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Summary
Background Type 2 diabetes disproportionately affects individuals of non-White ethnicity through a complex
interaction of multiple factors. Therefore, early disease detection and prediction are essential and require tools
that can be deployed on a large scale. We aimed to tackle this problem by developing questionnaire-based
prediction models for type 2 diabetes prevalence and incidence for multiple ethnicities.

Methods In this proof of principle analysis, logistic regression models to predict type 2 diabetes prevalence and
incidence, using questionnaire-only variables reflecting health state and lifestyle, were trained on the White
population of the UK Biobank (n = 472,696 total, aged 37–73 years, data collected 2006–2010) and validated in five
other ethnicities (n = 29,811 total) and externally in Lifelines (n = 168,205 total, aged 0–93 years, collected
between 2006 and 2013). In total, 631,748 individuals were included for prevalence prediction and 67,083
individuals for the eight-year incidence prediction. Type 2 diabetes prevalence in the UK Biobank ranged between
6% in the White population to 23.3% in the South Asian population, while in Lifelines, the prevalence was 1.9%.
Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC), and a
detailed sensitivity analysis was conducted to assess potential clinical utility. We compared the questionnaire-only
models to models containing physical measurements and biomarkers as well as to clinical non-laboratory type 2
diabetes risk tools and conducted a reclassification analysis.

Findings Our algorithms accurately predicted type 2 diabetes prevalence (AUC = 0.901) and eight-year incidence
(AUC = 0.873) in the White UK Biobank population. Both models replicated well in the Lifelines external
validation, with AUCs of 0.917 and 0.817 for prevalence and incidence, respectively. Both models performed
consistently well across different ethnicities, with AUCs of 0.855–0.894 for prevalence and 0.819–0.883 for
incidence. These models generally outperformed two clinically validated non-laboratory tools and correctly
reclassified >3,000 additional cases. Model performance improved with the addition of blood biomarkers but not
with the addition of physical measurements.

Interpretation Our findings suggest that easy-to-implement, questionnaire-based models could be used to predict
prevalent and incident type 2 diabetes with high accuracy across several ethnicities, providing a highly scalable
solution for population-wide risk stratification. Future work should determine the effectiveness of these models in
identifying undiagnosed type 2 diabetes, validated in cohorts of different populations and ethnic representation.
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Research in context

Evidence before this study
Type 2 Diabetes (T2D) is an increasingly prevalent condition
affecting more than 462 million individuals worldwide.
Disease prevention and early detection are crucial to mitigate
potentially life-threatening complications as well as
healthcare costs. In this setting, using prediction tools is vital
to foster population health, mainly through screening. A
comprehensive literature search on PubMed (from January 1,
1996, to August 1, 2023) and Medline (from January 1971 to
August 1, 2023) showed that there is a knowledge gap
concerning T2D prediction models purely based on easy-to-
collect questionnaire features. Besides, there is a lack of
thorough validation of models trained on White populations
among non-White ethnicities. Questionnaire data reflect
lifestyle behaviours and health states that play a cardinal role
in T2D. It is also evident that certain ethnicities are affected
more than others by T2D, facing an earlier onset of the
disease and potentially more complications.

Added value of this study
This proof of principle study demonstrates that models
trained on the White population of the UK Biobank achieved
clinically relevant performances for prevalence and incidence
prediction across five non-White populations, as well as in the

Lifelines external validation cohort. Furthermore, in most
instances, these models significantly outperformed the
concise Finnish Diabetes Risk Score (FINDRISC) and the
Australian Type 2 Diabetes Risk Assessment Tool (AUSDRISK),
two widely validated non-laboratory-based clinical risk
prediction tools. This demonstrates the potential clinical
implications of our models in a wide variety of settings,
including non-White populations.

Implications of all the available evidence
Deploying these models at a large scale in the primary care
setting can be a precise, scalable, and cost-effective means to
diagnose positive cases and predict the risk of developing
T2D, irrespective of ethnicity. Additionally, resource-limited
settings will benefit from using our models by reducing the
number of individuals needed to be screened while capturing
a significant proportion of the ones developing T2D. To
determine the effectiveness of these models in identifying
undiagnosed T2D, a follow-up study is required using a cohort
where undiagnosed cases can be correctly identified. This
effectiveness should be validated in cohorts of different
populations and ethnic makeups, as this may vary between
these groups.
Introduction
The number of individuals living with type 2 diabetes
mellitus (T2D) is rapidly increasing globally, driven by
factors such as ageing, urbanisation, sedentarism, and
the increasing prevalence of obesity.1,2 In 2019, diabetes
accounted for 66.3 million disability-adjusted life years
(DALYs) and 4.2 million deaths among adults world-
wide,3 with disproportionately steep prevalence and
complications among non-White ethnic minorities in
low-income and middle-income countries.4

Populations of non-White ethnic backgrounds are
disproportionately affected by diabetes, with a three to
five times higher prevalence of T2D than people of
White-European background.5 South Asians, for
instance, usually develop T2D five to ten years earlier
and experience a two-to six-fold increased risk of
developing T2D compared to White European in-
dividuals.6 Likewise, 23% of Black African-Caribbean
individuals with T2D are diagnosed under the age of
40 years in comparison to only 9% of White Europeans.7

Among the predominantly Arab population of the Gulf
Cooperation Council countries, T2D prevalence has
been suggested to be as high as 25%–36% when undi-
agnosed case estimates are included and occur at a
younger age.8 A previous study in the United Arab
Emirates showed a prevalence rate of adult T2D and
undiagnosed diabetes at 25% and 14.8%, respectively.9

Despite the greater incidence and prevalence of T2D
and associated comorbidities in these populations,
publicly available diabetic registries and validated pre-
diction models for screening or early diagnosis remain
scarce.10 Existing risk prediction tools in these pop-
ulations have shown only moderate sensitivity and
specificity and are not widely used in clinical practice.11

Because of the high rate of undiagnosed diabetics, the
prediction of the presence of T2D (prevalence predic-
tion) is essential in the aforementioned settings and
highly relevant for lifestyle modification and early
treatment initiation to avoid complications and reduced
quality of life.

