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a b s t r a c t 

The solvability of nonlinear nonswitched and switched singular systems in discrete time is studied. We 

provide necessary and sufficient conditions for solvability. The one-step map that generates equivalent 

nonlinear (ordinary) systems for solvable nonlinear singular systems under arbitrary switching signals is 

introduced. Moreover, the stability is studied by utilizing this one-step map. A sufficient condition for 

stability is provided in terms of (switched) Lyapunov functions. 
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. Introduction 

The study in this paper focuses on the class of switched sys- 

ems where each mode is a discrete-time nonlinear singular sys- 

em without inputs of the form 

 σ (k ) x (k + 1) = F σ (k ) (x (k )) (1) 

here k ∈ N is the time instant, x (k ) ∈ R 

n is the state, σ : N →
 0 , 1 , 2 , . . . , p } is the switching signal determining which mode

(k ) is active at time instant k , E i ∈ R 

n ×n are singular and F i : R 

n →
 

n are continuous nonlinear functions. We refer to the pair (E i , F i )

s the mode- i . 

In some references, singular systems are also called descriptor 

ystems, semi-state systems, implicit systems, differential-algebraic 

quations (in discrete time) or systems with algebraic constraints. 

any physical systems can be modeled as a singular system, and 

his system class has been widely applied to numerous practical 

pplications, such as electrical circuits [9,13] , industrial processes 

24] , power systems [11] , constrained mechanical systems [10,20] , 

obotics [7,8,17] , economic systems [4] , discretization of partial dif- 

erential equations [3] and neural networks [22] . 
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Solution theory for nonlinear singular systems, both in continu- 

us and discrete time domains, has been widely studied; however, 

he existing studies consider both linear and nonlinear terms in the 

quation, and the nonlinear terms were considered as suitable dis- 

urbances such that the solution theory for singular linear systems 

till applies (see e.g. [14,16] ). 

For (ordinary) nonlinear systems i.e. E i in (1) being invertible 

or all i , assuming only that F i is well-defined is sufficient to guar- 

ntee the existence of a unique solution for any initial value x (0) =
 0 ∈ R 

n ; the solution can be calculated easily via recursive compu- 

ation for k = 0 , 1 , . . . . However, for the singular system (1) , there

ay not be a solution; furthermore, if a solution exists, it may not 

e unique; this still applies even though a stricter assumption of 

onsidering the same subsystem/pair (E, F ) = (E i , F i ) for all modes

s considered, i.e., the system being nonswitched (see the following 

xample). 

xample 1.1. Consider system (1) with 

E, F (x )) = 

([
1 0 

0 0 

]
, 

[
x 2 1 

x 2 2 + 4 

])
. 

his system has no solutions since the pure singular subsystem, or 

he algebraic constraint x 2 
2 

+ 4 = 0 has no (real) solutions. 

Replacing the second row of F with x 2 2 − 4 clearly 

akes the system solvable for any initial value x (0) ∈ S = 

x ∈ R 

n : 

(
x 2 

1 
x 2 2 − 4 

)
∈ span 

(
1 

0 

)}
= { x ∈ R 

2 | x 2 
2 
−4 = 0 } = 

{[
∗

−2 

]
, 

[
∗
2 

]}
. 
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owever, the solution is not unique since at every time instant k , 

 2 (k ) could be −2 or 2. 

In this paper, we study the solution theory for system (1) under 

rbitrary switching signals and introduce the one-step map that 

enerates equivalent (ordinary) singular systems. Furthermore, by 

tilizing these equivalent systems, we formulate a necessary and 

ufficient condition for stability in terms of Lyapunov functions. 

. Preliminaries 

We recall some notations and basic results about generalized 

nverse, preimage, and projector, which will be used in the one- 

tep map formulation in the subsequent sections. 

efinition 2.1 Generalized inverse, cf. [5] . For a matrix M ∈ R 

m ×n ,

 generalized inverse of M is defined as a matrix M 

+ ∈ R 

n ×m that 

atisfies M M 

+ M = M . 

