

 University of Groningen

Python for gene expression
Bystrykh, Leonid

Published in:
F1000Research

DOI:
10.12688/f1000research.53842.1

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bystrykh, L. (2021). Python for gene expression. F1000Research, 10, Article 870.
https://doi.org/10.12688/f1000research.53842.1

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://doi.org/10.12688/f1000research.53842.1
https://research.rug.nl/en/publications/1acc8675-f47f-48e3-ba02-5abb9065ea2f
https://doi.org/10.12688/f1000research.53842.1

OPINION ARTICLE

Python for gene expression [version 1; peer review: 2

approved]
Leonid Bystrykh
ERIBA, University Medical Center Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands

First published: 31 Aug 2021, 10:870
https://doi.org/10.12688/f1000research.53842.1
Latest published: 23 Jun 2022, 10:870
https://doi.org/10.12688/f1000research.53842.2

v1

Abstract
Genome biology shows substantial progress in its analytical and
computational part in the last decades. Differential gene expression is
one of many computationally intense areas; it is largely developed
under R programming language. Here we explain possible reasons for
such dominance of R in gene expression data. Next, we discuss the
prospects for Python to become competitive in this area of research in
coming years. We indicate that Python can be used already in a field
of a single cell differential gene expression. We pinpoint still missing
parts in Python and possibilities for improvement.

Keywords
differential gene expression, single cell expression, python, R, limma

This article is included in the RPackage

gateway.

This article is included in the Bioinformatics

gateway.

 This article is included in the Python collection.

Open Peer Review

Approval Status

1 2

version 2

(revision)
23 Jun 2022

view

version 1
31 Aug 2021 view view

Sergio Peignier , Université de Lyon, INSA

Lyon, INRA, Villeurbanne, France

1.

Yasha Hasija , Delhi Technological

University, Delhi, India

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://f1000research.com/articles/10-870/v1
https://orcid.org/0000-0001-6924-5602
https://doi.org/10.12688/f1000research.53842.1
https://doi.org/10.12688/f1000research.53842.2
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/bioinformaticsgw
https://f1000research.com/gateways/bioinformaticsgw
https://f1000research.com/collections/python
https://f1000research.com/collections/python
https://f1000research.com/articles/10-870/v2
https://f1000research.com/articles/10-870/v1#referee-response-141893
https://f1000research.com/articles/10-870/v1
https://f1000research.com/articles/10-870/v1#referee-response-136995
https://f1000research.com/articles/10-870/v1#referee-response-136994
https://orcid.org/0000-0002-9004-3033
https://orcid.org/0000-0003-0116-0711
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.53842.1&domain=pdf&date_stamp=2021-08-31

Corresponding author: Leonid Bystrykh (l.bystrykh@rug.nl)
Author roles: Bystrykh L: Conceptualization, Investigation, Resources, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Copyright: © 2021 Bystrykh L. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Bystrykh L. Python for gene expression [version 1; peer review: 2 approved] F1000Research 2021, 10:870
https://doi.org/10.12688/f1000research.53842.1
First published: 31 Aug 2021, 10:870 https://doi.org/10.12688/f1000research.53842.1

Page 2 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

mailto:l.bystrykh@rug.nl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.53842.1
https://doi.org/10.12688/f1000research.53842.1

Introduction
Fundamental breakthrough in sequencing technologies in late 1990 promoted explosive growth of the data accumulated
in biology in the last two decades. First, the introduction of expression microarrays has initiated accumulation of
genome-wide gene expression data from different organisms, which stimulated creation of dedicated databases and
development of computational tools for its analysis. Second, a more substantial wave of expression data arrived along
with progress in high-throughput DNA sequencing,1(p),2 which demanded even bigger data storage and more sophis-
ticated means of maintenance, programming support and analysis.3-5 This coincided with improved performance of our
computers accompanied by the development of programming languages, especially those that paid attention to the
biology-specific demands in data analysis, such as R and Python.6-8 Although the current list of known programming
languages is approaching 400 (compiled by Wikipedia), there are only a handful of languages supporting dedicated
biology-oriented packages (Table 1). Thus, the theoretical choices for languages with specialized support of biological
applications is still very limited.

R and Perl
Python, as a fully functional and ready for tasks of general programming, arrived with as version 2.0 in 2000. By that time
R was already a well-established language in bioinformatics, especially for statistical applications, see for instance.11

At that time Perl was probably the most used programming language in genome biology (especially suited for string
operations on DNA, RNA and protein sequences), due to its better computational performance,12 and it stays strong in a
field of genome sequence analysis even now, although it’s difficult syntax and accumulating problems with maintenance
of the packages has caused a gradual decline in popularity (as for instance recorded in codementor.io site for the worst
programming languages). Nevertheless, Perl scripts can be seen on the back pages of Ensembl BioMart and also Unigene
pages.

Since the introduction of the Affymetrix expression microarrays in the 2000s, it immediately required means of
programming development; and the R language with its strong statistical component was ready for the immediate
use in the field of expression data analysis. The key elements in e establishing R as a standard language in the field was
resolving a problem of (microarray) data normalization13,14 and subsequent implementation as an R package (for instance
Bioconductor preprocessCore15). Publishing the Limma package16,17 was absolutely crucial for success of R in that area;
it resolved a problem of a small sample size for microarray expression data systematically provided by biologists at that
time. Since 2003-2005 clear separation of tasks became visible: Perl was focused on tasks of sequencing analysis, while R
covered statistics and differential analysis, including expression microarrays.

