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Abstract
Objectives  This study investigated the technical feasibility of focused view CTA for the selective visualization of stroke 
related arteries.
Methods  A total of 141 CTA examinations for acute ischemic stroke evaluation were divided into a set of 100 cases to train 
a deep learning algorithm (dubbed “focused view CTA”) that selectively extracts brain (including intracranial arteries) and 
extracranial arteries, and a test set of 41 cases. The visibility of anatomic structures at focused view and unmodified CTA 
was assessed using the following scoring system: 5 = completely visible, diagnostically sufficient; 4 = nearly completely 
visible, diagnostically sufficient; 3 = incompletely visible, barely diagnostically sufficient; 2 = hardly visible, diagnostically 
insufficient; 1 = not visible, diagnostically insufficient.
Results  At focused view CTA, median scores for the aortic arch, subclavian arteries, common carotid arteries, C1, C6, and C7 
segments of the internal carotid arteries, V4 segment of the vertebral arteries, basilar artery, cerebellum including cerebellar 
arteries, cerebrum including cerebral arteries, and dural venous sinuses, were all 4. Median scores for the C2 to C5 segments 
of the internal carotid arteries, and V1 to V3 segments of the vertebral arteries ranged between 3 and 2. At unmodified CTA, 
median score for all above-mentioned anatomic structures was 5, which was significantly higher (p < 0.0001) than that at 
focused view CTA.
Conclusion  Focused view CTA shows promise for the selective visualization of stroke-related arteries. Further improve-
ments should focus on more accurately visualizing the smaller and tortuous internal carotid and vertebral artery segments 
close to bone.
Clinical relevance  Focused view CTA may speed up image interpretation time for LVO detection and may potentially be used 
as a tool to study the clinical relevance of incidental findings in future prospective long-term follow-up studies.
Key Points 
• A deep learning–based algorithm (“focused view CTA”) was developed to selectively visualize relevant structures for 

acute ischemic stroke evaluation at CTA.
• The elimination of unrequested anatomic background information was complete in all cases.
• Focused view CTA may be used to study the clinical relevance of incidental findings.
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Introduction

Acute ischemic stroke, a major cause of both disability and 
death, has an incidence of approximately 94.5 per 100,000 
people and affected an estimated 7.63 million people world-
wide in 2019 [1].

Computed tomography (CT) plays an important role for treat-
ment selection in acute ischemic stroke [2]. CT angiography 
(CTA) is used to identify large vessel occlusions (LVOs) suitable 
for endovascular thrombectomy (EVT), to assess the cervical 
vessels for the presence of dissection, critical stenoses, or other 
vascular variants or abnormalities that may complicate EVT, and 
can be used as a roadmap for the EVT [2]. The CTA examination 
should have an anatomic coverage from the origins of the cervi-
cal vessels at the aortic arch extending to the cranial vertex [2].

Although the sole purpose of the CTA examination is to 
visualize the intracranial and extracranial arteries, many other 
organs are also visualized due to its anatomic coverage. Visuali-
zation of structures outside the brain and major arteries at CTA 
may increase interpretation time of the radiologist. Another 
issue is that incidental findings (i.e., unanticipated findings not 
related to the original diagnostic inquiry) at CTA in ischemic 
stroke patients are common, with one recent study reporting 
15.4% of acute ischemic patients to have an incidental finding 
of major clinical relevance [3]. They increase healthcare costs, 
while the true clinical relevance of the majority of these inci-
dentalomas, and whether or not they should require any addi-
tional investigations and/or be treated at all, remains unclear [4].

Deep learning has revolutionized image post-processing 
and is used for many medical image segmentation tasks [5]. 
For example, a previous study reported that fully automated 
segmentation of the cerebral arteries is feasible [6]. We hypoth-
esize that deep learning–based image segmentation can be used 
to selectively extract brain (including intracranial arteries) and 
extracranial arteries from a CTA examination that are relevant 
for ischemic stroke evaluation, while keeping all other unre-
quested anatomic structures hidden. This approach, which we 
dub “focused view CTA,” may speed up image interpretation in 
acute ischemic stroke patients and provides a means to investi-
gate the relevance of incidental findings at CTA.

