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Observation of a Vector Charmoniumlike State at 4.7 GeV/c?
and Search for Z, ine*e” - K*K~J/y

M. Ablikim er al.”
(BESIII Collaboration)

® (Received 31 August 2023; accepted 30 October 2023; published 22 November 2023)

Using data samples with an integrated luminosity of 5.85 fb~! collected at center-of-mass energies from
4.61 to 4.95 GeV with the BESIII detector operating at the BEPCII storage ring, we measure the cross
section for the process e e~ — KTK~J/y. A new resonance with a mass of M = 4708f1'57 +21 MeV/c?
and a width of ' = 12673] 430 MeV is observed in the energy-dependent line shape of the e*e™ —
KT K~J/w cross section with a significance over 5¢. The KJ/y system is also investigated to search for
charged charmoniumlike states, but no significant Z; states are observed. Upper limits on the Born cross
sections for ete™ — K~Z,,(3985)" /K~Z.,(4000)* + c.c. with Z,((3985)*/Z.,(4000)* — K*J/y are
reported at 90% confidence levels. The ratio of branching fractions {[B(Z.;(3985)" —
K*J/y)]/B[Z.s(3985)F — (D°D:* + D°D7)]} is measured to be less than 0.03 at 90% confidence

level.

DOI: 10.1103/PhysRevLett.131.211902

The charmonium system is an ideal place to study the
perturbative and nonperturbative strong interactions of
quarks and gluons at the hadronic scale. Below open-
charm threshold, the spectrum of c¢¢ charmonium states is
well described by a potential model [1]. All observed states
have been found within expectations, and excellent agree-
ment has been achieved between theories and experiments.
Above open-charm threshold, however, there are still many
missing states that have not yet been discovered [2], and,
surprisingly, several unexpected states, such as the X (3872)
[3], Y(4260) [4], and Z.(3900) [5,6], have been observed
since 2003. These particles do not match the predictions of
the potential models and are widely considered to be good
candidates for exotic states [7—10].

Among them, the Y states show strong coupling to
hidden-charm final states, such as the experimentally
well-established Y (4260) - ztz~J/w [4,11-15] and
Y(4360)/Y(4660) — n" 7~y (3686) [16-20]. This is in
contrast to the vector charmonium states in the same
energy region. In recent electron-positron annihilation
experiments running at high energies, structures are
observed around 4.66 GeV in both open- and hidden-
charm final states [21-28]. The BESIII experiment has
reported evidence for a structure around 4.7 GeV in the
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study of efe™ — K9K9J/y [28]. This structure could
potentially correspond to the well-known Y (4660) reso-
nance or another excited Y state. On the other hand,
potential models predict the 55 and 4D charmonium states
in this mass region [29-36]. At present, a comprehensive
understanding of the Y states above 4.6 GeV is yet to be
achieved, due to limited experimental information. More
measurements are urgently needed to clarify their nature.

In addition, an isospin-1/2 charmoniumlike candidate
was recently observed by BESIII in the process
ete” —» KZ.,(3985), where the charged Z.(3985)%,
recoiling against a K~, was found decaying to (D°D:+ +
D*DY) [37], and the corresponding neutral Z,,(3985)°,
recoiling against a K, was found decaying to (D] D*~ +
Di"D7) [38]. The Z.,(3985) is considered to be the
strange partner of the Z,(3900) [39-42]. Charge-conjugate
modes are implied here and elsewhere unless otherwise
specified. BESIII also reported a search for Z%.; — DT D*°
[43], finding an excess of Z/ candidates with a signifi-
cance of 2.1c. Meanwhile, LHCb reported tetraquark
candidates Z.,(4000)*/Z.,(4220)" - K*J/y in an
amplitude analysis of Bt — K*J/y¢ [44]. Although the
Z.+(3985)" and Z.,(4000)" have comparable masses, their
widths are different by nearly an order of magnitude. There
are still ongoing debates on whether these particles are the
same state or not [41,45-52]. Therefore, to enhance our
comprehension of these Z., states and explore the pos-
sibility of new Z states, it is imperative to conduct further
measurements of et e~ — KZ,., — KKJ/y [39,47,51-57].