A generalized inverse always exists but is not unique in general 

18] . Let M 

−1 X be the preimage of a (in general singular) matrix

 ∈ R 

n ×n over a set X , i.e. M 

−1 X = { ξ ∈ R 

n | Mξ ∈ X } . The following

emma utilizes the generalized inverse to represent the preimage. 

emma 2.2 [21] . For any matrix M ∈ R 

n ×n and x ∈ im M, we have

hat 

 

−1 { x } = { M 

+ x } + ker M 

here M 

+ is a generalized inverse of M. 

In addition, the following lemma regarding an intersection that 

esults in a singleton will be used in formulating the solvability 

onditions, and moreover, the second part of the lemma will be 

sed in formulating the one-step map. 

emma 2.3 cf. Lemma 3.4 in [2] . Consider set U ⊆ R 

n and two sub-

paces V, W ⊆ R 

n , then V ∩ ({ u } + W) is a singleton for all u ∈ U if,

nd only if, U ⊆ V � W . In that case 

 ∩ ( { u } + W ) = { �W 

V u } , (2) 

here �W 

V : V � W → V is the canonical projector from V � W to V . 

In this lemma, U is a subset and not necessarily a linear sub- 

pace in R 

n whereas in Sutrisno and Trenn [21 , Lemma 3.4], U is 

ssumed to be a linear subspace in view of its usage in Sutrisno 

nd Trenn [21 , Thm. 3.9]. However, the proof presented in Sutrisno 

nd Trenn [21] does not require that U is a linear subspace; the 

roof only requires that V and W are linear subspaces in R 

n (other- 

ise the projections would not be well defined). Therefore, a new 

roof for Lemma 2.3 is not needed. In the forthcoming Lemma 3.4 , 

will be associated with T which is in general only a subset in 

 

n and not a linear subspace. 

. (Nonswitched) nonlinear singular systems 

We present in this section the solution theory and stability for 

onswitched cases of (1) of the form 

x (k + 1) = F (x (k )) , k = 0 , 1 , . . . (3)

here E is singular with rank E = r < n . Define S := { x ∈ R 

n | F (x ) ∈
m E} . In general, S is not a linear subspace of R 

n see 

.g. Example 1.1 . The forthcoming solvability conditions in 

emmas 3.4 and Theorem 4.4 rely on Lemma 2.3 in which V , which 

s a subspace, will be associated with S (or the corresponding S i of 

ode- i in switched systems). Therefore, to be able to ensure exis- 

ence and uniqueness of a solution of the system (3) by utilizing 

emma 2.3 , we will make the following assumption. 
2 
ssumption 3.1. The set S := F −1 ( im E) = { x ∈ R 

n | F (x ) ∈ im E} of

3) is a linear subspace in R 

n . 

At first glance, this assumption looks rather restrictive, however, 

n most cases the set S is a differentiable manifold at least locally 

nd then a (local) nonlinear coordinate transformation can be ap- 

lied to obtain a linear subspace S . 

.1. Solution theory 

We consider the following solvability notion in establishing the 

ne-step map for system (3) . 

efinition 3.2. We call (3) locally uniquely solvable (for short just 

olvable ) if, for all k ∈ N and for all x 0 ∈ S there exists a unique

olution on [0 , k ] of (3) considered on [0 , k ] with x (0) = x 0 . 

The solvability notion above requires the existence of a unique 

olution on any finite time interval [0 , k 1 ] , which in particular

eans that the final value at k 1 does not depend on the val- 

es x (k ) for k > k 1 . This solvability notion is stronger compared

o the common solvability notion for ordinary systems where the 

nique solution is required on [0 , ∞ ) for all (consistent) initial val-

es. However, having the former solvability notion will guarantee 

he existence of the one-step map for system (3) , and it is not 

lways possible to have a one-step map for the latter solvability 

otion (see the forthcoming Remark 3.8 ). Furthermore, note that 

very non-singular system (i.e. E is non-singular) is locally solv- 

ble, in fact, solutions are already uniquely determined on [0 , k ] by

nly considering (3) on [0 , k − 1] . This is in contrast to the singu-

ar case, where the algebraic constraints at k are usually needed to 

etermine uniquely the value of x (k ) . 

