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ARTICLE OPEN

Atomistic fracture in bcc iron revealed by active learning of
Gaussian approximation potential
Lei Zhang 1✉, Gábor Csányi 2, Erik van der Giessen 3 and Francesco Maresca 1✉

The prediction of atomistic fracture mechanisms in body-centred cubic (bcc) iron is essential for understanding its semi-brittle
nature. Existing atomistic simulations of the crack-tip under mode-I loading based on empirical interatomic potentials yield
contradicting predictions and artificial mechanisms. To enable fracture prediction with quantum accuracy, we develop a Gaussian
approximation potential (GAP) using an active learning strategy by extending a density functional theory (DFT) database of
ferromagnetic bcc iron. We apply the active learning algorithm and obtain a Fe GAP model with a converged model uncertainty
over a broad range of stress intensity factors (SIFs) and for four crack systems. The learning efficiency of the approach is analysed,
and the predicted critical SIFs are compared with Griffith and Rice theories. The simulations reveal that cleavage along the original
crack plane is the atomistic fracture mechanism for {100} and {110} crack planes at T= 0 K, thus settling a long-standing issue. Our
work also highlights the need for a multiscale approach to predicting fracture and intrinsic ductility, whereby finite temperature,
finite loading rate effects and pre-existing defects (e.g., nanovoids, dislocations) should be taken explicitly into account.

npj Computational Materials           (2023) 9:217 ; https://doi.org/10.1038/s41524-023-01174-6

INTRODUCTION
Brittle fracture is a key failure mechanism of body-centred cubic
(bcc) transition metals, which limits their application and can
jeopardise the safety of infrastructures. Brittle fracture usually
takes place in the form of cleavage, which can be accompanied by
dislocation plasticity. The competition between thermally acti-
vated dislocation mobility and (atomic-scale) crack tip deforma-
tion mechanisms controls the fracture process of bcc iron1–4.
Experiments on single-crystal bcc iron reveal that cleavage takes
place on {100} planes for pre-existing {100} and {110} crack planes
with 〈100〉 and 〈110〉 crack fronts5. However, atomic-scale
experimental data is unavailable for crack tips in bcc iron, leaving
the atomistic crack-tip mechanisms unclear.
Atomistic modelling based on molecular dynamics (MD)

approach has been widely used to predict the atomistic fracture
mechanisms6–15 (see Supplementary: A brief summary of existing
atomistic studies on fracture in bcc iron). Mode-I atomistic crack tip
simulations at T= 0 K are typically used to assess the intrinsic
ductility of metals, which is controlled by the competition
between crack propagation (cleavage) and dislocation emission
from the crack tip3,4,16. Yet, as highlighted in extensive
reviews14,15, classical interatomic potentials (IAPs) for bcc iron
predict contradicting crack-tip mechanisms at T= 0 K (i.e.,
cleavage, crack propagation planes, dislocation emission, and
phase transition) for the same crack system. Despite not being
explicitly designed for fracture, some of these potentials have
been widely used to simulate cracks6–15. Yet, none of the empirical
IAPs agree with the low-temperature experimental fracture
mechanisms as a function of the pre-existing crack system5.
Figure 1 shows the critical stress intensity factor (KIc) under

mode-I loading as computed by performing molecular statics (MS)
simulations using seven classical IAPs (see MS/MD simulation setup
in Methods) that were not investigated in ref. 14 nor ref. 15,
including two embedded atom method (EAM) potentials17,18,

three Modified EAM (MEAM) potentials19–21, one bond order
potential22, and one angular dependent potential23. Results are
compared with the critical stress intensity factors according to
Griffith theory24

KG ¼
ffiffiffiffiffiffiffi

2γs
B

r

; (1)

where γs is the surface energy and B is a constant determined by
the elastic constants (see Supplementary Eqs. 9–17). Dislocation
emission is predicted according to Rice theory2 with an
anisotropic implementation25

K Ie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γusfoðθ;ϕÞ
p

F12ðθÞ ; (2)

where o(θ, ϕ) is a function of θ and ϕ. θ is the angle between slip
plane and crack plane, ϕ is the angle between the slip direction
and a vector lying on the slip plane and perpendicular to the
crack-front direction, and γusf is the unstable stacking fault energy
of the slip plane. The computational details of o(θ, ϕ) and F12(θ)
are given in Supplementary Eqs. 18–30. These potential-
dependent properties (elastic constants, γs and γusf) used for
computing KG and KIe are listed in Supplementary Table 2. For
(100)[010] (crack plane/crack front) crack system, no IAP predicts
pure cleavage on the original crack plane, in stark contrast with
both the low-temperature experimental observations5 and the
theoretical predictions (KG and KIe). Instead, all IAPs predict either
cleavage on {110} planes (rather than {100} planes), or phase
transition, or cleavage accompanied by phase transition. With only
two exceptions (MEAM-Asadi and MEAM-Etesami), the predictions
of (100)[011] are in good agreement with experiments5 and
Griffith theory. For (110)[001], no IAP is able to predict pure
cleavage on {100} plane. Cleavage and dislocation emission are
both observed in ð110Þ½110� crack system. In summary, most
classical IAPs predict cleavage for (100)[011] and (110)[001] crack
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systems while yielding conflicting results for the two remaining
crack systems, thus leaving the question of what atomistic
mechanisms control crack-tip behaviour of bcc iron unresolved.
The lack of agreement between atomistic predictions and

