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Abstract

For several decades, researchers have developed optimization techniques for
warehouse operations. These techniques are related in particular to the material
handling, the order picking and storage assignment strategies for a myriad of ware-
house configurations. It is often neglected that these strategies need to be regularly
adjusted in order to adapt to changes in technology, in the demand and/or product
offers. Most research on storage assignment provide excellent methods to deter-
mine where products should be located. However, the handling part of the prob-
lem is often set aside. Moving from one setup to another requires a large amount
of work and disturbs regular order-picking operations. This chapter presents the
warehouse reassignment problem in order to minimize the total workload to reas-
sign the products to their new locations. We demonstrate how one can move from
an out-of-date storage assignment to a better one, in a minimum of working time.
We introduce three different mathematical formulations and compare them through
extensive computational experiments in order to identify the best one.

Keywords: warehousing, reassignment, material handling, optimization, exact method.

1 Introduction

Warehouse operations are critical for the performance of distribution centers (DCs) and to the efficiency
of supply chains. Placing products in the warehouse and picking them later are some of the most time
and cost-consuming activities [de Koster et al., 2007, Gu et al., 2007, Chiang et al., 2011]. A good product
location is crucial given the ever-increasing number of products and the pressure for shorter lead times
[de Koster et al., 2007, Hong et al., 2012, Tompkins et al., 2010]. Determining the best assignment of
products to locations is known in the literature as the storage location assignment problem [Hausman
et al., 1976]. A storage assignment strategy is a set of rules which can be used to determine the best place
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to store each stock keeping unit (SKU) in a warehouse according to a variety of factors [Kofler et al.,
2011]. The best storage assignment depends on the volume of the demand, the frequency with which the
product is needed, the picking strategies and technology used, among others. Some of these elements are
discussed next.

When setting up a new warehouse, one has the possibility to fully optimize the storage assignment along
with other important factors such as technology used, order picking strategies, and sizing of zones. Order
picking refers to the strategies used for picking the products once they are needed. For example, one
common strategy is to have (human) pickers walk along the warehouse to pick the required products.
The picker begins their tour at the order preparation location, picks up the items, and returns to the
order preparation location later. This location is also called the Input/Output (I/O) point. This is called
manual picking; several alternatives exist for the pickers to walk around the warehouse: they can traverse
all the aisles completely, which is known as the S-shape picking; they can traverse only a part of the aisles
in strategies known as the largest gap or the mid-point picking; or they can have their picking sequences
fully optimized. The picking strategy is affected by the locations and the characteristics of the products,
the technology used, the layout of the warehouse, among others [Chabot et al., 2018]. When placing the
products in a warehouse to solve the storage assignment problem, considering the future picking strategies
can be of great benefit [Chabot et al., 2017]. Combining storage location and order picking, Silva et al.
[2020] show that savings ranging from about 27% to 62% compared to solutions from common storage
policies, based on the solutions of their heuristic algorithms.

Other than picking, the layout of the warehouse also affects the decision of where to locate the products.
A warehouse is often divided in zones: zone A contains the “best” locations, often closer to the I/O point,
and is dedicated to the products with the highest demand; zone B contains locations that are not so close
to the I/O and typically hold products of medium demand. Finally, zone C consists of the locations
furthest away in the warehouse, and usually hold products with the lowest demand. Determining the
sizes and positions of these zones is known as zone sizing. The zone sizing also impacts the performance
of DCs; determining the right sizes for zones of a class-based storage system is also highly dependent
on the layout and order picking strategy, among others. Silva et al. [2022] used machine learning tools
to estimate appropriate zone sizes based on several features (layout characteristics, storage policy, and
routing policy). Hence again, storage location appears as a key element that helps determine the overall
efficiency of warehouses. As can be seen, determining the storage assignment is a complex task, that is
influenced by many factors, and will influence the performance of several warehousing activities. If the
products are assigned to “wrong” positions, they will cause longer picking routes, higher costs, delays,
and will reduce warehouse performance.

Naturally, products are not always required at a uniform rate, and their demand often happens in waves.
This is due to seasonality, product replacement, or marketing efforts as presented in Carlo and Giraldo
[2012]. When demand changes or products are naturally replaced, it may happen that they end up
using “wrong” locations in the warehouse. For example, if a product was highly demanded during the
summer, it is natural that it would be stored on zone A locations, close to the I/O point of the warehouse.
However, during the winter, demand may decrease, but some products remain stored at their old location,
using a prime space in the warehouse. It could be interesting for warehousing managers to relocate these
products elsewhere, and to use this prime location to store a product that faces a high demand during
that period. The frequency of products reassignment varies from a company to another, depending on
the type of industry. In large warehouses containing thousands of products, work related to picking and
replenishment has been observed to reduce by up to 15%, translating into half a million dollar savings
per year [Trebilcock, 2011], and Werling et al. [2008] suggest updating the product assignment at least
four times a year. Thus, today’s best product locations may be no longer optimal in a near future. In
this case, it may be easy to compute the new desired situation, and identify which products should be
moved to another location. However, one should still determine how to move products from the old to
the new assignment. This is what we call the warehouse reassignment problem which is studied in this
chapter. It is fully described as follows.

