ ℎ|𝑢|2,Ω

[︁
𝐶𝑝 𝐶 (𝑎1 + 𝑎2 𝐶𝐼)‖𝑢‖2,Ω + 𝜈 𝑎1

]︁
|𝑣ℎ|1,Ω

≤ ℎ|𝑢|2,Ω

[︁
𝐶𝑝 𝐶 (𝑎1 + 𝑎2 𝐶𝐼)‖𝑢‖2,Ω + 𝜈 𝑎1

]︁
‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃 ,

where 𝐶𝑝 is the Poincaré constant. Thereby, we arrive straight at the result of the lemma. �

Finally, we can derive the first main convergence result.

Theorem 3.7 (Main Result II). Assume that (𝑤, 𝑞) ∈ [𝐻1
0 (Ω)∩𝐻𝑘+1(Ω)]𝑑×[𝐿2

0(Ω)∩𝐻𝑘(Ω)] and 𝑢 ∈ [𝐻2(Ω)]𝑑.
Then,

|𝑤 −𝑤ℎ|1,Ω + ‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶1𝐶2ℎ
𝑘 (|𝑤|𝑘+1,Ω + |𝑞|𝑘,Ω) + 𝛽−1

1 ℎ|𝑢|2,Ω (𝐶 ‖𝑢‖2,Ω + 𝜇 𝑎1) .

Proof. The proof follows from Lemmas 3.4, 3.5, and 3.6. �
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3.4. Stabilized PSPG discretization

Let us consider again the Stokes problem given as in (20) and its respective variational formulation (21). We
will now analyze the PSPG Stabilization [12] with the end of comparing the error of convergence between the
pressure obtained with both schemes.

We want to use spaces of finite element of order 𝑘 for the velocity and the pressure, i.e., 𝑘 = 𝑙, by means of
the following stabilized formulation.

ℬ𝑠 ((𝑤ℎ, 𝑞ℎ)(𝑣ℎ, 𝑟ℎ)) = 𝒢𝑠
𝑢ℎ

(𝑣ℎ, 𝑟ℎ), (29)

where

ℬ𝑠((𝑤ℎ, 𝑞ℎ)(𝑣ℎ, 𝑟ℎ)) := ℬ((𝑤ℎ, 𝑞ℎ)(𝑣ℎ, 𝑟ℎ)) +
∑︁

𝐾∈𝒯ℎ

𝛿 ℎ2
𝐾(∇𝑞ℎ,∇𝑟ℎ)𝐾

𝒢𝑠
𝑢ℎ

(𝑣ℎ, 𝑟ℎ) := 𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ) +

∑︁
𝐾∈𝒯ℎ

𝛿 ℎ2
𝐾(−𝑓𝑢ℎ

,∇𝑟ℎ)𝐾

with ℬ((·, ·), (·, ·)) and 𝒢𝑢ℎ
(·, ·) defined as in (27), and

𝑓𝑢ℎ
:= (ℒℎ𝑢 · ∇)ℒℎ𝑢. (30)

Remark 3.8. Note that the term ∆𝑤ℎ is not included in the stabilization. This is possible to do while keeping
strong consistency since 𝑤 = 0. Our choice allows also us to avoid conditional well-posedness of the discrete
solution as in standard PSPG stabilized formulations.

Let us define the mesh-dependent norm on the product space V × 𝑃

‖(𝑣, 𝑟)‖2ℎ := ℬ𝑠((𝑣, 𝑟), (𝑣, 𝑟)) = ‖∇𝑣‖20,Ω +
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑟‖20,𝐾 . (31)

Remark 3.9. It is possible to prove that ‖(𝑣ℎ, 𝑟ℎ)‖ℎ ⪯ ‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃 for all (𝑣ℎ, 𝑟ℎ) ∈ Vℎ × 𝑃ℎ. Indeed,
applying the inequality (24) and the previous assumptions we get

‖(𝑣ℎ, 𝑟ℎ)‖2ℎ := ‖∇𝑣ℎ‖20,Ω +
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑟ℎ‖20,𝐾 ≤ ‖∇𝑣ℎ‖20,Ω + 𝛿𝐶2

𝐼 ‖𝑟ℎ‖20,Ω

≤ max
{︀

1, 𝛿𝐶2
𝐼

}︀ (︀
‖∇𝑣ℎ‖20,Ω + ‖𝑟ℎ‖20,Ω

)︀
and then,

‖(𝑣ℎ, 𝑟ℎ)‖ℎ ≤ 𝐶𝑒𝑞‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃 , (32)

where

𝐶𝑒𝑞 =
[︀
max

{︀
1, 𝛿𝐶2

𝐼

}︀]︀1/2
.