From basic algebra, there exist invertible matrices S, T ∈ R 

n ×n 

uch that SET = 

[
I r 0 

0 0 

]
. By using the state transformation 

 

−1 x (k ) = 

(
v (k ) 

w (k ) 

)
, v ∈ R 

r , w ∈ R 

n −r , system (3) can be rewritten

s 

I 0 

0 0 

][
v (k + 1) 
w (k + 1) 

]
= SF 

(
T 

[
v (k ) 
w (k ) 

])
=: 

[
G (v (k ) , w (k )) 
H(v (k ) , w (k )) 

]
. (4) 

The representation above decouples (3) into pure ordinary sub- 

ystem in v and pure singular subsystem or algebraic constraint in 

 . 

emark 3.3. The algebraic constraint H(v , w ) = 0 in (4) is, in gen-

ral, nonlinear even if S is a subspace. However, if S is a subspace 

n R 

n , then there exists a matrix K such that S = ker K; in particu-

ar, by using the coordinate transformation T as in (4) we have for 

 P, Q] := KT that H(v , w ) = 0 if, and only if, P v + Qw = 0 . Thus, for

very k ∈ N , the nonlinear algebraic constraint H(v (k ) , w (k )) = 0

an be replaced by the linear algebraic constraint 

 = P v (k ) + Qw (k ) . (5) 

s a consequence, the nonlinearity in (3) only appears in (4) via 

 (v , w ) . �
The following lemma provides two characterizations for the 

olvability of system (3) under Assumption 3.1 . 

emma 3.4. The following are equivalent: 

(i) System (3) under Assumption 3.1 is solvable in the sense of the 

Definition 3.2 

(ii) Q as in (5) is nonsingular 

(iii) T ⊆ S � ker E where T = { E + F (ς ) | ς ∈ S} , i.e. T is the range

of τ : S → R 

n with τ (ς ) = E + F (ς ) . 
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(i) ⇒ (ii): The set S being a subspace implies the existence 

of the equivalent linear algebraic constraint of the form (5) , 

hence system (3) can now equivalently be rewritten as {
v (k + 1) = G (v (k ) , w (k )) , k = 0 , 1 , . . . , 

0 = P v (k ) + Qw (k ) 

Consider this system on [0,1], then it reads 

v (1) = G (v (0) , w (0)) 
0 = P v (0) + Qw (0) 

v (2) = G (v (1) , w (1)) 
0 = P v (1) + Qw (1) 

where (v (0) , w (0)) is given, and thus v (1) is also given.

Seeking a contradiction assume that the square matrix Q

is singular. Then it is first of all not guaranteed anymore 

that for the specific v (1) a solution w (1) exists with 0 =
P (v (1) + Qw (1) . If w (1) exists at all it is not unique because

Q has a nontrivial kernel. Hence we have non-existence or 

non-uniqueness of solutions of (3) considered on the inter- 

val [0,1], contradicting (i). 

(ii) ⇒ (i): Nonsingularity of Q implies that the algebraic 

constraints are equivalent to w (k ) = Q 

−1 P v (k ) , which then

leads to the uniquely solvable nonsingular system v (k + 1) = 

Ḡ (v (k )) with Ḡ (v ) = G (v , Q 

−1 P v ) . Transforming this unique

solution back to its original coordinates provides a unique 

solution x on any interval [0 , k ] . 

(i) ⇒ (iii): By assumption for any initial value x 0 there exists 

a unique solution on [0,1], in particular, x (1) is uniquely 

determined by considering (3) for k = 0 and k = 1 . By

Lemma 2.2 applied to (3) for k = 1 the value x (1) satisfies

x (1) ∈ E −1 (F (x 0 )) = { E + F (x 0 ) } + ker E. (6)

On the other hand, considering (3) at k = 1 (not making any 

assumptions about the unknown x (2) ), x (1) must satisfy 

x (1) ∈ { x ∈ R 

n | F (x ) ∈ im E} = S. (7)

Hence x (1) is uniquely determined for all x 0 ∈ S if, and only 

if, 

S ∩ ({ E + F (x 0 ) } + ker E) is a singleton. 