The warehouse reassignment problem involves optimizing the process of moving products to their new
storage locations within a warehouse. This optimization aims to improve efficiency in tasks like order
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picking and replenishment. The key feature is that it allows for moving from one current allocation to
another by strategically swapping products, minimizing disruptions and costs while maximizing overall
efficiency. Factors such as demand fluctuations, product life cycles, and storage policies are considered
in advance by determining which products should be relocated to improve order picking efficiency. The
goal is to strike a balance between the time required for reassignment and the future gains in picking and
handling efficiency.

Demand fluctuations and product life cycles should not be overlooked when planning the storage assign-
ment. Storage revisions can mobilize substantial resources and disrupt order picking activities. Despite
the clear benefit of a good assignment for the minimization of movements involved in order picking,
the trade-off between reassignment time and future picking and handling gains can be hard to measure.
This requires a good knowledge of products, sales, forecasts and available capacity in terms of time and
equipment.

The storage strategy must be selected according to several warehouse design decisions, also known as the
storage location assignment problem (SLAP). Some policies do not consider product usage information,
such as the random storage, while others, like class-based and full-turnover policies use the sales rate to
determine the best location. For a review of classical location assignment policies, the reader is directed
to Gu et al. [2007] and de Koster et al. [2007]. It is important to understand these policies in order
to assess the tradeoff between a better assignment and the additional work generated by the movement
of products. As reviewed in [Kofler et al., 2014], most studies in this area have been devoted to re-
warehousing, which involves extensive rearrangements of all locations, such as the multi-period storage
location assignment problem. In these tactical strategies [Rouwenhorst et al., 2000], it can be a better
tradeoff to move just a subset of products, in a strategy known as healing [Kofler et al., 2011] in which
we try to maximize the gain with a limited number of reassignments. The difference between healing and
a full rearrangement of the warehouse is that it is possible that by changing the location of only a few
products, a significant improvement in performance is achieved. Often times, one knows about the most
critical products that need to have their locations changed. In identifying these products, one knows
about locations that will become available, and also knows where to relocate these products to. In this
chapter, we exploit this parsimonious relocation of products to find performance improvement for the
warehouse, without disrupting the daily activities too much as is needed in a full rearrangement.

The action of repositioning some products in a warehouse, also known as reassignment or reshuffling, was
initially studied by Christofides and Colloff [1973]. Knowing an optimal storage location assignment (or
a desired one), one must consider the handling method to move all the involved products. Chen et al.
[2011] present a tabu search heuristic to relocate products in a warehouse by simultaneously deciding
which ones are to be relocated and their destination in order to satisfy the required throughput during
peak periods. They do not consider cycles and assume that the products to be relocated to destinations
are decision variables. A cycle is composed of two or more products that exchange their positions. Carlo
and Giraldo [2012] propose the rearrange-while-working strategy for unit-load storage. To do this, an
AS/RS move the complete unit-load from a location to a workstation. When the picker has finished
picking products, the remaining products of the unit-load is reassigned to a new empty location.

The reshuffling of pallets within a warehouse was studied by Buckow and Knust [2023], who aimed at
completing the reshuffle as fast as possible. While this option has the advantage to completely reset the
products of a warehouse to their desired locations, it also imposes significant workload. Moreover, during
this time, the warehouse cannot be used to satisfy customer demands.

A restoring policy was defined by Linn and Wysk [1990b,a] who use idle times between picking waves to
reorganize the warehouse, bringing fast moving products close to the I/O point. Muralidharan et al. [1995]
also study a class-based storage strategy in which the reassignment of products is performed heuristically.
They assume a limited amount of time to perform the reassignment process. More importantly, they
assume that the ending location of each product is already available. Finally, Carlo and Giraldo [2012]
study a rearrange-while-working, in which unit-load warehouses can reassign a pallet to another location
upon retrieval. A summary of the approaches mentioned for product reassignment in warehouses is
presented in Table 1.
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Table 1: Overview of approaches for product reassignment in warehouses

Strategy name Full rearrangement Healing

Impact on daily opera-
tion

High Medium Low

Problem name Storage Location As-
signment Problem

Rearrange-while-
Working Problem

Warehouse Reassign-
ment Problem

Customer demand Static Dynamic Dynamic
Typical objective Minimize average order-

picking time
Minimize total time of
picking + relocations

Minimize time to per-
form relocations

Typical constraints None Picking jobs + desired
final storage location as-
signment

Desired final storage lo-
cation assignment

Literature Hausman et al. [1976];
Silva et al. [2020]

Carlo and Giraldo
[2012]

Christofides and Colloff
[1973]; Pazour and
Carlo [2015]; this
chapter

In this chapter we are concerned with determining the best way to reassign products to new locations
in a classical warehouse. To the best of our knowledge, very few studies discuss the time workload
part of the process, and only do it heuristically. Christofides and Colloff [1973] propose a two-stage
algorithm to minimize the travel costs required to rearrange the products. The first stage identifies how
each of the cycles can be repositioned. The second stage uses dynamic programming to determine the
sequence in which the cycles are performed. Pazour and Carlo [2015] study the same problem (which
they label the reshuffling concept) but relax the assumptions regarding having only cycles that must
be executed separately. By this, they need to consider that open locations will change throughout the
reassignment process. They propose a mathematical formulation for the reassignment problem in cycles.
More importantly, they do not allow for a product switch to occur, instead allowing for an intermediary
drop to happen, which can significantly increase the overall distance.

