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gutSMASH predicts specialized primary 
metabolic pathways from the human  
gut microbiota

Victòria Pascal Andreu    1, Hannah E. Augustijn    1,2,10, Lianmin Chen    2,3,4,5,10, 
Alexandra Zhernakova    2, Jingyuan Fu    2,3, Michael A. Fischbach    6,7,8  , 
Dylan Dodd    7,9   & Marnix H. Medema    1 

The gut microbiota produce hundreds of small molecules, many of which 
modulate host physiology. Although efforts have been made to identify 
biosynthetic genes for secondary metabolites, the chemical output of the 
gut microbiome consists predominantly of primary metabolites. Here we 
introduce the gutSMASH algorithm for identification of primary metabolic 
gene clusters, and we used it to systematically profile gut microbiome 
metabolism, identifying 19,890 gene clusters in 4,240 high-quality 
microbial genomes. We found marked differences in pathway distribution 
among phyla, reflecting distinct strategies for energy capture. These data 
explain taxonomic differences in short-chain fatty acid production and 
suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 
individuals from a Dutch population-based cohort shows that the level of 
microbiome-derived metabolites in plasma and feces is almost completely 
uncorrelated with the metagenomic abundance of corresponding metabolic 
genes, indicating a crucial role for pathway-specific gene regulation and 
metabolite flux. This work is a starting point for understanding differences 
in how bacterial taxa contribute to the chemistry of the microbiome.

The pathways encoding the production of microbial metabolites are 
often physically clustered in the genome, in regions known as meta-
bolic gene clusters (MGCs). Current tools for computational predic-
tion of metabolic pathways focus on gene clusters for natural product 
biosynthesis1 or generic primary metabolism2,3. Here, we introduce 
an algorithm, called gutSMASH, to profile known and predicted 
novel specialized primary MGCs from the gut microbiome, which we 
define as gene clusters encoding primary metabolic pathways that 

are taxon-specific, niche-defining and important for (host–)microbi-
ome interactions. We used this tool to perform a systematic analysis 
of primary MGCs in bacterial strains from the gut microbiome, and we 
identified the prevalence and abundance of each of these pathways 
across a large population-based cohort as well as a clinical cohort. 
Although gutSMASH has been built to specifically predict MGCs from 
anaerobic human gut bacteria, this tool can also be applied to microbial 
communities that inhabit other (animal) body sites.

Received: 2 March 2021

Accepted: 10 January 2023

Published online: 13 February 2023

 Check for updates

1Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. 2Department of Genetics, University Medical Center Groningen, 
University of Groningen, Groningen, The Netherlands. 3Department of Pediatrics, University Medical Center Groningen, University of Groningen, 
Groningen, The Netherlands. 4Changzhou Medical Center, Nanjing Medical University, Changzhou, China. 5Department of Cardiology, Nanjing Medical 
University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. 6Department of Bioengineering, Stanford University, Stanford, 
CA, USA. 7Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA. 8Chan Zuckerberg Biohub, San Francisco, CA, USA. 
9Department of Pathology, Stanford University, Stanford, CA, USA. 10These authors contributed equally: Hannah E. Augustijn, Lianmin Chen.  

 e-mail: fischbach@fischbachgroup.org; ddodd2@stanford.edu; marnix.medema@wur.nl

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01675-1
http://orcid.org/0000-0001-9609-9401
http://orcid.org/0000-0002-1862-6699
http://orcid.org/0000-0003-0660-3518
http://orcid.org/0000-0002-4574-0841
http://orcid.org/0000-0001-5578-1236
http://orcid.org/0000-0003-3079-8247
http://orcid.org/0000-0001-6210-6239
http://orcid.org/0000-0002-2191-2821
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01675-1&domain=pdf
mailto:fischbach@fischbachgroup.org
mailto:ddodd2@stanford.edu
mailto:marnix.medema@wur.nl


Nature Biotechnology | Volume 41 | October 2023 | 1416–1423 1417

Article https://doi.org/10.1038/s41587-023-01675-1

predictive performance’ and Supplementary Tables 2 and 3). Third, 
despite the fact that most specialized primary metabolic pathways 
are encoded in MGCs, there are also single-protein pathways that are 
in charge of the secretion of key specialized primary metabolites in 
the gut microbial ecosystem, such as serine dehydratase, which pro-
duces ammonia and pyruvate from serine8. For this reason, we also 
built ten clade-specific pHMMs to detect these (Methods: ‘Assessing 
single-protein pathway abundance within representative human gut 
bacteria’). The above procedures led to the design of a set of detection 
rules included in the gutSMASH framework to identify both known and 
putative MGCs that are potentially relevant for metabolite-mediated 
microbiome-associated phenotypes and also assess the presence/
absence patterns of single-protein pathways across microbial genera 
by using custom pHMMs (not included in the gutSMASH detection rule 
set). Although obtaining a precise estimate of precision and recall of 
the gutSMASH algorithm is infeasible due to the absence of large-scale 
experimentally verified MGCs from diverse taxa, additional manual 
validation on a dataset of 18 experimentally verified homologs of 
gutSMASH-detected MGCs, as well as on a dataset of 42 MGCs from 
five model organisms from different phyla, showed no false negatives or 
false positives (Supplementary Information results, ‘Validation of gut-
SMASH detection rules by evaluating their predictive performance’).

To profile the metabolic capacity of strains from the human gut 
microbiome, we selected a set of 4,240 unique high-quality reference 
genomes consisting of 1,520 genomes from the Culturable Genome 
Reference (CGR) collection9, 2,308 genomes from the Microbial Ref-
erence Genomes collection of the Human Microbiome Project (HMP) 
consortium10 and 414 additional genomes from the class Clostridia to 
account for their metabolic versatility11 (Supplementary Table 4). We 
refrained from including metagenome-assembled genomes in this 
analysis as they often lack the taxon-specific genomic islands12 on which 
many specialistic metabolic functions are encoded. In total, gutSMASH 

Algorithms that identify physically clustered genes have become 
a mainstay of bacterial pathway identification4–6. Taking into account 
the conserved physical clustering of genes prevents false-positive hits 
based on sequence similarity alone. This principle has been widely 
applied in the field of natural product biosynthesis—for example, in 
antiSMASH1, which predicts biosynthetic gene clusters (BGCs) by 
detecting physically clustered protein domains using profile hidden 
Markov models (pHMMs). In the present study, we tailored this gene 
cluster detection framework to detect MGCs involved in primary 
metabolism and bioenergetics.