The clinical value of non-laboratory incident T2D
prediction tools is well established; however, they lack
extensive validation in a wide variety of ethnicities.12,13

Data science, specifically Machine Learning (ML), has
shown high potential to further improve risk stratifi-
cation across a range of clinical applications, including
early disease prediction in diabetes.14 More impor-
tantly, ML-based technologies can accommodate
www.thelancet.com Vol 64 October, 2023
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population-wide non-invasive screening, allowing for
initial assessments and subsequent referrals.15–17 Large
population cohorts, such as the UK Biobank and
Lifelines, constitute a suitable platform for developing
and validating data-driven population risk stratifica-
tion algorithms. These biobanks comprise rich
anthropometric, lifestyle, and medical information
data, as well as long-term follow-up on disease out-
comes of almost 700,000 individuals in total. Of the
UK Biobank participants, circa 82% self-identified as
“White” and almost 18% self-identified as having a
different ethnic background, henceforth referred to as
“non-White”, such as “East Asian or South Asian”
ancestry, “Black, African, Caribbean, or other Black”
ancestries, “Mixed” ancestries, and “Other” ancestries.

In this context, we aimed to develop ML models to
predict the prevalence and an eight-year incidence of
T2D that could be easily and widely implemented for
population screening across multiple ethnicities. In this
proof of principle study, we trained questionnaire-based
algorithms on the White population of the UK Biobank
and validated them internally within the non-White
ethnic groups and externally in Lifelines. One chal-
lenge with models trained to predict health outcomes is
that they can overfit the data they are trained on. This
means that the generated models contain an inherent
bias toward the training dataset, which can cause the
models to perform poorly in practice. Therefore, we
validated our models externally using Lifelines to test
whether the produced models perform comparably
outside the UK Biobank. Finally, we assessed the algo-
rithms’ potential clinical utility against two other ML-
based models (containing additional features, i.e.,
physical measurements and biomarkers) and two gold-
standard clinical risk models for the prediction of T2D
incidence. Herewith, we showcase significantly
enhanced prediction models that can transform primary
diabetes care.
Methods
Study setting and participants
The UK Biobank is the largest longitudinal population-
based cohort, consisting of 502,507 participants aged
between 37 and 73 years old, recruited between 2006
and 2010.18 For the UK Biobank, ethical procedures are
controlled by a dedicated Ethics and Guidance Council
(http://www.ukbiobank.ac.uk/ethics). All participants
provided written informed consent prior to enrolment.
The validation cohort, Lifelines, is a comprehensive and
prospective White-European-based population cohort
from the northern Netherlands. Lifelines contains data
from 168,205 participants aged 0–93 years, with a mean
age of 41 years, collected between 2006 and 2013.19

Similarly, all participants provided written informed
consent prior to enrolment. For a complete overview of
the collected data, please see https://biobank.ndph.ox.
www.thelancet.com Vol 64 October, 2023
ac.uk/showcase/catalogs.cgi and https://data-catalogue.
lifelines.nl/.

Type 2 diabetes classification
In the UK Biobank, T2D diagnoses were assigned based
on either self-reported T2D, diabetes diagnosed by a
doctor, or T2D hospital record annotation based on the
International Classification of Diseases (ICD-9 codes
250.X0, 250.X2, and ICD-10 codes E11.X).
Supplementary Table S1A demonstrates the data fields
associated with the age of diagnosis that were employed
to calculate the years until diagnosis from the initial
assessment. In cases where more than one age of
diagnosis was reported, the lowest reported age was
used. We then classified all cases diagnosed before their
visit to the assessment centre as prevalent cases, while
cases diagnosed after their assessment were annotated
as incident cases.

In Lifelines, participants were classified as having
prevalent or incident T2D based on self-reported T2D
(Supplementary Table S1B). Ages of diagnosis were not
asked for during follow-up, and T2D follow-up was only
asked for some assessments (2A, 3A, and 3B), while
general diabetes follow-up was asked for all assessments
(1B, 1C, 2A, 3A, and 3B). Therefore, we estimated the
age of T2D diagnosis for every incident case by taking
the mean of the age the participant had at the assess-
ment reporting a T2D diagnosis and the age at the
previous assessment. To calculate more specific ages of
T2D diagnosis, if an incident case had reported a gen-
eral diabetes follow-up diagnosis before their T2D
diagnosis, the mean of the age during that assessment
and the previous assessment was used instead to
determine the age of T2D diagnosis. According to the
National Institute for Health and Care Excellence
(NICE) guidelines, the diagnosis of T2D is based on
glycated haemoglobin (HbA1c) levels ≥48 mmol/mol,
fasting plasma glucose levels ≥7 mmol/L, or random
plasma glucose levels ≥11.1 mmol/L.20 Unless there are
clinical symptoms, these values are not diagnostic of
T2D and should be repeated for an individual to be
considered as having T2D.20 Both in the UK Biobank
and Lifelines, the thresholds for “potentially undiag-
nosed” T2D encompass a plasma glucose level sur-
passing 7 mmol/L or an HbA1c level exceeding
48 mmol/mol. We set this specific threshold for plasma
glucose at 7 mmol/L due to the lack of specification in
the UK Biobank records regarding whether glucose
readings of individuals were taken while fasting or were
random to prevent false negatives in the range of
7.0–11.1 mmol/L.