experiments of fracture modes and critical stress intensity factors
motivates the development of a potential that is capable of
reproducing the experimental observations. Machine learning
(ML) potentials enable MD/MS simulation to describe a complex
potential energy surface (PES) with quantum accuracy, and are
orders of magnitude faster than density functional theory (DFT).
Among the existing ML potential frameworks, Gaussian Approx-
imation Potential (GAP) has been shown to accurately describe the
complex motion of screw dislocations in bcc iron26 and the
cleavage process in silicon27. As a Gaussian process regression
method, GAP can predict both the mean value and the variance of
the atomic energies28. GAP predicted variance can be used as an
indicator for extrapolation, which is practical to evaluate the
model uncertainty in iterative/active learning process29,30.
We first consider an existing GAP for ferromagnetic bcc iron31,

hereafter named Fe-GAP18. The Fe-GAP18 database has been
developed to study thermodynamics and defects in bcc iron32.
The database includes stretched primitive cells, point defects,
interfaces etc. Using the GAP model uncertainty, we show (Fig. 2a)
that Fe-GAP18 cannot predict the fracture behaviour of bcc iron
with a converged uncertainty. In particular, Fig. 2a reports the
maximum model uncertainty of crack-tip atoms during mode-I MS

simulations at multiple applied K 0
Is. Only crack propagation along

ð110Þ½110� is predicted with a converged model uncertainty.
Figure 2b shows snapshots with typical artifacts produced during
the fracture process. We argue that Fe-GAP18 is unable to capture
the fracture behaviour due to the lack of crack tip atomic
environments in the DFT training dataset rather than due to an
intrinsic limitation of GAP. Therefore, we develop a systematic
strategy to improve GAP for fracture predictions, including a
preliminary fracture-relevant database extension, which is subse-
quently supplemented with an active-learned database. We show
that the extended database enables GAP to predict atomistic
fracture mechanisms with a converged model uncertainty at T=0K
and at finite temperatures.
The paper is organised as follows. We describe the approach

and the active learning algorithm used to expand the DFT
database in section Results “Preparation of the Reference Database".
In section Results “Implementation of active learning", we imple-
ment the active learning algorithm and show the convergence of
our approach (hereafter indicated as Fe-GAP22). Based on Fe-
GAP22, we predict the fracture behaviour of single crystal bcc iron
at T= 0 K and at finite temperatures under high loading rate
conditions in section Results “Prediction of fracture mechanisms and
critical stress intensity factors (KIc)". In section Discussion, we
compare the model with previous reviews and experiments. We
conclude by outlining further research directions to be explored
with the quantum-accurate Fe-GAP22.

Fig. 1 Summary of fracture simulations for crack system (100)[010], (100)[011], (110)[001], and ð110Þ½110�. KIc is the critical stress intensity
factor predicted by MS simulations. The letters above the symbols indicate the fracture mechanism observed in MS simulations with the
different IAPs. C0 and C1 indicate cleavage on {100} and {110} planes that are different from the original crack plane. P and D indicate phase
transformation and dislocation emission from the crack tip, respectively. A indicates amorphous structure forming at the crack tip. The crack
propagates on the original crack plane if no symbol is specified. KG and KIe are predictions according to Griffith24 and Rice theories2 for
cleavage and dislocation emission, respectively.
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RESULTS
Preparation of the reference database
We first extended the existing DFT database of Fe-GAP1832 with
primitive cells strained according to the large deformations that
may occur at crack tips. The strain states near a crack tip under
plane strain and plane stress conditions are estimated from
anisotropic classical linear elastic (CLE) crack-tip fields. The
maximum tensile strain is found to be 0.27 at the point that is
0.1 nm away from the crack-tip under K I ¼ 1:5MPa

ffiffiffiffi

m
p

. By
analysing the strain components of the primitive cell from the
original database32 comprising 6000 distorted primitive bcc cells,
we found that 95% of original data is within the strain of 0.15 and
the rest are highly stretched along one crystal direction (2–4
times). We therefore created an additional set of highly strained
primitive cells and enriched the DFT dataset to encompass the
anisotropic CLE predicted strain states, referred to as DB9. Note
that the original database from Dragoni et al.32 includes 8 subsets,
referred to as DB1-DB8. In order to ensure an unbiased sampling
of atomic environments, we employed random uniform sampling
algorithm SOBOL33 instead of the strain states directly obtained by
anisotropic CLE crack-tip fields (see Supplementary: SOBOL
sampling approach). Principal component analysis of the strain
components shows that DB9 expands the original database and
encompasses a more extensive set of strain states than those
calculated by anisotropic CLE theory (see Supplementary Fig. 1).
Common neighbour analysis shows that the original database and
DB9 also include face-centred cubic (fcc) structures. Besides, we
included distorted hexagonal close-packed (hcp) primitive cells
(referred to as DB10) to ensure that GAP is capable of predicting
the hcp phase.
The magnetic contribution to the total energy in iron plays an