Results
As a starting point, we constructed a dataset of 51 primary metabolic 
pathways from the gut microbiome with biochemical or genetic lit-
erature support (including MGCs as well as pathways encoded by a 
single genes) and identified core enzymes (that is, required for pathway 
function) to serve as a signature for the detection rules (Fig. 1, Sup-
plementary Table 1 and Methods). To more accurately predict MGCs 
of interest, we performed three computational procedures. First, for 
core enzymes belonging to 12 of the protein superfamilies that are 
known to catalyze diverse types of reactions and were most commonly 
found across a wide range of pathways, we constructed phylogenies 
and used them to create clade-specific pHMMs to detect specific sub-
families (Supplementary Information results: ‘Phylogenetic analysis 
of protein superfamilies to identify pathway-specific clades’). Second, 
we designed pathway-specific rules for each MGC type in our data-
set (Methods). These rules were validated and optimized by detailed 
manual visual inspection and analysis of MGC sequence similarity 
networks made using BiG-SCAPE7, generated from gutSMASH results 
on a set of 1,621 microbial genomes (online data: https://gutsmash.
bioinformatics.nl/help.html#Validation; Supplementary Information 
results: ‘Validation of gutSMASH detection rules by evaluating their 
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Fig. 1 | Development and design of detection rules for gutSMASH. (1) A set 
of known and characterized MGC-encoded pathways were curated from the 
literature. Protein domains were identified across all MGCs, and core enzymatic 
domains were manually identified. For enzymatic domains belonging to broad 
multifunctional enzyme families, protein superfamily phylogenies were built 
to create clade-specific pHMMs. (2) These domains were incorporated in the 
initial detection rules. The detection rules were run on a test set, and all the 

MGCs predicted by the same rule were grouped together and (3) run through 
BiG-SCAPE, which grouped the MGCs into gene cluster families (GCFs). (4) Based 
on a literature analysis of GCF members, detection rules were manually fine-
tuned to either include or exclude MGC architectures that were either related 
to specialized primary metabolism or not. (5) Finally, fine-tuned detection 
rules were annotated and categorized into different MGC classes based on their 
metabolic end products.
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predicted 19,890 MGCs across these genomes that are clear homologs 
of MGCs for our set of known pathway types (Methods: ‘Evaluating the 
functional potential of the human microbiome using gutSMASH’).

The combined results of the gutSMASH MGC scanning and the 
single-protein pHMM detection across the three reference collec-
tions provide unique insights into the metabolic traits encoded by 
the genomes of human gut bacteria. Although some genera harbor 
a small set of highly conserved pathways, (for example, Akkermansia 
and Faecalibacterium), other genera contain much larger interspe-
cies differences (Fig. 2a). The genus Clostridium displays remarkable 
metabolic versatility, with 43 distinct MGC-encoded metabolic path-
ways present across members of this genus (Fig. 2a); this corroborates 
earlier results by Viera-Silva et al.13, who showed high dissimilarity of 
metabolic module repertoires in Clostridia. Clostridial strains that are 
indistinguishable by 16S sequencing often harbor distinct gene cluster 
ensembles (Supplementary Fig. 1), suggesting that specialization in 
primary metabolism leads to functional differentiation even among 
closely related strains. Clostridium is a clear outlier: by comparison, the 
next most numerous sets of metabolic pathways are found within the 
Enterobacteriaceae (for example, Salmonella, Escherichia, Enterobacter  
and Klebsiella) with 22–25 metabolic pathways. Intriguingly, many of 
the metabolic pathways encoded by Clostridium and members of the 
Enterobacteriaceae are non-overlapping (with 23/43 Clostridium path-
ways not being identified among Enterobacteriaceae), highlighting the 
distinct metabolic strategies that these microbes employ within the gut 
(Fig. 2a). The Bacteroides, Actinobacteria (Eggerthella and Collinsella) 
and Verrucomicrobia (Akkermansia) harbor a more restricted set of 
primary metabolic pathways, likely reflecting versatility in upstream 
components of their metabolism (that is, glycan foraging and other 
forms of substrate utilization).

Our results provide insights into the metabolic strategies that 
microbes use to produce short-chain fatty acids (SCFAs). As expected, 
butyrate production is found mainly in certain Firmicutes and Fuso-
bacteria; however, some Alistipes sp. within the Bacteroidetes phy-
lum have genes for the acetate-to-butyrate pathway (Fig. 2a). This 
is consistent with previous reports that Alistipes sp. produce small 
amounts of this compound14. On the other hand, propionate pro-
duction is largely confined to (and conserved in) the Bacteroidetes. 
However, the phylogenetic distribution of pathways that generate 
acetate—the most concentrated molecule produced in the gut15—has 
not yet been described. Two pathways for the conversion of pyruvate 
to acetate—pyruvate formate-lyase (PFL) (pyruvate to acetate/for-
mate) and pyruvate:ferredoxin oxidoreductase (PFOR)—are widely 
distributed across microbial strains from diverse phyla (Fig. 2b). Two 
observations suggest that these two pathways are the most prolific 
source of acetate in the gut. First, some strains known to produce 
large quantities of acetate rely entirely on one or both of the path-
ways. Second, each one uses pyruvate as a substrate, consistent with 
a model in which these pathways are the primary conduit through 
which carbohydrate-derived carbon is converted to acetate. Additional 
taxon-specific pathways for acetate include the CO2-to-acetate pathway 
and the glycine-to-acetate pathway (each specific to a subset of Firmi-
cutes), as well as the choline and ethanolamine utilization pathways 

(widespread among Enterobacteriaceae and each found in different 
clades of Firmicutes) (Fig. 2a).

Our results demonstrate a striking difference in mechanisms 
for energy capture by three of the major bacterial genera in the gut: 
Bacteroides, Escherichia and Clostridium. When growing aerobically 
with glucose, E. coli generates most of its energy by channeling elec-
trons through membrane-bound cytochromes using oxygen as the 
terminal electron acceptor (Fig. 2c). However, oxygen is limiting in the 
gut. Under anaerobic conditions, bacteria from the genus Escherichia 
employ alternate terminal electron acceptors, such as nitrate, dimethyl 
sulfoxide (DMSO), trimethylamine N-oxide (TMAO) and fumarate, by 
substituting alternate terminal reductases into their electron transport 
system (Fig. 2c). However, in the healthy gut, these alternate electron 
acceptors are either absent or available in limited amounts, likely 
explaining why these facultative anaerobes represent a small propor-
tion of the healthy microbiome16. In contrast to the diversity of terminal 
reductases used by the Escherichia, Bacteroides genomes encode only 
fumarate reductase (Fig. 2c). They use a unique pathway, carboxylat-
ing phosphoenolpyruvate (PEP) to form fumarate, which they use as 
a terminal electron acceptor to run an anaerobic electron transport 
chain involving NADH dehydrogenase and fumarate reductase, ulti-
mately forming propionate. Thus, the metabolic strategy employed by 
Bacteroides ensures a steady stream of electron acceptors to fuel their 
metabolism. Clostridia do not utilize similar mechanisms for energy 
capture as members of the genera Escherichia and Bacteroides. Recent 
analyses suggest that they use the Rhodobacter nitrogen fixation-like 
(Rnf) complex for generating a proton motive force17,18. Several path-
ways encoded by the genomes of Clostridium (for example, acetate to 
butyrate, aromatic amino acids (AAAs) to arylpropionates and leucine 
to isocaproate) (Fig. 2a) consist of an electron bifurcating acyl-CoA 
dehydrogenase enzyme. This complex bifurcates electrons from NADH 
to the low potential electron carrier ferredoxin, which can then donate 
electrons to the Rnf complex, which functions as a proton or sodium 
pump, generating an ion motive force. Although much still is to be 
learned about Clostridial metabolism, our findings suggest that their 
metabolism operates at a different scale of the redox tower compared 
to Bacteroides and Enterobacteriaceae, using low potential electron 
carriers to fuel their metabolism.