Input features
Input features concern the relevant variables used in the
modelling procedure of our prediction analyses. Due to
the large number of candidate features in the question-
naire, we performed feature selection: we started with an
3
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initial list containing all features and sub-selected those
with an absolute correlation greater than 0.02 to the target
outcome. We then reduced this list to ten features by
iteratively extracting the top correlated feature and
regressing this feature from the rest of the features. To
allow for external validation, we mapped the input fea-
tures from the UK Biobank to their associated or closest
available Lifelines feature (Supplementary Table S2).
During feature selection, missing values were imputed
using the mean. To investigate whether adding basic
measurement and biomarker features improved model
performance, we added these features to the question-
naire feature pool and performed feature selection and
model training again.

Data preparation
For the prevalence analyses, everyone with “potentially
undiagnosed” T2D was not included in our analysis to
avoid bias. This is because, for a T2D diagnosis ac-
cording to the NICE guidelines, a fasting plasma
glucose test above 7 mmol/L, random plasma glucose
levels exceeding 11.1 mmol/L, or HbA1c surpassing
48 mmol/mol are not diagnostic of T2D when the in-
dividual is asymptomatic and should be repeatedly
positive (usually above 7 mmol/L, 11.1 mmol/L, or
48 mmol/mol, at least twice).20 The participants of both
the UK Biobank and Lifelines that surpass the afore-
mentioned values have not repeated the tests for plasma
glucose or HbA1c in a timely manner and, therefore,
cannot be considered “undiagnosed cases of T2D”. Be-
sides, in the UK Biobank, individuals have greatly
varying fasting times prior to enrolment, conferring
uncertainty as to whether individuals with plasma
glucose above 7 mmol/L have “potentially undiagnosed”
T2D or did not fast long enough. Therefore, to ensure a
clean dataset, these cases needed to be excluded from
the analysis. For the incidence analyses, we first
removed individuals with “potentially undiagnosed”
T2D and anyone diagnosed with T2D by a doctor at
baseline. Additionally, we removed all incident T2D
cases with more than eight years until diagnosis and all
persons not developing T2D but not returning to the
assessment centre after eight years. Because the
different inclusion criteria result in an under-
representation of controls, we corrected the incidence
in every ethnicity subset by oversampling the controls to
obtain the incidence we observed when including
remeasured participants only.

Model training and testing
We set out to predict prevalent and incident T2D across
all ethnic groups of the UK Biobank and in Lifelines
using questionnaire-based ML models. Self-reported
ethnicity was extracted from the UK Biobank, and par-
ticipants were divided into six different ethnicity groups
(Supplementary Table S3). We used Sklearn’s Logisti-
cRegression with default settings for model training on
the White ethnic population group of the UK Biobank
using ten-fold cross-validation.21 The model’s perfor-
mance was internally validated in the five other ethnicity
categories of the UK Biobank and externally validated in
the independent Lifelines cohort. Even though Lifelines
is comprised of 98% White individuals, it is imperative
to validate our algorithms externally and show that the
models can perform independently of the cohort
(Supplementary Table S4). Additionally, since our
models were trained on the White population of the UK
Biobank, the ethnic makeup of Lifelines makes it an
appropriate independent cohort for external model
validation. All input features were normalised by fitting
Sklearn’s StandardScaler on the train set and then using
this scaler to scale the features in both the train and test
sets.

Moreover, we validated the non-laboratory clinical
concise Finnish Diabetes Risk Score (FINDRISC) and the
clinical Australian Type 2 Diabetes Risk Assessment Tool
(AUSDRISK), which employ 9 and 13 features, respec-
tively, spanning medical history, demographics, lifestyle,
and anthropometrics, to predict incident T2D.12,13

Statistical analysis and risk stratification
The predictive performance of the models was assessed
through the area under the receiver operating charac-
teristic curve (AUC). AUC values and the associated
confidence interval (CI) were calculated using DeLong’s
method from the R pROC package.22 Additionally, AUC
values were compared to test for significant differences
using the DeLong ROC test from the same package.22 To
assess the potential clinical utility of the models across
different populations, we took a three-step approach to
risk stratification. First, we compared the ability of all
models to identify individuals at high risk in the general
population (including those with and without diabetes
for prevalence and those who did and did not develop
diabetes for incidence). Youden’s method was used to
find the risk threshold yielding the best sensitivity/
specificity balance. In addition to sensitivity and speci-
ficity, Positive Predictive Value (PPV), Negative Predic-
tive Value (NPV), and the respective CI were calculated
using the R epiR package.23 Then, we simulated another
potential application of the incidence models across the
different study populations. We stratified the population
of every ethnic group into three risk strata based on the
individuals’ risk of incident T2D (high, medium, and
low risk). Each risk stratum contains one-third of the
incident T2D cases within each ethnic group. With this
analysis, we aim to identify the greatest number of in-
dividuals that eventually developed T2D during the
follow-up period while minimising the number of peo-
ple who needed to be screened. Ultimately, to evaluate
the improvement in risk prediction provided by our
models compared to the abovementioned clinical tools,
we conducted a reclassification analysis by calculating
the reclassification of events and the categorical Net
www.thelancet.com Vol 64 October, 2023

www.thelancet.com/digital-health


Articles
Reclassification Improvement (NRI) using the R Hmisc
package.24 Reclassification analysis is a statistical tech-
nique that evaluates the effectiveness of a new diag-
nostic or predictive test compared to an already
established one. This method involves classifying people
into different risk categories based on the outcomes of
both the new and existing tests. The purpose is to
determine whether the new test enhances the accuracy
of risk categorisation compared to the existing test. The
NRI calculates the difference between the proportion of
correctly reclassified individuals into higher-risk cate-
gories and those who are correctly reclassified into
lower-risk categories; higher NRI values indicate that
the new diagnostic model is more accurate at correctly
predicting outcomes. Specifically, the NRI is the sum of
the percentage of reclassified cases and the percentage
of reclassified controls. To ensure fair comparisons be-
tween models, we matched the sizes of the risk groups
in the clinical models with our risk groups, which were
determined based on the maximum Youden index.