Using Lemma 2.3 with U = T , V = S and W = ker E we con-

clude (iii). 

(iii) ⇒ (i): We prove inductively, that if for any x 0 ∈ S there 

exists a unique solution on [0 , k ] , then there also ex- 

ists a unique solution on [0 , k + 1] . This together with

the trivial observation that x (0) = x 0 is the unique so- 

lution of (3) , x (0) = x 0 , considered only for k = 0 will

prove (i). Now, given x (k ) , we choose x (k + 1) ∈ S ∩
({ E + F (x (k )) } + ker E) which is possible due to Lemma 2.3 .

Then x (k + 1) ∈ { E + F (x (k )) } + ker E implies that Ex (k + 1) =
E E + F (x (k )) . Since x (k ) ∈ S (because x is a solution on

[0 , k ] ), it follows that F (x (k )) ∈ im E, i.e. there exists v such

that F (x (k )) = E v . Hence E x (k + 1) = E E + E v = Ev = F (x (k ))

which shows that x (k + 1) satisfies (3) . Furthermore, x (k +
1) also satisfies (3) for k + 1 because x (k + 1) ∈ S . This

shows that x is indeed a solution of (3) on [0 , k + 1] . Unique-

ness follows from the fact, that by Lemma 2.3 the set S ∩ 

({ E + F (x (k )) } + ker E) is a singleton. 

Lemma 3.4 provides two alternatives for checking whether sys- 

em (3) is solvable in the sense of Definition 3.2 . Condition (ii) re-

uires, first, transforming the original system into the form (4) and 

hen finding Q by using Remark 3.3 . Meanwhile, condition (iii) uses 

ata from the original system directly, which requires fewer com- 

utation steps. In particular, using Lemma 2.3 and the same argu- 

ents as in the proof for Lemma 3.4 we arrive at the following 
3 
ne-step map that allows to obtain an equivalently “surrogate” or- 

inary system for (3) : �

orollary 3.5. Consider system (3) under Assumption 3.1 . If solvable, 

ts solution satisfies 

 (k + 1) = �(x (k )) = �ker E 
S E + F (x (k )) ∀ k ∈ N . (8)

here E + is a generalized inverse of E and �ker E 
S is the canonical 

rojector from S � ker E to S . Furthermore, any solution of (8) with 

 (0) ∈ S also solves (3) . 

emark 3.6 (The nonuniqueness of generalized inverses) . Note 

hat the generalized inverse matrix E + , in general, is not unique, 

nd thus applying different E + could provide different T in 

emma 2.3 and different one-step maps. However, condition (iii) 

n Lemma 3.4 as well as the restriction of � on S will give the 

ame results regardless of the choice of E + used in the calculation, 

.e. the nonuniqueness of E + has no effect on the solution charac- 

erization/formula; the justification for this statement is similar to 

he arguments for the linear case (see Remark 3.12 in [21] ); how- 

ver, to make the paper self-contained, we provide the proof for 

he nonlinear system (3) as follows. On the one hand, { F (ς ) | ς ∈
} = { F (ζ ) | ζ ∈ R 

n } ∩ im E ⊆ im E. On the other hand, for any two

ifferent generalized inverses E + 
1 

and E + 
2 

of E , (E + 
1 

− E + 
2 
) y ∈ ker E

or all y ∈ im E. Altogether, the difference between two different T 1 
nd T 2 which corresponds to two different generalized inverses E + 

1 
nd E + 

2 
respectively is contained in ker E, i.e., the action of �(x ) 

n (8) is unique when restricted to the relevant subspace. Thus, 

hoosing different generalized inverse matrices results in the same 

olution. In particular, the well-known Moore-Penrose inverse, 

hich can be easily computed using the singular value decom- 

osition [18] , can be utilized to calculate the generalized inverse 

atrix. 

Now it is possible to write the explicit solution of (3) i.e. 