The purpose of this study was to investigate the technical 
feasibility of focused view CTA for the selective visualization 
of stroke related arteries.

Materials and methods

Study design and patients

This retrospective study was approved by the local insti-
tutional review board and the requirement for informed 
consent was waived. A total of 150 consecutive patients 

who underwent CT for acute ischemic stroke evalua-
tion between 25 September and 24 December 2021 were 
potentially eligible for inclusion in this study. Of these 
150 patients, 8 were excluded because CTA was not per-
formed, and 1 was excluded because of diagnostically rel-
evant motion artefacts. The remaining 141 patients were 
randomly divided into a training set of 100 cases and a 
separately held test set of 41 cases.

CTA acquisition

CTA was performed using a multi-detector row CT sys-
tem (SOMATOM Definition Edge, Siemens Healthineers). 
After intravenous administration of 50 mL of iomeprol 
(Iomeron 350, Bracco Imaging) at a flow rate of 6 mL/s 
(same contrast agent dosage and injection rate for all adult 
patients in this study), and a scan delay of 2 s after bolus 
triggering (threshold of 100 Hounsfield units (HUs) in the 
proximal descending thoracic aorta), CTA images were 
acquired from the aortic arch to the cranial vertex, using 
the following settings: tube voltage of 100 kV, gantry rota-
tion time of 0.285 s, collimation of 0.6 mm, pitch factor of 
0.8, and automated exposure control switched on during all 
acquisitions (CARE Dose 4D; Siemens). CTA images were 
iteratively reconstructed (ADMIRE, Siemens Healthineers) 
with a slice thickness/increment of 0.75/0.5 mm. Estimated 
effective dose was approximately 0.6 mSv. Unenhanced 
CT and CT perfusion (CTP) images of the brain were also 
acquired, but these were not evaluated in this study.

Training set for focused view CTA​

The CTA examinations of the 100 training cases were 
segmented by a board-certified radiologist (TCK) using 
dedicated software (ITK-SNAP, version 3.8.0 [7]). Seg-
mentation was performed in two steps: step 1 concerned 
the segmentation of the cranial cavity and the proximal 
spinal canal until the level of the transition from the V4 
to V3 segment of the vertebral arteries; step 2 concerned 
the segmentation of the aortic arch, subclavian arteries, 
common carotid arteries, proximal external carotid arteries, 
internal carotid arteries until the level of the transition from 
the cavernous to the cerebral segment, and vertebral arter-
ies until the transition from the V3 to V4 segment (Fig. 1).

Deep learning

A deep neural network (DNN) was developed to segment 
the previously described anatomic structures at CTA. A 
patch-based approach was adopted to enable full-scale 
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segmentation of imaging volumes with varying numbers of 
slices. Cross-validation (CV) was performed on the train-
ing set to train five separate deep learning segmentation 
models. Randomly sampled scan crops from the training 
fold (90%, 90 scans) were used as training samples, while 
samples from the validation fold (10%, 10 scans) were used 
to monitor the performance between epochs. The mean 
categorical dice loss over the two foreground classes was 
used as the loss function [8]. To prevent overfitting, train-
ing was stopped after 50 epochs without improvement in 
validation performance. Predictions were generated using a 
sliding-window, and overlapping predictions were averaged 
for each voxel. The best models for each fold were com-
bined in an averaging ensemble to improve the consistency 
of the generated segmentations. The dice coefficient was 
calculated for each validation fold to assess the quality of 
the generated segmentations. The deep learning model was 
implemented using Python 3.7.4 and TensorFlow 2.2.0. An 
overview of the deep learning pipeline is shown in Sup-
plementary Fig. 1.

Hyperparameter optimization

Extensive hyperparameter optimization was performed to 
determine the optimal configuration for our deep learning 
pipeline. Tuned parameters included the DNN architec-
ture, resampling, preprocessing, and data augmentation 
strategies. Seventy-five optimization trials, consisting 

of a single CV fold and a maximum of 50 epochs, were 
completed for different hyperparameter configurations. 
The configuration that achieved the best mean dice score 
on the validation set was used to train the final models 
as described above. An overview of the parameter search 
space and optimal values for each hyperparameter is 
shown in Table 1. Hyperparameter optimization was per-
formed using Optuna 2.10.0.