Next, we set out to determine the prevalence and abundance of 
each pathway in a cohort of human samples. We used BiG-MAP19 to 
profile the relative abundance of each MGC class across 1,135 metage-
nomes from the population-based LifeLines DEEP cohort20, by map-
ping metagenomic reads against a collection of 5,655 non-redundant 
MGCs detected in our set of reference genomes (Fig. 3a,b, Extended 
Data Fig. 1 and Supplementary Fig. 2). Some pathways, such as CO2 
to acetate (acetogenesis) and butyrate production from acetate or 
glutamate, as well as polyamine-forming pathways, were found in 
>99% of microbiomes. Others, such as 1,2-propanediol utilization 
and p-cresol production, both associated with negative effects on gut 
health21,22, were observed at detectable levels in only 75% and 53% of 
the samples, respectively. In terms of abundance, it is striking that, 
for example, the bile-acid-induced (bai) operon for the formation of 
the secondary bile acids deoxycholic acid and lithocholic acid, which 

Fig. 2 | Distribution of known pathways across most representative genera in 
the human gut. a, Circles represent the absence/presence of known pathways in 
each genus. Larger circles indicate cases in which more than 50% of the genomes 
for a genus encode the pathway, whereas smaller circles indicate cases in which 
50% or fewer of the genomes encode it. Colored ranges indicate a categorization 
of MGCs by chemical class of their product, in which npAA represents non-
proteinogenic amino acids and SCFA represents short-chain fatty acids. 
Taxonomic assignments were applied using the Genome Taxonomy Database 
release 9532. The tree was generated using phyloT (https://phylot.biobyte.de/) 
and visualized using iTOL33. Raw data are available in Supplementary Table 5.  
b, Distribution of the main acetate synthesis pathways at phylum level. Some of 

the pathways are ubiquitous across the five major phyla (for example, pyruvate 
to acetate/formate (PFL)), whereas others are found only in Firmicutes (CO2 
to acetate (WLP)). Raw data for the pie charts are available in Supplementary 
Table 6. Genes and gene clusters depicted are representatives from Bacteroides 
thetaiotaomicron (PFL and PFOR), Salmonella enterica (Eut), Clostridium 
sporogenes (Cut), Clostridium difficile (WLP) and Clostridium sticklandii (Grd). 
c, Bioenergetic strategies in Escherichia that has a variety of alternate electron 
acceptors to choose from compared to Bacteroides and Clostridium. CA, cholic 
acid; CDCA, chenodeoxycholic acid; Cut, choline use; DCA, deoxycholic acid; Eut, 
ethanolamine use; Grd, glycine reductase; Hyd, hydrogenase; LCA, lithocholic 
acid; Ndh, NADH dehydrogenase.
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has been characterized from very low-abundance Clostridium scindens 
strains23, was still shown to be present in relatively high abundance 
across a subset of individuals. Analysis of the mapped reads showed 

that the vast majority of these mapped to a homologous MGC from 
the genus Dorea instead (Supplementary Fig. 2), for which the physi-
ological relevance remains to be established. Although two of the three 
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acetate-forming pathways (PFL and PFOR) were consistently found at 
high abundance levels, the abundance of all butyrate-forming path-
ways is highly variable across individuals, with a ~13-fold difference 
between lower and upper quartiles in the abundance distribution of 
the glutamate-to-butyrate pathway and a >130-fold difference between 
the 10th percentile and the 90th percentile.

The wide variability in the metagenome abundance of each path-
way raises the question of whether metagenomic abundance of a 
pathway correlates with the level of its small-molecule product in the 
host. To address this question, we systematically compared the level 
of each pathway with the quantity of the corresponding metabolite 
as determined by plasma metabolomics. We found a striking lack of 
correlation between pathway and metabolite levels (r ranging from 
−0.04 to 0.24; Fig. 4a and Extended Data Fig. 2); also when abundances 
of multiple MGC types with the same end products were summed, cor-
relations remained low (Supplementary Table 9). These data indicate 
that gene abundances in metagenomes are not (on their own) a useful 

predictor of plasma metabolic outputs. This lack of correlation may 
be due to several factors, such as dietary differences, transcriptional 
regulation linked to substrate availability, varying dynamics of dif-
fusion and import of the metabolites out of the lumen into the host, 
secondary fermenters that degrade the end product of some of the 
gutSMASH-predicted pathways and the existence of pathways with 
similar substrate/product profiles that are yet unknown. To assess 
the effect of nutrient import, we also quantified metagenomic path-
way abundance correlation with available fecal metabolomic data for 
SCFA from the LifeLines DEEP cohort, and this showed similarly low 
correlations (ranging from −0.16 to 0.11; Supplementary Table 10). 
We also mapped reads from 81 samples from the integrative Human 
Microbiome Project (iHMP), including 41 patients with Crohn’s dis-
ease (CD), 17 patients with ulcerative colitis (UC) and 23 healthy indi-
viduals (Supplementary Table 11), to the same set of gutSMASH MGCs  
(Fig. 4b,c). Correlating pathway abundance levels on these samples 
further confirmed this pattern, with overall correlations ranging from 
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Fig. 3 | Prevalence and abundance of specialized primary metabolic pathways 
across 1,135 human microbiome samples. a, Prevalence of each of the 41 
known MGC-encoded pathway classes across all microbiomes, measured as 
the percentage of samples in which core enzyme-coding genes of at least one 
reference MGC belonging to a given class were covered by metagenomic reads 
across >5% of their sequence length. This cutoff was kept low to avoid false 
negatives due to limited sequencing depth for low-abundance taxa (raw data 

available in Supplementary Table 7). b, Distributions of log2 RPKM relative 
abundance values of all 41 known pathway classes, categorized by product class, 
across all LifeLines DEEP metagenomes (n = 1,135; raw count data available in 
Supplementary Table 8). All samples are represented by a dot in the box plot, 
representing the log2 RPKM value for a given sample. The box limits indicate the 
quartiles of the dataset; the whiskers extend to 1.5× the interquartile range; and 
the center line denotes the median.
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−0.32 to 0.34 (Fig. 4b). Correlations did increase when splitting sam-
ples by disease status, ranging from −0.50 to 0.52 for healthy samples, 
−0.51 to 0.53 for patients with UC and −0.37 to 0.42 for patients with 
CD (Supplementary Table 11), suggesting that large-scale physiological 
differences (for example, differences in absolute microbial abundance) 
among human subjects are prominent confounding factors. Over-
all, our findings have important implications for analyses that make 
metabolic inferences from gene abundances24 or the abundances of 