Role of the funding source
The funder had no role in study design, data collection,
and analysis, decision to publish, or preparation of the
manuscript.
Results
Baseline characteristics
We set out to predict prevalent and incident T2D across
all ethnic groups of the UK Biobank and in Lifelines
using questionnaire-based ML models (Fig. 1). The
included total group size for prevalent and incident T2D
prediction models was 631,748 and 67,083 individuals,
Fig. 1: Workflow showing the steps taken to prepare the data and to
incident type 2 diabetes.

www.thelancet.com Vol 64 October, 2023
respectively. Baseline characteristics of the six ethnicity
groups and Lifelines are presented in Table 1. Of note,
the prevalence and incidence rates of T2D differed
greatly between White and non-White populations, with
non-White populations having between two-to almost
four-fold higher prevalence (12.2–23.3%) and from half
to as high as three-fold higher incidence (1.4–8.2%),
than the White population of the UK Biobank (6% and
2.8%, respectively). In contrast, Lifelines had a lower
prevalence (1.9%) and incidence (1.8%) of T2D
compared to White UK Biobank, partly explained by the
age differences between these two populations (Table 1).

Contribution of questionnaire features
The correlation between different questionnaire fea-
tures pertaining to nutrition, smoking, physical activity,
medication, and medical history and prevalent or inci-
dent T2D for each population are presented in detail in
Supplementary Fig. S2A and B. The contribution of
each feature to the prevalence and incidence model is
shown in Fig. 2A and B. Both prevalence and incidence
models put high importance on Body Mass Index (BMI)
and the number of medications taken, positioning them
in the top three features of both models. Furthermore,
incidence includes a feature representing sedentarism
(time spent watching television (TV)). We observe an
evident performance saturation with five to six input
variables, particularly for prevalence prediction.

Performance of type 2 diabetes prediction models
With ten questionnaire features, the performance of
prevalence prediction models measured by their AUC
ranged from 0.855 to 0.901 (Fig. 2C and Supplementary
Fig. S3A) within the UK Biobank populations and an
create questionnaire-based prediction models for prevalent and

5
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Ethnicities Internal training
cohort

Internal testing cohort External validation
cohort

White
(n = 472,696)

South Asian
(n = 8,024)

Caribbean
(n = 5,137)

East Asian
(n = 4,263)

Black
(n = 3,969)

Other
(n = 8,418)

Lifelines
(n = 168,205)

Type 2 Diabetes

Prevalence 6% 23.3% 15.6% 13% 15.9% 12.2% 1.9%

Incidence 2.8% 8.2% 5.6% 6% 1.4% 3.2% 1.8%

Questionnaire features

Male 45.7% 53.8% 36.9% 45.8% 48.6% 45.7% 42.2%

Female 54.3% 46.2% 63.1% 54.2% 51.4% 54.3% 57.8%

Age 58 (13) 53 (14) 51 (12) 52 (14) 50 (13) 53 (14) 43 (18)

Aspirin 14% 18.5% 12.5% 11.6% 13.8% 13.8% 99.7%

Blood pressure medication 20.6% 27.1% 28.4% 19.3% 30.6% 20.6% 8.4%

Body mass index (BMI) 27.4 (4.8) 27.3 (4.5) 29.2 (5.6) 25.8 (4.3) 29.5 (5.2) 27.8 (5.1) 25.6 (4.6)

Bread intake (slices/week) 10 (10) 8 (8) 6 (6) 8 (10) 8 (10) 10 (9) 22.5 (19.5)

Coronary artery disease before the first assessment 3.3% 5.8% 1.6% 3.2% 1.6% 3.1% 1.5%

Cholesterol lowering medication 17.3% 26.5% 15.1% 18.5% 15.7% 17.6% 4.9%

Dentures 16.9% 9.7% 20.1% 15.5% 10% 14.4% 8.5%

Siblings history of diabetes 7.8% 25.9% 18.6% 18.4% 12.7% 14.6% 1.3%

Parents history of diabetes 16.5% 43.3% 45.8% 34.6% 23.5% 27.2% 6.4%

Number of medications taken 2 (4) 2 (4) 2 (4) 1 (3) 2 (4) 2 (4) 1 (2)

Pack years of smoking (0 years not included) 19.5 (22.5) 15 (15.5) 13.2 (14.2) 15 (16.6) 13.8 (15.1) 16.8 (19.3) 8.5 (13)

Slow walking pace 7.8% 17.7% 12.2% 15.4% 15.6% 15% N/A

Time spent watching television (TV) (hours/day) 2.8 (1.7) 2.5 (1.7) 3.3 (2.2) 2.4 (1.8) 2.7 (2.1) 2.5 (1.9) 2.3 (1.6)

