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2 D E TA I L E D O V E R V I E W O F T H E
B A C KG R O U N D

Deep learning is widely applied in the biological field for object detection, seg-
mentation and classification. It becomes more successful as it performs certain
image classification tasks with accuracy comparable to that of a human and
requires little human input in the form of manually designed features or arbi-
trarily chosen thresholds [39]. This section reviews several recent works related
to the introduced challenges in chapter 1. Each of the following chapters will
have a related work section corresponding to the particular approached issue.
Additionally, the data is introduced in section 7.2, as well as the computing
tasks are defined in section 2.3. Finally, the utilized deep learning models are
introduced in section 2.4.

2.1 research in microscopic image analysis
A finite number of existing studies in the broader literature have examined object
detection, segmentation and classification for microscopic images using deep
learning (DL). Greenwald et al. [40] constructed a dataset with more than 1

million manually labelled cells for training Mesmer, a segmentation model. It was
demonstrated that this approach (Mesmer) is more accurate than previous meth-
ods that achieved human-level performance and can be generalized to the full
diversity of tissue types. To reduce the number of manual annotations, Moshkov
et al. [41] used various augmentation techniques to increase both the training
and test datasets. Then they performed the prediction both on the original and
on the augmented versions of the image, followed by merging the predictions.
This approach is called test-time augmentation (TTA). Finally, they incorporated
the TTA prediction method into two major segmentation approaches utilized in
the single-cell analysis of microscopy images. Both studies, though, need to have
or create a large number of annotated examples to be used as input to their DL
models. [42] presented a method for detecting nano-particles and determination
of their shapes and sizes simultaneously with deep learning. Multiple-output
convolutional neural networks (MO-CNN) are used in the proposed technique,
and they generate two outputs: the first is the detection output, which provides
the locations of the particles, and the second is the segmentation output, which
provides the boundaries of the nano-particles. Using the segmentation output
as input, the modified Hough algorithm calculates the particle sizes in the final
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14 detailed overview of the background

state. Their approach works mainly for round-shaped nano-particles in electro
microscopy (EM) images. Again, MO-CNN also has the limitation that it needs a
dataset, marked at the pixel level, for training. These research examples show the
struggle in searching for different solutions as microscopic data is not rich in the
number of images, more specifically, annotated images. The self-supervised con-
cept demonstrated in part I is one of the possible current solutions to this problem.

A limited number of existing studies in the broader literature have examined
the detection and segmentation of overlapping objects in microscopic images.
One method employed by [43] is to segment near-circular objects, such as cell
nuclei from fluorescence microscopy images, by combining the “gas of near
circles” active contour model to their method. However, active contour is not
a reliable method since it is based on the pixel intensities, very slow, and the
final result heavily depends on the initialization as well as the contour evolution
energy functional [44]. [45] detects overlapping instances based on optimizing
a tree-structured discrete graphical model. Their model requires weakly anno-
tated (dotted) images from the user repressing the centers of the objects. In [46],
two fully convolutional regression networks are used to estimate the number
of cells in the image as well as segment their borders. In order to overcome
the cell-overlapping problem they used a larger receptive field (filters) [47]. To
tackle the overlapping nuclei problem, [48] created a framework that combines
the convolutional neural networks with the marker-controlled watershed. One
drawback of their models is the usage of the watershed in the post-processing
part, which limits the generalization ability of their approach. As it can be seen
the research on the overlapping objects in microscopic images in general, for the
organoid dataset in particular, is still limited. Yet, accurate segmenting of the
overlapping organoids’ morphology is critical. A proposed is explored in part II
discusses this issue.