Lemma 3.10.

‖ℬ𝑠‖ ≤ 𝐶ℬ𝑠 = max
{︁

𝐶ℬ,
√

𝛿𝐶𝑒𝑞 𝐶𝐼

}︁
. (33)
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Proof. Using the inequalities (24) and (32), Theorem 3.1 and Cauchy–Schwarz inequality we obtain that

|ℬ𝑠 ((𝑤ℎ, 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) | ≤ ‖ℬ‖‖(𝑤ℎ, 𝑞ℎ)‖V×𝑃 ‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃 +
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑞ℎ‖0,𝐾‖∇𝑟ℎ‖0,𝐾

≤ 𝐶ℬ‖(𝑤ℎ, 𝑞ℎ)‖V×𝑃 ‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

+

(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑞ℎ‖20,𝐾

)︃1/2(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑟ℎ‖20,𝐾

)︃1/2

≤ 𝐶ℬ‖(𝑤ℎ, 𝑞ℎ)‖V×𝑃 ‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

+

(︃ ∑︁
𝐾∈𝒯ℎ

𝛿𝐶2
𝐼 ‖𝑞ℎ‖20,𝐾

)︃1/2

‖(𝑣ℎ, 𝑟ℎ)‖ℎ

≤ 𝐶ℬ𝑠‖(𝑤ℎ, 𝑞ℎ)‖V×𝑃 ‖(𝑣ℎ, 𝑟ℎ)‖V×𝑃

and then the result follows. �

In the next lemmas we will consider the pair (𝑤̃ℎ, 𝑞ℎ) ∈ Vℎ × 𝑃ℎ which are solution of the equation

ℬ𝑠((𝑤ℎ, 𝑞ℎ)(𝑣ℎ, 𝑟ℎ)) = 𝒢𝑠
𝑢(𝑣ℎ, 𝑟ℎ), ∀ (𝑣ℎ, 𝑟ℎ) ∈ Vℎ × 𝑃ℎ, (34)

where
𝒢𝑠

𝑢(𝑣ℎ, 𝑟ℎ) := 𝒢𝑢(𝑣ℎ, 𝑟ℎ) +
∑︁

𝐾∈𝒯ℎ

𝛿 ℎ2
𝐾(𝑓𝑢,∇𝑟ℎ)𝐾 .

We highlight that the solvability of the problem (34) has been guaranteed in [12].

Lemma 3.11. Let (𝑤, 𝑞) and (𝑤̃ℎ, 𝑞ℎ) solutions of (21) and (34) respectively. Assume that (𝑤, 𝑞) ∈ [𝐻1
0 (Ω) ∩

𝐻𝑘+1(Ω)]𝑑 × [𝐿2
0(Ω) ∩𝐻𝑘(Ω)] . Then, there is 𝐶 > 0 independent of ℎ such that

|𝑤 − 𝑤̃ℎ|1,Ω + ‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶1 𝐶3 ℎ𝑘 (|𝑤|𝑘+1,Ω + |𝑞|𝑘,Ω)

with 𝐶3 = 1 + ‖ℬ𝑠‖.

Proof. We note that (𝑤, 𝑞) and (𝑤̃ℎ, 𝑞ℎ) satisfy the orthogonality property

ℬ𝑠 ((𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) = 0 ∀(𝑣ℎ, 𝑟ℎ) ∈ Vℎ × 𝑃ℎ.

Indeed, thanks to the consistency of bilinear form ℬ we get

ℬ𝑠 ((𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) = ℬ ((𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ), (𝑣ℎ, 𝑟ℎ)) +
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(∇𝑞,∇𝑟ℎ)𝐾

−
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(∇𝑞ℎ,∇𝑟ℎ)𝐾

=
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(𝑓𝑢,∇𝑟ℎ)𝐾 −

∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(𝑓𝑢,∇𝑟ℎ)𝐾

= 0.