important role and thus cannot be neglected. Our DFT calculation
of the primitive bcc cell shows that the magnetisation degree
decreases when the volume decreases. The primitive cell becomes
completely non-magnetic when the volume reduction is larger
than 37.5%. Including those magnetic states beyond ferromag-
netic deteriorates the performance of GAP, leading to unrealistic
predictions, such as negative surface energy. This is because the
transition between ferromagnetic and other magnetic states (e.g.,
non-magnetic) is not unique (i.e., not smooth and not single-

valued), which gives rise to a partly spurious GAP predicted PES
since magnetism is not explicitly accounted for in the current GAP
implementation. Depending on the magnetisation parameter
settings in DFT calculations, the self-consistent calculation may
be stuck in a ground state of ferromagnetism that has larger
energy than the non-magnetic ground state, or vice-versa. The
mixture of configurations with the same atomic environment and
distinct magnetic states leads to a spurious GAP fitted PES. Here,
we make the assumption that the crack tip stays ferromagnetic,
since the locally highly strained crack-tip bonds are surrounded by
ferromagnetic iron atoms; for this reason, we train Fe-GAP22 on a
consistent database of ferromagnetic configurations. Furthermore,
DFT calculations used within the active learning scheme (see next
Section) show that the crack-tip atoms stay ferromagnetic (see
Supplementary Fig. 2).
Bond rupture and dislocation emission from the crack tip are

two fundamental crack-tip mechanisms34. The DFT database
should be sufficiently informed with configurations relevant to
those mechanisms. Maresca et al. showed that Fe-GAP18 predicts
the single-hump Peierls potential and the compact core structure
of screw dislocations with DFT accuracy26. However, Fe-GAP18
does not include the separation process of atomic planes
explicitly. Here, we added rigid separation configurations of
{100}, {110}, {111} and {112} crystallographic planes for thin and
thick slabs (referred to as DB11). The rigid separation includes two
sets, i.e., ideal crystal structures and “rattled” structures. The rattled
structures are obtained by adding a Gaussian noise N �
½0; 0:05a0� (a0 lattice constant) to the three Cartesian coordinates
of all atoms to explore the PES beyond highly symmetric,
minimum energy configurations. In either case, separations are
performed from 0 to 4Å with a step of 0.4Å.
The detailed information about the preliminary database is

listed in Supplementary Table 3. As shown in Fig. 4, from the
original database ("Original") to preliminary database ("Iter-0"),
adding those relevant configurations considerably reduces the
maximum model uncertainty during the fracture simulations. Yet,
GAP based on "Iter-0" database still cannot predict the fracture
process with a converged model uncertainty (see Supplementary
Fig. 3).
Since the crack tip deformation fields are inhomogeneous,

while DB9 and DB10 include only homogenous deformations, the

Fig. 2 Fracture predictions of Fe-GAP18 trained on Dragoni et al. original database31. a Maximum model uncertainty during fracture
simulations of four crack systems. The dashed line indicates the 10 meV per atom, and the arrows indicate the configuration shown in (b).
b Simulation snapshots coloured by the model uncertainty. Note that this is a new version of Fe-GAP18 trained on the database by Dragoni
et al. using an optimised descriptor37 (see section Methods: GAP training).

L. Zhang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   217 



"Iter-0" GAP is not well-informed about crack tip local atomic
environments. By virtue of the localisation assumption that the
atom only interacts with its neighbouring atoms within a finite
cutoff radius (5 Å in this study), the crack tip atomic environment
can be represented by a computable DFT cell that contains the
atomistic crack tip configuration. To learn efficiently from the
crack tip, we develop an active learning algorithm by extracting
crack tips from extrapolating configurations. The algorithm (see
Data Availability) automatically identifies the extrapolated atomic

environments with respect to a predefined criterion and
constructs a periodic crack cell that is computable with plane-
wave DFT while minimising spurious surface effects. As a measure
of the extrapolating degree from the training dataset, the square
root of GAP predicted variance is used to assess the model
uncertainty. The model uncertainty of new configurations
generated during the simulation is evaluated and compared with
a threshold. We consider the model to be saturated if the
maximum model uncertainty does not exceed the threshold
during the entire fracture simulation. The true error of the model,
i.e., error with respect to DFT, is also evaluated to benchmark the
accuracy of the converged model uncertainty. Since the lower-
limit model uncertainty of Fe-GAP22 is ~6meV per atom, we
define the uncertainty threshold to be 10meV per atom in
this study.
Figure 3a shows the workflow, schematically indicating the

main steps of the active learning algorithm. We first run a K-test
and evaluate the GAP predicted variance for all frames dumped
during the fracture simulation. Then, the maximum model
uncertainty is compared with the predefined extrapolation
criterion. A periodic cell is subsequently constructed by extracting
the atomic configuration from the extrapolating frame. DFT
calculations of the periodic crack-tip cell are performed, and the
new DFT data are added to the training database. Next, GAP is
retrained with the new DFT database. We repeat this process until