There are major differences between our problem settings and those of Christofides and Colloff [1973],
and of Pazour and Carlo [2015]. The most important difference is that they only allow to move a product
to an empty shelf, whereas we allow a product switch incurring a time penalty. This swap was also
allowed by Buckow and Knust [2023]. However, we are the first ones to handle this problem exactly, by
means of new and efficient formulations.

In order to understand our context easily, it is important to properly define the term product switch.
Let product A be at an occupied location, and product B already on the vehicle to be dropped at the
position currently occupied A. The product switch is defined as dropping B on the floor (near the new
location), removing A and also setting it aside on the floor, picking up and placing B inside the now
empty location, and picking up A to move it towards its destination. By performing a series of product
switches, it is possible to reposition a large number of products and effectively obtain a new storage
location warehouse-wide. Figure 1 shows an example of reassignment of products inside a warehouse.
In the left part, we see the initial assignment A. The locations are colored according to the picking
frequency of their products. From white, the less frequent, to black, the more frequently picked. Suppose
that according to the fluctuation of demand and products availability, the new best assignment should
be setup B, on the right side. We have to compute the material handling effort required to move from
setup A to B. This can be achieved by making several product switches.

The main contributions of this chapter are the development of the first exact methods for solving the
warehouse reassignment problem that is still not widely studied in the literature. We present a new
and original graph definition that allows great performance and flexibility. As will be demonstrated by
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Final setup [B] Initial setup [A] I/O I/OInitial setup A Final setup B

Figure 1: Reorganization of products inside the picking area, colored by picking frequency

our extensive computational experiments, our methods are very efficient and provide results close to
optimality.

The remaining of this chapter is organized as follows. Section 2 presents the problem formulation and
an illustrative example of the reassignment problem. Section 3 presents the mathematical models and
a set of inequalities to strengthen the formulations. Section 4 describes the computational details of
our experiments, such as the software/hardware material, the instances generation, all the results from
exact formulation methods and a simulation for a unit-load order picking system to showcase the benefits
of the reassignment. Based on our observations, we also present an estimation of the working time
of a reassignment corresponding to our instances with a current real-life technique. Finally, Section 5
concludes the chapter and presents some research perspectives.

2 Problem formulation

Following the formulation of Christofides and Colloff [1973] of the reassignment problem, let A = [an],
n ∈ {1, . . . , N} be the initial assignment of products to N locations, and let B = [bn], the desired final
assignment. Thus, an and bn are respectively the starting product and desired product at location n. We
denote the I/O point as node 0.

Our problem applies to unit-load storage warehouse in which a product can be assigned to only one
location at the time. If we have more than one pallet of a given product, we create as many dummy
pallets required and equally divide the demand between them. Some locations are not occupied, and it is
possible to move a product to an occupied location and operate a products switch. When this happens, it
creates an additional handling time and forces to leave this location with the product that was previously
there. All reassignment routes must begin and end at the I/O point (depot). Each handling vehicle has
a capacity of one pallet, and we assume that a product occupies an entire pallet and location. Then the
warehouse reassignement problem can be formally define as follows. Given a unit-load warehouse with
an initial assignment A, a desired assignment B and a maximum number of operators, the objective is to
determine the set of routes followed be the operators in such a way to minimize the total working time
(traveling time, pick, drop and switch time).

We consider that we always pick a product from its previous location and drop it directly to its desired
location. In other words, there is not an intermediate movement that temporarily places a product in
a location that is not its final destination. The main difference with the problem solved by Christofides
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and Colloff [1973] is the fact that we accept to move a product to an occupied location. Obviously, this
is not always the best alternative because the operator will need to switch the two products, which is
costly in terms of handling time. To model this tradeoff, we add a penalty α to a drop at an occupied
location that corresponds to dropping the new product on the floor (near the new location), removing
the old one, placing the new product inside the location, and retake the old one.

We now present the following reduced example of a picking zone with only eight locations in order to
understand all involved product movements. Each picking location is indexed by a number. The product
index inside the location is indicated by a letter. The initial assignment is A = [a, b, c, ∅, d, e, f, g] where
∅ represents an empty location. The desired final assignment is B = [e, b, d, a, f, c, g, ∅]. Note that only
product b in location 2 stays in the same position. The desired final assignment can be obtained using
one of the methods described in the introduction by taking into account volumes, demand profiles, and
picking strategies. It can consider, for example, that initially product a was the most requested product
in the warehouse and has been located in the best available storage location; given demand fluctuations,
product a is not required as much, and must have its location used by product e, which is now the most
demanded product in the warehouse. In Table 2, we show a quick route construction (not necessarily
optimal) to move from an initial assignment A to a final assignment B.

The left part of the table shows step by step the six modifications done to the assignment until we reach
the final one. In the right part, we show the evolution of the route with the location numbers. A single
arrow (→) means that we move empty between two locations. A double arrow (⇒) means that we move
with a product. A left-right arrow (⇔) means that a product is dropped in an occupied location and we
do a product switch. The first line of Table 2 shows the initial setup A, and each line corresponds to an
intermediate assignment. The last line designates the desired assignment B. At each step, the moved
product is in a gray cell.