Limma package
Since the first publication of the Limma package by the group of Gordon Smith,16,18 it became a central and indispensable
element of major differential expression protocols in R for at least a decade since its introduction. In the early 2000s,
microarrays were expensive and many labs could afford only a limited number of samples to analyze. The core issue
resolved by this package was how to bypass a dilemma of a small number of samples in groups and still obtain credible

Table 1. Programming languages supporting biological packages, their names and major focus.

Programming
language

Name Major applications

C++ Bio++ Sequencing and phylogenetics

Java BioJava DNA/RNA/Protein sequence analysis

JavaScript BioJS Mostly Sequence analysis, some elements of GO and visualizations

Perl BioPerl Mostly sequencing related

PHP BioPHP Mostly sequencing related

Python BioPython
Snakemake1

Mostly sequencing related
Special package to reproducibly organize complex pipelines

Ruby BioRuby Mostly sequencing related

R Bioconductor Huge collection of different kinds, no specific subject. Not really for
sequencing

1Snakemake9 is python based workflow managing system, in other words pipelines organizing software, which is more than a regular
package (compared to others mentioned in this table). It is also worth mentioning Bioconda10 installation package, which assists finding
and installing various tools for biological data analysis. It is a sort of a spin-off the Anaconda installation package for Python, but with
extended spectrum of options and possibilities.

Page 3 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

and statistically validated results. Suppose you try to apply a t-test to a set of data with only 2 or 3 replicates per group and
a total number of tests up to 20000 times. This is equivalent to analyzing expression microarray data containing 20000
gene expression in a series of 2 controls and 2 experimental samples. Regular t-test with correction formultiple testing has
little chance for success. Limma has two essential steps circumventing this problem. One is using a linear model for a data
fit for the entire table of data, followed by using empirical Bayesian statistics to recalculate probabilities based on the
entire distribution of the expression data for all genes across the expression array.

This concept was directly inherited in later protocols for the bulk RNAseq analysis with edgeR package.19 Namely, the
Voom function in edgeR implements very similar steps of data conversion compared to the original Limma package.
Another popular protocol in R, namely deseq220(p2) (as well as deseq) used a similar approach, although not directly
copying the Limma algorithms. Details can be found in corresponding tutorials to the packages in Bioconductor.

No packages were designed in other programming languages. This lack of diversity of choices created a monopoly of R
protocols for the “classic” gene-expression analysis based on microarray data or bulk-RNAseq with limited number of
samples per group.

Technically Python allows to “wrap” or quote other programming languages within its own scripts. Python can
currently “quote” some lines from JavaScript, especially when ipynb file format is used. For R language there is a
special wrapper, rpy2,21 which can incorporate parts of the R functions within Python. Potentially, there is a possibility to
wrap R-functions from any R package into Python. However, there is not a genuine alternative in another language, and
besides, it is not a popular approach in current publications, which could be recommended to biologists as a standard
protocol. Note, that by standard protocol we imply a script suggested by package developers, which can be followed by
the user with “average” skills in programming.

Consequently, for quite a while the Python language had no usable application for the differential gene expression
analysis, especially in times when expression microarrays and bulk RNAseq data with small sample numbers dominated
the literature. Sporadically, one can find some reports with peculiar options available in Python. For instance, a
“geometrical approach” was suggested a while ago for finding differentially expressed genes,22 for which the imple-
mentation in jupyter notebook is also available.23 A similar “geometric approach” is discussed in another publication24

(although the later analysis was performed in R). Inspection of some of those scripts22,23 reveals that the “geometric”
approach rehearses a fold change statistics rather than eBayes probability approach and thus is not recommended.

Why Python?
Indeed, if R and Perl performed so well, each in its own niche, why do we need Python after all? In fact, with further
evolution of biological sciences more biologists realized the necessity of some elementary data analysis by themselves.
Whereas R is still strong and powerful for professional statisticians, it is also recognized as a difficult language to learn
and to comprehend (see for instance introduction in Quick-R, https://www.statmethods.net/). The same in part is true
for Perl. Python, on the contrary was originally designed to be more human-friendly, more transparent, and a clearer
computer language compared to Perl and R.More details of languages in comparison can be found on the Python official
site (https://www.Python.org/doc/essays/comparisons/). This gradually became recognized by the broad community of
interested people, including all kinds of scientists and non-scientists in Universities, secondary education and other
businesses. This made Python the most popular computer language in recent years (according to https://pypl.github.io/
PYPL.html for instance).

The second useful feature of Python is how functions are organized and stored. Unlike R, where each individual
contributor writes their own package, and gradually it becomes a collection of millions of functions, often redundant.
Python has a policy of bigger consortia and bigger collections of functions within libraries with less redundancy in
its content (although small packages also exist). The core packages like SciPy and Numpy collect long lists of
useful functions for elementary math and statistics. They are universally used as a source of scientific and numeric
functions. On top of these, other more dedicated libraries are developed, like Scikit-learn (a.k.a. Sklearn) package for
machine learning applications, Pandas for file and table management, Statsmodels for various kinds of a model fitting.
Regarding visualisations, most core options are in Matplotlib library, beyond that more specific illustrations could be
found in Seaborn, others in Bokeh and so on. Noteworthy, Pandas, Statsmodels and Seaborn are stylistically similar and
resemble R-style to some degree in their exterior. Unfortunately, Sklearn package currently does not support Pandas data
frame data structures, although it can be worked around via Numpy array conversions.