Fig. 3 Main steps of the active learning procedure. aWorkflow of the active learning algorithm. (I) Fracture simulation by K-test at T= 0 K. (II)
Evaluation of the GAP predicted uncertainty for each frame generated during K-test. (III) Detection of extrapolation by comparing the
maximum model uncertainty of each configuration with the predefined criterion. (IV) Construction of the crack-tip cell that is computable by
DFT. (V) DFT calculation of the crack-tip cell. (VI) Refitting GAP. Steps (I)–(VI) are repeated until convergence is achieved. b Construction of the
crack-tip DFT cell. (I) Identification of the atom with the largest uncertainty (ID0) in the deformed configuration. (II) Selection of a group of
atoms (IDg) in the square centred on ID0 in the undeformed state. (III) Identification of the crack tip in group IDg in the deformed state. (IV)
Duplication and rotation of the selected region. (V) Generation of DFT cell containing two crack tips by merging the rotated replica and the
original one.

Table 1. Summary of the active learning algorithm.

Step Function Code

I K-test LAMMPS51

II Evaluation of the GAP predicted
variance

QUIP48

III Detection of extrapolation Python

IV Construction of the DFT cell Python

V DFT calculation Quantum Espresso45

VI Fitting GAP model QUIP48

Roman numbers are consistent with Fig. 3a.

L. Zhang et al.

4

npj Computational Materials (2023)   217 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



convergence is achieved, i.e., the maximum GAP predicted
uncertainty is less than the predefined criterion during the entire
fracture process. A summary of the software/code used in the
active learning scheme is listed in Table 1.
One of the main challenges is the construction of an

appropriate DFT cell that contains the crack tips at step (IV) of
Fig. 3a. It is necessary to prevent spurious boundaries to avoid
learning irrelevant/artificial atomic environments. The active
learning has been applied to study the screw dislocation in bcc
tungsten, in which the effective extrapolative configuration is
constructed by taking advantage of symmetry35. The idea here is
to symmetrise the crack tip along the crack plane normal to
construct an approximate periodic cell. The construction of the
DFT crack configuration is illustrated in Fig. 3b. First we identify
the atom (ID0) with the largest model uncertainty at the crack tip
in the deformed configuration. Then, a group of atoms (IDg) in a
square centred on ID0 is selected in the undeformed configura-
tion; once identified, these atoms form a crack tip configuration in
the deformed state. Another crack tip configuration is created by
duplicating the original one and rotating it by 180∘. We construct
the periodic DFT configuration by aligning the rotated replica and
the original one by a rigid displacement. The periodic DFT
configuration is surface-free and preserves the local atomic
environment of the atom with the largest model uncertainty.
Such construction allows both efficient DFT calculations and
learning speed, as illustrated in the following section.

Implementation of active learning
We implemented the active learning algorithm with the original
Smooth Overlap of Atomic Positions (SOAP)36 and an optimised
SOAP descriptor37 (referred to as “Turbo SOAP"). The presentation

here focuses on active learning results with Turbo SOAP because
this leads to higher computing speed and faster convergence. The
GAP model based on the original SOAP are discussed in
Supplementary Fig. 4 and Supplementary Fig. 5, referred to as
Fe-S-GAP22. We applied the algorithm to two crack systems in
parallel, i.e., (100)[011] and (110)[001], such that GAP can learn the
local environments from both {100} and {110} crack planes at the
same time. Two sets of small crack tip regions are used, i.e.,
configurations extracted from fracture simulations with and
without Gaussian noise (N � ½0; 0:05a0�) added to the three
Cartesian coordinates. Figure 4 shows the convergence of the
maximum model uncertainty at multiple KI’s with respect to active
learning iterations. The GAP model uncertainty is plotted as a
function of KI during a mode-I K-test at T= 0 K.
As shown in Fig. 4a and b, the maximum model uncertainty

converges to 8 meV per atom for crack systems (100)[011] and
(110)[001] after two iterations of active learning. The maximum
model uncertainty of (100)[010] converges to 8 meV per atom at
the third iteration (Fig. 4c) while (100)[011] and (110)[001] crack
systems remain of the same accuracy. As shown in Fig. 4d, the
maximum model uncertainty of ð110Þ½110� increases after two
iterations (Iter-0 and Iter-1) and then converges after another three
iterations. This is because the original GAP is able to extrapolate
the atomic environments that are close to crack tip of ð110Þ½110�.
However, the extrapolation is unstable and is easily deteriorated
by adding more data, which means that the prediction is not fully
converged yet. We added two crack-tips of ð110Þ½110� for one
additional iteration of training and converged the maximum
model uncertainty to 8 meV per atom (Fig. 4d).
To demonstrate the robustness of GAP uncertainty as an index