Tools were also developed to aid in the automation of microscopic image seg-
mentation. For instance, YeastNet [49] was designed to improve the accuracy
of identifying individual S. cerevisiae cells from bright-field microscopy images.
Their model was trained using a manually labelled dataset and is based on the
U-Net semantic segmentation architecture. Recently, a new version of the Cell-
Profiler [50] was deployed. Cellprofiler is a user-friendly software designed for
biologists to perform a series of image-processing modules, such as segmentation.
As a software application, it has a major potential disadvantage in that CellPro-
filer runs on local machine with a GPU. In this case, it needs local space and
memory. Additionally, sharing processed data might not be easily accomplished.
Therefore, an end-to-end system is needed, where the user should not be worried
about his/her local space and memory and can easily share the data with other
scientists from the same department.
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As can be seen, most DL models adapted to the microscopic images to de-
tect, segment or classify images require a sufficient amount of labelled data. Part
I deals with this topic by employing the self-supervised learning technique and
delve into the complexity of the pretext task. In part II, the segmentation of
overlapping organoid images are presented and discussed. Part III propose an
end-to-end system for the tasks performed on diverse microscopic images that
can be used without installation.

2.2 microscopic images used in this study
In this thesis, two datasets are exploited to tackle the different issues mentioned
earlier: (1) Organoid culture images obtained from the University Medical Center
Groningen, and (2) Yeast strains images from the NOP1pr-GFP-SWAT library
provided by the Weizmann Institute of Science. Figure 1.1 illustrates an abstract
of the relationship between the organoid to cell to cell-compartments, also called
organelle. In this section, the raw data is introduced.

2.2.1 Organoids

Figure 2.1: An example of a CZI: A 3D image made up of 2D slices, called stacks, at
different depths of the organoid culture.
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The organoids were developed under two distinctive conditions: (1) Organoids
were grown where the essential amino acids were present (Control group), and (2)
organoids were grown with the absence of amino acids (Starvation group). The
organoid cultures were examined at five different time points using a specialized
microscope at 24-hour intervals. A total of 10 3D CZI images, each consisting
of 14 2D stacks (slices), are studied, yet, an average of 4 stacks per image were
evaluated as the lower and higher stacks do not contain much information. Figure
2.1 presents an example of the 3D CZI images. The size of each stack image is
3828x2870 pixels. Those 2D stack images were used to generate a large number
of smaller images that can be used as a training dataset. This has been done
by moving a square sliding window, of size 636x636 pixels, over each 2D slice
and generating cropped subsections of the latter. This procedure created a large
number of 2D images, which have all been resized to 320x320 pixels in order to
reduce the number of needed training parameters and increase the trainability
of the model while not losing any significant details. The following chapters
utilizing this dataset provide more information related to the specific questions
to be addressed.

2.2.2 Cells

Images of yeast-cell genome-wide library of ∼ 5,500 strains carrying the SWAp-
Tag (SWAT) NOP1promoter-GFP module at the N terminus of proteins are studied
[51]. Yeast cells, are round to long [52], possess ultrastructural features typical of
other eukaryotic cells, with the presence of membrane-bound organelles (Figure
2.2) [53]. It should be noted that the real microscopic image looks much less clear

Figure 2.2: Yeast cell and its main organelles [53].

than this stylized diagram. The dataset contains images from 16 plates. Each well
has images taken at 3 positions. Each well contains many cells of a yeast strain
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producing a different protein N-terminally tagged with the green fluorescent
protein (GFP) technique. Each image is captured in a brightfield channel as well
as by fluorescence microscopy to detect the GFP-tagged protein, and is annotated
by both the name of the protein and the name of the structure or compartment
that it is inhabiting. Images’ size is 1344x1024 pixels.

2.2.3 Organelles

The NOP1promoter-GFP dataset contains multiple subcellular localizations. This
fluorescent dataset contains bright-field and colored tagged organelles. Table 7.1
presents the number of unique images for each subcellular localization ordered
by the highest count. Only the first highest unique count of more than 70

images are shown. Note that some images contain two proteins tagged with the

Table 2.1: Number of unique images for different organelles in the NOP1promoter-GFP
dataset.

Unique number
of Images

cytosol 1566

nucleus 660

mitochondria 461

cytosol,nucleus 401

ER 376

punctate 313

cytosol,punctate 223

nucleolus 140

punctate,nucleus 129

ER,vacuole 111

nucleus,nucleolus 96

vacuole membrane 92

ER,punctate 81

vacuole 79

corresponding fluorescent colours. For instance, "cytosol,punctate" are images
that contain both tagged cytosol and punctate cell compartments. Figure 2.3
show such an image by merging the bright-field and the GPF channels.
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Figure 2.3: Merged bright-field and GFP channels of images of Plate 11N14 tagged with
"cytosol,punctate".