individual strains25. We speculate that a more detailed understanding 
of the influence of diet; differences in gene regulation; characteristic 
pathway flux (turnovers per unit time per protein copy), which may also 
be affected by secondary fermenters; and pharmacokinetic characteris-
tics (for example, absorption, distribution, metabolism and excretion) 
could ultimately enable the prediction of metabolite abundance from 
metagenome abundance. Indeed, when we compared mapping of 
metatranscriptomic reads for the 81 iHMP samples (mixed phenotypes) 
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Fig. 4 | Pathway correlations with metabolomic data. a, Limited correlation 
of genetic pathway abundance with abundance of metabolites in blood plasma 
(correlation plots 1–5) and feces (correlation plots 6–8) from the LifeLines DEEP 
cohort (n = 1,055). The correlation plots 2–4 and 6–8 correspond to pathway 
association with plasma and fecal levels of the same SCFAs, respectively. The x 
axis indicates abundance of pathways, and the y axis indicates abundance levels 
of metabolites in plasma or feces. The gray line shows the best linear fit, with 95% 
confidence interval. Spearman correlation (two-sided) was used to check the 
relationship between pathway abundances and metabolite levels after adjusting 
for age, sex and read depth. The rank-based Spearman correlation coefficient 
and empirical P value are also shown. Spearman correlation (two-sided) is used 
to check the relationship between pathway abundances and metabolite levels 
after adjusting for age, sex and read depth. b, Overall correlation box plots 
between gutSMASH-predicted pathways and the iHMP data considering the 

81 samples with paired metagenome/metabolome/metatranscriptome data 
when considering the metagenome/metabolome correlations (mg_81, red) and 
the metatranscriptome/metabolome correlations (mt_81, turquoise), as well 
as correlations for the 271 samples with metatranscriptome/metabolome data 
(mt_271, yellow). Individual data points are shown in the dot plot. The box limits 
indicate the quartiles of the dataset; the whiskers extend to 1.5× the interquartile 
range; and the center line denotes the median. c, Correlation (Spearman, two-
sided) plots for three specific pathways within each dataset, with the mg_81 and 
mt_81 datasets being shown above in red/turquoise and the mt_271 dataset being 
shown below in yellow. For each pathway, a different color was used for the axis 
labels: purple for propanediol utilization, green for succinate to propionate and 
red for CA/CDCA to DCA/LCA; the corresponding data point in the box plot in  
b was colored accordingly.
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for which paired metagenomic/metatranscriptomic/metabolomic 
data were available, we already observed slightly higher correlations 
(ranging from −0.22 to 0.37; Fig. 4b), although the difference with the 
metagenomic data from the same samples was not statistically signifi-
cant (Cochran’s Q test coefficient ranging from 0.0013 to 0.983). At a 
false discovery rate (FDR) of <0.1, whereas we observed five significant 
associations between gutSMASH pathways and their correspond-
ing metabolites for samples with paired metagenome/metabolome 
data, we observed six significant associations for samples with paired 
metatranscriptome/metabolome data (Supplementary Table 11).  
The correlations from a larger set of 271 iHMP metatranscriptomic/
metabolomic samples, from which complete metadata were available 
(Supplementary Table 12), also seemed to show slightly stronger signals 
compared to the metagenome/metabolome data, with overall correla-
tions ranging from −0.17 to 0.34 (Fig. 4b), although no direct compari-
son could be made in the absence of metagenome data. When split out 
across the three phenotypes, correlations ranged from −0.28 to 0.38 
for healthy, −0.27 to 0.27 for UC and −0.24 to 0.42 for CD and yielded 
ten significant associations between pathway expression values and 
their metabolites. The correlations across these datasets varied quite 
a lot depending on the pathway (Fig. 4a), suggesting that the expres-
sion of some pathways is more specifically predictive for metabolite 
abundances. For instance, strong correlations were found between the 
CA/CDCA to DCA/LCA (bai operon) pathway with deoxycholic acid, 
possibly due to the fact that it is a taxonomically restricted pathway 
without known alternative pathways leading to the same products. In 
contrast, some pathways showed low or even slightly negative correla-
tions, which may be explained by, for example, pathway competition, 
diffusion/transport differences or consumption by other bacteria. 
Overall, systematic detection of the relevant genes and gene clusters 
by gutSMASH provides a technological foundation for future studies 
to study how various factors influence microbial metabolite produc-
tion and accumulation in the lumen as well as in plasma, by allowing 
mapping of metatranscriptomic data to these accurately defined and 
categorized sets of genomic loci across a wide range of conditions. 
Measuring absolute microbial abundance across samples will likely 
greatly help in this as well26.

Discussion
The gutSMASH software constitutes a comprehensive automated tool 
designed to identify niche-defining primary metabolic pathways from 
genome sequences or metagenomic contigs. Even a full-fledged meta-
bolic network reconstruction software such as PathwayTools27 (which 
uses the extensive MetaCyc database28) lacks detection capabilities 
for two out of the 41 MGC-encoded pathways detected by gutSMASH 
(Supplementary Table 13). We also assessed the overlap of pathways 
between gutSMASH and GenomeProperties29, and only five out of the 
41 MGC-encoded pathways can be systematically annotated using 
the latter (Supplementary Table 13). Moreover, the identification 
of MGCs provides considerably increased confidence that putative 
detected homologs for a given pathway are truly working together. 
Downstream, detected MGCs can be used as input for read-based tools 
such as HUMAnN30 or BiG-MAP19 to measure abundance or expression 
levels of the encoded pathways. On top of these functionalities, the 
gutSMASH framework also facilitates identifying new (that is, unchar-
acterized) pathways in the microbiome. To this end, we designed an 
additional set of rules, referred as general rules in Fig. 1, to detect 
primary MGCs of unknown function that harbor at least one of the 
following key enzymes: Fe-S flavoenzymes31, glycyl-radical enzymes, 
2-hydroxyglutaryl-CoA-dehydratase-related enzymes and/or enzymes 
involved in oxidative decarboxylation. After running gutSMASH on the 
4,240 microbial genomes and pulling out the putative MGCs (Supple-
mentary Methods: ‘Analysis of distant homologs and putative MGCs 
from CGR, HMP and Clostridioides datasets’), we found 12,256 putative 
MGCs from 760 different species, that, after redundancy filtering at 

90% sequence similarity, were classified into 932 GCFs. Within these, 
we manually prioritized a range of gene clusters with unprecedented 
enzyme-coding gene content highlighted in Extended Data Figs. 3  
and 4 (Supplementary Information results: ‘Analysis of putative clusters 
and distant homologs: relevant candidates to study further’). These 
putative MGCs can be a potential source to discover new pathways 
and metabolites. Thus, gutSMASH can be a valuable tool in the field of 
enzyme/pathway discovery, to link metabolites to gene clusters and 
to identify genes responsible for microbiome-associated phenotypes.
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Methods
gutSMASH is a Python-based pipeline that was built from antiSMASH 
version 5.0 source code. The latest command line version is freely 
available and can be downloaded and installed at https://github.com/
victoriapascal/gutsmash/tree/gutsmash.