of extrapolation, we evaluated the true error of two sets of DFT

Fig. 4 Maximum model uncertainty as a function of K for four crack systems. a (100)[011], (b) (110)[001], (c) (100)[010] and (d)ð110Þ½110�.
The dashed line indicates the 8 meV per atom. Original is the GAP trained on the original database32 (see Fig. 2 for the value of error). Iter-0 is
the GAP trained with original and preliminary database.

L. Zhang et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   217 



configurations, i.e., the crack-tip configurations from the database
of Fe-GAP22 and a set of independent crack-tip configurations
from Fe-S-GAP22. The true errors of energy and forces are
computed for a batch of potentials shown in Fig. 5. Figure 5a plots
the correlation between maximum GAP uncertainty and true error
per-atom, indicating a quasi-linear relation. Both maximum GAP
uncertainty and true error converge with the active iterations,
displaying the same trend (Fig. 5b). Since the largest model
uncertainty always locates at crack-tip atoms, we evaluated the
true error of forces on the crack-tip atoms (Fig. 5b). The true force
error decreases to 0.1 and 0.2 eV Å−1 for training and independent
crack-tip configurations, showing the accuracy of the model.

Prediction of fracture mechanisms and critical stress intensity
factor (KIc)
We predicted the lattice constant, elastic constants, surface
energies and generalized stacking fault energy (GSFE) profiles as
a benchmark of the Fe-GAP22, Fe-S-GAP22 and found similar
accuracy as Fe-GAP18 (see Supplementary Figs. 6 and 7).
Subsequently, we performed fracture simulation of single-crystal
ferromagnetic iron at T=0K and finite temperatures (T= 1, 10,
100, 200, 300 K) under high loading rate (109 MPa

ffiffiffiffi

m
p

s�1). To
investigate the uncertainty effects of the Gaussian process, we
trained 10 different GAPs and performed K-test on (100)[011]
crack system based on those potentials (see Supplementary Fig.
8). We found that the KIc predicted by different models varies
within ± 0:005MPa

ffiffiffiffi

m
p

, which is the accuracy limit introduced by
the uncertainty of the ML algorithm. Therefore, 0.01 MPa

ffiffiffiffi

m
p

is
used as the incremental step during the K-test. The fracture
mechanism at T= 0 K is found to be cleavage on the original
plane in all considered cases with a converged GAP model
uncertainty during the entire cleavage process (Fig. 6). Neither
phase transformation nor {110} planar faults appear according to
Fe-GAP22 and Fe-S-GAP22 predictions.
The cleavage is always taking place on the plane that has the

maximum normal stress. To evaluate the normal stress, we
performed rigid body separation of {100} and {110} planes by
using DFT and Fe-GAP22 to calculate the universal binding energy
relation (UBER) (Fig. 7a). Fe-GAP22 predicted UBER of {100} plane
perfectly overlaps with DFT ones, while the Fe-GAP22 predicted
UBER of {110} plane slightly deviates from DFT calculations. We
further computed the normal stress during the separation (Fig. 7b)
by taking the derivative of the fitted curve in Fig. 7a. The minimum

stress required to separate {100} and {110} surfaces predicted by
DFT are 32.68 and 34.62 GPa, respectively, and Fe-GAP22
predictions are 0.3% and 9.7% larger than DFT results. For all
crack systems considered here, the deviation of the crack from the
original plane to {100} or {110} is not likely to occur because it
requires a lower cohesive strength than on the original plane. The
Fe-GAP22 prediction of cohesive strength confirms that the
cleavage will take place on the original crack plane, which is also
consistent with anisotropic CLE calculations, i.e., the largest normal
stress exists on the original plane under pure mode-I loading (see
Supplementary Fig. 9).
At finite temperatures, cleavage is consistently taking place on

the original plane for all crack systems, which shows that cleavage
is the controlling mechanism of fracture in iron at high loading
rates when considering finite temperatures (T ≤ 300 K). At
T= 300 K, the maximum model uncertainty raises to ~30meV
per atom for ð110Þ½110� and ~10meV per atom for the other three
crack systems (see Supplementary Fig. 10). Five independent K-
tests are performed at each temperature for the statistic
prediction of KIc at finite temperatures, as indicated by the error
bar shown in Fig. 8. Here we propose a criterion to determine KIc
for cleavage from atomistic simulation results based on the
traction-separation curve. The first pair of atoms at the crack tip
can still interact with each other after the initial debonding
process until the entire separation is achieved, i.e., the distance
between them reaches the cutoff distance in atomistic simula-
tions. Therefore, KIc is defined as the point where the crack tip
bond is separated to a cutoff distance and will remain open upon
further increasing KI. Inspection of the atomic snapshots reveals
that the fracture mechanism for all crack systems remains
cleavage up to T= 300 K as predicted by Fe-S-GAP22, which
demonstrates that the predicted cleavage mechanism is indepen-
dent of the specific crack-tip converged DFT database.
Fe-GAP22 predicted KIc for all crack systems decreases from 0 K