By the triangle inequality, we can get,

‖(𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ)‖V×𝑃 = |𝑤 − ℐℎ𝑤 + ℐℎ𝑤 −𝑤ℎ|1,Ω + ‖𝑞 − 𝒥ℎ𝑞 + 𝒥ℎ𝑞 − 𝑞ℎ‖0,Ω

≤ ‖(𝑤 − ℐℎ𝑤, 𝑞 − 𝒥ℎ𝑞)‖V×𝑃 + ‖(𝑤̃ℎ − ℐℎ𝑤, 𝑞ℎ − 𝒥ℎ𝑞)‖V×𝑃 . (35)
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For the second term of the right-hand side, we must consider the result earned in [12] from where we get

‖(𝑤̃ℎ − ℐℎ𝑤, 𝑞ℎ − 𝒥ℎ𝑞)‖V×𝑃 ≤ sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

ℬ𝑠((𝑤̃ℎ − ℐℎ𝑤, 𝑞ℎ − 𝒥ℎ𝑞), (𝑣ℎ, 𝑟ℎ))
‖(𝑣ℎ, 𝑟ℎ)‖ℎ

= sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

ℬ𝑠((𝑤 − ℐℎ𝑤, 𝑞 − 𝒥ℎ𝑞), (𝑣ℎ, 𝑟ℎ))
‖(𝑣ℎ, 𝑟ℎ)‖ℎ

≤ ‖ℬ𝑠‖‖(𝑤 − ℐℎ𝑤, 𝑞 − 𝒥ℎ𝑞)‖V×𝑃

and so, from this inequality and (35) we obtain

‖(𝑤 − 𝑤̃ℎ, 𝑞 − 𝑞ℎ)‖V×𝑃 ≤ (1 + ‖ℬ𝑠‖) ‖(𝑤 − ℐℎ𝑤, 𝑞 − 𝒥ℎ𝑞)‖V×𝑃

and thereby we arrive to

|𝑤 − 𝑤̃ℎ|1,Ω + ‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶1𝐶3ℎ
𝑘 (|𝑤|𝑘+1,Ω + |𝑞|𝑘,Ω) ,

. �

Lemma 3.12. Let (𝑤̃ℎ, 𝑞ℎ) and (𝑤ℎ, 𝑞ℎ) be solutions of (34) and (29), respectively. Additionally, we assume
that 𝑢 ∈ [𝐻2(Ω)]𝑑. Then, the following bound is satisfied:

‖ (𝑤̃ℎ −𝑤ℎ, 𝑞ℎ − 𝑞ℎ) ‖ℎ ≤‖𝒢𝑢 − 𝒢𝑢ℎ
‖(V×𝑃 )′ +

√
𝛿ℎ2𝐶(𝑎1 + 𝑎2𝐶𝐼)|𝑢|2,Ω‖𝑢‖2,Ω‖(𝑣ℎ, 𝑟ℎ)‖ℎ +

√
𝛿𝜈ℎ‖∆𝑢‖0,Ω.

Proof. Let 𝑒𝑤
ℎ := 𝑤̃ℎ −𝑤ℎ and 𝑒𝑞

ℎ := 𝑞ℎ − 𝑞ℎ. Then, thanks to the stability of ℬ𝑠 given in (31) we have

‖(𝑒𝑤
ℎ , 𝑒𝑞

ℎ)‖ℎ =
ℬ𝑠 ((𝑒𝑤

ℎ , 𝑒𝑞
ℎ)(𝑒𝑤

ℎ , 𝑒𝑞
ℎ))

‖(𝑒𝑤
ℎ , 𝑒𝑞

ℎ)‖ℎ

≤ sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

ℬ𝑠((𝑒𝑤
ℎ , 𝑒𝑞

ℎ)(𝑣ℎ, 𝑞ℎ))
‖(𝑣ℎ, 𝑞ℎ)‖ℎ

= sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

𝒢𝑠
𝑢(𝑣ℎ, 𝑟ℎ)− 𝒢𝑠

𝑢ℎ
(𝑣ℎ, 𝑟ℎ)