Finding pathway signatures for known and characterized MGCs
To create a new set of detection rules, 41 known and characterized 
MGCs were gathered from the literature and used as positive controls. 
The protein sequences of these MGCs were searched using hmmscan 
(HMMER suit version 3.1b2, February 2015; http://hmmer.org/). From 
the resulting pHMM hits, auxiliary and core domains were manually 
identified for each pathway, to ultimately determine the pathway 
signature and specify it in the corresponding detection rule. To dis-
cern and more precisely identify key enzymes of interest sharing a 
keystone domain, we used custom-made pHMMs following a procedure 
described in the Supplementary Methods: ‘Toward a more robust MGC 
identification by building new HMM profiles’. Altogether, the knowl-
edge on the core enzyme-coding genes and the newly built pHMMs 
helped to construct a preliminary set of detection rules to predict 
known pathways.

New HMM profiles for robust MGC identification
Certain core domains are shared across diverse pathways, including the 
PFL-like domain and the HGD-D domain. In total, 13 keystone domains 
were found to be ubiquitous in multiple pathways (Supplementary 
Table 14). Hence, to increase gutSMASH precision and discern between 
enzyme subfamilies of interest, 12 protein superfamily phylogenies 
were constructed by aligning the protein sequences harboring the 
domain of interest from the MGC collection (Methods: ‘Exploring the 
yet unknown metabolic diversity by creating general detection rules’; 
for an example, see Supplementary Fig. 3); the respective reference pro-
teome34 at a 15% or 35% co-membership threshold (the latter only for the 
domains Gly_radical and Acyl-CoA_dh_1); and any experimentally char-
acterized UniProt representatives. After aligning the sequences with 
hmmalign35, approximately maximum-likelihood phylogenetic trees 
using FastTree 2.1 (ref. 36) were inferred to further annotate the tree 
with iTOL32. Thus, from the desired and functionally relevant clades, 
specific pHMMs were built by extracting the amino acid sequence of 
the clade-specific proteins, aligning them with Clustal Omega37, trim-
ming the edges of the multiple sequence alignment using Jalview38, 
re-aligning all the sequences with Clustal Omega and finally building 
a pHMM using hmmbuild (HMMER suite version 3.1b2, February 2015; 
http://hmmer.org/). Subsequently, for all the newly created pHMMs, 
sensitivity was assessed using ten-fold jackknife cross-validation. 
Each clade was divided randomly into training and testing sets. The 
protein sequences from the training set were aligned using Clustal 
Omega and used to create a pHMM. Next, the protein sequences of the 
test set were hmmscanned (HMMER suit version 3.1b2, February 2015; 
http://hmmer.org/) against the newly built testing pHMMs. When a 
sequence scored positively for multiple domains in the same region, 
only the domain with a higher bit score was picked out. Sensitivity then 
accounted for the number of sequences positively associated with 
the correct pHMM out of the total number of sequences in the testing 
set. The same procedure was repeated ten times. The pHMMs with a 
true-positive rate higher than 0.85 across the ten rounds were included 
in the detection rules. In total, 43 newly built pHMMs were included 
in the corresponding detection rules (Supplementary Table 15).  
Moreover, a pHMM to capture succinate dehydrogenase/fumarate 
reductase was built by aligning ten protein sequences of such enzymes 
and building the model from this alignment using a hmmbuild. To also 
competitively score similar Pfam domains, Hhsearch pre-computed 
results obtained from the Pfam FTP (ftp://ftp.ebi.ac.uk/pub/databases/
Pfam/current_release/database_files/) were parsed and included in the 
gutSMASH code.

Testing and validating detection rules for known pathways
To evaluate the performance of the preliminary set of detection rules, 
a total of 1,621 bacterial genomes, including 1,520 genomes from the 
CGR collection9 and 101 manually selected genomes from the most 
representative bacterial genera in the human gut, were used as input 
for gutSMASH (Supplementary Table 3). The predicted MGCs were 
classified based on the detection rule that they were predicted from, 
to later run BiG-SCAPE on each sub-collection. The resulting networks 
were screened individually to evaluate the taxonomic and architec-
tural diversity, to assess if any architectural variant or taxon (based 
on literature) was missing from the MGC pool or was incorrectly pre-
dicted by the detection rule. Hence, this procedure ultimately helped 
to tweak the detection rules to predict true homologs of the known 
pathways (Supplementary Results and Supplementary Table 16).  
After two iterations of fine-tuning and testing, all detection rules were 
performing as intended and constituted the new set of detection rules 
of gutSMASH version 1.0.

gutSMASH customized databases and output visualization
The antiSMASH version 5.0 source code was further tailored to meet 
gutSMASH functionality. The 32,144 predicted MGCs obtained from 
running gutSMASH on the CGR, HMP and Clostridiales collections 
(Methods: ‘Evaluating functional potential of gut bacteria using gut-
SMASH’) were used to create the ClusterBlast database. In a similar 
way, 59 positive controls carrying the known pathways (from which 
we created the specific-to-known pathway detection rules) were used 
to create the KnownClusterBlast database. These databases facilitate 
comparative gene cluster analysis using BLAST39. Thus, they allow 
assessing how broadly distributed an MGC is across bacteria (in the 
case of ClusterBlast) or evaluating the similarity between the predicted 
MGC and a known and functionally characterized MGC (when using 
KnownClusterBlast).

Another functionality of antiSMASH is to classify coding genes 
based on the domains into five major functional categories: core 
biosynthetic, additional biosynthetic, transport-related, regulatory, 
resistance and other, using the pmCOG (primary metabolism Clus-
ters of Orthologous Groups) tool, which is embedded in antiSMASH 
(there, originally named smCOG for secondary metabolism Clusters 
of Orthologous Groups). Thus, the pHMM library pmCOG was updated 
to include relevant domains found in specialized primary metabolism. 
Also, two other important functional categories were added: electron 
transport-related genes and encapsulation genes.