CTA modification

The deep learning ensemble was applied to each image 
in the unannotated test data, to generate segmentations of 
the brain (including intracranial arteries) and extracranial 
arteries. Focused view CTA scans were created by setting 
the intensities of voxels outside of the generated segmenta-
tion equal to − 1000. Focused view and unmodified CTA 
scans were subsequently exported to DICOM format.

CTA evaluation

The focused view and unmodified CTA examinations of the 
41 test cases were evaluated by a board-certified neurora-
diologist (R.W.K.), who performed all evaluations without 
any clinical information and without unenhanced CT and 
CTP data. Focused view CTA and unmodified CTA evalua-
tions were evaluated separately in different reading sessions. 

Fig. 1   Example of a segmen-
tation in the training set to 
selectively extract brain (includ-
ing intracranial arteries) and 
extracranial arteries for focused 
view CTA. Step 1 concerned 
the segmentation of the cranial 
cavity and the proximal spinal 
canal until the level of the 
transition from the V4 to V3 
segment of the vertebral arteries 
(green segmentation); step 2 
concerned the segmentation of 
the aortic arch, subclavian arter-
ies, common carotid arteries, 
proximal external carotid arter-
ies, internal carotid arteries until 
the level of the transition from 
the cavernous to the cerebral 
segment, and vertebral arteries 
until the transition from the V3 
to V4 segment (red segmenta-
tion). Segmentations in three-
dimensional view (a), on some 
coronal slices (b), and on some 
axial slices (c) are shown
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For the purpose of inter-reader agreement analysis, a second 
neuroradiologist (M.J.L.) also evaluated all focused view 
CTA examinations, in an independent and blinded manner. 
The visibility of the extracranial and intracranial vessels at 
both focused view and unmodified CTA was assessed using 
a 5-point scale: score 5 = completely visible, diagnostically 
sufficient; score 4 = nearly completely visible, diagnosti-
cally sufficient; score 3 = incompletely visible, barely diag-
nostically sufficient; score 2 = hardly visible, diagnostically 
insufficient; score 1 = not visible, diagnostically insufficient. 
This scoring system was applied to the following anatomic 
structures: aortic arch at the level of the origin of the cervi-
cal vessels, right and left subclavian artery, right and left 
common carotid artery, C1, C2, C3, C4, C5, C6, and C7 
segments of the right and left internal carotid artery [9], 
V1, V2, V3, and V4 segments of the right and left verte-
bral artery [10], basilar artery, cerebellum including cer-
ebellar arteries, cerebrum including cerebral arteries, and 
dural venous sinuses. In addition, the elimination of unre-
quested anatomic background information (i.e., all other 
anatomic structures than aortic arch, subclavian arteries, 
carotid arteries, vertebral arteries, basilar artery, cerebel-
lum, and cerebrum) was assessed at focused view CTA. 
Note that although the benefit of EVT for posterior circula-
tion stroke is currently uncertain [11], for completeness we 
also included the cerebrum/cerebellum including cerebral 
arteries in our evaluation. For this evaluation we focused on 
both the cerebellar parenchyma and the cerebellar arteries 
as a whole. An overview of the scoring system is shown in 
Supplementary Fig. 2.

Data analysis

The visibility scores of the various anatomic structures 
(aortic arch at the level of the origin of the cervical ves-
sels, subclavian arteries, common carotid arteries, C1 to 
C7 segments of the internal carotid arteries, V1 to V4 
segments of the vertebral arteries, basilar artery, cerebel-
lum including cerebellar arteries, cerebrum including cer-
ebral arteries, and dural venous sinuses) were compared 
between focused view CTA and unmodified CTA, using 
Wilcoxon tests. p-values < 0.05 were considered statis-
tically significant. Inter-reader agreement was assessed 
using Cohen’s weighted kappa. All statistical analyses 
were executed using MedCalc version 19.1.6 software 
(MedCalc).