Unable to work because of sickness or disability 3.9% 7% 7.1% 4% 5.7% 6.9% 2.9%

Gained weight in the past year 27.8% 29.6% 39.7% 28% 36.1% 30.9% 20.9%

Lost weight in the past year 15% 15.3% 19.3% 14% 18% 17% 20.9%

Alcohol intake frequency

Daily or almost daily 21% 6.6% 9.2% 8.8% 4.9% 10.7% 10.9%

Three or four times a week 23.8% 8.1% 12.3% 9.8% 7.3% 12.6% 10.3%

Once or twice a week 26.3% 13.2% 23.3% 17% 16% 18.6% 39%

One to three times a month 11.2% 7.2% 15.8% 10.3% 10.5% 11% 19.5%

Special occasions only 10.9% 16.7% 26.1% 26.9% 28.9% 22% N/A

Never 6.8% 47.6% 13.1% 27.1% 31.9% 23% 20.3%

Glucosamine intake 19.3% 11.6% 14.7% 17% 11.1% 14.1% N/A

Basic measurements

Seated height (cm) 138 (9) 133 (13) 135 (13) 134 (13) 134 (13) 136 (13) N/A

Waist circumference (cm) 90 (19) 92 (15) 91 (17) 86 (17) 93 (16) 90 (18) 89 (17)

Mean heart rate (bpm) 58 (10) 59 (9) 60 (8) 58 (9) 60 (9) 59 (9) 72 (11)

Mean diastolic blood pressure (mmHg) 81 (14) 82 (14) 84 (14) 81 (14) 84 (14) 81 (14) 72 (13)

Biomarker features

Total cholesterol (mmol/L) 5.71 (1.14) 5.29 (1.12) 5.34 (1.09) 5.52 (1.12) 5.18 (1.1) 5.51 (1.15) 5.01 (1.02)

Gamma glutamyltransferase (U/L) 37.3 (42.2) 36.7 (39.2) 40.4 (40.3) 34.8 (35.3) 42.8 (42.4) 38.5 (43.3) 26.3 (25.7)

Glucose (mmol/L) 5.1 (1.2) 5.4 (1.9) 5.1 (1.5) 5.2 (1.5) 5.1 (1.5) 5.3 (1.7) 5 (0.8)

Glycated haemoglobin (HbA1c) (mmol/mol) 36 (6.5) 40.8 (10.6) 39.1 (9.5) 38.3 (8.4) 38.9 (10.1) 38 (9.3) 37.1 (4.9)

High light scatter reticulocyte (%) 0.4 (0.3) 0.4 (0.2) 0.5 (0.2) 0.4 (0.2) 0.5 (0.3) 0.4 (0.3) N/A

Neutrophil count (109 cells/L) 4 (1.7) 4.2 (1.7) 3.1 (1.8) 3.9 (1.7) 2.8 (1.4) 3.9 (1.8) 3.1 (1.4)

Data are presented as the mean (standard deviation) unless otherwise noted. The basic measurements are presented as median (interquartile range).

Table 1: Baseline characteristics of the internal and external study populations.
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AUC of 0.917 in the independent validation cohort
Lifelines. For models predicting incident T2D in the UK
Biobank, AUCs ranged from 0.819 to 0.883 (Fig. 2D and
Supplementary Fig. S3B), while in Lifelines, the AUC
was 0.817. The detailed performance metrics of the
questionnaire-only models are shown in Supplementary
Tables S5A and B.
Additionally, we performed an exploratory analysis of
the potential added benefit of two other types of models:
one including basic physical measurements and one
including blood biomarkers (Supplementary Figs. S4A,
S4B, S5A, S5B, S7A, S7B, S8A, and S8B). For preva-
lence prediction, including basic measurements signifi-
cantly improved the performance of questionnaire-only
www.thelancet.com Vol 64 October, 2023
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Fig. 2: Feature contribution and performance of type 2 diabetes prediction models for prevalence and incidence. A list of predicting
features included in our models for prevalence (A) and incidence (B) prediction and their contribution to the models’ performance is presented.
Below, the performance of different models across populations for prevalence (C) and incidence (D) is shown. Each colour-symbol combination
refers to a specific model and population, explained in detail in the bottom panel. The AUC and 95% Cl are shown for all models. BMI, body
mass index; AUC, area under the receiver operating characteristics; TV, television; FINDRISC, Finnish Diabetes Risk Score; AUSDRISK, Australian
type 2 diabetes risk assessment tool; T2D, type 2 diabetes; CI, confidence interval.
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models for all UK Biobank populations, except for Other,
yet lowered the AUC of Lifelines (Supplementary
Table S8A, Supplementary Fig. S10). In contrast, for
incidence prediction, adding basic measurements
significantly increased the performance of only two
populations, UK BiobankWhite and Lifelines, though all
populations showed higher AUCs. Including biomarkers
led to a significant improvement in all instances except
for incidence prediction among the Black population,
where the Questionnaire-only models seem to yield a
marginally higher performance (Supplementary Fig. S10
and Supplementary Tables S8A, S8B). The feature
importance of these models is shown in Supplementary
Figs. S4A, S4B, S7A, and S7B.

Comparison with non-laboratory clinical risk
models
We also compared the questionnaire-only models to two
clinically validated non-laboratory risk scores. First, we
tested the performance of the concise FINDRISC,
developed as a simple screening tool for individuals at
www.thelancet.com Vol 64 October, 2023
high risk of developing T2D. We observed that the
questionnaire-based models significantly outperformed
FINDRISC for prevalence prediction in all populations,
and they significantly outperformed FINDRISC in four
out of seven populations for predicting incidence
(Fig. 2C and D, and Supplementary Tables S9A, S9B).
Similarly, the questionnaire-based models significantly
outperformed the AUSDRISK models in all prevalence
predictions as well as in three out of seven populations
for incidence prediction (Fig. 2C and D, and
Supplementary Tables S9A, S9B). In all other instances,
there were no significant differences; however, our
models yielded overall higher AUCs.