Exploring unknown metabolic diversity using general rules
With the objective of creating general detection rules to predict puta-
tive MGCs, a similar approach used to screen the surrounding genes 
around a Fe-S flavoenzyme coding gene was used31. Some of the repre-
sentative known pathways share proteins with biochemically similar 
functions; these include, for instance, PFL-like enzymes that are found 
in the threonine-to-propionate pathway, the choline utilization path-
way and the pyruvate-to-acetate pathways. To cover a large amount 
of sequence diversity, we created a database that included 11,000 
complete genomes and 98,886 draft genomes available in GenBank 
(in February 2017) to use clusterTools40, a software to find remote 
homologs of known MGCs. As input, a subset of the known pathways 
used to design the detection rules for known pathways was used as 
input (Supplementary Table 17). The output of several iterated clus-
terTools searches were grouped to acquire a collection of over 29,000 
clusters. For visualization and manual scoring purposes, MultiGen-
eBlast41 was run using the clusterTools output as input. Thus, MGCs 
harboring at least half of the genes from the query gene list and with a 
cumulative BLAST score higher than 1,000 were included in the MGC 
collection. To filter out redundant sequences, we used MMseqs2 (ref. 42)  
at a 95% similarity cutoff. From the resulting network of 1,599 groups, 
a maximum of one random representative plus singletons were picked 
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creating a ‘non-redundant’ set of almost 3,200 clusters. This collection 
was screened for gene clusters harboring the baiCD or baiH coding gene 
(Oxidored_FMN and Pyr_redox_2), pyruvate formate-lyase (PFL-like or 
Gly_radical), pyruvate ferredoxin (POR, POR_N or PFOR_II), thiamine 
pyrophosphate enzyme (TPP_enzyme_C) and 2-hydroxyglutaryl-CoA 
dehydratase (HGD-D), each of which are keystone domains in charge 
of important anaerobic reactions. This helped create general detec-
tion rules, by identifying which other enzyme-coding Pfam domains 
are found around these ‘anchor’ domains in flanking regions; this was 
systematically analyzed per gene cluster family to make sure that the 
general rules captured all major families of homologous MGCs of inter-
est. Also, when validating the specific-to-known pathway detection 
rules, whenever a specific rule predicted interesting MGCs that were 
variants of the representative pathway with likely differing functions, 
a general rule was created out of the specific one by loosening up the 
Pfam requirements. The full list of general rules can be found in Sup-
plementary Table 18.

Assessing single-protein pathway abundance
To include single-protein pathways in our analysis to assess the overall 
abundance of specialized primary metabolic pathways, ten enzyme 
families were selected for downstream analysis. Following the same 
procedure as described in Methods: ‘Toward a more robust MGC iden-
tification by building new HMM profiles’, protein phylogenies were 
built for each protein superfamily. Similarly, from the pathway-specific 
monophyletic clades, we built new pHMMs. A bitscore threshold for 
each newly built pHMM was calibrated to identify with high confidence 
proteins belonging to the same functional clades. To this end, the 
protein sequences that composed the superfamily phylogeny were 
subjected to an hmmsearch run with the new pHMM. The bitscore 
reported by hmmsearch for the most distantly related protein within 
the pathway-specific clade was chosen as the threshold for that spe-
cific pHMM. Next, the protein sequences from the CGR, HMP and 
Clostridiales collections (further information in Methods: ‘Evaluating 
the functional potential of the human microbiome using gutSMASH’) 
were scanned using the newly built pHMMs. Finally, the hmmsearch 
output tables for each pHMM were parsed so that the proteins with 
a bitscore equal to or higher than the chosen threshold were deemed 
hits. In those cases in which the single-protein sequence codes for two 
Pfam domains—as, for instance, the serine dehydratase (SDH_alpha 
and SDH_beta)—one of the Pfam domains was selected to create a 
protein phylogeny to further build a clade-specific pHMM, in this case 
SDH_alpha. Then, the protein sequences from the three collections 
were subjected to hmmsearch runs with both the clade-specific pHMM 
and the other co-occurring Pfam domain (in this case SDH_beta). The 
sequences that harbor both the specific pHMM at the chosen threshold 
and the co-occurring domain with an e value ≤10−5 were deemed hits.

Evaluating the functional potential of the human microbiome
To evaluate the metabolic potential of the human microbiome, gut-
SMASH was run on three different genome collections: (1) the CGR 
collection, with 1,520 CGR genomes deposited under PRJNA482748; 
(2) the HMP reference genomes, with 2,146 HMP bacterial genomes 
downloaded in September 2019 from https://www.hmpdacc.org/
hmp/catalog/grid.php?dataset=genomic; and (3) 414 Clostridiales 
complete genomes under taxonomy ID 186802. The genomic FASTA 
sequence of these genomes was used as input for gutSMASH, which 
used Prodigal43 to annotate genes across all of them in a consistent 
way. Moreover, to assess which MGC belonged to known pathways, the 
KnownClusterBlast (Supplementary Methods: ‘gutSMASH customized 
databases and output visualization’) option was enabled. Thus, from 
the KnownClusterBlast output, the predicted regions were classi-
fied as known when the following two requirements were met: (1) an 
overall pathway similarity of at least 50% and at least half of the genes 
with a minimum protein sequence similarity of 40% and (2) an overall 

similarity of 60% and half of the genes with protein sequence similarity 
higher than 30%. However, in order not to penalize MGCs with similar 
domain profiles but substantially larger sizes, the requirements to be 
considered ‘known’ slightly changed for the KnownClusterBlast MGCs 
longer than 17 coding genes. In this case, the same requirements as 
described above were used, but, instead of considering candidates with 
at least half of the coding genes having either 30% or 40% minimum 
sequence identity, one third of the genes were required to be present 
with the same minimum sequence identity. This was the case for the 
ethanolamine utilization operon, the bai operon characterized from C. 
scindens ATCC35704 (CA/CDCA to DCA/LCA pathway), the acetyl-CoA 
pathway (CO2 to acetate (Wood–Ljungdahl pathway (WLP))), the 
tetrathionate-to-thiosulfate pathway and the NADH dehydrogenase 
I complex. Thus, all the MGCs that did not satisfy these conditions 
were classified as putative MGCs. The phylogenetic tree in Fig. 2 was 
generated using phyloT version 2 (https://phylot.biobyte.de/). The 
Genome Taxonomy Database32 was used to assign the taxonomy to the 
genomes of the three collections (when present), and those taxonomic 
identifiers were the ones used for the subsequent pathway absence/
presence analysis. Finally, the tree was annotated using iTOL33.

Analysis of distant homologs and putative MGCs
The putative MGCs predicted from the CGR, HMP and Clostridiales 
genome collections were selected following the definition of ‘known’ 
and ‘putative’ gene clusters stated in Methods: ‘Evaluating the func-
tional potential of the human microbiome using gutSMASH’. To 
account for redundant MGCs, protein sequences extracted from all 
gene clusters were subjected to a redundancy filtering of 90% sequence 
similarity using MMseqs2. From the resulting clustering, two random 
representatives were chosen from each group, including the singletons. 
The resulting non-redundant collection of 3,040 putative MGCs was 
used as input for BiG-SCAPE using the default thresholds. The network 
in Extended Data Fig. 3 was constructed and annotated using Cytoscape 
version 3.0 (ref. 44).