to 1 K and converges from T= 1 K to 200 K for all crack systems
except for (110)[001] (Fig. 8). For this crack system, larger lattice
trapping is predicted at T= 0 K by evaluating lattice trapping
range ΔK according to refs. 38,39. The ratio between the cohesive
strength and the maximum interaction range (σcoh=δ

max
sep ) is used

to quantify the lattice trapping in tungsten, which demonstrates a
quasi-linear relation40. However, no clear linear dependency is
found in the case of bcc iron (see Supplementary Fig. 11). As
shown by Mak et al.4, lattice trapping is associated with a crack

Fig. 5 Energy/force error and uncertainty analysis of the crack-tip configurations. a The correlation between maximum model uncertainty
and true energy error for crack-tip configurations from the DFT database of Fe-GAP22 (14 configurations) and crack-tip configurations from an
independent DFT database (Fe-S-GAP22, 32 configurations). b Maximum model uncertainty and true error as functions of active learning
iterations for two sets of DFT crack-tip configurations. c Force error of crack-tip atoms as functions of active learning iterations. The error bars
indicate the standard deviation, that is computed based on all crack-tip configurations.
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propagation activation energy barrier that vanishes if KIc= KG.
Since the difference between KIc and KG for (110)[001] drops
significantly with short MD at low temperature (T= 1–100 K), a
small lattice trapping activation energy barrier is expected to
account for the discrepancy between KIc at T= 0 K and 100 K. As
plotted in Fig. 8b, Fe-S-GAP22 predicted KIc has almost no
difference between T= 0 K and 100 K (see Supplementary Fig. 12
for prediction of the other 3 crack systems). Therefore, we
conclude that the difference between KIc at T= 0 K and 100 K
predicted by Fe-GAP22 is a consequence of the rougher PES
predicted by Fe-GAP22 compared with Fe-S-GAP22. However, the
small activation barrier does not change the fundamental
cleavage mechanism. The predicted KIc’s of Fe-GAP22 and Fe-S-
GAP22 converge to the same value within a 0.004 MPa

ffiffiffiffi

m
p

error
bound. All predictions at T > 10 K are within 10% of Griffith
prediction (KG), indicating mild lattice trapping effects41. At high
temperatures (T > 100 K), the surfaces near the crack tip can be
closed due to thermal fluctuations, which leads to a slight increase
of KIc at T= 200 K and 300 K for all crack systems.

DISCUSSION
Our analysis unveils that the T= 0 K fracture mechanism for {100}
and {110} crack planes is cleavage on the pre-existing crack
planes. There are no fracture experiments performed close to
T= 0 K, thus qualitative comparison is possible only with the work
of ref. 5, which is performed at T= 77 K and finite loading rates
that are inaccessible to direct MD simulations. The prediction of
Fe-GAP22 qualitatively agrees with experiments on {100} crack
plane, i.e., cleavage on the original crack plane. This is a
considerable step forward with respect to all classical potentials
considered by Möller and Bitzek15, and in the introduction of the
present paper, that, in contrast with Fe-GAP22, cannot predict
pure cleavage on {100} plane for (100)[010] crack system. For
example, most of the classical potentials predict phase transition
at the crack-tip in (100)[010] crack system since the empirical
potentials may not be able to reproduce the ground state energy
of different phases (bcc, fcc, hcp) of iron15. Fe-GAP22 is
constructed using a consistent ferromagnetic DFT database,
which prevents the artificial phase transition at the highly strained
region. Moreover, Fe-GAP22 is free from {110} planar faults that

are caused by the artificial minimum of the strain-dependent GSFE
predicted by classical potentials42. However, in the case of {110}
crack planes, Fe-GAP22 also predicts cleavage on the original
plane while experiments show crack kinking into {100} planes5.
Our calculation of UBER by Fe-GAP22 and anisotropic CLE analysis
shows that, under KI loading and in the absence of other defects
close to the crack tip, cleavage should take place on the original
crack plane for both {100} and {110}. The experiments, instead,
show a semi-brittle fracture behaviour of bcc iron because
cleavage is accompanied by extensive dislocation activity5.
Therefore, in order to perform quantitative connection to