What is missing in Python for expression microarrays analysis?
Saying that the entire Limma package is missing in Python is a bit vague statement. It is important to specify what is
exactly missing, what part of it cannot be replaced by existing alternatives. Typically, a microarray protocol is built in

Page 4 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://www.statmethods.net/
https://www.python.org/doc/essays/comparisons/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

steps, many of which are already available in Python. Expression microarray data are deposited in public databases,
the most known is GEO site, which also has a built-in tool GEO2R with an R script attached25; the script would begin
with package enabling fetching the data from the site. Next, data are converted to the table. Values and their distribution
are inspected by checking the histogram, boxplots, and maybe MDS plot. It enables us to find out whether data are
already log2-transformed and normalized (high or low scale of intensities, also whether data look reasonably normally-
distributed or not) or has to be log2 transformed and normalized (equalized) to one another. If required, we add a step of
log2-transform (available as core function in R) and quantile normalization (available in Limma and preprocessCore). All
thosementioned steps are also available in Python (see Table 2 for details). Next, we define groups, then themodel for our
lmFit function. This is a sort of lm function available in Python statsmodels and core R, but lmFitworks for entire table of
data and it collects the results for an entire table aswell. It is accompanied by another contrasts.fit stepwhich ismore of the
same for specified groups of data. Further we have a function eBayes, which recalculates statistics obtained from the fit
steps above and finally generates Bayes corrected values for significance. This is essentially the heart of Limma, which is
not available in Python in any form. At last, topTable function organizes a final table of differential expressions, what we
well know from our own work and publications. Further, it can be decorated by more illustrations, like volcano plot or
another PCA plot, etc. All those decorative functions can be done in Python as well. To summarize, the lmFit and eBayes
are the only critical elements missing in Python precluding its use for microarray gene expression analysis.

What is missing in Python for bulk RNAseq analysis?
Major packages in RNAseq differential gene expression analysis in R utilize the concepts/functionalities implemented in
Limma package directly or indirectly. For instance, edgeR package designed for bulk RNAseq differential expression
imports Limma as a dependent package and uses elements of it. The basic steps are slightly different, but the outline is
very much the same. The first step is usually either trivial read file function or read raw mapped data as series of separate
files, andmakes a table out of it. The data can be either raw read counts, coming directly from the step of sequencing reads
counts per transcript, or corrected by transcript length (in RNA seq it is essential for comparison expression levels across
different genes). Unlike to microarray data, which are the smallest expression data among all others, RNAseq primary
data are much bigger in size, and they contain lots of low-level or not expressing genes. Consequently, there is a step
removing genes with low read values. Those genes are useless in terms of differential analysis and only overload the
memory. Since different samples in RNAseq can have different read coverage, and also a different number of detected
genes (above zero), the whole philosophy of normalization is rather complicated. However, the resulting procedure of
normalization is reduced to familiar log2-transform step followed by dividing all gene-expression values by so-called
normalizing factors. Fortunately, algorithms of finding normalizing factors are mostly well described, especially for
deseq2 (an outline can be found in Maza, 201626). Therefore, it is possible to write a custom script in any available
language including Python, which would recapture this sort of the normalization step. When normalization is done, the
next important step is estimation of data dispersion. This step is rather complicated in details not suitable for this type of
article. In edgeR there are many alternative options for this step available. After that the step of statistical estimation of
significance comes to a play. The resulting differential expression table follows the steps of a topTable fromLimma. If we
inspect options for Python, wewill find out that similar tomicroarrays Python largelymisses a step of dispersion analysis,
estimation of fold change statistics, and statistical significance. Other steps can be replaced by known functions or custom
scripts (Table 3).

Table 2. Steps and functions for differential expression microarrays analysis in R and analogues in Python.

Step R package/function Python analogue

Fetch data from GEO GEOquery (Bioconductor) GEOparse

Visualize data hist(), boxplot() plt.hist(), plt.boxplot() (Matplotlib)

Log2 transform log2() log2 (Math)

Quantile
normalization

normalizeBetweenArrays() (Limma),
normalize.quantiles()
(preprocessCore)

Not directly available, the procedure is
described indetail, it canbewritten as custom
code

Model fit lmFit(), contrasts.fit() (Limma) Not directly available, may be made from
statsmodels package functions.

Calculate significance eBayes() (Limma) Missing

Generate differential
expression table

topTable() (Limma) Missing, but can be written as custom script

Extra visualizations Volcanoplot (Limma), PCA (multiple
packages)

Basic plots in Matplotlib, plt.scatter(), PCA,
MDS, in SciKit-learn

Note: packages for functions are in brackets behind the function.