Mapping metagenomics reads from cohort samples to MGCs
The HMP-, CGR- and Clostridiales-predicted MGCs were used as input 
for BiG-MAP19, a tool that assesses gene cluster abundance or expres-
sion across metagenomics or metatranscriptomics data, respectively, 
by mapping the genomic reads onto the gene cluster sequences. The 
BiG-MAP family module grouped the 32,146 MGCs into 5,655 GCFs. 
Next, the reads of 1,135 participants of the population-based cohort 
LifeLines-DEEP45 (quality filtered using KneadData version 0.7.2) 
were mapped onto the resulting 5,655 Mash46 representative MGCs 
by using the BiG-MAP.map module. (All LifeLines participants signed 
an informed consent form before sample collection. The ethics review 
board of the University Medical Center Groningen approved the study 
[reference no. M12.113965].) To assess the abundance of known path-
ways, the RPKM values from the known MGCs (following the definition 
of ‘known’ stated in Methods: ‘Evaluating the functional potential of the 
human microbiome using gutSMASH’) were pulled out. The RPKM val-
ues of all the MGCs predicted by the same detection rule were merged. 
The pathway abundance (RPKM) was computed by dividing the gene 
clusters in 2-kb-sized bins and assessing the lower quartile number of 
reads mapping the 2-kb bins for each gene cluster and sample. In con-
trast, a pathway was annotated as present in a sample when reads from 
that sample were found to be mapping to at least 5% of the core region 
of that MGC. This threshold was kept low to enable detection of MGCs 
from low-abundant microbes and avoid false negatives due to limited 
sequencing depth. The lowest percentage identity of reads mapped to 
MGCs was 78% at the nucleotide level, which instilled confidence that 
finding multiple reads mapping to different locations within a MGC 
provides sufficient evidence for its presence in a sample. The pathway 
prevalence was also computed using 10%, 20%, 30%, 40%, 50%, 60%, 70% 
and 80% core coverage thresholds (Extended Data Fig. 1), and results for 
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increasing thresholds were consistent with gradual loss of detection 
capability for pathways known to be associated with low-abundance 
bacteria, such as the AAA-to-arylpropionate pathway (AAA reductive 
branch). To also take into account metatranscriptomics and fecal 
metabolome data, the 81 paired metagenomes, metatranscriptomes 
and metabolomes from the Inflammatory Bowel Disease Multi’omics 
Database (IBDMDB) study47 were similarly analyzed using BiG-MAP. In 
this case, to speed up calculation, only the bacterial genomes whose 
gutSMASH run predicted at least one ‘known’ (following the definition 
as described above) MGC were used as input for the BiG-MAP.family 
module. The same ‘known’ MGC collection as described above was 
used. In total, for the BiG-MAP.family module, 1,764 gutSMASH runs 
were used, which included 8,109 gene clusters that were downsized 
to 6,301. This reduced MGC reference collection was then used by the 
BiG-MAP.map module that aligned the metagenomic and metatran-
scriptomics to the reference collection independently. The same proce-
dure was followed for the 271 samples with paired metatranscriptome 
and metabolome data.

Correlating pathway abundance with metabolite 
concentrations
To evaluate the correlation between the gene cluster abundance and 
metabolite concentrations, the masses of seven metabolites derived 
from several gutSMASH-predicted gene clusters could be found in 
the mass spectrometry (MS) data of the plasma measured in Life-
Lines DEEP20,45. Untargeted metabolomics profiling was done using 
flow-injection time-of-flight mass spectrometry (FI-MS) as described by 
Chen et al.48. These metabolites included acetic acid, indolepropionic 
acid, isovaleric acid, p-cresol, p-cresol sulfate, phenylacetic acid and 
propionic acid (Fig. 4 and Extended Data Fig. 2). Both metabolite and 
pathway abundance (RPKM counts) were inverse-rank-transformed, 
and the linear regression was applied to adjust covariates, including 
age, sex and metagenomic sequencing depth (only for pathway abun-
dance). Metabolite and pathway abundance residuals from the linear 
regression model were then used to perform the Spearman correlation 
test. Finally, the Benjamini–Hochberg method was applied to con-
trol for FDR. The RPKM counts of the gutSMASH-predicted pathways 
involved in the synthesis of SCFAs were correlated in the same manner 
with the fecal SCFA MS data also collected from the LifeLines DEEP 
cohort. Specifically, the SCFAs measured in the fecal metabolomes 
were acetate, propionate, butyrate and caproate.

To further assess the relationship between MGC abundance/
expression with fecal metabolite concentration, the data derived 
from analyzing the IBDMDB data with BiG-MAP were used similarly 
as the Lifelines DEEP data. In this case, gene cluster abundance and 
expression values were correlated with the following fecal metabo-
lites: betaine, butyrate, deoxycholate, glutamate, hydrocinnamate, 
indole-3-propionate, lithocholate, p-hydroxyphenylacetate, pheny-
lacetate, proline, propionate, putrescine, spermidine, succinate and 
TMAO. Correlations were made for each individual subgroup in the 
dataset that included CD, UC and healthy samples.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The LifeLines DEEP cohort raw metagenomic sequencing data, 
metabolome data and human phenotypes (that is, age and sex) used 
for the analysis presented in this study are available at the European 
Genome-phenome Archive under accession EGAS00001001704. Taxo-
nomic assignments of bacteria were performed according to Genome 
Taxonomy Database release 95 (https://gtdb.ecogenomic.org/). Lists 
of accessions of genome assemblies used are available in Supplemen-
tary Tables 3 and 4. iHMP multi-omics data were downloaded from 

https://ibdmdb.org. Raw sequence data of the iHMP are available from 
the National Center for Biotechnology Informationʼs Sequence Read 
Archive via BioProject PRJNA398089; metatranscriptome data are 
available through Gene Expression Omnibus series accession number 
GSE111889; and metabolomics data are available at the Metabolomics 
Workbench (http://www.metabolomicsworkbench.org; Project ID 
PR000639). Source data are provided with this paper.

Code availability
The gutSMASH source code is available freely under an open-source 
AGPL-3.0 license from https://github.com/victoriapascal/gutsmash/.

References
34.	 Chen, C. et al. Representative proteomes: a stable, scalable and 

unbiased proteome set for sequence analysis and functional 
annotation. PLoS ONE 6, e18910 (2011).

35.	 Eddy, S. R. A new generation of homology search tools based on 
probabilistic inference. Genome Inform. 23, 205–211 (2009).

36.	 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately 
maximum-likelihood trees for large alignments. PLoS ONE 5, 
e9490 (2010).

37.	 Sievers, F. et al. Fast, scalable generation of high-quality protein 
multiple sequence alignments using Clustal Omega. Mol. Syst. 
Biol. 7, 539 (2011).

38.	 Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & 
Barton, G. J. Jalview Version 2—a multiple sequence alignment 
editor and analysis workbench. Bioinformatics 25, 1189–1191 
(2009).

39.	 Camacho, C. et al. BLAST+: architecture and applications. BMC 
Bioinformatics 10, 421 (2009).

40.	 de los Santos, E. L. C. & Challis, G. L. clusterTools: proximity 
searches for functional elements to identify putative 
biosynthetic gene clusters. Preprint at https://www.biorxiv.org/
content/10.1101/119214v2 (2017).