experiments, the temperature and loading-rate dependent
competition between cleavage and dislocation emission must
be assessed, e.g., by performing Nudged Elastic Band (NEB)
calculations and using transition state theory4,43. Also, the
interaction between pre-existing defects (e.g., nanovoids, disloca-
tions, etc) and cracks is expected to change the stress field around
the crack tip and hence affect the crack-tip response. In the
present atomistic fracture simulations however, the specimen is
defect-free (except for the sharp crack), and the boundary
conditions are those of a half-infinite crystal in a 2D setup.
Therefore, quantitative predictions of fracture require a multiscale
approach. Despite the fact that a quantitative comparison of KIc is
not possible, we extrapolate the experimental KIc linearly to
T= 0 K, i.e., KIc= 3.7, 3.8, 7.3, and 11.6 MPa

ffiffiffiffi

m
p

, for (100)[010],
(100)[011], (110)[001], and ð110Þ½110� crack systems, respectively5.
KIc for {110} crack plane is 2–3 times larger than {100}, suggesting
pronounced thermally-activated dislocation plasticity at finite
temperatures on {110} crack plane. Such a significant energy
dissipation is expected to account for the crack deviation from
{110} to {100} crack plane. Thus, large-scale simulations in which
rate and temperature dependence is considered along with pre-
existing defects should be performed to enable prediction of the
experimental KIc.
Griffith24 (KG) and Rice2 (KIe) theories are used to predict

cleavage and dislocation emission from the crack tip. Since
cleavage is the controlling fracture mechanism in bcc iron at
T=0K, we compare the Fe-GAP22 predicted KIc with Griffith theory
KG. Because KG only accounts for the energy of newly created
surface, it serves as a lower bound of KIc. Thus, the excess part of
Fe-GAP22 predicted KIc compared with KG could be used as an

Fig. 6 Atomic snapshots showing the fracture mechanism at T=0K predicted by Fe-GAP22. a (100)[010], (b) (100)[011], (c) (110)[001], and
(d)ð110Þ½110�. The configuration is taken at KI given below each snapshot. Atoms are coloured according to the GAP model uncertainty.
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indicator of lattice trapping effects. For all three crack systems
except for ð110Þ½110�, the predicted KIc is around 10% larger than
Griffith criterion, which is also found in bcc high entropy alloys4.
ð110Þ½110� is 5% larger than KG, indicating less lattice trapping
effects.
We obtained a Fe GAP that is able to predict atomistic fracture

in iron with a converged model uncertainty based on an existing
database, showing that GAP can be improved for fracture study.
The current approach is based on two essential ingredients, i.e.,
fracture-relevant configurations and active-learned crack-tip con-
figurations. Since the model uncertainty and true error decrease
significantly and converge in a few active learning iterations (Figs.
4 and 5) by adding crack-tip configurations, we conclude that the
improved fracture predictability of Fe-GAP22, compared to Fe-
GAP18, is enabled by the extended DFT database, especially crack-
tip configurations. Here, we have shown that a general-purpose
DFT database cannot guarantee fracture predictability in the case
of bcc iron and the active learning strategy brings the possibility
of developing potentials for specific applications. In particular,
active learning enables efficient learning of the extrapolated local
atomic environments that are relevant to fracture, which requires
only a few DFT calculations. Our strategy can be generalised to
other materials and other ML frameworks, providing a systematic
way to improve ML potentials for studying fracture behaviour, in
line with active learning approaches.
For all crack systems investigated here, we found that crack

cleaves on the pre-existing crack plane. Based on the convergence
of Fe-GAP22 predicted KIc with respect to temperatures, we
conclude that the increase of KIc at T=0K is caused by minute
barriers. The predicted KIc at T= 0 K is converged with respect to
local symmetry breaking, which we have studied by performing
high loading rate mode-I tests from T= 10 K up to T= 300 K. Our
results confirm the T= 0 K atomistic fracture mechanism in
ferromagnetic iron under mode-I loading, settling the inconsis-
tency of crack-tip mechanisms based on classical potentials.
We conclude by pointing out that Fe-GAP22 can describe cracks

and screw dislocations with quantum accuracy26. It should be
noted that our fracture simulation is based on a quasi-2D setup,
which enables a direct comparison with previous studies14,15.
Recently, a numerical continuation method based on flexible
boundary conditions has been proposed, which allows accurate
prediction of the lattice trapping barriers44. The energy barriers
associated with the fracture-related processes (crack propagation
and dislocation emission) are currently being investigated by NEB

and numerical continuation method along with Fe-GAP22. Based
on transition state theory, the competition of atomistic crack-tip
mechanisms (cleavage and dislocation emission) can be con-
nected to microscale behaviour to assess the brittle to ductile
transition at finite temperatures and finite loading rates4. Mobility
laws for microscale simulations can thus be developed by using
Fe-GAP22.