Page 5 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

Single cell RNAseq in R
Since R set a good trend for making all previous protocols for differential gene expression, it also pioneered a single
cell gene expression protocol. Out of many protocols generated so far, the most frequently used are Scater,27 Scran,28

Seurat29,30 and Monocle. Scater and Scran packages are built on a common data type, SingleCellExperiment,31 and thus
can be combined in one script using the same data type (which is often the case). In contrast, Seurat is built on its own data
type and aims to be a self-sufficient package. It is currently a popular choice; it is especially appreciated for good tutorials
and colorful illustrations, although integration of Seurat with other tools or packages is limited.

Single cell protocol for differential gene expression likely originated from bulk-RNAseq, but it diverged from its ancestor
in subsequent years. Some steps in both protocols are still common, some are different. For instance, SC-RNAseq
acquired a step to check sample quality and removal of bad quality samples (which are gene expressions per cell in
this case). Normalization and log2-transform are carried out in a similar fashion as in bulk RNAseq, although
normalization became even more simple: samples are usually adjusted to the median read counts across entire sets of
data and proportional to the detected genes per sample. Next, there is tedious step of identifying groups of cells for
differential expression analysis and other characterization. Unlike other differential expression protocols, SC-RNAseq is
aimed on characterization of cells, not genes, and possible discovery and/or classification of existing cell types. This is a
unique and specific chapter for SC-RNAseq only. The differential gene expression is performed using regular statistical
tests (there is no particular preference to those). Close to the end of the SC-RNAseq protocols, we observe increasing
diversity of options and specific interests.

It is important to emphasize that while R scripts in general often serve as standard protocols (or claimed to be a standard
protocols), it is not really the case for bulk RNAseq and SC-RNAseq protocols. Currently used packages are known to
differ substantially in detail, as well as the results of those data analysis. Therefore, we cannot pinpoint any particular
protocol as standard in the field of differential gene expression analysis in R. This and availability of alternative
commercial protocols for differential gene expression might be an extra source of the data irreproducibility problem in
this particular field of research.

Single cell RNAseq in Python
Unlike expression microarrays or a bulkRNAseq experiment, a single cell expression experiments contains lots of
samples (and samples in each group if groups are defined). Therefore, the major constraint, which existed in early years,
namely circumventing a dilemma of small sample numbers does not apply here. With hundreds of samples per group we
can apply regular statistics, which is available in Python and other languages. Therefore, with the introduction and
development of a single cell differential gene expression analysis it became possible to assemble the entire protocol from
available Python functions. Surely, the development of a dedicated package might facilitate the use and popularity of
Python for such analysis. In this regard, it is worth mentioning the release of the very first dedicated package of this sort,
namely Scanpy.32 Scanpy basically follows the sequence of data transformation and analysis from Seurat. They both
provide tutorials on the same data sources, whichmakes them especially attractive for use and open for cross analysis and
cross validation. Hopefully Scanpywill stimulate program developers for more interesting projects in a field of single cell
analysis.

Table 3. Steps and functions for RNAseq DE analysis in edgeR and analogues in Python.

Step R package/function Python analogue

Read the data from file read.csv(), read.table() Read_csv (pandas)

Visualize data hist(), boxplot() plt.hist(), plt.boxplot() (Matplotlib)

Convert to special data format DGElist() Not used

Calculate normalizing factors
(normalize and log-transform)

calcNormFactors() not directly available, the procedure described
for deseq2 can be written as custom code

Estimate dispersion Many kinds of
estimateDispersion()

Not available

Calculate significance exactTest() Not available in this context

Generate differential
expression table

topTable() (Limma) Missing, but can be written as custom script

Extra visualisations Volcanoplot (Limma),
PCA (multiple packages)

Basic plots in Matplotlib, plt.scatter(), PCA, MDS,
in SciKit-learn

Note: deseq2 protocol makes steps from normalization to differential expression table in one function.

Page 6 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

There is also an alternative to this, namely create specific functions, which can be recruited with regular tools and
functions already available in different packages in Python. Table 4 shows a sketchy comparison of howminimal protocol
is organized in Seurat, Scanpy and reassembled from scratch.

Currently this field is wide open for more examples of Python-base analysis for differential expression in single cells.
Some simple examples can be found onGitHub asExtended data (which should not be taken as a standard protocol for the
differential expression). Researchers should not be confused by the fact that different protocols result in different lists of
the differentially expressed genes. This is already described for different RNAseq protocols in R, caused for instance by
differences in normalization26,33 or other steps.34 The differences between those protocols are acceptable sincewe use not
identical, but only comparable, steps and functions. The major and most prominent differentially expressed genes are
usually consistent and not prone to variation upon changing options within protocols or between those. In addition, the
researcher can also try artificial data to check details of the protocols on reproducibility and consistency.35

Concluding remarks
Even though R remains the major language for differential gene expression analysis, further rise of Python popularity in
biological applications is expected in the coming years. Regarding single cell expression data, Python has broad possibilities
for data analysis. Moreover, the rise and diversification of the single cell protocols will require more programming
flexibility, where Python might offer more options with respect to R. This is also dependent of community efforts within
Python developers. We might expect some restructuring of existing packages and emergence of specialized dedicated
packages in the direction of the single cell analysis. The time is right for more efforts in Python applications. Regarding
flexibility, it is essential to keep all options open for integrating functions from different existing and future packages.

More active use of Python in biological studies will certainly improve transparency and reproducibility of currently used
protocols for differential gene expression and beyond. It is also a satisfying feeling that biological science makes a
substantial shift from descriptive empirical style into a more exact and analytical mode.