41.	 Medema, M. H., Takano, E. & Breitling, R. Detecting sequence 
homology at the gene cluster level with MultiGeneBlast. Mol. Biol. 
Evol. 30, 1218–1223 (2013).

42.	 Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein 
sequence searching for the analysis of massive data sets. Nat. 
Biotechnol. 35, 1026–1028 (2017).

43.	 Hyatt, D. et al. Prodigal: prokaryotic gene recognition and 
translation initiation site identification. BMC Bioinformatics 11, 119 
(2010).

44.	 Shannon, P. et al. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome 
Res. 13, 2498–2504 (2003).

45.	 Zhernakova, A. et al. Population-based metagenomics analysis 
reveals markers for gut microbiome composition and diversity. 
Science 352, 565–569 (2016).

46.	 Ondov, B. D. et al. Mash: fast genome and metagenome distance 
estimation using MinHash. Genome Biol. 17, 132 (2016).

47.	 Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in 
inflammatory bowel diseases. Nature 569, 655–662 (2019).

48.	 Chen, L. et al. Influence of the microbiome, diet and genetics on 
inter-individual variation in the human plasma metabolome. Nat. 
Med. 28, 2333–2343 (2022).

Acknowledgements
This work was supported by the Chan Zuckerberg Biohub (M.A.F.); 
DARPA awards HR0011-15-C-0084 and HR0112020030 (M.A.F.); 
National Institutes of Health (NIH) awards R01 DK101674, DP1 DK113598 
and P01 HL147823 (to M.A.F.); the Leducq Foundation; and a European 
Research Council (ERC) Starting Grant (948770-DECIPHER to 
M.H.M.). A.Z. is supported by ERC Starting Grant 715772; Netherlands 
Organization for Scientific Research NWO-VIDI grant 016.178.056; 

http://www.nature.com/naturebiotechnology
https://ega-archive.org/studies/EGAS00001001704
https://gtdb.ecogenomic.org/
https://ibdmdb.org
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA398089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111889
http://www.metabolomicsworkbench.org
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000639
https://github.com/victoriapascal/gutsmash/
https://www.biorxiv.org/content/10.1101/119214v2
https://www.biorxiv.org/content/10.1101/119214v2


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01675-1

Netherlands Heart Foundation CVON grant 2018-27; and NWO 
Gravitation grant ExposomeNL 024.004.017. J.F. is supported by 
the ERC Consolidator Grant (grant agreement no. 101001678); 
NWO-VICI grant VI.C.202.022; Dutch Heart Foundation IN-CONTROL 
(CVON2018-27); the Netherlands Organ-on-Chip Initiative; and the 
NWO Gravitation Project (024.003.001), funded by the Ministry 
of Education, Culture and Science of the government of The 
Netherlands. L.C. is supported by a Foundation de Cock-Hadders grant 
(20:20-13) and a joint fellowship from the University Medical Centre 
Groningen and the China Scholarship Council (CSC201708320268). 
D.D. was supported by NIH awards K08 DK110335, R35 GM142873  
and R01 AT011396.

Author contributions
M.A.F. and M.H.M. initially conceived the project, with modifications 
and extensions introduced on the advice of V.P.A., A.Z., J.F. and D.D. 
The gutSMASH software was developed and used to analyze genomic 
data by V.P.A., with input from M.H.M., D.D. and M.A.F. Analysis of 
metagenomic and metatranscriptomics data was performed by H.E.A., 
V.P.A. and L.C. Correlations with metabolomic data were performed by 
L.C. M.H.M., D.D. and M.A.F. coordinated and supervised the study as a 
whole, and A.Z. and J.F. coordinated and supervised analysis of cohort 
data. All authors contributed to data interpretation. V.P.A., M.A.F., D.D. 

and M.H.M. drafted the initial manuscript, with input from the other 
authors. All authors read and contributed to the final manuscript.

Competing interests
M.A.F. is a co-founder and director of Federation Bio, a co-founder of 
Revolution Medicines and a member of the scientific advisory board 
of NGM Biopharmaceuticals. D.D. is a co-founder of Federation Bio. 
M.H.M. is a co-founder of Design Pharmaceuticals and a member of 
the scientific advisory board of Hexagon Bio. The remaining authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41587-023-01675-1.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41587-023-01675-1.

Correspondence and requests for materials should be addressed to 
Michael A. Fischbach, Dylan Dodd or Marnix H. Medema.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01675-1
https://doi.org/10.1038/s41587-023-01675-1
http://www.nature.com/reprints


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01675-1

Extended Data Fig. 1 | Pathway prevalence using different core coverage thresholds. Pathway prevalence was computed by assessing the number of reads (per 
sample) mapping to known gene clusters at a certain core coverage cutoff. The figure illustrates how the pathway prevalence gradually changes when increasing the 
core coverage cutoff from 10 to 80%.
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Extended Data Fig. 2 | Limited correlation of genetic pathway abundance 
with metabolites abundance in blood plasma. This figure shows correlation 
plots for additional metabolites not shown in Fig. 4a. Spearman correlation 

(two sided with rho and empirical P value are reported) is used to check the 
relationship between pathway abundances and metabolite levels after adjusting 
for age, sex and read depth. n = 1054 biologically independent samples.
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Extended Data Fig. 3 | Network of putative non-redundant MGCs predicted 
by gutSMASH. From all the unknown predicted MGCs, a redundancy filtering 
of 0.9 sequence similarity was applied using MMseqs2. From each cluster, two 
representatives were picked, and all representatives were used as input for 
BiG-SCAPE using the default cutoffs. The network contains 2,921 nodes and 7,474 
edges. The MGCs have been classified into four different categories based on the 
key enzyme classes they code for. The GR (glycyl-radical) category is composed 
of MGCs that include pyruvate formate-lyase (PFL-like) and/or glycyl radical  
(Gly_radical), OD (oxidative decarboxylation) involves MGCs with at least one of 

the following Pfam domains: pyruvate ferredoxin/flavodoxin oxidoreductase 
(POR), pyruvate flavodoxin/ferredoxin oxidoreductase, thiamine diP-bdg 
(POR_N), pyruvate:ferredoxin oxidoreductase core domain II (PFOR_II) and 
thiamine pyrophosphate enzyme, C-terminal TPP binding domain (TPP_
enzyme_C). The flavoenzymes category is a combination of MGCs harbouring at 
least one of the custom-made BaiCD and BaiH pHMMs. HGD-D-related MGCs,  
as the name states, include enzymes matching any of the 2-hydroxyglutaryl-CoA 
dehydratase, D-component (HGD-D)-related pHMM domains.
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Extended Data Fig. 4 | Subset of unknown MGCs predicted by gutSMASH 
manually picked. The network/nodes present in the left side of the figure 
represent the subnetwork extracted from the complete network in Extended 

Data Fig. 3. The arrows have been coloured-coded based on the Pfam domains 
found in the protein-coding sequences and the functional annotations of  
these proteins.
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