Sensitivity analysis and clinical utility of risk
stratification
Furthermore, we conducted an in-depth sensitivity
analysis of the risk stratification for all models to assess
their potential clinical utility (Supplementary Tables S5A,
S5B, S6A, S6B, S7A, and S7B). Based on the thresholds
provided by the Youden index, the questionnaire-only
7

www.thelancet.com/digital-health


Articles

8

models obtained very high sensitivity-specificity balance,
PPV, and NPV. Both sensitivity and specificity were
consistently high (above 74% and 83% for prevalence
and 75% and 68% for incidence, respectively) for all
populations. The corresponding NPVs for all models
were above 93% and 98% for prevalence and incidence,
respectively. For the models including biomarkers,
further improvement in the sensitivity-specificity balance
was seen, with a lower proportion of individuals identi-
fied as high risk also translating to higher PPV across the
populations for prevalence and incidence. All corre-
sponding NPVs were above 97% and 99% for prevalence
and incidence, respectively.

In the second step of the analysis, we separated each
population into three risk strata (∼33% of the T2D
incident cases in each risk stratum) based on the in-
dividuals’ risk of T2D eight-year incidence. We observed
that the questionnaire-only models could identify small
groups of very high-risk individuals who eventually
developed T2D during the follow-up period (Fig. 3). By
screening as little as 0.47% (Black population) to 7.6%
(South Asian) of individuals from different ethnic
Fig. 3: Risk identification for developing T2D per population. Every pop
risk of incident T2D (high risk = red, medium risk = yellow, low risk = gree
represents the interval of years between the biobank entry and the mome
of T2D. The stronger-coloured lines represent the average T2D incidence
lines show the 95% CI. T2D cases correspond to the total number of T2D
the number of individuals within each risk stratum. Stratum sizes show ho
within each risk-stratum. T2D, type 2 diabetes; CI, confidence interval.
populations (belonging to the high-risk strata), the
questionnaire-only models identified 33% of individuals
who developed T2D within each ethnic group. In the
high-risk strata, the average incidence of T2D was at
least ten-fold higher compared to the lowest-risk strata
(Fig. 3). The models also identify 66% of all individuals
who developed T2D (belonging to the high- and
medium-risk strata) while screening only between
11.5% (Caribbean population) to 23.1% (South Asian
population) of all individuals across different ethnic
populations. These slightly larger high- and medium-
risk strata also show at least a six-fold higher risk
across all populations compared to lowest-risk popula-
tion strata. For the two other types of models (with
additional physical measurements and the ones with the
addition of biomarkers), the highest-risk strata generally
showed even higher average incidence despite the
similar size (Supplementary Figs. S6 and S9). For all
ethnicities, 66% of incident T2D cases (including high-
risk and medium-risk individuals) could be identified by
screening less than 10% of each ethnic population using
the model, including biomarkers.
ulation is separated into three risk strata, according to the individuals’
n), with each risk stratum containing 33% of all T2D cases. The x-axis
nt of receiving a diagnosis of T2D. The y-axis represents the incidence
within each risk stratum, and the lighter-coloured bands around the
incident cases within each risk stratum. Stratum size corresponds to
w many individuals must be screened to identify 33% of all T2D cases
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Reclassification analysis
Ultimately, the reclassification analysis demonstrates
that in almost all cases, our models correctly reclassify
more cases than the clinically established prediction
tools FINDRISC and AUSDRISK (Table 2). Notably,
for the White, Caribbean, Other, and South Asian
populations, our models correctly reclassify more
events reaching statistical significance compared to
FINDRISC (Table 2). Compared to AUSDRISK, our
models reach statistical significance among the White
and Other populations in correctly reclassifying T2D
cases, along with statistically significant NRI values
(Table 2, Supplementary Table S10A). The addition of
physical measurements overall reclassifies more
events correctly and seems to perform better in Life-
lines compared to the Questionnaire Models
(Supplementary Table S10B). The models also
including biomarkers, largely outperform the clinical
tools by reaching statistical significance in almost all
instances (Supplementary Table S10C). The high/low-
risk group reclassifications, along with NRIs and
reclassification of non-event percentages, are demon-
strated in detail in Supplementary Tables 10A–C.
Discussion
In this study of over 600,000 individuals for prevalence
and over 67,000 for incidence prediction, we showed for
the first time that questionnaire-based ML models can
accurately predict T2D prevalence and eight-year inci-
dence across all ethnicities present within the UK Bio-
bank, as well as the Lifelines external validation cohort.
For almost all ethnicities, these models outperformed
two established clinically validated T2D risk assessment
Risk model Population Reclassification events %

FINDRISC White 6.4 (5.2–7.6)

FINDRISC Black 2.2 (−5.2 to 9.5)

FINDRISC Caribbean 12.6 (3.7–21.5)

FINDRISC East Asian 9.8 (−2.8 to 22.4)

FINDRISC Other 14.8 (6.4–23.3)

FINDRISC South Asian 12.7 (6.1–19.3)

FINDRISC Lifelines −2.8 (−6.3 to 0.7)

AUSDRISK White 5.9 (4.4–7.4)

AUSDRISK Black 3.4 (−8.2 to 15.1)

AUSDRISK Caribbean 5.7 (−3.9 to 15.3)

AUSDRISK East Asian 0 (−16.6 to 16.6)

AUSDRISK Other 25.6 (14.7–36.6)

AUSDRISK South Asian 7.8 (−0.9 to 16.4)

AUSDRISK Lifelines 0.4 (−3.7 to 4.4)

Reclassification events % correspond to our models’ net percentage of reclassified individ
per 10,000 events corresponds to the net number of T2D cases reclassified when screen
reclassify more cases than the other two clinical tools, whereas negative events indicate
N per 10,000 are presented along with the 95% CI. FINDRISC, Finnish Diabetes Risk Scor
CI, confidence interval.