Results

Patients

The 100 training cases consisted of 61 men and 39 women, 
with a mean age of 69.2 ± 12.2 years (range: 40–92 years). 
The 41 test cases consisted of 29 men and 12 women, 
with a mean age of 64.7 ± 13.1 years (range: 31–86 years). 
An overview of the patient characteristics for both data-
sets, including the presence of LVO and atherosclerotic 
plaques, is presented in Table 2. No significant differences 
in patient characteristics were found between training and 
test datasets.

Table 1   Overview of the 
parameter search space and 
optimal values for each 
hyperparameter

Parameter Search space Optimal value

Preprocessing
  In plane voxel spacing 0.5/0.7/1.0 0.7
  Normalization strategy Z-norm/divide by 1000 Z-norm

Deep learning
  Window shape (X, Y) 160–256 (step size: 32) 160
  Window shape (Z) 16–64 (step size: 16) 48
  U-Net architecture Basic U-Net/Dual Attn. U-Net Dual attention
  Batch size 1–15 (step size: 1) 13
  Learning rate 1e−4–1e−3 4e−4

  Kernel regularization (L2) 1e−4–1e−3 2e−4

  Optimizer Adam/RMSProp RMSProp
  Instance normalization Enabled/disabled Enabled

Data augmentation
  Rotation frequency 0.0–0.5 0.25
  Tilt frequency 0.0–0.5 0.04
  Noise frequency 0.0–0.7 0.60
  Noise factor 1e−4–1e−2 0.003
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Segmentation time and quality

The average time required for the conversion of unmodified 
CTA to focused view CTA was 2:03 min (SD = 1:03 min). 
The median Dice score was 0.99 (interquartile range 
[IQR] = 0.99–1) for the brain and intracranial arteries, and 
0.94 (IQR = 0.92–0.95) for the extracranial arteries.

Visibility of anatomic structures at focused view CTA​

Median scores for the aortic arch, subclavian arteries, com-
mon carotid arteries, C1, C6, and C7 segments of the inter-
nal carotid arteries, V4 segment of the vertebral arteries, 
basilar artery, cerebellum including cerebellar arteries, cer-
ebrum including cerebral arteries, and dural venous sinuses, 
were all 4. Median scores for the C2 to C5 segments of the 
internal carotid arteries, and V1 to V3 segments of the verte-
bral arteries ranged between 3 and 2 (Table 3). The elimina-
tion of unrequested anatomic background information was 
complete in all cases. Inter-reader agreement was moderate 
(κ = 0.5). Representative examples are shown in Figs. 2 and 
3, with corresponding Supplementary video files 1 and 2. In 

addition, two (close-up) examples of focal incomplete vessel 
visualizations are shown in Figs. 4 and 5.

Comparison with unmodified CTA​

At unmodified CTA, median score for all anatomic struc-
tures was 5, which was significantly higher (p < 0.0001) than 
that at focused view CTA (Table 3).

Discussion

The results of this study show that the developed deep 
learning algorithm is able to segment and selectively dis-
play the structures of interest from the aortic arch to cra-
nial vertex that matter for the CTA evaluation of patients 
with acute ischemic stroke, while eliminating unrequested 
anatomic background information. Overall, the aortic arch, 
the subclavian arteries, the proximal and distal internal 
carotid arteries (C1, C6, and C7 segments), the distal ver-
tebral artery (V4 segment), basilar artery, and intracranial 
structures (including arteries and dural venous sinuses) 

Table 2   Characteristics of patients in the training set and test set. All patients presented with a clinical suspicion of acute ischemic stroke, for 
which CTA was performed