‖(𝑣ℎ, 𝑞ℎ)‖ℎ

= sup
(𝑣ℎ,𝑟ℎ)∈Vℎ×𝑃ℎ

(𝑣ℎ,𝑟ℎ )̸=0

𝒢𝑢(𝑣ℎ, 𝑟ℎ)− 𝒢𝑢ℎ
(𝑣ℎ, 𝑟ℎ)−

∑︀
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(𝑓𝑢 − 𝑓𝑢ℎ

,∇𝑟ℎ)𝐾

‖(𝑣ℎ, 𝑞ℎ)‖ℎ
·

We take the term within the sum, making use of the Cauchy–Schwarz inequality and proceeding similarly as
in (9), we obtain

−
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾(𝑓𝑢 − 𝑓𝑢ℎ

,∇𝑟ℎ)𝐾 =
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾 ((𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢,∇𝑟ℎ)𝐾

− 𝜈
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾 (∆𝑢,∇𝑟ℎ)𝐾

≤
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖(𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢‖0,Ω‖∇𝑟ℎ‖0,𝐾

+ 𝜈
∑︁

𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∆𝑢‖0,𝐾‖∇𝑟ℎ‖0,𝐾
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≤

(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖(𝑢 · ∇)𝑢− (ℒℎ𝑢 · ∇)ℒℎ𝑢‖20,𝐾

)︃1/2

×

(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑟ℎ‖20,𝐾

)︃1/2

+ 𝜈

(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∆𝑢‖20,𝐾

)︃1/2(︃ ∑︁
𝐾∈𝒯ℎ

𝛿ℎ2
𝐾‖∇𝑟ℎ‖20,𝐾

)︃1/2

≤
√

𝛿ℎ2𝐶(𝑎1 + 𝑎2𝐶𝐼)|𝑢|2,Ω‖𝑢‖2,Ω‖(𝑣ℎ, 𝑟ℎ)‖ℎ

+ 𝜈
√

𝛿

(︃ ∑︁
𝐾∈𝒯ℎ

ℎ2
𝐾‖∆𝑢‖20,𝐾

)︃1/2

‖(𝑣ℎ, 𝑟ℎ)‖ℎ

≤
√

𝛿ℎ2𝐶(𝑎1 + 𝑎2𝐶𝐼)|𝑢|2,Ω‖𝑢‖2,Ω‖(𝑣ℎ, 𝑟ℎ)‖ℎ

+ 𝜈
√

𝛿ℎ‖∆𝑢‖0,Ω‖(𝑣ℎ, 𝑟ℎ)‖ℎ.

�

As a main result of this section, by employing the approximation properties and a priori estimates, we obtain
the next result.

Theorem 3.13 (Main Result III). Assume that the hypothesis of Theorem 3.7 holds. Then,

|𝑤 −𝑤ℎ|1,Ω + ‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶1𝐶3ℎ
𝑘 (|𝑤|𝑘+1,Ω + |𝑞|𝑘,Ω) + 𝜈

√
𝛿ℎ‖∆𝑢‖0,Ω

+ ℎ|𝑢|2,Ω

[︁
𝐶𝑝 𝐶 (𝑎1 + 𝑎2 𝐶𝐼)‖𝑢‖2,Ω + 𝜈 𝑎1

+
√

𝛿ℎ𝐶𝑝 𝐶 (𝑎1 + 𝑎2 𝐶𝐼)‖𝑢‖2,Ω

]︁
.

Proof. The proof follows from combining the results of Lemmas 3.6, 3.11 and 3.12. �

4. Numerical results for the convergence analysis

In this section, we present some numerical examples to illustrate the theoretical results previously described.
The legends in the plots follow the notation:

– 𝑒1(𝑞): Pressure error in 𝐿2-norm with 𝒫1

– 𝑒2(𝑞): Pressure error in 𝐿2-norm with 𝒫2,

with

𝑒𝑖(𝑞) :=
‖𝑞 − 𝑞ℎ‖0,Ω

‖𝑞‖0,Ω
·

In addition, for Modified-PPE and Standard-PPE we will use the legend PPEvisc and PPE respectively. For
the STE computed using Taylor Hood spaces and PSPS we will use the legend STE (TH) and STE (PSPG)
respectively.