Steps
Locations

1 2 3 4 5 6 7 8
Route

A a b c ∅ d e f g

S1 ∅ b c a d e f g I/O → 1 ⇒ 4
S2 e b c a d ∅ f g I/O → 1 ⇒ 4 → 6 ⇒ 1
S3 e b ∅ a d c f g I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6
S4 e b d a ∅ c f g I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3
S5 e b d a ∅ c g ∅ I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3 → 8 ⇔ 7
S6 e b d a f c g ∅ I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3 → 8 ⇔ 7 ⇒ 5 → I/O

B e b d a f c g ∅

Table 2: Example of reassignment route construction

In the step S1, we move from the I/O point to location 1, picking product a and moving it to the empty
location 4, letting location 1 temporarily empty (→ 1 ⇒ 4).

Since location 4 was not occupied before the move, we leave this location empty and we choose to move
towards location 6. In the step S2, we pick product e and move it to its final location 1 (→ 6 ⇒ 1).

In step S3, we restart from location 1 and travel empty to location 3, picking c towards location 6, letting
location 3 empty and filling location 6 (→ 3 ⇒ 6).

In step S4, we move empty from location 6 and pick product d at location 5, now temporarily empty,
and bring it to the empty location 3 (→ 5 ⇒ 3).

In step S5 we go towards location 8, picking g and dropping it at location 7 which is occupied by product
f . We hence have to take product f from the location, drop it on the floor, pickup product g that was
already on the floor, drop it at location 8 and finally pick up product f again. We assume the penalty α
associated with this move (→ 8 ⇔ 7).

In step S6, we move f to its final location 5 that we previously let empty and finish the route at the I/O
(⇒ 5 → I/O). We have achieved the final positioning B.
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The assumptions of our model are simple and logical ones:

• the current and the desired assignments of the products are known,

• all vehicles performing the reassignments start and end their routes at the I/O point,

• the products being reassigned are moved directly from their current position to their new position,
without intermediary drops,

• the goal is to finish all reassignments as soon as possible, thus minimizing the time needed for this
activity.

The idea of reassigning the locations of some products in a warehouse is general and the example just
described how it should work. This idea can be applied, e.g., in retail warehousing or e-commerce fulfill-
ment centers, as they often need to reorganize products to accommodate seasonal demand changes, new
product arrivals, clearance sales, changing product assortments, and order profiles. Efficiently relocat-
ing critical products can enhance order fulfillment and reduce costs, while optimizing the placement of
fast-moving or frequently bundled products can improve order picking efficiency.

3 Mathematical models

This section presents three different mathematical formulations for the warehouse reassignment problem.
Model 1 uses a uniquely designed graph with nodes and arcs that allow us to track the status of a location
over time. While models 2 and 3 are traditional and widely used in the routing literature, model 3 is
more compact as the status of the locations are preprocessed and only possible moves are modeled, based
on a pickup and delivery formulation from the literature. The graph of Model 1 contains fewer nodes
and arcs, leading to a model with significantly fewer variables and constraints, as will be demonstrated
later. These models and particularly the new graph definition are described in the next sections.

Let Pi be a unit-load pick to perform at location i ∈ N\{ai = ∅}. We define the set of all picks
P = ∪i∈N\{ai=∅}Pi. Let Di be the drop to perform at location i ∈ N\{bi = ∅}. We also define the set
of all drops D = ∪i∈N\{bi=∅}Di. We define Ri as the destination (drop) associated with pick Pi. Table
3 presents an example of components of set R = ∪i∈NRi. In this table, the product from location 1 has
to be moved to location 2. Thus, location 2 corresponds to R1. R2 corresponds to location 1 as it is the
destination of pick on location 2, thus P2.

Table 3: Reassignment requests
i 1 2 3 4 5
Ri 2 1 4 5 3

In order to formulate the problem, let ui be the time at which the vehicle leaves location i. Other variables
are model-specific and are presented with each of the following three models. Let the time limit of a
route be L.

3.1 Three-nodes formulation (M1)

In this section we develop a graph definition especially designed for this problem. It will allow us to
track information on the status of a location over time. We consider three types of actions that can
be performed for each location, each represented by one node. The first two are related to dropping a
product at an empty location or picking the product, represented by the sets D and P. The third type of
action is related to what happens after a drop in an empty location. This means that we are leaving the
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location empty, without any product on the vehicle and without doing a product switch. For representing
this action at each location, let Ei represent an empty node at location i ∈ N\{bi = ∅}. We define the
set of all possible empty locations E = ∪i∈N\{bi=∅}Ei.

Definition. Empty node. For a location i ∈ N\{bi = ∅}, let an empty node Ei be the immediate
successor of the drop node Di if Pi = ∅ or if uPi

< uDi
, meaning that the picker has previously placed a

product at location i and left it without a product.

These three types of nodes per location are illustrated in Figure 2. This allows us to easily determine if
a picker reaches a location with or without a product and if he leaves it with or without a product.

Location

drop

pick

empty

!"

#"

$"

$%&"
I/O

drop !%&"

'"

!%&"
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$(
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!+ or
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1 2
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!+ or
I/O

$* or
I/O

Possible arcs

Figure 2: The three possible cases of sequences of nodes

Figure 2 presents three possible sequences of nodes. A sequence starts and finishes without product and
continues as long as the picker moves with a product.

In Figure 2a), we reach pick P1 in location 1, complete the reassignment request R1 by dropping it at its
destination at location 2, corresponding to node D2. Since the destination was initially empty (a2 = ∅),
we just move to the empty node E2, completing the sequence for only one request.