Table 2: Reclassification analysis comparing our questionnaire-based models

www.thelancet.com Vol 64 October, 2023
tools. Despite the performance improvement verified
with the addition of blood biomarkers, the
questionnaire-only models showed clinical utility for
detecting prevalent and incident T2D.

Previous research on the performance of prediction
models for incident T2D has shown substantial differ-
ences across ethnicities. A re-estimation of the Athero-
sclerosis Risk in Communities (ARIC) model for the
prediction of five-year diabetes risk in the Coronary Ar-
tery Risk Development Study in Young Adults (CARDIA)
cohort showed significant differences in performance
between White and African Americans (AUC 0.902 vs
0.816).25 Another study of 12,043 Black and White in-
dividuals focusing on T2D prediction using anthropo-
metric features and lipid levels reported an AUC of
0.79.26 In this study, we observed less variation in the
model performances between White and Black in-
dividuals for both prevalent and incident T2D prediction.
The models developed herein overall outperform what
has been previously demonstrated in Black populations,
even without glucose as an input feature, and contradict
the results of previous analyses that suggested that risk
scores trained on the European-descent population are
not applicable to other ethnic groups.26,27 Additionally,
our questionnaire-based models significantly out-
performed FINDRISC and AUSDRISK across all seven
populations for prevalent T2D detection. For incidence,
our models outperformed the above-mentioned tools in
four populations compared to FINDRISC and three
populations compared to AUSDRISK. This is especially
relevant since both FINDRISC and AUSDRISK have
been shown to perform only moderately well in several
non-White populations,28,29 despite AUSDRISK including
ethnicity as an input feature and being intended to be
Reclassification events N per 10,000 P-value

637 (519–756) <0.001

217 (−518 to 953) 0.6

1264 (374–2154) 0.005

984 (−278 to 2245) 0.1

1481 (637–2326) <0.001

1269 (610–1928) <0.001

−279 (−627 to 69) 0.1

591 (441–741) <0.001

345 (−819 to 1509) 0.6

571 (−389 to 1532) 0.2

0 (−1656 to 1656) 1

2564 (1472–3656) <0.001

776 (−91 to 1642) 0.08

38 (−365 to 441) 0.9

uals with T2D compared to the clinically established tools. Reclassification of events
ing 10,000 cases. Positive reclassification events indicate that our models correctly
the opposite. The reclassification events percentages (%) and reclassification events
e; AUSDRISK, Australian type 2 diabetes risk assessment tool; T2D, type 2 diabetes;

to FINDRISC and AUSDRISK for incidence prediction.
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used in the ethnically diverse Australian population.30 As
expected, adding blood biomarkers to the models resul-
ted in further improvements in predictive performance
with AUCs generally above 0.90, mainly due to high
correlations conferred by these features (Supplementary
Figs. S7A, S7B, S10). Despite being significant, these
improvements in AUC were not substantial enough to
unequivocally justify their deployment over the
questionnaire-only models considering the practical
challenges discussed further in detail below.

As such, the goal of population-level risk stratification
is not merely to predict individual risk accurately but to
clearly distinguish groups with different levels of risk.31

To assess the potential stratification utility of our
models, we first optimised their sensitivity-specificity
balance with the Youden index. We found that all
models achieved high to very high sensitivity and spec-
ificity for both prevalence and incidence prediction
across all ethnicities. Given the low prevalence and
incidence of T2D inWhite populations, a high specificity
and NPV were expected for the White UK Biobank
population and Lifelines. However, specificity and NPV
remained high even in other ethnicities with higher
prevalence and incidence rates (Supplementary
Tables S5A, S5B, S6A, S6B, S7A, and S7B). The main
difference with the addition of biomarkers was the in-
crease in PPV, stemming from the lower number of
individuals identified as high risk (between 20% and
29% for questionnaire-only predictions and generally
around 18% when biomarkers were included). However,
we also aimed to assess the usefulness of the models in
settings where resources are limited, or population
health data is lacking, and where it is essential to accu-
rately identify as many high-risk individuals as possible
while minimising the number of screened individuals.
In such instances, screening more than a quarter of the
population might be prohibitive from a cost and logistics
perspective, hampering the model’s clinical utility.
Herein, we demonstrated that all models can also be
applied to identify smaller groups of individuals at very
high risk and that 33% and 66% of all incident diabetes
cases can be identified by screening less than 10% and
23% of the population using the questionnaire-only
models, respectively. Additionally, by demonstrating
high predictive abilities for T2D prevalence, our models
will be valuable for early diagnosis, especially in areas
where T2D is underdiagnosed and often missed. This is
essential for minimising complications and decreased
quality of life associated with late T2D diagnosis.