In this Letter, a measurement of the Born cross sections
of the process eTe~™ — KT K~J /y is presented at center-of-
mass (c.m.) energies from 4.61 to 4.95 GeV [58],

Published by the American Physical Society
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corresponding to an integrated luminosity of 5.85 fb~!
[59]. Compared with a previous measurement [60], new
data above 4.6 GeV is analyzed for the first time, which
enables us to investigate the Y states above 4.6 GeV with
improved precision [61,62]. To achieve much lower back-
ground levels and to improve the statistics, both full
reconstruction and partial reconstruction methods are
applied. By investigating the line shape of the ete™ —
Kt K~J/y cross section, we report the first observation of
the charmoniumlike candidate Y(4710). In addition, a
search for the Zf; — K" J/y is presented using the same
data sample.

The BESII detector [63] records symmetric e'e”
collisions provided by the BEPCII storage ring [64].
Simulated data samples produced with a GEANT4-based
[65] Monte Carlo (MC) toolkit, which includes the geo-
metric description of the BESIII detector and the detector
response [66], are used to determine detection efficiencies
and to estimate background contributions. Signal events for
the process eTe™ — KT K~J/y are generated at each c.m.
energy using a phase space (PHSP) model, while the decay
of the J/y into a pair of leptons (u™u~/e™e™) is modelled
with VLL model in EVTGEN [67,68].

For K+ K~J /y signal candidates, low-momentum kaons
have relatively poor detection efficiency. In order to
improve the selection efficiency, besides to reconstruct
the signals with the both K K~ pair detected, we allow the
case with only one of two charged kaons detected, while the
J/w candidates are tagged with pairs of charged leptons.
Charged tracks detected in the multilayer drift chamber
(MDC) are required to be within a polar angle (6) range of
| cos O] < 0.93, where 0 is defined with respect to the z axis,
which is the symmetry axis of the MDC. The distance of
closest approach to the interaction point must be less than
10 cm along the z axis, and less than 1 cm in the transverse
plane. As kaons and leptons are kinematically well sepa-
rated, two oppositely charged tracks with momentum
greater than 0.95 GeV/c in the laboratory frame are
assigned as #* for data samples with /s < 4.84 GeV.
For /s > 4.84 GeV, this value is slightly increased to
1.05 GeV/c. The amount of deposited energy in the
electromagnetic calorimeter (EMC) is further used to
separate muons from electrons. For both muon candidates,
the deposited energy in the EMC is required to be less than
0.4 GeV, while it is required to be greater than 1.0 GeV for
electrons. For the remaining charged tracks, particle iden-
tification (PID), which combines the measurements of
the energy deposited in the MDC (dE/dx) and the flight
time in the time-of-flight system to form likelihoods
L(h)(h =K, r) for each hadron h hypothesis, is used.
Tracks are identified as kaons when the kaon hypo-
thesis has a higher likelihood than the pion hypothesis
[L(K) > L(z) and L(K) > 0].

For events in which a pair of oppositely charged kaons
identified, a four-constraint (4C) kinematic fit imposing

energy-momentum conservation is applied to ete™ —
K+tK=¢%¢~. To remove the radiative Bhabha events, the
cosine of the opening angle of the kaon pair is required to
be less than 0.98 in the J/yw — eTe™ mode. The u/x
misidentification background in the J/y — u*u~ mode is
suppressed by requiring at least one of the muon candidates
has a penetration depth greater than 30 cm in the muon
counter (MUC).

For events in which only one kaon is identified, a one-
constraint (1C) kinematic fit is performed under the hypo-
thesis of ete™ — K. KT¢7¢~, where the mass of the
missing particle (K=, ) is constrained to the known K ™ mass
[69]. In the J/y — et e™ mode, the dominant background
comes from Bhabha events, which are vetoed by requiring
cos(f,+) < 0.8, cos(f,-) > —0.8 and | cos(Ox=)| < 0.8. To
further reject the radiative Bhabha events (ye™e™) with y
conversion, where the converted electrons are misidentified
askaons, werequire | cos(ag-x+ )| < 0.95,]cos(ag:.+)| <
0.95 and | cos(ag=,+)| < 0.95, where a is the opening angle
between tracks. As one kaon is missing, the y/x misidenti-
fication background is higher in the J/y — p™u~ mode.
Therefore a tighter requirement is imposed by requiring the
penetration depth of both muon candidates in the MUC to be
greater than 30 cm.

After the above requirements, a clear J/w peak is
observed in the lepton pair invariant mass distribution,
M(£T¢7), as shown in Fig. 1. A study of the inclusive MC
sample [28] indicates the background level is low and there
is no peaking background. The J/y signal region is defined
as [3.084,3.116] GeV/c?, and the sideband regions are de-
fined as [3.004, 3.068] GeV/c?and [3.132,3.196] GeV/c?,
which are four times as wide as the J/y signal region. The
signal yield (N%2) is obtained by sideband subtraction, and
the corresponding uncertainty is estimated with the profile
likelihood method [70].