In Figure 2b), the sequence starts and ends at the same location, creating a cycle. From pick P1, we go
towards location 2 and node D2. Since there is already a product at this location, we have to go directly
to P2 (performing a product switch). The destination of P2 is location 1, where we made P1 at the
first step. Since we have emptied location 1, the path continues to the empty node E1, exiting location
1 without a product on the vehicle and ending the sequence. Two requests have been satisfied in this
example.

In Figure 2c), we have an extension of case 1. This is a cascade of requests within occupied locations.
We start with P1. Its destination is drop D2 at the already occupied location 2. We hence need to pick
P2 and so on, until we reach the drop node D3 in the empty location 3 that will end the sequence. This
case shows how a starting pick node can generate a potentially long sequence of multiple requests.

Finally, let G = (V,E) be the full graph, where V = D∪E ∪P ∪ 0 is the set of all nodes and E is the set

8



of all arcs xij , where i ̸= j, developed as follows:

xij ∈ E if


i = 0 and j ∈ P (1a)

i = En and j ∈ Pm ∪ 0 ∀ n,m ∈ N : n ̸= m (1b)

i = Dn and j = Pn ∀ n ∈ N (1c)

i = Dn and j = En ∀ n ∈ N. (1d)

In equation (1a) we have all arcs between the I/O point (node 0) and all picks. In (1b), we have arcs
from empty nodes in E to pick nodes of different locations or returning to the I/O point. Equation (1c)
sets the arc between the drop node and the pick node of the same location n (if a pick exists in this
location). In the same way, equation (1d) sets the arc between the drop node and the empty node of the
same location n.

The cost (time) to move from node i to another node j is cij , according to their respective location and
such that (i, j) ∈ E. We consider a constant movement speed. When arc (i, j) corresponds to a product
switch (arcs from equation (1c)), a penalty α is added to cij . For node j ∈ P ∪ D we define a service
time sj corresponding to the time to drop or pick the product. For the sake on simplicity, we also add
sj directly in cij .

We define the integer decision variable k as the number of pickers used in the solution. We define wi as a
continuous variable indicating the idle time at location i. Let V ′ = V\{0}. Table 4 presents a summary
of the parameters, sets and variables used in our formulation.

Table 4: Summary of parameters, sets and variables

N set of locations
cij travel time for arc (i, j) ∈ E
L time limit of a route
Pn pick node of location n ∈ N
Dn drop node of location n ∈ N
En empty node of location n ∈ N
Rn destination of Pn, n ∈ N
V set of all nodes, V = D ∪ E ∪ P ∪ 0
E set of arcs
xij binary variable equal to 1 if the arc (i, j) is selected, 0 otherwise
ui departure time at node i, i ∈ V

′

wi idle time at node i, i ∈ V
′

k number of routes in the solution

The mathematical formulation is the following:

Min Z =
∑

(i,j)∈E

cij xij +
∑
i∈V ′

wi (2)

subject to:∑
i∈E

xi0 = k, (3)
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∑
j∈P

x0j = k, (4)

∑
i∈V \{P}

xij = 1 ∀j ∈ P, (5)

∑
i∈V

|(i,j)∈E

xij =
∑
k∈V

|(j,k)∈E

xjk ∀j ∈ V
′
, (6)

ui − uj + Lxij ≤ L− cij ∀(i, j) ∈ E, (7)

uPn
≤ uDn

+ (1− xDn,En
)L ∀n ∈ N : Pn /∈ ∅, (8)

uj ≤ ui + wj + cij + (1− xij)L ∀(i, j) ∈ E, (9)

xPn,Rn
= 1 ∀n ∈ N, (10)

xij ∈ {0, 1} ∀(i, j) ∈ E (11)

0 ≤ ui ≤ L ∀i ∈ V, (12)

0 ≤ wi ≤ L ∀i ∈ V, (13)

k ∈ N. (14)

The objective (2) minimizes the total workload corresponding to the sum of the traveling time (including
penalties), the service time, and the idle time. Constraints (3) and (4) fix the number of routes that
respectively exit and enter the I/O point. Constraints (5) ensure that all pick nodes will be visited and
in the same way, performing all reassignment requests. Constraints (6) ensure the flow equilibrium at
each node. Constraints (7) allow the chronometer increment of variable ui considering the travel distance
between i and j and the service time when applicable. This also removes all the possibilities of sub-tour
within a solution. Constraints (8) ensure the pick node to be visited before the empty node of the same
location. This constraint is valid if and only if the arc between the drop and empty of the same location
(Dn, En) is used. Constraints (9) are used to fix the idle time variable wj if an arc xij is used. Constraints
(10) impose that the arc between a pick in Pn towards its destination Rn must be used since we have a
unit-load system. Constraints (11) set the nature of variable xij . Constraints (12) and (13) bound the
variable ui and wi, respectively, to a maximal value L. Constraint (14) indicates that variable k is a
positive integer.