a Mann-Whitney test
b Chi-square test
c Locations of LVOs at CTA: M2 and M3 segments of the middle cerebral artery (n = 4), M3 segment of the middle cerebral artery (n = 4), M1 
segment of the middle cerebral artery (n = 2), extracranial and intracranial internal carotid artery (n = 2), extracranial internal carotid artery, 
intracranial internal carotid artery, and M1 segment of the middle cerebral artery (n = 1), extracranial internal carotid artery, intracranial internal 
carotid artery, and M1 and M2 segments of the middle cerebral artery (n = 1), extracranial internal carotid artery, intracranial internal carotid 
artery, and M1, M2, and M3 segments of the middle cerebral artery (n = 1), extracranial internal carotid artery, intracranial internal carotid 
artery, and M3 segment of the middle cerebral artery (n = 1), intracranial internal carotid artery and M1 segment of the middle cerebral artery 
(n = 1), intracranial internal carotid artery, M1 segment of the middle cerebral artery, and A1 segment of the anterior cerebral artery (n = 1), 
intracranial internal carotid artery, and M1, M2, and M3 segments of the middle cerebral artery (n = 1), M1 and M2 segments of the middle cer-
ebral artery (n = 1), M1 segment of the middle cerebral artery and A1 segment of the anterior cerebral artery (n = 1), M2 segment of the middle 
cerebral artery (n = 1), basilar artery (n = 1), and P1 segment of the posterior cerebral artery (n = 1)
d Locations of LVOs at CTA: M2 segment of the middle cerebral artery (n = 2), M2 and M3 segments of the middle cerebral artery (n = 1), A1 
segment of the anterior cerebral artery (n = 1), intracranial vertebral artery (n = 1), and P1 and P2 segments of the posterior cerebral artery 
(n = 1)
e Arteries with a complete occlusion (as described in notes c and d) were excluded from this analysis
CTA​, computed tomography angiography; IQR, interquartile range; LVO, large vessel occlusion

Variable Training set (n = 100) Test set (n = 41) p-value

Age (years) 72.4 (IQR: 59.6–78.6) 65.2 (IQR: 56.0–75.9) 0.087a

Gender (male/female) 61/39 29/12 0.369b

LVO (yes/no) 24c/76 6d/35 0.314b

Any atherosclerotic plaque with > 50% stenosis in any part of the left internal carotid 
artery (yes/no)e

6/86 3/38 1b

Any atherosclerotic plaque with > 50% stenosis in any part of the right internal carotid 
artery (yes/no)e

10/89 3/38 0.844b

Any atherosclerotic plaque with > 50% stenosis in any of part of the left vertebral 
artery (yes/no)e

3/97 3/37 0.468b

Any atherosclerotic plaque with > 50% stenosis in any of part of the right vertebral 
artery (yes/no)e

6/94 2/39 1b
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were satisfactorily visualized at focused field CTA. How-
ever, the segmentations of the middle part of the internal 
carotid arteries (C2 to C5 segments) and the proximal and 
middle parts of the vertebral arteries (V1 to V3 segments) 

were generally rated as barely diagnostically sufficient to 
diagnostically insufficient. This is probably related to the 
relatively small caliber of these arteries, combined with 
their often tortuous course and their close vicinity to bone 

Table 3   Comparison of visibility of various anatomic structure(s) between focused view CTA and unmodified CTA​

a Median value with interquartile range
b Wilcoxon test
Score 5 = completely visible (diagnostically sufficient)
Score 4 = nearly completely visible (diagnostically sufficient)
Score 3 = incompletely visible (barely diagnostically sufficient)
Score 2 = hardly visible (diagnostically insufficient)
Score 1 = not visible (diagnostically insufficient)
IQR, interquartile range

Anatomic structure(s) Focused view CTA​a Unmodified CTA​a p-valueb

Aortic arch at the level of the origin of the cervical 
vessels

4 (IQR: 4–4, range: 2–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001

Right subclavian artery 4 (IQR: 3–4, range: 1–4) 5 (IQR: 4.5–5, range: 4–5)  < 0.0001
Left subclavian artery 4 (IQR: 3–4, range: 1–4) 5 (IQR: 4–5, range: 3–5)  < 0.0001
Right common carotid artery 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
Left common carotid artery 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
Right internal carotid artery

  -C1 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
  -C2 3 (IQR: 3–3, range: 1–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  -C3 3 (IQR: 3–3, range: 2–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  -C4 3 (IQR: 2.5–3, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C5 3 (IQR: 2–3, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
  -C6 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C7 4 (IQR: 4–4, range: 4–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001