Every numerical routine has been sorted out using the open-source finite element libraries FEniCS [1].

Example 4.1. For the first example, we consider the exact solution of the two dimensional Kovasznay flow

𝑢(𝑥, 𝑦) =
(︂

1− 𝑒𝜆𝑥 cos(2𝜋𝑦)
𝜆
2𝜋 𝑒𝜆𝑥 sin(2𝜋𝑦)

)︂
, 𝑝(𝑥, 𝑦) =

1
2
𝑒𝜆𝑥 − (𝑒3𝜆 − 𝑒−𝜆),
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where Ω =
(︀
− 1

2 , 3
2

)︀
× (0, 2) and the parameter 𝜆 is given by 𝜆 = 1

2𝜈 −
√︁

1
4𝜈2 + 4𝜋2. For this illustration we have

taken the Reynold number as in [19] which is given by Re = 1
𝜈 .

The convergence results for Example 4.1 are shown in Figure 2 and examples of pressure and velocity fields
in Figures 3–6.

First, it can be appreciated the lack of convergence of the PPE, while adding the viscous terms recovers it.
Also, the STE appears to be more accurate than the PPE (visc) and it seems not to profit from the increase
of polynomial order. Moreover, the STE-PSPG appears to deliver more accurate results than the STE-TH.
Finally, it is worth saying that the sensitivity of all methods with respect to the polynomial order decreases
when increasing the Reynolds number.

Example 4.2. Next we turn to the testing the scheme, where the computational domain is the rectangle
Ω = (0, 1)2 and we consider the exact solution of the Navier–Stokes equation given by

𝑢(𝑥, 𝑦) =
(︂

𝜈

4
𝑒𝑥 sin(𝜈𝑦),

1
4
𝑒𝑥 cos(𝜈𝑦)

)︂
and 𝑝(𝑥, 𝑦) = −𝜈

2
𝑒2𝑥 +

𝜈

4
(𝑒2 − 1). (36)

The convergence results for Example 4.2 are shown in Figure 7 and the examples of pressure and velocity
fields in Figures 8–11. Here, the same remarks given about the results in Example 4.1 apply, except that for
higher Reynolds numbers the STE methods appear to keep the sensitivity (though worsening) when increasing
the polynomial order.

5. Computations using experimental MRI data

Experimental MRI data was used to assess the impact of discretization in the pressure estimation methods
in realistic data and flow regimes. The setup consisted of a 3D printed, MR compatible phantom of the thoracic
aorta with 60% of obstruction in order to produce a typical obstruction. Blood mimicking fluid was pumped
into the phantom obtaining physiological velocities. The phantom was equipped with a catheterization unit to
measure invasively and simultaneously the pressure gradient across the obstruction. 4D Flow MRI was acquired
with an isotropic voxel size of 0.9 mm and 25 time instants along the emulated cardiac cycle. We refer to
[15,16,22] for the technical details of the experiment. The 4D Flow data is shown in Figure 1.

Two tetrahedral meshes for the pressure computations were constructed. The first one was created using the
original 0.9 mm resolution where the nodes of the mesh correspond to the voxels center. The second mesh has
2 mm resolution created using linear interpolation on the first mesh.

Pressure maps were computed from all 4D flow data sets with the PPE, PPEvisc and STE methods. Due to
the pulsatile nature of the experiment, the term

−(𝜕𝜏𝑢,∇𝑟)Ω and − (𝜕𝜏𝑢, 𝑟)Ω

with 𝜕𝜏 the backward finite difference operator between two measured time instants, were added to the right-
hand-side of the PPE and STE methods, respectively. This implies that the convergence analysis does not fully
apply to the this experimental setup, however, the goal is merely to give an idea on how the discretization setup
and methods compare when using real 4D flow MRI data.

The pressure differences, to be compared with the corresponding catheter values were defined as differences
of the pressure averages over two spheres with a radius of 4 mm at locations proximally (ascending aorta) and
distally to the obstruction.