The data from these two simulated scenarios sug-
gests that while there is a benefit from including addi-
tional measurements in risk stratification models,
questionnaire-only models predict prevalent and inci-
dent diabetes with high accuracy and clinical utility. By
not being subject to the practical limitations associated
with collecting physical measurements or biomarkers, a
questionnaire-based tool comprises the first step
towards identifying an initial high-risk population that
could be referred for subsequent diagnostic or prog-
nostic assessment in a primary care setting. At a
sensitivity and specificity as high as 80%, we see that
questionnaire-only models applied to the largest popu-
lation we studied, with almost 180,000 White in-
dividuals in the UK Biobank training set for incidence
prediction, would recommend follow-up for less than
40,000 individuals based on their eight-year T2D risk,
and around 65,000 high-risk individuals with prevalent
T2D (Supplementary Tables S5A and S5B). In the
context of population health prevention programs,
deploying more selective models brings about two ad-
vantages. On the one hand, it requires considerably
fewer individuals to be screened to detect a substantial
portion of high-risk individuals. On the other hand, in
line with previous research, it has been shown that such
programs are most effective when targeted at a specific
outcome, such as T2D risk reduction, and when
including high-risk individuals, as opposed to a non-
stratified population.32 Based on our reclassification an-
alyses, all models developed herein correctly reclassify
predicted T2D cases and, in many instances, outper-
form the currently available models. Of note, our
models have demonstrated significantly better net
reclassification improvements and correctly reclassify
more events when compared to available clinical tools.
Specifically, when compared to FINDRISC, an addi-
tional 4,651 positive cases are correctly reclassified using
our models per 40,000 events, reaching statistical sig-
nificance. Likewise, for the comparisons with AUS-
DRISK, the respective number of positive cases that are
correctly and significantly reclassified using our models
is 3,155 per 20,000 events.

Eventually, translating the models presented in this
proof of principle study into population health risk
stratification tools for primary diabetes care is not
without challenges. In fact, most digital health in-
novations fail to advance into clinical practice or fall
short of their anticipated impact.33 This lack of adoption
is often the result of a poor understanding of end-user
needs and an inability to integrate the solution into
current care frameworks.33 We built questionnaire-only
models to predict and diagnose T2D with the intent
that individuals could complete them, potentially digi-
tally, without requiring invasive biomarker collection or
a visit to primary care facilities. While not replacing a
trained clinician’s evaluation, a patient-centred tool
would facilitate timely screening and reach a larger
audience by eliminating the need for primary care visits
in the first phase. Policymakers have been encouraged
to focus on prevention and innovation to enable large-
scale diabetes awareness programmes.34 For such ini-
tiatives, another possible challenge in applying
questionnaire-based models at scale is to ensure that all
questions are answered. Therefore, we limited the
number of questions included to ten.
www.thelancet.com Vol 64 October, 2023
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Overall, our study has several strengths and certain
inherent limitations. First, this study represents the
largest hitherto reporting on the performance and po-
tential clinical utility of a questionnaire-based risk
stratification model for prevalent and incident T2D in
two biobanks and across multiple ethnicities. From a
modelling perspective, this minimises the chances of
overfitting and provides evidence of the model’s validity.
Second, we applied strict inclusion and exclusion
criteria, thereby minimising the risk of including in-
dividuals with undiagnosed T2D. Third, we validated
two widely non-laboratory clinical tools, FINDRISC and
AUSDRISK, in all ethnic groups of the UK Biobank and
externally in Lifelines, which provides a comprehensive
benchmark for the performance of our models. On the
other hand, as with all self-reported biobank data,
ethnicity data may only be partially accurate. Specifically,
the self-reported ethnic background can be influenced
by individual perceptions, cultural and social factors,
and may not always accurately reflect an individual’s
ancestry and levels of admixture. Additionally, the cat-
egories used to describe ethnicity can differ between
countries, making it difficult to compare results across
studies. Another potential limitation lies in the catego-
risation of “potentially undiagnosed” T2D. To try to
minimise the risk of including individuals who may
have clinically high, although not repeatedly, plasma
glucose or HbA1c concentrations without confirmed
T2D diagnosis, we set the plasma glucose exclusion
threshold at above 7 mmol/L and the HbA1c exclusion
threshold at above 48 mmol/mol. These thresholds may
not be realistic or indicative for “potentially undiag-
nosed” T2D since plasma glucose values are sometimes
obtained in a non-fasted state or may not be reproduced
if repeatedly tested. Thus, excluding “potentially undi-
agnosed” cases of T2D might have impacted the per-
formance of the models presented herein. Besides, for
prevalence prediction, in our study, individuals are
already aware of their diagnosis, and if the question-
naire models were to be prospectively applied, the an-
swers of individuals knowing they have T2D might be
different from those unaware of it (undiagnosed cases).
Moreover, these questionnaires were administered as
part of a volunteer-led biobank cohort whose partici-
pants tend to be relatively healthier or younger in-
dividuals, placing limitations around the age
distribution to which they apply and potentially socio-
economic limitations. Lastly, due to the observational
nature of this study, we cannot identify causal relation-
ships between the variables included in the models and
the predicted outcomes.

In conclusion, questionnaire-based ML models pre-
dict prevalent and incident T2D in multiple ethnicities
with high accuracy and have the potential to enhance
early diagnosis if deployed for population health
screening in primary diabetes care. While biomarker-
based models achieved enhanced performance, the
www.thelancet.com Vol 64 October, 2023
questionnaire-only models produced significantly high
and clinically useful predictions to be considered a valid
alternative to these models and the challenges their
large-scale deployment can pose. This is particularly
important for populations of non-White ethnicity who
are disproportionately impacted by T2D and regions
with limited resources and access to primary diabetes
care. While current prediction models show promise in
diagnosing and predicting T2D, further research is
needed to determine the effectiveness of these models
in identifying undiagnosed type 2 diabetes. Specifically,
a follow-up study is required using a cohort where un-
diagnosed cases can be correctly identified. This effec-
tiveness should be validated in cohorts of different
populations and ethnic makeups, as this may vary be-
tween these groups.
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