3.2 Vehicle-indexed formulation (M2)

In this section we present a vehicle-indexed adaptation of the previous formulation which is based on
the same graph definition. We use a set M of pickers and for each k ∈ M we set a starting node k+

and an ending node k−, all corresponding to the I/O point. We then define M+ and M− as the set of
I/O nodes. Finally, let W = M+ ∪M−. We hence define variables xk

ij equal to one if picker (vehicle)
k ∈ M travels between i and j, zero otherwise. Let us redefine the set of nodes V = D ∪ E ∪ P ∪W and
V

′
= V \{W}. Since we can now create a variable uk+ and uk− for all k ∈ M, we do not need idle time

variables wi to compute the total workload. Restrictions (1a) and (1b) for three index variables xk
ij on

set E are updated as follows:

xk
ij ∈ E if

{
i ∈ M+, j ∈ P ∪M− ∀ k ∈ M (15a)

i = En, j ∈ Pm ∪M− ∀ n,m ∈ N : n ̸= m, k ∈ M (15b)

The model is the following:

Min Z =
∑
k∈M

(uk− − uk+) (16)
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subject to:∑
i∈E∪{k+}

xk
ik− = 1, ∀k ∈ M, (17)

∑
j∈P∪{k−}

xk
k+j = 1, ∀k ∈ M, (18)

∑
k∈M

∑
i∈V ′∪M+\{P}

xk
ij = 1 ∀j ∈ P, (19)

∑
i∈V ′∪M+

|(i,j)∈E

xk
ij =

∑
l∈V ′∪M−

|(j,l)∈E

xk
jl ∀j ∈ V

′
, k ∈ M, (20)

ui − uj + Lxk
ij ≤ L− cij ∀(i, j, k) ∈ E, (21)

uPn ≤ uDn + (1−
∑
k∈M

xk
Dn,En

)L ∀n ∈ N : Pn /∈ ∅, (22)

xk
ij ∈ {0, 1} ∀(i, j, k) ∈ E, (23)

0 ≤ ui ≤ L ∀i ∈ V. (24)

The objective (16) minimizes the total workload by taking the difference between the ending and starting
time for all vehicles. Constraints (17) and (18) make sure that each vehicle starts and ends at the I/O
point. Constraints (19) ensure that each pick node will be visited only once. Constraints (20) ensure the
flow equilibrium at a node. Constraints (21) allow the chronometer increment of variable ui. Constraints
(22) ensure the pick to be visited before the empty node of the same location when applicable. Constraints
(23) and (24) define the nature of variables xk

ij and ui respectively.

3.3 Pickup and delivery formulation (M3)

This section presents how a general pickup delivery formulation [Savelsbergh and Sol, 1995] can be
adapted to solve the reassignment problem. We use four types of variables. Variables zki for each
i ∈ P, k ∈ M equal to 1 if pick i is assigned to vehicle k, 0 otherwise. Variables xk

ij such that (i, j) ∈
(V ′ × V ′) ∪ {(k+, j|j ∈ P)} ∪ {(j, k−)|j ∈ D}, k ∈ M equal to 1 if vehicle k travels from location i to
location j, 0 otherwise. We still use variables ui as the departure time from node i ∈ V ∪W . Let yi be
the load of vehicle at node i ∈ V ∪W . The mathematical formulation is as follows:

Min Z =
∑
k∈M

(uk− − uk+) (25)

subject to:∑
k∈M

zki = 1 ∀i ∈ R, (26)∑
j∈V

xk
lj =

∑
j∈V

xk
jl = zki ∀n ∈ N, l ∈ Pn ∪Rn, k ∈ M, (27)

∑
j∈V ′∪{k−}

xk
k+j = 1 ∀k ∈ M, (28)

∑
j∈V ′∪{k+}

xk
ik− = 1 ∀k ∈ M, (29)

up ≤ ud ∀n ∈ N , p ∈ Pn, d ∈ Rn, (30)

11



ui − uj + Lxk
ij ≤ L− cij ∀(i, j) ∈ E, k ∈ M, (31)

yk+ = 0 ∀k ∈ M, (32)

yi ≤
∑
k∈M

zki ∀i ∈ P, (33)

yi − yj + xk
ij ≤ 0 ∀i, j ∈ V, k ∈ M, (34)

uDn
− uPn

− (1−
∑
k∈M

xk
DnPn

)L ≤ cDnPn
∀n ∈ N : pn ̸= ∅, (35)

uDn
− uPn

+
∑
k∈M

xk
DnPn

L ≥ cDnPn
∀n ∈ N : pn ̸= ∅, (36)

xk
ij ∈ {0, 1} ∀i, j ∈ V ∪W,k ∈ M, (37)

zki ∈ {0, 1} ∀i ∈ P, k ∈ M, (38)

ui ≥ 0 ∀i ∈ V ∪W, (39)

yi ≥ 0 ∀i ∈ V ∪W. (40)

The objective function (25) minimizes the total workload for all vehicles. Constraints (26) ensure that
all pick requests will be served only once. With constraints (27), a vehicle enters or leaves a location l if
it is a pick or a drop of a transportation request assigned to that vehicle. By constraints (28) and (29),
we make sure that each vehicle starts and ends at the I/O point. Constraints (30) ensure that the pick is
made before the drop of the same request. Constraints (31) ensure the correct increment of the departure
time variables when an arc is used. Constraints (32) and (33) impose the initial and maximum load of the
vehicle respectively. Constraints (34) make the correct increment of the load when applicable. Together,
constraints (35) and (36) ensure that product switch at the same location will be done if a drop is made
at a still occupied location. Constraints (37) to (40) define the nature of all involved variables.

3.4 Models lifting

In this section, we present how it is possible to strengthen the bound of timing variables for all models M1,
M2 and M3. We also show how it is possible to remove the symmetry of the vehicle-indexed formulations,
M2 and M3.