 (k ) = ( � ◦ � ◦ · · · ◦ �) ︸ ︷︷ ︸ 
k times 

(x 0 ) 

here �(·) is given as in (8) . The following example illustrates the 

bove solution theory. 

xample 3.7. Consider system (3) with 

E, F (x )) = 

( [
1 0 

1 0 

]
, 

[ 

x 
1 
3 

1 
+ x 

1 
3 

2 

x 
1 
3 

1 
− x 

1 
3 

2 

] ) 

. 

imple computations provide ker E = span 

(
0 

1 

)
and S = 

 

x ∈ R 

n : 

( 

x 
1 
3 
1 

+ x 
1 
3 
2 

x 
1 
3 
1 

− x 
1 
3 
2 

) 

∈ span 

(
1 

1 

)} 

= span 

(
1 

0 

)
. Since S � ker E = 

 

n , the condition (iii) in Lemma 3.4 is satisfied (independently 

f what T is), and thus this system is solvable and has a unique

olution for every initial value x 0 ∈ S = span 

(
1 

0 

)
. Furthermore, 

t is easily seen that �ker E 
S = 

[
1 0 

0 0 

]
, E + = 

[
1 
2 

1 
2 

0 0 

]
, hence the 

ne-step map is given by �(x ) = 

(
x 

1 
3 
1 
0 

)
and each solution satisfies 

 (k + 1) = 

[
1 
2 

1 
2 

0 0 

]
F (x (k )) = 

(
x 1 (k ) 

1 
3 

0 

)
. 

emark 3.8. It is not always possible to establish a one-step map 

or system (3) if only global solvability on [0 , ∞ ) is assumed in-

tead of the local solvability in the sense of Definition 4.2 . This is
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llustrated by the following “counter-example”: 

0 1 

0 0 

]
x (k + 1) = 

(
x 1 (k ) 

1 
3 

x 2 (k ) 
1 
3 

)
, k = 0 , 1 , . . . (9) 

ith S = im 

[
1 

0 

]
. For this system, considered on [0 , ∞ ) , the unique

olution is given by x (k ) = 0 for all k > 0 , because x 2 (k ) = 0 for

ll k and x 1 (k ) = x 2 (k + 1) = 0 for all k . However, if we consider

he system on [0,1], the system has a non-unique local solution 

ecause x 1 (1) can be arbitrary. This, in particular, shows that the 

olvability on [0 , ∞ ) does not imply the solvability in the sense

f Definition 3.2 , however, the converse is clearly true. Now, since 

 1 (1) is free, we cannot determine it only from the current and 

ast information, and thus the one-step map, which depends only 

n the current and past information, cannot exist. Therefore, the 

olvability notion given in Definition 3.2 is necessary for the ex- 

stence of the one-step map, which in turn is needed to study 

witched systems (where at a given time k it may not be clear yet

hat the mode at k + 1 will be. 

.2. Stability based on lyapunov function 

We can now study the nonlinear singular system (3) for further 

nalysis, the stability in this paper, by utilizing its “surrogate” or- 

inary system (8) . Suppose �(0) = 0 i.e. x = 0 is an equilibrium

oint for (8) . This can also be generalized for a nonzero equilib- 

ium: when x = x e � = 0 is the equilibrium point we are investigat-

ng, the new state ̂  x = x − x e provides 0 as an equilibrium point in ̂x

oordinate. However, this coordinate transformation is not needed 

f F (0) = 0 since it directly implies that �(0) = 0 . To be precise,

e present the stability notion used in this study in the following. 

efinition 3.9. The equilibrium x = 0 of system (8) (or system (3) )

s 

• stable if for each ε > 0 there is δ = δ(ε) such that for all so-

lutions x of (3) 

|| x (0) || < δ ⇒ || x (k ) || < ε ∀ k ≥ 0 

• asymptotically stable if it is stable and δ can be chosen such 

that for all solutions x of (3) 

|| x (0) || < δ ⇒ lim 

k →∞ 

x (k ) = 0 

• unstable if it is not stable. 