Left internal carotid artery
  -C1 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C2 3 (IQR: 3–3, range: 2–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  -C3 3 (IQR: 3–3.5, range: 2–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  -C4 3 (IQR: 2–3, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C5 2.5 (IQR: 2–3, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C6 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  -C7 4 (IQR: 4–4, range: 4–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001

Right vertebral artery
  V1 3 (IQR: 1–4, range: 1–4) 5 (IQR: 4.5–5, range: 2–5)  < 0.0001
  V2 3 (IQR: 3–4, range: 1–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  V3 3 (IQR: 1–3, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
  V4 4 (IQR: 4–4, range: 2–4) 5 (IQR: 5–5, range: 1–5)  < 0.0001

Left vertebral artery
  V1 3 (IQR: 1–4, range: 1–4) 5 (IQR: 4.5–5, range: 1–5)  < 0.0001
  V2 3 (IQR: 2–4, range: 1–4) 5 (IQR: 5–5, range: 1–5)  < 0.0001
  V3 2 (IQR: 1–3, range: 1–4) 5 (IQR: 5–5, range: 1–5)  < 0.0001
  V4 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 1–5)  < 0.0001
  Basilar artery 4 (IQR: 4–4, range: 1–4) 5 (IQR: 5–5, range: 4–5)  < 0.0001
  Cerebellum including cerebellar arteries 4 (IQR: 3.5–4, range: 2–4) 5 (IQR: 5–5, range: 3–5)  < 0.0001
  Cerebrum including cerebral arteries 4 (IQR: 4–4, range: 4–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
  Dural venous sinuses 4 (IQR: 4–4, range: 4–4) 5 (IQR: 5–5, range: 5–5)  < 0.0001
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(vertebrae and skull base, with HUs approaching those 
of opacified arteries) in these locations. Future technical 
efforts should be spent on improving the visualization 
of the C2 to C5 segments of the internal carotid arter-
ies and V1 to V3 segments of the vertebral arteries. This 
may not only be realized by training the algorithm with 
more cases, but perhaps even more by sophisticating the 

algorithm with methods such as automatic bone removal 
and vessel tracking [12–15]. Nevertheless, this limitation 
of the current algorithm may be considered minor, because 
the far majority of treatable LVOs are located elsewhere, 
i.e., typically M1 and M2 segments of the middle cer-
ebral artery, at the T-junction where the internal carotid 
artery bifurcates into the middle cerebral artery, at the C1 

Fig. 2   First example of focused 
view CTA in the test set. 
Three-dimensional segmenta-
tion (a), coronal focused view 
CTA slices next to unmodi-
fied CTA slices (b), and axial 
focused view CTA slices next to 
unmodified CTA slices (c) are 
shown. The full focused view 
CTA dataset is shown in sup-
plementary (video) file 1

Fig. 3   Second example of 
focused view CTA in the test 
set. Three-dimensional segmen-
tation (a), coronal focused view 
CTA slices next to unmodi-
fied CTA slices (b), and axial 
focused view CTA slices next to 
unmodified CTA slices (c) are 
shown. The full focused view 
CTA dataset is shown in sup-
plementary (video) file 2
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segment of the internal carotid artery (although this may 
proceed more distally), and in the basilar artery, which 
were all well visualized at focused view CTA. A potential 
exception concerns isolated dissection of the petrous (C2) 
segment of the internal carotid artery [16], which may be 
missed with the current focused view CTA algorithm.

The conversion from unmodified CTA to focused view 
CTA only took 2 min on average, but with several technical 

optimizations (such as batching and quantization) the con-
version time may be further reduced to minimize any diag-
nostic delay. Moreover, the availability of a larger training 
dataset may reduce the need for ensembling of the deep 
learning predictions and could decrease the conversion 
time by up to five times. All code used for training and 
generating segmentations (which required > 200 h of seg-
mentation time by a radiologist) has been made available 

Fig. 4   Example of incomplete 
visualization of the C5 segment 
of a right internal carotid artery 
in a test set case, shown in axial 
(a), coronal (b), and sagittal (c) 
directions, along with zoomed 
images, and indicated with 
arrows

Fig. 5   Example of incomplete 
visualization of the V1 segment 
of a left (hypoplastic) vertebral 
artery that has a slightly ventral 
course in a test set case, shown 
in axial (a), coronal (b), and 
sagittal (c) directions, along 
with zoomed images, and indi-
cated with arrows
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at the following repository: https://​github.​com/​0xC4/​focus​
ed-​view (note that this will be available after publication 
of this article). This allows researchers to further develop 
the focused view CTA approach.