Between the starting point and the arrival point, a minimum path corresponds to a single reassignment
request. We can tight the bound of ui variables for all pick P. Inequalities (41) and (42) are valid for all
locations n ∈ N such that p = Pn, d = Rn.

c0p ≤ up ≤ L− cpd − cd0 (41)

c0p + cpd ≤ ud ≤ L− cd0. (42)

The Miller-Tucker-Zemlin constraints (7) can be lifted as presented by Kara et al. [2004] by reducing the
maximal value of L. This can be done as follows, by considering the minimal travel time to the node i:

ui − uj + (L −mink{cki})xij ≤ L−mink{cki} − cij ∀(i, j) ∈ E. (43)

It is also possible to determine an initial valid lower bound on the objective function considering that
each reassignment request must be made. The lower bound is the following:

Z ≥ +
∑
n∈N

cPnDn + a

(
min
p∈P

{c0p}+ min
d∈D∪E

{cd0}
)

(44)
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a =

⌈∑
n∈N cPnDn

L

⌉
. (45)

Equation (45) states the minimum number of vehicles needed to cover the total travel times between a
pick and its destination, including all the service time. Knowing this number, we know that solution will
at least perform this amount of work to cover the minimal distance between the I/O and first (and last)
nodes. Inequalities (41) – (44) are valid for all three formulations.

An important weakness of a homogeneous vehicle-indexed formulation (M2 and M3 ) is the presence
of solutions symmetry. We tighten these formulations by imposing the following symmetry breaking
constraints: ∑

j∈P∪{k−}

xk
0j ≤

∑
j∈P∪{k−}

xk−1
0j ∀k ∈ M\{1} (46)

∑
l∈V

|(l,i)∈E

xk
li ≤

∑
c∈V

|(c,j)∈E

∑
j<i

xk−1
cj ∀i ∈ V ′, k ∈ M\{1}. (47)

Constraints (46) ensure that vehicle k cannot leave the depot if the vehicle k − 1 is not used. This
symmetry breaking rule is then extended to the locations by constraints (47) which states that if a
request i is assigned to vehicle k, then vehicle k − 1 must perform a request with an index smaller than
i [Coelho and Laporte, 2013].

4 Computational experiments

In this section, we provide details on the implementation, benchmark instances, and describe the results of
extensive computational experiments. The description of the benchmark instances is presented in Section
4.1. In Section 4.2 we describe how we have evaluated and estimated the current solution of an industrial
partner. This is followed by the results of our computational experiments in Section 4.3. Finally, Section
4.4 presents a return over the investment analysis, in terms of working time, of the reassignment process
on a unit-load picking warehouse.

We use IBM CPLEX Concert Technology 12.6 as the branch-and-bound solver. All computations were
executed on machines equipped with Intel Westmere EP X5650 six-core processors running at 2.667 GHz,
and with up to 16 GB of RAM running the Scientific Linux 6.3. All algorithms were given a time limit
of 3600 seconds.

4.1 Instances generation

An instance is a set of positions inside the warehouse, represented by an aisle number (a) and a section
number (s). There is a number of empty locations (e) randomly positioned within the warehouse. A
unique product is located at each non-empty location, representing the initial setup of the warehouse.
Finally, each product is assigned to a new location. The number of aisles is a = {1, 2, 3}, the number of
sections is s = {2, 3, 4, 5} and the number of empty locations is e = {⌈0.1(2as)⌉, ⌈0.2(2as)⌉, ⌈0.3(2as)⌉}.
That makes a total of 30 different instances. Note that if two or more configurations with one aisle and
the same number of sections lead to the same number of empty locations (e), we only create one instance.
For example, one aisle and two section, the rounded up number of empty locations is always one for all
proportion.

We also vary the experiments via a time limit (L) of a reassignment route. This limit, in seconds, will be
in L = {∞, 1000}. For a product switch, we set the time penalty (α) to 30 seconds. The lift trucks have
a constant speed of 1 m/s. We assume a service time (si) of 10 seconds for all pick and drop nodes.
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4.2 Real-case solution estimation

In order to validate the potential gain of the reassignment technique, it is appropriate to compare it
against a real reassignment method. We will compare our method with that observed from a partner
working in the industry of large volume food distribution. They have recently relocated all the products
in their picking area. To do this, they removed all involved products from each aisle and put them in
the consolidation zone, between the aisles and the docks. Afterwards, they positioned each product in its
new location from this buffer storage space using one lift truck operator per aisle. We can easily compute
the cumulative time of this operation using or travel time matrix cij , including the service time.

It is assumed that products, once removed from their original location, are positioned just in front of
their respective initial aisle. We will neglect the movements and distances around the buffer zone. It is
assumed that all products must be removed before starting the reassignment. To calculate the total work
time, we compute four movements per product. The first one is between the buffer zone of the front of
the aisle and the product. The second is the same distance, but in the opposite direction. The third
(and fourth) between the buffer zone of the initial aisle and the new location (and way back in opposite
direction). This is done for each request to obtain an estimate of the total time to relocate all products.
We will call this method the Case Study Heuristic (CSH).