Since the “surrogate” system (8) can be seen as an ordinary sys- 

em, we can utilize the stability theory for ordinary systems. The 

ollowing corollary for the stability of 0 of (8) is a simple conse- 

uence from the classical stability theorem for ordinary systems in 

ggidr and Bensoubaya [12] . 

orollary 3.10. Consider the solvable singular system (3) via its sur- 

ogate ordinary system (8) . Assume � : S → R 

n is continuous on 

 ⊂ R 

n . If there exists a continuous function V : S → R such that 

 (0) = 0 , V (x ) > 0 ∀ x ∈ S − { 0 } , and (10)

 (�(x )) − V (x ) ≤ 0 ∀ x ∈ S (11) 

hen x = 0 is stable for (3) . Furthermore, if 

 (�(x )) − V (x ) < 0 ∀ x ∈ S − { 0 } (12)

hen x = 0 is asymptotically stable for (3) . 
4 
It is well known that a such function V satisfying the corollary 

bove is called a Lyapunov function. 

xample 3.11. Recall Example 3.7 . Its zero equilibrium is asymp- 

otically stable by considering the (simple) Lyapunov function V : 

 

2 → R with V (x ) = x 2 
1 

+ x − 2 2 satisfying Corollary 3.10 . 

. Switched nonlinear singular systems 

.1. Solution theory 

Recall system (1) and define 

 i := { x ∈ R 

n | F i (x ) ∈ im E i } . (13)

e extend Assumption 3.1 to the switched case as follows: 

ssumption 4.1. Each S i given by (13) is a linear subspace in R 

n 

or each i ∈ { 0 , 1 , . . . , p } . 
The reason for considering this assumption for switched sys- 

em (1) is similar to the reason for having Assumption 3.1 for non- 

witched systems, see the discussion after (3) . We now generalize 

he solvability notion for nonswitched systems in Definition 3.2 to 

he following solvability notion for switched systems. 

efinition 4.2. We call (1) locally uniquely solvable (for short just 

olvable ) w.r.t. to a given switching signal σ : N → { 1 , 2 , . . . , p } if,

or all k 0 , k 1 ∈ N , k 1 > k 0 and for all x k 0 ∈ S σ (k 0 ) 
there exists a

nique solution of (1) considered on [ k 0 , k 1 ] with x (k 0 ) = x k 0 . 

Note that the solvability notion above requires the existence of 

 unique solution considered on any time interval with any arbi- 

rary initial time and, furthermore, for any consistent initial value 

t that initial time. For similar reasons as discussed in Remark 3.8 , 

e use this solvability notion because it is not always possible to 

efine the one-step map for system (1) with the common solvabil- 

ty notion on [0 , ∞ ) . 

The first important observation for switched systems is that 

olvability for individual modes is, in general, not sufficient for 

witched systems composed of those modes to be solvable. This 

s illustrated by the following Example. 

xample 4.3. Consider system (1) with 

E 0 , F 0 (x )) = 

( [
1 0 

0 0 

]
, 

[ 

x 
1 
3 

1 

x 
1 
3 

2 

] ) 

, 

E 1 , F 1 (x )) = 

([
0 0 

0 1 

]
, 

[
x 2 1 

x 2 1 + x 2 2 

])
. 

imple computations provide that 

er E 0 = span { (0 , 1) � } , S 0 = span { (1 , 0) � } , 
er E 1 = span { (1 , 0) � } , S 1 = span { (0 , 1) � } . 

For each pair, as an individual system, we have that ker E i �

 i = R 

n , i = 0 , 1 i.e. individual system is solvable. Their solutions

re 

(
x 1 (k ) 

x 2 (k ) 

)
= 

( 

x 
1 

3 k 

10 
0 

) 

, k = 1 , 2 , . . . and 

(
x 1 (k ) 

x 2 (k ) 

)
= 

(
0 

x 2 k 
20 

)
, k =

 , 2 , . . . , respectively. When considering the switching signal 

(k ) = 0 for k < k s and σ (k ) = 1 for k ≥ k s the switched system

eads: 

k < k s : 

 1 (k + 1) = x 1 / 3 
1 

(k ) , 

0 = x 1 / 3 
2 

(k ) , 

k ≥ k s : 

0 = x 2 1 (k ) , 
x 2 (k + 1) = x 2 2 (k ) . 