Table 4. Steps and functions for SC-RNAseq DE analysis in Scater, Scanpy and regular Python.

Step Seurat Scanpy Python

Read the data from
file

read.csv()* scanpy.read_csv pandas.read_csv ()

Convert to special
data format

CreateSeuratObject() Already converted as
AnnData

Keep as pd. DataFrame

Filter off outliers Regular R functions FilterCells(), FilterGenes() Use general pandas functions
for subsetting by threshold
values

Normalize and log-
transform

NormalizeData() normalize_total() normalize from Sklearn or
self-made script

Remove invariant
genes

FindVariableFeatures() highly_variable_genes() Use pandas DataFrame filter
by var value. Use
VarianceThreshold() from
Sklearn

Scale gene
expressions to 0-1
interval

ScaleData() scale() Normalize() in Sklearn

Run PCA, estimate
significant
components

RunPCA(), JackStraw() pca() Sklearn PCA()

Find or use
predefined clusters

FindNeighbors(),
FindClusters()

Import leiden, other
options possible

Different options in Sklearn.
cluster

Run tSNE, visualize
clusters

RunTSNE(), TSNEplot() Prefers UMAP (as
imported package)

tSNE and other options in
sklearn.manifold

Perform differential
expression check

FindMarkers(),
FindAllMarkers()

Build in options for
Wilcoxon, t-test, logistic
regression

t-test, oneway ANOVA,
Wilcoxon, Kruskal-Wallis etc.
in scipy.stats, RandomForest,
ADAboost in sklearn

*read.csv() in Seurat used for regular table read. Read10X() is for reading matrix data format.

Page 7 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

Data availability
Underlying data
No data is associated with this article.

Extended data
Extra information and example scripts are available: https://github.com/LeonidBystrykh/PY4DE/tree/main.

Archived scripts as at time of publication: http://doi.org/10.5281/zenodo.5044809.36

License: GPL-2

Acknowledgments
Many thanks to David Porubsky for thorough reading and detailed comments.

References

1. Xuan J, Yu Y, Qing T, et al. : Next-generation sequencing in
the clinic: promises and challenges. Cancer Lett. 2013; 340(2):
284–295.
PubMed Abstract|Publisher Full Text|Free Full Text

2. Carrasco-Ramiro F, Peiró-Pastor R, Aguado B: Human
genomics projects andprecisionmedicine.Gene Ther. 2017; 24(9):
551–561.
PubMed Abstract|Publisher Full Text

3. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. : Opportunities
and obstacles for deep learning in biology and medicine. J R Soc
Interface. 2018; 15(141).
PubMed Abstract|Publisher Full Text|Free Full Text

4. Bolouri H:Modelinggenomic regulatory networkswith bigdata.
Trends Genet. 2014; 30(5): 182–191.
PubMed Abstract|Publisher Full Text

5. Roy SS, Mukherjee AK, Chowdhury S: Insights about genome
function from spatial organization of the genome. Hum
Genomics. 2018; 12(1): 8.
PubMed Abstract|Publisher Full Text|Free Full Text

6. Huber W, Carey VJ, Gentleman R, et al. : Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods.
2015; 12(2): 115–121.
PubMed Abstract|Publisher Full Text|Free Full Text

7. Sadowski MI, Grant C, Fell TS: Harnessing QbD, Programming
Languages, and Automation for Reproducible Biology. Trends
Biotechnol. 2016; 34(3): 214–227.
PubMed Abstract|Publisher Full Text

8. MadsenC,GoniMorenoA, Palchick Z, et al.: SyntheticBiologyOpen
Language Visual (SBOL Visual) Version 2. J Integr Bioinform. 2019;
16(2).
PubMed Abstract|Publisher Full Text|Free Full Text

9. Köster J, Rahmann S: Snakemake–a scalable bioinformatics
workflow engine. Bioinformatics. 2012; 28(19): 2520–2522.
PubMed Abstract|Publisher Full Text

10. Grüning B, Dale R, Sjödin A, et al. : Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat
Methods. 2018; 15(7): 475–476.
PubMed Abstract|Publisher Full Text

11. Zhang Y, Szustakowski J, Schinke M: Bioinformatics analysis of
microarray data. Methods Mol Biol. 2009; 573: 259–284.
PubMed Abstract|Publisher Full Text

12. Fourment M, Gillings MR: A comparison of common
programming languages used in bioinformatics. BMC
Bioinformatics. 2008; 9: 82.
PubMed Abstract|Publisher Full Text|Free Full Text

13. Bolstad BM, Irizarry RA, Astrand M, et al. : A comparison of
normalization methods for high density oligonucleotide array
data based on variance and bias. Bioinformatics. 2003; 19(2):
185–193.
PubMed Abstract|Publisher Full Text

14. Irizarry RA, Hobbs B, Collin F, et al. : Exploration, normalization,
and summaries of high density oligonucleotide array probe
level data. Biostatistics. 2003; 4(2): 249–264.
PubMed Abstract|Publisher Full Text

15. Bolstad B: Bmbolstad/PreprocessCore. 2021; 19: 2021. Accessed April
2021.
Reference Source

16. Smyth GK: Linear models and empirical bayes methods for
assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004; 3: Article3.
PubMed Abstract|Publisher Full Text