2.3 computing tasks
Object detection, segmentation and classification are the common basic tasks
performed by any DL model. Supervised- and unsupervised learning are the
most well-known techniques for training DL models. In supervised learning,
a DL model learns patterns and relationships between input and output data.
In this case, the output data, which is the target to be reached by the model, is
known. Figure 2.4 explains the relationship between the input and output for the
four previously mentioned basic tasks during the training step.

object detection In object detection, the model identifies and locates the
objects in the image. The models’ input is an image, whilst the models’ output
is a prediction bounding box coordinates and the corresponding labels for each
object. A post-processing step is applied to add the detected bounding box object
to the predicted output image. A bounding box surrounds each detected object
is shown in the first row of the Figure. A zoomed-in part of the detected object is
shown on the right side of Figure 2.4.
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Figure 2.4: Deep learning tasks for training model via supervised technique.

semantic segmentation DL model performing a semantic segmentation
task separates these objects from the background and from each other. Here,
the model classifies each pixel as a background [coloured in black] or object
[coloured in white]. This is the case for binary segmentation, as shown in Figure
2.4. For multi-class problems, the model predicts a pre-defined class for each
object, which is used to colour the output image.

image classification DL model trained to classify the complete images
outputs a probability class vector indicating the probability of this image con-
taining objects from a predefined set of possible categories/classes. The highest
probability value is used to classify the images.

object classification Object classification is a combination of image clas-
sification and object detection. Here, the class probability vector along with
bounding box coordinates are computed for each object in the image and not for
the complete image. A zoomed-in part of the classified object is shown on the
right side of Figure 2.4.
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Testing the trained DL model on an unseen dataset is required in order to
assess its performance. For testing the model, the input is the ground truth image,
and the output depends on the performed DL task.

On the other hand, the outputs for the unsupervised training models are un-
known. Usually, such model clusters or group images together that look alike.
Unsupervised learning is not used in this thesis because the goal is to guide the
model to predict specific output and not to cluster images together.

Training DL models with supervised learning are only possible when a large
number of annotated data is available. With regards to the segmentation task, the
ground truth images are much more difficult to annotate than the classification
images. It is necessary to sketch the target object’s outline, which is a very labori-
ous and time-consuming process. Thus, manually segmenting objects for each
input image is almost impossible for a large amount of dataset. Self-supervised
training can be used to solve this issue using two phases: (1) Training a model to
solve a pretext task, and (2) adapting the trained model to handle the performed
main task. Part I of this thesis deeply delves into the self-supervised topic of
segmenting microscopic organoid images.

2.4 deep learning models
Deep learning models are frequently used for understanding and processing
biological data as well as for extracting high-level abstract features. They out-
perform traditional models in terms of performance and interpretability [54].
The structure of most deep learning models is based on convolutional neural
networks (CNN)s. In addition to the CNN as a base model, this section introduces
the models employed in the following chapters.

2.4.1 Convolutional Neural Network

Convolutional neural networks (CNN)s are a type of artificial neural network
(ANN) used most frequently in deep learning to analyze visual data. CNN consist
of three elements: (1) Convolutional Layer, (2) Pooling, and (3) Flattening +
Fully-Connected Neural Network.

convolutional layer and feature representation The objective of a
convolutional layer is to extract features that help in identifying the objects in the
figure. A Kernel, typically called a filter of a 3x3 matrix, slides over the input
image / feature maps from left to right and top to bottom and performs a dot
product of its values with the sub-region values. A kernel is shown in the red
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Figure 2.5: (Top) CNN architecture. (Bottom) feature extraction in stages, Source [55].

box of Figure 2.5. During this process, features will be extracted as shown in the
bottom of Figure 2.5. In the beginning, low-level features are extracted, which
represents edges, difference in pixels, etc. The mid-level features integrate the
information (e.g. combine the edges) from the features before and can represent
some object parts. The high-level features are able to represent the desired objects.
To note that those features from a faces dataset are used as an illustration.