4.3 Results

This section presents the computational experiments of all three mathematical models over the benchmark
instances and a comparison in terms of performance and characteristics. Table 5 presents these first
results. The first three columns indicate the number of aisles, sections and empty locations, respectively.
The fourth column shows the number of reassignment requests. The CSH column presents the results of
the case study heuristic. As computing times are negligible, they are not reported. For each mathematical
formulation (M1, M2 and M3), the table reports the upper bound (UB), the lower bound (LB), the
optimality gap (Gap (%)) and the CPU time in seconds (Time (s)). All models are reported with all
their respective valid inequalities

We see that optimal solutions have been found for all instances with only one aisle (a = 1) for all three
formulations. For instances with two aisles, formulation M2 and M3 begin to have difficulties to close
the gap within the allotted time. Formulation M1 performs a lot better and finds optimal solutions for
instances with up to three aisles. The total average optimality gap for M1 is only 2.9%. The gaps are a
lot larger for M2 and M3 with 18.2% and 18.1% respectively. The best overall upper bound comes from
M1 with 753.7. It corresponds to an improvement of 56% from the solutions of the case study heuristic.
Formulation M1 finds the best lower bound for all instances. This formulation obtained 29 out of 30 best
upper bounds. We see that formulations M2 and M3 have almost the same performance in terms of upper
and lower bounds, gap and CPU times. We also observe that all three formulations clearly outperformed
the CSH method, yielding solutions that take less than half the time needed by CSH.

Table 6 presents the upper bound and lower bound of all three models without any timing valid inequalities
(41) and (42), initial lower bound (44) and symmetry breaking inequalities (46) and (47). We see that
M1 still found 20 out of 30 optimal solutions and gives very similar bounds. However, the gap increases
from 2.9% to 5.0%. For both models M2 and M3, we see that after 9 requests, they are unable to find
any valid lower bounds. That confirms the importance of inequalities proposed in Section 3.4.

The graph of Figure 3 presents the number of variables used for each formulation as a function of the
number of reassignment requests given in the fourth column of Table 5. Instances with less than 7
requests has a restriction of only one vehicle. Since M2 and M3 are both vehicle indexed formulation,
it is normal to see that the number of variables is very similar with M1 under 7 requests. For instances
with 8 to 13 requests, two vehicles are allowed and three vehicles from 14 requests. The graph shows a
rapid increase in the number of variables for M2 and M3.

Figure 4 presents the number of constraints for each formulation. For instances with 9 requests and more,
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Figure 3: Number of variables

the constraints number of M3 is rapidly increasing. For formulations with nodes per location (M1 and
M2), the number of constraints increases less rapidly.

Figure 5 shows the time in milliseconds (ms) spent on average per branch-and-bound node for solving
each relaxed problem. Again, from 9 requests the performance of formulation M1 is better than the
other ones for almost all instances. This means that M1 is able to explore more nodes in the process and
available time.

These results clearly demonstrate how the introduced formulation outperforms the other two, in particular
the pickup and delivery formulation. With M1, we are able to solve to optimality instances with up to
17 reassignment requests in a reasonable amount of time. Formulations M2 and M3 have not been able
to solve instances with more than 9 requests and their performance declines quickly after this threshold.

Recall that we allow two vehicles for instances with two aisles and three vehicles for instances with three
aisles. For most instances, the solution tends to use all available vehicles. The main reason is because
there will be fewer product switch involving a time penalty. For example, a second vehicle leaving
the depot will directly pick a product at a location, enabling the first one to drop without a penalty.
Coordinating several vehicles in the reassignment process thus presents a real advantage. We tested to
reduce the time available for the vehicles for instances with two and more aisles. When a feasible solution
is found, it leads to a similar distance to the solution without time capacity.

4.4 Simulation on a unit-load picking system

The reassignment process implies an important decision, since picking operations must be delayed (or
strongly disturbed) while products are repositioned. For this reason, sometimes companies might hesitate
to perform a reassignment. However, one must consider that a bad assignment incurs higher picking
cost/time. Thus, the reassignment should be seen as an investment whose value can be determined.
To do this we simulate scenarios on the most basic picking system: a unit-load. We compute the total
distance to pick all products from the pick list by making a round trip from the I/O point and the location
of the product. The total distance before and after the reassignment can therefore be easily computed.

We generate picks list from 1 to 150 picks on the instance with 27 requests, such as the one on the last
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row of Table 5. Figure 6 presents the results of our simulation. It shows the total distance of the unit-load
picking with and without the reassignment. Table 5 gives us the CSH total distance to reassign products
and the distance from the best model (M1) that are not impacted by the long size of the picks list. It also
shows the distance saved as the difference with the picking distance without and with the reassignment.

This allows us to delimit the gray area on the graph corresponding to the gain between our method and
the CSH. Moreover, it shows that the distance saving is greater than the reassignment distance of our
method at around 45 picks to do. In comparison, the saving distance because greater than the CSH
distance after 110 picks. Since it is a very small warehouse example, this difference is important.

Figure 6: Simulation of picking scenarios

5 Conclusion

In this chapter we have suggested a new formulation for the warehouse reassignment problem. We have
then been able to solve instances in which we have to relocate a large set of products within the picking
zone. Our new directed graph definition and model minimize the workload of relocating all the products
in their new position. We have seen that the model is very efficient and allows to solve instances of
realistic size with handling movement penalties. We have generated a dataset of benchmark instances for
the reassignment problem. As shown, companies may opt for simpler methods, but which dramatically
requires more operation time and material handling. In comparison with a technique already used by
an industrial partner, we can reduce on average by three times the workload of reassignment. We have
been able to obtain a tight gap in most instances and for all given time capacity. Moreover, we have
shown that on unit-load warehouse, the reassignment cost quickly pays off as the picking process becomes
much more efficient. As future research and practice opportunities, we see that combining picking with
reassignment operations can yield even higher savings.
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