17. Wettenhall JM, Smyth GK: limmaGUI: A graphical user interface
for linear modeling of microarray data. Bioinformatics. 2004;
20(18): 3705–3706.
PubMed Abstract|Publisher Full Text

18. Ritchie ME, Phipson B, Wu D, et al. : limma powers differential
expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 2015; 43(7): e47.
PubMed Abstract|Publisher Full Text

19. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics. 2010; 26(1): 139–140.
PubMed Abstract|Publisher Full Text|Free Full Text

20. LoveMI,HuberW, Anders S:Moderatedestimationof fold change
and dispersion for RNA-seq datawith DESeq2. Genome Biol. 2014;
15(12): 550.
Publisher Full Text

21. Gautier L: An intuitive Python interface for Bioconductor
libraries demonstrates the utility of language translators. BMC
Bioinformatics. 2010; 11(12): S11.
PubMed Abstract|Publisher Full Text|Free Full Text

22. Clark NR, Hu KS, Feldmann AS, et al. : The characteristic direction:
a geometrical approach to identify differentially expressed
genes. BMC Bioinformatics. 2014; 15(1): 79.
PubMed Abstract|Publisher Full Text|Free Full Text

23. Wang Z, Ma’ayan A: An open RNA-Seq data analysis pipeline
tutorial with an example of reprocessing data from a recent
Zika virus study. F1000Res. 2016; 5: 1574.
PubMed Abstract|Publisher Full Text|Free Full Text

24. Tambonis T, Boareto M, Leite VBP: Differential Expression
Analysis in RNA-seq Data Using a Geometric Approach. J Comput
Biol. 2018; 25(11): 1257–1265.
PubMed Abstract|Publisher Full Text

25. Barrett T, Wilhite SE, Ledoux P, et al. : NCBI GEO: archive for
functional genomics data sets–update. Nucleic Acids Res. 2013;
41(Database issue): D991–D995.
PubMed Abstract|Publisher Full Text|Free Full Text

26. Maza E: In Papyro Comparison of TMM (edgeR), RLE (DESeq2),
and MRN Normalization Methods for a Simple Two-Conditions-
Without-Replicates RNA-Seq Experimental Design. Front Genet.
2016; 7: 164.
PubMed Abstract|Publisher Full Text|Free Full Text

27. McCarthy DJ, Campbell KR, Lun ATL, et al. : Scater: pre-processing,
quality control, normalization and visualization of single-cell
RNA-seq data in R. Bioinformatics. 2017; 33(8): 1179–1186.
PubMed Abstract|Publisher Full Text|Free Full Text

28. LunATL,McCarthyDJ,Marioni JC:Astep-by-stepworkflow for low-
level analysis of single-cell RNA-seq data with Bioconductor.

Page 8 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://github.com/LeonidBystrykh/PY4DE/tree/main
http://doi.org/10.5281/zenodo.5044809
http://www.ncbi.nlm.nih.gov/pubmed/23174106
https://doi.org/10.1016/j.canlet.2012.11.025
https://doi.org/10.1016/j.canlet.2012.11.025
https://doi.org/10.1016/j.canlet.2012.11.025
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739311
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739311
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739311
http://www.ncbi.nlm.nih.gov/pubmed/28805797
https://doi.org/10.1038/gt.2017.77
https://doi.org/10.1038/gt.2017.77
https://doi.org/10.1038/gt.2017.77
http://www.ncbi.nlm.nih.gov/pubmed/29618526
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938574
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938574
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938574
http://www.ncbi.nlm.nih.gov/pubmed/24630831
https://doi.org/10.1016/j.tig.2014.02.005
https://doi.org/10.1016/j.tig.2014.02.005
https://doi.org/10.1016/j.tig.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/29458419
https://doi.org/10.1186/s40246-018-0140-z
https://doi.org/10.1186/s40246-018-0140-z
https://doi.org/10.1186/s40246-018-0140-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819253
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819253
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819253
http://www.ncbi.nlm.nih.gov/pubmed/25633503
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509590
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509590
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509590
http://www.ncbi.nlm.nih.gov/pubmed/26708960
https://doi.org/10.1016/j.tibtech.2015.11.006
https://doi.org/10.1016/j.tibtech.2015.11.006
https://doi.org/10.1016/j.tibtech.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/31199768
https://doi.org/10.1515/jib-2018-0101
https://doi.org/10.1515/jib-2018-0101
https://doi.org/10.1515/jib-2018-0101
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798824
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798824
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798824
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/19763933
https://doi.org/10.1007/978-1-60761-247-6_15
https://doi.org/10.1007/978-1-60761-247-6_15
https://doi.org/10.1007/978-1-60761-247-6_15
http://www.ncbi.nlm.nih.gov/pubmed/18251993
https://doi.org/10.1186/1471-2105-9-82
https://doi.org/10.1186/1471-2105-9-82
https://doi.org/10.1186/1471-2105-9-82
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267699
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267699
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267699
http://www.ncbi.nlm.nih.gov/pubmed/12538238
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
http://www.ncbi.nlm.nih.gov/pubmed/12925520
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/biostatistics/4.2.249
https://github.com/bmbolstad/preprocessCore
http://www.ncbi.nlm.nih.gov/pubmed/16646809
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
http://www.ncbi.nlm.nih.gov/pubmed/15297296
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1093/bioinformatics/bth449
http://www.ncbi.nlm.nih.gov/pubmed/15297296
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1093/bioinformatics/bth449
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/21210978
https://doi.org/10.1186/1471-2105-11-S12-S11
https://doi.org/10.1186/1471-2105-11-S12-S11
https://doi.org/10.1186/1471-2105-11-S12-S11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040525
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040525
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040525
http://www.ncbi.nlm.nih.gov/pubmed/24650281
https://doi.org/10.1186/1471-2105-15-79
https://doi.org/10.1186/1471-2105-15-79
https://doi.org/10.1186/1471-2105-15-79
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000056
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000056
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000056
http://www.ncbi.nlm.nih.gov/pubmed/27583132
https://doi.org/10.12688/f1000research.9110.1
https://doi.org/10.12688/f1000research.9110.1
https://doi.org/10.12688/f1000research.9110.1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972086
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972086
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972086
http://www.ncbi.nlm.nih.gov/pubmed/30133310
https://doi.org/10.1089/cmb.2017.0244
https://doi.org/10.1089/cmb.2017.0244
https://doi.org/10.1089/cmb.2017.0244
http://www.ncbi.nlm.nih.gov/pubmed/23193258
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531084
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531084
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531084
http://www.ncbi.nlm.nih.gov/pubmed/27695478
https://doi.org/10.3389/fgene.2016.00164
https://doi.org/10.3389/fgene.2016.00164
https://doi.org/10.3389/fgene.2016.00164
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025571
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025571
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025571
http://www.ncbi.nlm.nih.gov/pubmed/28088763
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408845
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408845
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408845