150 - —— All data
N
L — PHSP MC
>
g 100 Yl Inclusive MC
5
0
S 50
>
L
290 3 31 32 33
M(I'T) (GeV/c?)
FIG. 1. The distribution of M(#*¢~). Dots with error bars are

the selected data at c.m. energies from 4.61 to 4.95 GeV, the red
histogram is the signal MC sample and the blue shaded histogram
is the background from the inclusive MC sample.
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FIG. 2. Fit to the dressed cross section of eTe™ — KT K~ J/y
with the coherent sum of three Breit-Wigner functions (solid
curve). The dashed, double dotted, and dash-dotted curves shows
the contributions from the Y(4710), Y(4230), and Y(4500),
respectively. The solid dots with error bars are the cross sections
from this study, and the open dots with error bars are the cross
sections from Ref. [60]. The error bars represent statistical
uncertainties only.

The Born cross section is calculated by

oBom — N (1)
1 ’
£(1 + 5) —‘]—H‘z 6'8]/1//

where L is the integrated luminosity [59], (1 4 §) is the ISR
correction factor, (1/|1 —II|?) is the correction factor for
vacuum polarization [71], € is the detection efficiency, 5; v
is the sum of the branching fractions of J /iy — e*e™ and
J/w — utu~ [69]. The ISR correction factor and detection
efficiency are obtained from the signal MC simulations and
are corrected by an iterative weighting method [72]. The
numbers of signal events, corrected detection efficiencies,
and Born cross sections are summarized in the
Supplemental Material [73]. The dressed cross sections
(6B°™ /|1 —T1|?) are shown in Fig. 2 (solid dots with error
bars), and a clear structure is found around 4.75 GeV/c?.

To determine the parameters of the structures, a maxi-
mum likelihood method is used to fit the dressed cross
sections obtained in this Letter and the dressed cross
sections with /s <4.61 GeV [60]. The likelihood is
constructed taking into consideration the fluctuations of
the numbers of signal and background events. Assuming
these K*K~J/y signals come from three resonances, the
cross section is parameterized as a coherent sum of three
relativistic Breit-Wigner functions,

O (5) = [Bi(VE) + Ba(VE)e: + By(VE)e . (2)

where B;=(M;/\/5)[,/122(T . B),T';/ (s = M3 +iM T ;)] x

\/[®(/5)/®(M;)] with j=1,2 or 3 is the relativistic
Breit-Wigner function, @ is the three-body PHSP factor,
and ¢; with j =2 or 3 is the relative phase between the

Breit-Wigner functions. In the fit, the masses M s the total
widths I';, the products of the electronic partial width and
the branching fraction to K*K~J/y [(T,..B);], and the
relative phases ¢; are free parameters. There are four
solutions with the same masses and widths from the fit as
shown in the Supplemental Material [73], and one of them
is shown in Fig. 2. The masses and widths of the first and
second structures [Y(4230) and Y(4500)] are determined
to be M;=42260"\ MeV/c?, T;=70.037 MeV,
M, = 4499.41%) MeV/c?, and T, = 124773 MeV, respec-
tively, which are consistent with that of Ref. [60]. The mass
and width of the third structure, denoted as Y(4710), are
M; = 470871 MeV/c? and T = 12613] MeV, respec-
tively. Compared to the total fit result, the peak position
of the third structure seems to be shifted due to the strong
interference shown in Ref. [73]. The aforementioned uncer-
tainties in the masses and widths are statistical only.

Fitting the dressed cross sections with a two-resonance
model yields a worse result: the change in the likelihood
value from the three-resonance model to the two-resonance
model is |A(=2InL)| =43.2. Taking into account the
change in the number of degrees of freedom (Andf = 4),
the statistical significance for the three-resonance assump-
tion over the two-resonance assumption is 5.7¢. In addi-
tion, we also fit the cross sections with the coherent
sum of three relativistic Breit-Wigner functions and a
three-body PHSP term. This assumption improves the fit
quality, but the change of the likelihood value is only
|A(=2InL)| = 1.2, which indicates the PHSP term does
not make an important contribution.