pooling layer The more kernels are utilized, the more feature maps is col-
lected. This has a limitation on the memory when training the CNN model. In
order to decrease the number of computations in the network, the spatial size
of the input image / feature maps is gradually reduced using the pooling layer.
This is seen in Figure 2.5, where the number of the third dimension does not
change from the previous layer, however, the first and second dimensions are
halved as Max pooling is depicted.

flattening The flattening layer is used to flatten all values from the last
feature maps into a single 1D vector in order to perform one of the computation
tasks described in section 2.3. Commonly, the CNNs’ flattened layer is used for a
computing bottleneck ’embedding’ vector and as a step towards classification.

Although it is a powerful property of the CNN that it is translation invariant
(important features can occur anywhere in the image) the subsequent limitation is
that it fails to encode the position and orientation of objects, especially for small
objects [56]. Another limitation of a deep CNN for classification is its requirement
of a huge number of training samples [57], due to the large number of coefficients
(weights) in a model. Since this thesis focuses on object segmentation and not
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classification, a simple and basic CNN cannot be applied: In segmentation, the
exact spatial location of input features needs to be known at the output level. For
this purpose, a new generation of CNN models was developed, as described in
the next section.

2.4.2 U-Net

Figure 2.6: U-Net architecture. The encoder is on the left side, whilst the decoder is on
the right side.

U-Nets are a type of Convolutional Neural Networks (CNN)s that were originally
introduced for biological image segmentation [58]. They are comprised of an
encoder-decoder architecture with skip connections that enable the network to
retain fine-grained spatial information while also capturing global context. The
U-Net consists of downsampling (encoder) layers and up-sampling (decoder)
layers, which can be seen in Figure 2.6. The encoder encodes the image using
various convolution and pooling layers over the input image, while the decoder
decodes this information with the goal of reconstructing an output image that is
exactly the same size as the input image. The low-, mid- and high-level features
explained in section 2.4.1 are (suggestively) illustrated on the encoder path of the
U-Net.
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Despite its many noteworthy benefits, the U-Net model still has some draw-
backs. For example, the model’s structure is not flexible when trained on datasets
of various image sizes, and the skip connection has not fully utilized the encoder
block’s features [59]. Another drawback is that U-Net-based models concentrate
only on the last feature output of the convolution unit and forgetting the feature
of the previous convolution in the node [60]. Owing to the popularity and success
of U-Net, studies are working towards further improving the U-Nets’ structure
for medical image segmentation [59].

2.4.3 You Only Look Once

YOLO stands for "You Only Look Once". It is a deep learning algorithm that is
mainly used for object detection and classification. As the name suggests, the
model goes through the entire image only once. This makes YOLO a powerful and
a fast algorithm, distinguishing it from other deep learning algorithms, which
need two steps to detect and then classify individual objects in an image, namely
by 1) finding regions of interest that suggest the location where individuals
objects might be, and subsequently 2) classifying them.

YOLO was first introduced in [61], which is later named as YOLOv1. The general
idea of YOLO is to divide the image into SxS grids, in which each grid cell is
responsible for encapsulating an object of which the center is located within
that grid (compare Figure 2.7) Additionally, each SxS grid cell is responsible

Figure 2.7: YOLOv1’s Grid, BBox, Confidence scores and the class probability maps [61].
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for detecting k Bounding Boxes [BBox]. Since not all BBoxs cells will contain
an object, YOLO provides a confidence score to select the most likely BBox in a
grid cell, containing an object. These scores vary between 0 and 1, and describe
the probability of the existence of any pre-defined object. A confidence score
equal to zero indicates a detection of background, whereas a high confidence
score indicates a high probability of a pre-defined object being presented in
the found BBox within the current grid cell. The confidence score is computed
using the Intersection Over Union [IoU] between the ground truth BBoxs obtained
from Mask-RCNN and the predicted BBoxs gained from YOLO. Moreover, YOLO
produces (x, y, width, height) parameter values to indicate the location and
dimension of the predicted BBoxs. The parameters x and y specify the x and y
center location of the BBox relative to the grid cell, whereas width and height are
the normalized dimension of the BBox with regards to the width and height of
the entire image. It is to be noticed that width and height of a BBox can be bigger
than the dimension of the defined grid cells. Finally, YOLO outputs C conditional
class probabilities for each grid cell, where C is the number of classes/objects to
detect. In total, YOLO outputs S x S x (k x 5 + C), where number 5 represents (x,
y, width, height) and confidence score for each BBox. Despite YOLOv1’s ability
to simultaneously predicting BBoxs of different classes for an image in a short
time, it has one main downside, which is precisely detecting and localizing small
objects. This is due to the fact that multiple small objects can be presented in one
grid cells, and YOLOv1 is able to detect only one object per grid cell.