F1000Res. 2016; 5: 2122.
PubMed Abstract|Publisher Full Text|Free Full Text

29. Satija R, Farrell JA, Gennert D, et al. : Spatial reconstruction of
single-cell gene expression data. Nat Biotechnol. 2015; 33(5):
495–502.
PubMed Abstract|Publisher Full Text|Free Full Text

30. Hao Y, Hao S, Andersen-Nissen E, et al. : Integrated analysis of
multimodal single-cell data. bioRxiv. October 12, 2020:
2020.10.12.335331.
Publisher Full Text

31. Amezquita RA, Lun ATL, Becht E, et al. : Orchestrating single-cell
analysis with Bioconductor. Nat Methods. 2020; 17(2): 137–145.
PubMed Abstract|Publisher Full Text|Free Full Text

32. Wolf FA, Angerer P, Theis FJ: SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 2018; 19(1): 15.
PubMed Abstract|Publisher Full Text|Free Full Text

33. Zyprych-Walczak J, Szabelska A, Handschuh L, et al. : The Impact of
Normalization Methods on RNA-Seq Data Analysis. Biomed Res
Int. 2015; 2015: 621690.
PubMed Abstract|Publisher Full Text|Free Full Text

34. Schurch NJ, Schofield P, Gierliń ski M, et al. : How many biological
replicates are needed in an RNA-seq experiment and which
differential expression tool should you use? RNA. 2016; 22(6):
839–851.
PubMed Abstract|Publisher Full Text|Free Full Text

35. Rigaill G, Balzergue S, Brunaud V, et al.: Synthetic data sets for the
identification of key ingredients for RNA-seq differential
analysis. Brief Bioinform. 2018; 19(1): 65–76.
PubMed Abstract|Publisher Full Text

36. Bystrykh L: LeonidBystrykh/PY4GE: Python for gene expression
(Version v0.0.1). Zenodo. 2021, June 30.
Publisher Full Text

Page 9 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

http://www.ncbi.nlm.nih.gov/pubmed/27909575
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112579
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112579
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112579
http://www.ncbi.nlm.nih.gov/pubmed/25867923
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430369
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430369
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430369
https://doi.org/10.1101/2020.10.12.335331
http://www.ncbi.nlm.nih.gov/pubmed/31792435
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358058
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358058
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358058
http://www.ncbi.nlm.nih.gov/pubmed/29409532
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802054
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802054
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802054
http://www.ncbi.nlm.nih.gov/pubmed/26176014
https://doi.org/10.1155/2015/621690
https://doi.org/10.1155/2015/621690
https://doi.org/10.1155/2015/621690
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484837
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484837
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484837
http://www.ncbi.nlm.nih.gov/pubmed/27022035
https://doi.org/10.1261/rna.053959.115
https://doi.org/10.1261/rna.053959.115
https://doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611
http://www.ncbi.nlm.nih.gov/pubmed/27742662
https://doi.org/10.1093/bib/bbw092
https://doi.org/10.1093/bib/bbw092
https://doi.org/10.1093/bib/bbw092
https://doi.org/10.5281/zenodo.5044809

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 24 May 2022

https://doi.org/10.5256/f1000research.57265.r136994

© 2022 Hasija Y. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Yasha Hasija
Delhi Technological University, Delhi, India

The article "Python for gene expression" discusses the applicability of Python and R for gene
expression data analysis. Beginning with a brief history of several programming languages and
their compatibility with biological problems/data, the article then discusses their compatibility with
biological problems/data. The authors then describe the advantages of R packages for the
processing and statistical analysis of big expression data, as well as their replacement in Python.
The article concludes that the Python programming language has wide use in biological data
processing processes and that the scientific community should consider adopting it.