For the PPE and PPEvisc continuous Galerkin finite elements with 𝑘 = 1, 2, 3 were considered.
For the STE, both Taylor-Hood (TH) and PSPG cases were computed, the latter with stabilization parameter

𝛿 = 0.01 as in the previous section for the convergence analysis. In the 2 mm element size mesh, 𝑘 = 1, 2 was
tested for both TH and PSPG. In the 0.9 mm element size mesh, only 𝑘 = 1 was used for TH (due to the very
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Figure 2: Pressure error curves for viscosities values 1, 10−1, 10−2 and 10−3 of Example 4.1 (Kovaznay flow).
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Figure 3: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 1 in Example 4.1 (Kovaznay flow).

Figure 4: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 0.1 in Example 4.1 (Kovaznay flow).
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Figure 5: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 0.01 in Example 4.1 (Kovaznay flow).

Figure 6: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 0.001 in Example 4.1 (Kovaznay flow).
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Figure 7: Pressure error curves for viscosities values 𝜋/4, 𝜋/2, 𝜋 and 2𝜋 of Example 4.2.
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Figure 8: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 2𝜋 in Example 4.2.

Figure 9: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order
𝑘 = 1 (bottom) for 𝜈 = 𝜋 in Example 4.2.



1858 R. ARAYA ET AL.

Figure 10: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with
order 𝑘 = 1 (bottom) for 𝜈 = 𝜋/2 in Example 4.2.

Figure 11: 𝒫1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order 𝑘 = 1
(bottom) for 𝜈 = 𝜋/4 in Example 4.2.
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Figure 12: Pressure difference in the obstruction over time error computed from 4D flow and compared with
the catheter values.

high computational cost of higher-order) and 𝑘 = 1, 2 was used for PSPG. These methods were implemented
using the FEM library FEniCS [1].

Figure 12 shows the results of the pressure estimation, where the catheter pressure values show that the 4D
flow-based pressure estimation delivers reasonable values. However, note that the catheter measurements cannot
be considered as ground truth, since the precision of the pressure measurements can be considered within a few
mmHg [5,6, 16]. It can be noted that:

– PPE and PPEvisc deliver visually the same results, which may occur due to the fact that viscous effects are
negligible in this type of (patho-)physiological flows.

– PPE and PPEvisc allow for a larger pressure gradient when increasing 𝑘 in the coarse mesh.
– PPE and PPEvisc are less sensitive to 𝑘 for the finest mesh.
– STE methods allow to recover larger pressure differences than PPE methods.
– STE-PSPG delivers equal or better results than STE-TH for 𝑘 = 1, what is consistent with the convergence

results of the numerical tests in the previous section.
– STE-PSPG seems not to profit from increasing polynomial order, what is consistent with convergence results

for high Reynolds numbers.
– If one may take the catheter measurements as a ground truth, STE-PSPG would deliver the most accurate

results.

6. Conclusions

In this article, we have analyzed theoretically and numerically some strategies employed to recover pressure
fields from discrete velocities using the incompressible Navier–Stokes equations.

Two main methods were analyzed, the STE and PPE. While the STE is implemented using the classical
Taylor-Hood finite element spaces and the Pressure-Stabilizing Petrov–Galerkin (PSPG), the PPE is imple-
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mented with the traditional Continuous Galerkin Method. For the PPE, two versions have been studied, the
standard one without the viscous term and a modified one that includes it.

The error analysis shows that all methods, except the standard PPE, converge to the exact solution when
decreasing the element size of the image mesh ℎ. With respect to the convergence rate, terms of several orders
appear in the error analysis. The numerical results determine that the PPEvisc linear order dominates in the
test cases presented. For the STE, the convergence in the numerical examples varies depending on the test case
and the polynomial order.

Numerical results in academic test cases show that as the Reynolds number increases, the results seem to
lose sensitivity to an increase in polynomial order, in particular for the STE, while the PPEvisc shows some
improvements. In many of the cases, the error also appears to decrease faster with ℎ for the STE than for the
PPEvisc. Among both STE discretizations, the PSPG appears to be equally or sometimes more accurate than
Taylor-Hood approximations.

The computations with real MRI data are consistent with these observations. Therefore, it seems that STE-
PSPG is likely to be the method of choice then it comes to the highest accuracy and a reasonable computational
cost.
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