The systematic uncertainties in the cross section meas-
urement mainly come from the luminosity, tracking effi-
ciency, kinematic fit, MUC response, MC model, radiative
correction, and branching fraction. The integrated lumi-
nosity is measured using Bhabha events with an uncertainty
of 0.6% [58]. The uncertainty of tracking efficiency for the
high-momentum leptons is 1.0% per track. By requiring at
least one kaon to be detected, the kaon detection efficiency
is very high and the uncertainty is negligible. A track helix
parameter correction method, as discussed in Ref. [74], is
applied to MC events during the kinematic fit. The differ-
ence in efficiencies with and without the correction, 2.1%,
is assigned as the systematic uncertainty from the kinematic
fit. The uncertainty from the MUC response is investigated
using the ete™ — uu~ data sample, and the difference in
efficiencies between the data and MC simulation due to the
hit depth requirement in the MUC for the muon candidates,
2.0%, is taken as the systematic uncertainty. Instead of
using pure PHSP to model the K™ K~J/y events, we also
consider possible f — K™K~ in MC simulation based on a
partial wave analysis [73], e.g., f0(980), fo(1500). The
efficiency difference between this model and a three-body
PHSP one is 5.9% (8.7%) for the data with /s < 4.70 GeV
(/s > 4.70 GeV). To estimate the systematic uncertainty
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from the ISR correction factor, we replace the description
of the default dressed cross section line shape with the
coherent sum of three relativistic Breit-Wigner functions
and a PHSP function, or change the parametrization of the
Breit-Wigner function. The maximum difference due to the
line shape, 0.6%, is assigned as the systematic uncertainty
due to the ISR correction factor.

The uncertainty from the branching fraction of J/y —
¢ (0.4%) is taken from the Particle Data Group [69].
Assuming all the sources are independent, the total sys-
tematic uncertainty is calculated by adding them in quad-
rature, resulting in 6.9% (9.4%) for the cross section
measurement at /s < 4.70 GeV (/s > 4.70 GeV).

The systematic uncertainties in the resonance parameters
mainly come from the absolute c.m. energy measurement,
the c.m. energy spread, the parameterization of the fit
function, and the systematic uncertainty on the cross
section measurement. The systematic uncertainty of the
c.m. energy is common for all the energies and will
propagate to the mass measurement directly. The uncer-
tainty from the c.m. energy spread is estimated by con-
volving the fit formula with a Gaussian function, whose
width is set as the energy dependent beam spread [75]. To
estimate the uncertainty from the parametrization of the
Breit-Wigner function, the I'; in the denominator of the
Breit-Wigner function is replaced with a mass dependent
width I';[®(y/s)/®(M;)]. The uncertainties from the cross
section measurement are divided into two parts. The first
one is uncommon uncertainties of the measured cross
sections among the different c.m. energies, which mainly
come from the MC model. The corresponding uncertainty
is estimated by including the uncommon uncertainties in
the dressed cross section fit, and the differences on the
parameters are taken as the corresponding uncertainties.
The second part, including all the other uncertainties of the
measured cross sections, is common for all the energies,
and only affects the parameter (T',.5).

Intermediate states decaying into K*J/y, denoted as
77, are of great interest due to their exotic nature. The
distribution of the maximum of the invariant masses of the
K*J/w and K~J/w combinations, M, (K*J/y), is
useful for identifying these exotic states [5]. A simulta-
neous fit to the M, (K*J /) spectra from datasets within
the energy region 4.63 GeV < /s <4.92 GeV is per-
formed. The datasets at /s = 4.61 and 4.95 GeV are
not included in the fit due to their relatively low statistics.
In the fit, following the model in Ref. [38], the ZZ
component is modeled by the product of an S-wave
Breit-Wigner shape with a mass-dependent width:

\/Q'—p 2

M
F(M) o M? —m§ + imgI(M)|

(3)

where I'(M) =T (p/p*) - (mg/M), M is the recon-
structed mass, m is the resonance mass, [y is the width,

15
10

Events / 10 MeV/c?

Wwo o

8 39 4 41 42 43
Miox(KEJY) (GeVic?)

FIG.3. The M, (K*J/y)spectrum with the fitresults overlaid.
The red dashed line is the signal component of Z.,, the blue
dash-dotted line is PHSP (or f states) and the pink dotted line is the
combinatorial background. The sideband events are scaled to the
fitted size of combinatorial background, which are shown in
green.