The piece is well-written and effectively conveys its intended message. A few of my
recommendations are:

The sections on microarray data, RNAseq data, and SC-RNAseq data analysis describe the
application of R packages and the limitations of Python due to the absence of a few
libraries. It would be interesting to list a few advantages of using Python for bulk data
processing.

○

Also, advantages of Python over R in terms of automation, integration, and application
development can be included.

○

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Page 10 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://doi.org/10.5256/f1000research.57265.r136994
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0116-0711

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Machine Learning, Polymorphisms

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 17 May 2022

https://doi.org/10.5256/f1000research.57265.r136995

© 2022 Peignier S. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Sergio Peignier
Université de Lyon, INSA Lyon, INRA, Villeurbanne, France

Dear Leonid Bystrykh,

The opinion article "Python for gene expression" is well written, and clear, it provides an
interesting historical and contextual description and explanation for the dominance of R in
differential gene expression analysis, and it also clearly points the interest and benefits of
developing python projects dedicated to differential gene expression analysis.

I hope the following remarks will be useful to improve this interesting paper.

Kind regards,

Sergio Peignier

Maybe you can show from the title that the paper is mostly oriented towards differential
gene expression analysis (e.g., "Python for differential gene expression").

○

In Table 1 you can replace the column "Name" by "Main library" or something like this to be
more explicit.

○

"such as R and Python.6-8" <- maybe keeping citations for R and Python separated will give a
better insight to the reader.

○

"approaching 400 (compiled by Wikipedia)" <- consider adding a citation.

○

"decline in popularity (as for instance recorded in codementor.io site for the worst
programming languages)" <- consider adding a citation.

○

Page 11 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://doi.org/10.5256/f1000research.57265.r136995
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9004-3033
https://f1000research.com/articles/10-870/v1#ref6
https://f1000research.com/articles/10-870/v1#ref8

"in e establishing" <- "in establishing".

○

"One is using a linear model [...] the expression array." <- consider adding a citation to the
paper.

○

"Potentially, there is a possibility to wrap R-functions from any R package into Python." <-
there are some DEseq2 wrapped versions available e.g., GReNaDIne: Data-Driven
Approaches to Infer Gene Regulatory Networks in Python (gitlab link).

○

"peculiar options available in Python" <- Maybe "specific" instead of " "peculiar"?

○

"rehearses a fold change statistics " <- "rehearses fold change statistics".

○

The following sentence could be clarified and a justification or citation to support it could be
incorporated: "approach rehearses a fold change statistics rather than eBayes probability
approach and thus is not recommended."

○

Regarding the comparison between Python and other languages,

"This essay was written sometime in 1997. It shows its age. It is retained here merely as a
historical artifact. (https://www.Python.org/doc/essays/comparisons/)" the website that was
cited by the author states: "Disclaimer: This essay was written sometime in 1997. It shows
its age. It is retained here merely as a historical artifact.", so a more recent citation could be
included instead. Moreover, I think that the comparison between python and R could be
extended, in order to better support the idea that developing such a research field in
Python would be valuable.

○

Include citations for SciPy, Numpy, Scikit-learn, Pandas, statmodels, Matplotlib, bokeh and
seaborn.

○

"does not support Pandas" <- I would replace by "does not fully support Pandas" since some
operations can be executed on pandas DataFrames, but the output is always a numpy
array.

○

There are also classical methods for RNAseq normalization such as TPM, RPKM, that are not
mentioned in the article, what is the place of such techniques in this context?.

○

"Unlike other differential expression protocols, SC-RNAseq is aimed on characterization of
cells, not genes, and possible discovery and/or classification of existing cell types" <- these
datasets can also be used to study genes, and specially to infer Gene Regulatory Networks1.

○

SC-RNAseq also incurs in a missing values problem, that should be addressed by some pre-
processing techniques, it could be interesting to discuss this problem.

○

Maybe you can try to include a few citations to new python programs dedicated to the
analysis of gene expression, to support the idea that there is a community in computational
biology and bioinformatics that is working in python.

○

Page 12 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

https://hal.archives-ouvertes.fr/hal-02863880/document
https://hal.archives-ouvertes.fr/hal-02863880/document
https://gitlab.com/bf2i/grenadine
https://www.python.org/doc/essays/comparisons/
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v79.1.jar!/com/f1000research/service/export/pdf/#rep-ref-136995-1

The test scripts that are associated to the paper could be transformed into small tutorials,
and could be very beneficial for the community.

○

References
1. Van de Sande B, Flerin C, Davie K, De Waegeneer M, et al.: A scalable SCENIC workflow for
single-cell gene regulatory network analysis.Nat Protoc. 15 (7): 2247-2276 PubMed Abstract |
Publisher Full Text

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Gene regulatory networks inference, gene expression analysis, hyperspectral
image analysis, Subspace clustering

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Page 13 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

http://www.ncbi.nlm.nih.gov/pubmed/32561888
https://doi.org/10.1038/s41596-020-0336-2

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 14 of 14

F1000Research 2021, 10:870 Last updated: 27 NOV 2023

mailto:research@f1000.com