Focused view CTA may have several applications, once 
optimized for clinical use. First, it may speed up image inter-
pretation time for LVO detection. Second, the unrequested 
anatomic background information that has been eliminated 
on the focused view CTA scan may be handled in several 
ways. In busy practices that are relatively understaffed dur-
ing on-call hours, the full, unmodified CTA examination 
may perhaps be reviewed for extracranial and extravascular 
findings at a later moment when time is less pressing. On 
another note, focused view CTA may potentially be used to 
investigate the clinical relevance of incidental findings. This 
may perhaps be achieved by future prospective long-term 
follow-up studies in which acute ischemic stroke patients 
are randomized to either undergo unmodified CTA or to 
undergo focused view CTA. Unmodified CTA may detect 
incidental findings in the field of view that may have to be 
acted upon, whereas focused view CTA may allow many 
incidental findings in the native field of view to be deliber-
ately hidden from anyone and their natural clinical course to 
be followed. Whether or not it would be feasible to perform 
such a study (e.g., in terms of ethical review board approval, 
patient participation and consent, and sufficient follow-up 
time) requires further research. Since the advent of spiral 
and multi-detector row CT more than 25 years ago, CTA has 
gradually evolved into an accepted minimally invasive and 
less costly alternative to catheter angiography [17]. Previous 
studies have demonstrated the feasibility of removing bone 
from CTA data to improve the assessment of arteries close 
to bone [12, 13]. Other techniques, including deep learn-
ing models, have been reported to selectively visualize the 
intracranial arteries [6, 18–20]. However, these techniques 
exclude brain parenchyma and do not include the extracra-
nial arteries until the aortic arch. Nevertheless, it should be 
noted that for the sole purpose of detecting a thrombus in the 
intracranial arteries, it would not be necessary to visualize 
the brain parenchyma on CTA. However, unenhanced CT 
and CT perfusion are generally also part of the CT stroke 
protocol, and the same mask that is used for CTA may per-
haps also be applied to the unenhanced CT and CT perfusion 
scans (on which the visualization of brain parenchyma is 
paramount), which may potentially be easier from a work-
flow perspective. Other than bone removal and intracranial 
artery segmentation, no other methods have been reported on 
how to selectively visualize only those anatomic structures 
between the aortic arch and cranial vertex at CTA that are 
relevant to acute ischemic stroke evaluation.

The present study had some limitations. First, the 
neuroradiologists who evaluated the test cases had never seen 

any focused view CTA images before. The neuroradiologist 
who evaluated both focused view and unmodified CTA 
scans realized that she generally assigned lower scores to 
the visibility of the relevant anatomic structures at focused 
field CTA than was actually the case after having reviewed 
the entire dataset of both focused view and unmodified 
CTA scans. The lack of experience with focused view CTA 
may also be a partial explanation for the moderate inter-
reader agreement. Second, this study focused on technical 
performance. The diagnostic performance of focused view 
CTA for LVO detection, its effect on workflow processes and 
speed, and its influence on patient outcome were not assessed. 
The same applies to the effects of omitting unrequested 
anatomic background information and incidental imaging 
findings on patient management and outcome. Third, the 
dataset used for evaluation was relatively small, and consisted 
of patients scanned on a single scanner in a single center, 
which may limit the generalizability of our model.

In conclusion, focused view CTA shows promise for 
the selective visualization of stroke related arteries, which 
may eventually be used for acute ischemic stroke evalua-
tion. Further technical improvements should particularly 
focus on more accurately visualizing the smaller and tor-
tuous internal carotid and vertebral artery segments close 
to bone.
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