METHODS
DFT calculation
All DFT calculations were performed in collinear spin-polarised
plane wave method implemented within QUANTUM ESPRESSO45.
An ultrasoft GGA PBE pseudopotential from 0.021pslibrary is
employed46. The kinetic energy cutoff for wavefunctions and
charge density are set to 90 Ry and 1080 Ry, respectively. The
Brillouin Zone is integrated with a Monkhorst-Pack grid and a
Marzari-Vanderbilt smearing scheme at an effective temperature
of 0.01 Ry47. The parameter to initialise the magnetisation is set to
0.34, which is a fractional parameter between −1 (all spins down
for the valence electrons) to 1 (all spins up). An adaptive k-mesh
approach is used to calculate primitive cells (DB9 and DB10),
ensuring that the k-spacing is smaller than 0.015 Å−1. For other
calculations, the simulation cell size is chosen to satisfy the
condition that k spacing is smaller than 0.03Å−1 while only the Γ
point is used along the separation direction. A benchmark study
compared with Dragoni’s database is conducted to ensure all the
parameter settings can reach the convergence of 1 meV per atom,
0.01 eVÅ−1 and 0.01 GPa for energies, forces and stresses,
respectively.

GAP training
A parallel version (1645177290) of the open-source package
QUantum mechanics and Interatomic Potentials (QUIP) is used to
fit the GAP model48. We used three descriptors to encode the local
atomic environment, i.e., one distance-based two-body interaction
and two many-body turbo-SOAP descriptors. Two turbo-SOAP
descriptors are used to describe the inner and outer atomic
environment within the cutoff radius of 3.5Å and 5Å, respec-
tively. Dot product kernel is used for both turbo-SOAP descriptors,
and the CUR matrix decomposition procedure is applied to find
the optimal representative local atomic environments. A power of
4 is added to the dot product to sharpen the sensitivity of
changing the atomic positions. The cutoff smoothing distance is

Fig. 7 Energy change and traction as a function of the rigid separation process. a Universal binding energy relation (UBER) for {100} and
{110} plane53. Filled and unfilled symbols represent DFT and Fe-GAP22 predictions respectively. Circle and triangle symbols indicate {100} and
{110} planes respectively. Solid and dash lines are DFT and Fe-GAP22 results fitted to UBER equation. b Normal stress on {100} and {110} planes
by taking derivative of fitted curves from (a).
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set to 1Å. The number of radial and angular basis for turbo-SOAP
are set to 8. The number of representative points is 4700. The
default regularisation for energies, forces and stresses are
0.005 eV, 0.2 eV Å−1 and 0.01 eV Å−3. The training command line
is available in Data Availability.

MS/MD simulation setup
We used a cylinder-shaped half crack setup (see schematic plot in
Supplementary Fig. 13), where x, y and z are aligned with the crack
propagation direction, crack plane normal and crack front,
respectively. The diameter of the model in x-y plane is set to
300Å, which satisfies the requirement that the fracture process
zone is much smaller than the simulation cell, as proved in ref. 3,15.
A convergence analysis is conducted to ensure the predicted KIc is
size-independent, which is shown in Supplementary Fig. 14. The
boundary of the simulation cell (K-dominant region) is governed
by linear elasticity, ensuring a meaningful prediction of (KIc). It has
been shown that the opening stress and predicted KIc are
converged with a cell size of 300Å3. We considered plane strain
conditions in a 2D setting by imposing periodic boundary
conditions along the crack front direction.
We used a K-test loading scheme that allows controlling the

fracture process by directly increasing the stress intensity factor KI.
K-test implements a displacement-controlled loading scheme,
which makes use of anisotropic CLE. The displacement field of a
half crack in an infinite anisotropic medium can be derived via
Lekhnitskii’s formalism49, as summarised in Supplementary Eqs.
1–8. The asymptotic stress field near the crack tip can be uniquely
characterised by the stress intensity factor KI, which enables a
single-parameter controlled loading scheme3. The KI displacement
field can then be applied to the boundary of the simulation cell
directly. During K-test, KI is increased with a step of
ΔK I ¼ 0:01MPa

ffiffiffiffi

m
p

. The displacement is applied incrementally at
each step, and the system is equilibrated under the constraining
of fixed boundary atoms. In the MS analysis, conjugate gradient
(CG) with a force tolerance of 10−9 eV Å−1 is first applied to
minimise the potential energy of the system. Next, FIRE50 is
applied with a force tolerance of 10−3 eV Å−1 to drive the system
away from local minima, which allows the system to achieve
better convergence. For MD, we used the Nosé-Hoover thermostat

with a timestep of 0.001 ps and the system is equilibrated for 10 ps
at each incremental step.
To preserve an atomistically sharp crack, we neither screen the

interaction between free crack surfaces nor delete any atoms (so-
called screening and blunting3). Instead, we started with a Kinit that
maintains the current crack tip position. However, it should be
noted that finding Kinit may require trial-and-error. All molecular
statics/dynamics calculations in this work were performed by using
LAMMPS51. The atomic configurations are visualised in OVITO52.

DATA AVAILABILITY
The training command line and extended DFT database are available on Materials
Cloud https://archive.materialscloud.org/record/2022.102.

CODE AVAILABILITY
The active learning algorithm is available on our Github page https://github.com/
leiapple/Fe-GAP22-AL.
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