In this thesis, the fourth version of YOLO is implemented. This version was
developed by Bochkovskiy, Wang and Liao [62], since the previous authors
wanted to retreat from the field of computer vision. The primary goal of their
paper is to design a fast-operating object detector for production systems that
is also optimized for parallel computations, and more importantly is that the
training should be done on one single conventional GPU. To achieve this, the
authors made a few changes to the object detector network architecture. In their
paper, the authors compared different methods that are used for a one-stage
detector, namely backbone, neck and head (also called dense prediction). CSP-
Darknet53, which employs the Cross-Stage-Partial Network [CSPNet] strategy
[63], is the optimal model to be used as a backbone for the detector network. The
authors integrated the Spatial Pyramid Pooling [SPP] layer to the backbone by
replacing the last pooling layer [64]. For the neck, the authors replaced the feature
pyramid network [FPN] [65] used in YOLOv3 with Path aggregation network
[PANet] [66]. They modified the output of PANet by replacing the addition
operator of multiple feature maps with a concatenation operator. With regards to
the head of the object detector network, the authors employ YOLOv3 as a head
for YOLOv4. Furthermore, the authors made some design improvements, for
example by modifying some existing methods: Spatial Attention Module [SAM],
and Cross mini-batch Normalization [CmBN]; and introducing two new methods



2.4 deep learning models 25

for data augmentation: Mosaic and Self-Adversarial Training [SAT]. In summary,
YOLOv4 - in comparison to other existing state-of-the-art models - is considered to
be a significant upgrade to YOLOv3 in terms of speed, accuracy and performance.
Not only that but it seems a good candidate to use for detecting small objects
seeing all modifications that were added to YOLOv4. Therefore we consider it as
the best starting point for addressing the where and what question, i.e., detection
and classification, in microscopic images. Despite its success, one of YOLOv4

limitations is the inability to handle overlapping objects [67].

2.4.4 Loss-Function Design

The loss function is a mathematical instrument for assessing how effectively the
deep learning model is able to produce desired outputs. The loss value will
be high if the predictions are completely incorrect, whereas a low loss value
indicates that the predictions are close to the expected known output. That is to
say, the loss is responsible to steer the model towards being capable to accurately
modelling the given input dataset. Mathematically, the loss function measures
the difference between a prediction and the actual true value, e.g., as an L1 or L2

loss.

Based on the loss value, the models will update their weights during the back-
propagation phase. This is mainly done by the optimizer, which is accountable
for adjusting the model’s parameters to minimize the loss function. The weights
are updated in small steps, such that the model follows a path towards lower
losses. This is called gradient descent, which is the most popular optimizer that
is widely used [68]. Gradient descent can be realized by, first, computing the
derivative of the loss function with respect to each of the parameters in the model,
then updating those parameters proportional to the direction of the negative
gradient. A limitation of gradient descent is that a single step size (learning rate)
is used for all input variables. An adaptive moving estimation algorithm (Adam
for short) is an extension to gradient descent that automatically adapts a learning
rate for each input variable for the objective function [69].
In short, the loss function is considered to answer the "what to minimize" ques-
tion, whilst the optimizer algorithm should answer the "how to minimize the loss"
question. The most popular optimizer that is widely used is gradient descent [68]
[70].

This thesis uses and explores various loss functions depending on the research
question. Keeping in mind that each of the following chapters tackles a research
question from a different perspective, the corresponding utilized loss functions
will be introduced and explained in the corresponding chapters.
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