From this, it is clear that once the switch occurs at k = k s , the

nly solution for x 1 is x 1 (k ) = 0 also before the switch, although x 1 
as not restricted for k < k s . Furthermore, x (k s ) is not restricted
2 
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y the above equations and hence uniqueness of solutions with re- 

pect to x (0) is not satisfied. 

We generalize the solvability condition for nonwsitched systems 

o the condition for switched systems in the following theorem, 

hich provides a characterization of the solvability of system (1) . 

urthermore, the one-step map for switched systems is also pre- 

ented in this theorem. 

heorem 4.4. System (1) under Assumption 4.1 is solvable (in the 

ense of Definition 4.2 ) for all switching signals σ : N → { 1 , 2 , . . . , p }
f, and only if, 

 j ⊆ S i � ker E j ∀ i, j ∈ { 0 , 1 , . . . , p } , (14)

here T i = { E + 
i 

F i (ς ) | ς ∈ S i } . Moreover, if solvable, its solution satis-

es 

 (k + 1) = �σ(k +1) ,σ (k ) (x (k )) , ∀ k ∈ N (15)

here �i, j is the one-step map from mode- j to mode- i given by 

i, j (x ) := �
ker E j 
S i E + 

j 
F j (x ) (16) 

here E + 
j 

is a generalized inverse of E j and �
ker E j 
S i 

is the canonical 

rojector from S i � ker E j to S i . 

roof. Step 1: Solvability 

Necessity: We consider a solution on some interval [ k, k + 1] 

here σ (k ) = j and σ (k + 1) = i . For a given x (k ) ∈ S i , in order

o have a unique x (k + 1) for any switching signal, the following

ystem of equations must have a unique solution for x (k + 1) : 

 j x (k + 1) = F j (x (k )) , (17a) 

 i x (k + 2) = F i (x (k + 1)) , (17b) 

Equation (17a) is equivalent to x (k + 1) ∈ E −1 
j 

[ F j (x (k )) which

y Lemma 2.2 is equivalent to 

 (k + 1) ∈ { E + 
j 

F j (x (k )) } + ker E j . (18)

ince we only consider a solution on [ k, k + 1] , the value x (k + 2)

n (17b) is arbitrary, hence Eq. (17b) is equivalent to 

 (k + 1) ∈ { x ∈ R 

n : F i (x ) ∈ im E i } = S i (19)

y applying U = T j , V = S i and W = ker E j to Lemma 2.3 , the

niqueness of x (k + 1) implies T j ⊆ S i � ker E j . Since arbitrary 

witching signals can be considered, this condition must hold for 

ll ∀ i, j ∈ { 0 , 1 , . . . , p } . 
Sufficiency: Identical arguments as for the non-switched case al- 

ow us to inductively extend any solution x on [0 , k ] uniquely to a

olution on [0 , k + 1] if (15) holds. 

Step 2: One-step map 

By applying formula (2) in Lemma 2.3 to (18) and (19) with 

 = { E + 
σ (k ) 

F σ (k ) (x (k )) } , V = S σ (k +1) and W = ker E σ (k ) , the solution

 (k + 1) satisfies (8) . 

Regarding the nonuniqueness of the generalized inverse matrix 

 

+ 
j 

, the same phenomenon discussed in Remark 3.6 also applies 

.e. the nonuniqueness of E + 
j 

has no effect on the solution or the 

ormula (15) . 

The following example illustrates the solution of (1) calculated 

y using the one-step map formula introduced in Theorem 4.4 . �

xample 4.5. Consider system (1) with 

E 0 , F 0 (x )) = 

( [
1 0 

0 0 

]
, 

[ 

x 
1 
3 

1 

x 
1 
3 

2 

] ) 

, 

E 1 , F 1 (x )) = 

([
1 0 

1 0 

]
, 

[
x 2 1 + x 2 2 

x 2 2 

])
. 
5 
imple computations provide that 

er E 0 = span { (0 , 1) � } , S 0 = span { (1 , 0) � } , 
er E 1 = span { (0 , 1) � } , S 1 = span { (1 , 0) � } . 