q is the bachelor K~ momentum in the initial e™ e~ system,
and p is the K™ momentum in the rest frame of the K+J /y
system. To account for detector resolution and efficiency,
we use an efficiency-weighted F convolved with a reso-
lution function based on MC simulation in the fits.
Inspecting the Dalitz plots shown in the Supplemental
Material [73], we add shapes from PHSP MC simulation
for the fits at \/s <4.70 GeV as no intermediate state is
evident. For the fits at \/s > 4.70 GeV, we add shapes for
f states according to partial wave analysis [73]. Both
shapes are derived from a kernel estimation [76] thus no
free parameters are introduced in these shapes. The m and
Iy of the Z.; as well as the yields of all components
are free. The fit results are shown in Fig. 3, with a small
excess of Z,, over other components. The fitted mass and
width are 4.044 + 0.006 GeV/c? and 0.036 4 0.016 GeV,
respectively. The uncertainties are statistical only. By
comparing fits with and without Z,., components, which
gives |A(=2InL)| =23.8 and Andf = 12, the statistical
significance is determined to be 2.36. Despite no
significant Z,,, upper limits on the production of the
Z,.,(3985)" and Z.(4000)* are of interest to further
understand their properties and search for them in future
experiments. The upper limits at 90% confidence level
(CL) for oB™[eTe™ - K=Z,,(3985) "] x B[Z.,(3985)" —
K*J/y]are O(1) pb and the upper limits for 62 [¢ e~ —
K~Z,,(4000)"] x B[Z.,(4000)" — K J/y| are O(3) pb.
These upper limits include systematic uncertainties and are
summarized in the Supplemental Material [73].
The upper limit on the ratio of branching fractions

R — B[Z(3985)" — K*J/y]
5~ B[Z.,(3985)" - (D°D:* + DD})]

(4)
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is determined at /s = 4.68 GeV since the Z.(3985)" is
the most significant at this c.m. energy. We extract the
distribution of o™ x B[Z,((3985)" — KTJ/y] from the
smeared likelihood values as shown in Ref. [73], which is
denoted as u{c®™ x B[Z.,(3985)" — K*J/y)]}. We
model the distribution of 6B x B[Z,,(3985)" —
(D°Di™ + D*°DJ)] by a Gaussian function G{cB™ x
B[Z.(3985)" — (D°D;" + D**D{)]} of which the mean
and width are set to the reported center value and
uncertainty [37]. Then the upper limit RY" of Ry at
the 90% CL is derived from the convolution of
these two distributions, g(Rz) = [u(zRp) - G(z)dz, and

RUL is determined to be 0.03 by fOR i g(Rg)dRg/
0 ® g(Rg)dRg = 0.9.

In summary, the cross sections of eTe™ — KTK~J /y at
c.m. energies between 4.61 and 4.95 GeV are measured.
Fitting the cross sections from this Letter and Ref. [60]
with three resonances [Y(4230), Y(4500), and Y(4710)],
we obtain the mass and width of the Y(4710) to
be M(4710) = 470817 +21 MeV/c2 and T(4710) =
12652; 4 30 MeV, where the first uncertainties are stat-
istical and the second systematic. A new resonance
structure Y (4710) is observed with a statistical significance
over 5o, which is one of the heaviest vector charmonium-
like states. Our new results confirm that the structure
previously reported as evidence in Ref. [28] is indeed
the Y(4710) resonance. Interestingly, the BESIII has
recently reported a structure observed in DiTD*~ system
above 4.7 GeV [77], which could potentially correspond to
the Y (4710) or be closely related. This raises the possibility
that these Y states likely possess a significant strange
component. In Ref. [78], it was suggested that the Y (4710)
contains a significant 17~ charmonium hybrid (c¢cg) com-
ponent. It is also possible that the Y (4710) is an excited
charmonium state predicted by the potential models
[29-36], or arises from charmonia mixing [79-81]. This
observation brings new insights into the charmonium(like)
states above the open-charm threshold.

We also investigate the Z,, states in the KJ/y system,
but no significant structure is observed. Thus the upper
limits of the product of the Born cross sections 6% [eTe™ —
K~Z,.,(3985)"/K~Z.,(4000)"] and the branching frac-
tion of Z.,(3985)"/Z.,(4000)" — K*J/y are determi-
ned at 90% CL. The ratio of branching fractions
{B(Z.,(3985)" — K*J/w)/B[Z.,(3985)" — (D°D;" +
D*D{ )]} is determined to be less than 0.03 at 90% CL.
The suppression of the decay Z.,(3985)" — K*J/y dis-
favors the QCD sum rule calculation under the mole-
cular state assumption in Refs. [54,57]. It supports the
Z.4(3985)" and Z.,(4000)" as two different states [51].
Our measurements provide important inputs for the under-
standing of the nature of the Z;(3985). To further improve
studies of the potential Z. state, more statistics are
necessary to conduct a partial wave analysis.
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