Few observations are discussed as follows: 

• Since ker E i � S j = R 

n , ∀ i, j ∈ { 0 , 1 } , then clearly the condi-

tion (14) holds, and thus the system is solvable. 

• Choosing E + 
0 

= 

[
1 0 

0 0 

]
and E + 

1 
= 

[
1 
2 

1 
2 

0 0 

]
provides the fol- 

lowing one-step maps �i, j from mode- j to mode- i 

�0 , 0 (x (k )) = �1 , 0 (x (k )) = 

(
x 

1 
3 

1 
(k ) 
0 

)
�1 , 1 (x (k )) = �0 , 1 (x (k )) = 

(
1 
2 

x 2 1 (k ) + 

3 
2 

x 2 2 (k ) 
0 

)
. 

Under the periodic switching signal σ (k ) = 1 for k ∈ [0 , 5) ∪
10 , 15) ∪ . . . and σ (k ) = 0 for k ∈ [6 , 10) ∪ [15 , 20) ∪ . . . , and with

 (0) = (− 1 
2 , 0) � , the solution is shown in Fig. 1 . 

.2. Stability theory 

We analyze the stability of x = 0 of switched system (1) via its

surrogate” system (15) as follows. Suppose x = 0 is an equilibrium 

or (1) i.e. �i, j (0) = 0 ∀ i, j ∈ { 0 , 1 , . . . , p } . 
First note that requiring each mode to be (asymptotically) stable 

s not sufficient to make sure that the switched system is (asymp- 

otically) stable; this is a well-known challenge in the stability 

nalysis of switched systems, cf. [15] . 

The first approach that can be used to study the stability of x =
 , even though it is conservative, is the common Lyapunov func- 

ion approach. The following corollary is derived from the common 

yapunov stability theorem for the general time-varying nonlinear 

ystems of the form x (k + 1) = f k (x (k )) in Vidyasagar [23] . 

orollary 4.6 Common Lyapunov function approach . Consider sys- 

em (1) under Assumption 4.1 and assume that for all switching sig- 

als it is solvable and x = 0 is an equilibrium. Then x = 0 is asymp-

otically stable if there is a function V : R 

n → R such that 

• V is a positivedefinite and radially unbounded; 
• V (x (k + 1)) − V (x (k )) < 0 for all solutions x of (15) and all

switching signals. 

Note that in order to check the condition V (x (k + 1)) −
 (x (k )) < 0 one could require that 

 (�i, j (x )) − V (x ) < 0 ∀ i, j ∈ { 0 , 1 , . . . , p }∀ x ∈ R 

n . 

ut this means that (15) is considered as a switched system with 

 

2 independent different modes (one for each pair (i, j) ). How- 

ver, this viewpoint is too conservative in our situation, because 

he mode sequences in (15) are restricted to those where at time 
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5

 + 1 the mode pair (i k +1 , j k +1 ) is related to the mode pair (i k , j k )

t time k via i k = j k +1 . Furthermore, the fact that x (k ) ∈ S σ (k ) is

ot taken into account making the above condition in general too 

onservative. This motivates us to introduce the following switched 

yapunov function approach. 

heorem 4.7 Switched Lyapunov function approach . Consider the 

ingular switched system (1) via its surrogate ordinary switched sys- 

em (15) . Assume for all i ∈ { 0 , 1 , . . . , p } , �i : S i → R 

n is continu-

us on S i ⊂ R 

n and each mode is (asymptotically) stable with cor- 

esponding Lyapunov function V i satisfying Corollary 3.10 . If for all 

, j ∈ { 0 , 1 , . . . , p } , i � = j, the following conditions hold, 

(i) V i (x ) = V j (x ) ∀ x ∈ S i ∩ S j and 

(ii) V i (�i, j (x )) − V j (x )(< ) ≤ 0 ∀ x ∈ S j − { 0 } 
then x = 0 is (asymptotically) stable for arbitrary switching signals. 

roof. We construct the following Lyapunov function for (1) from 

he Lyapunov functions of all individual modes as follows: 

 : R 

n → R , V (x ) = 

{
V i (x ) if x ∈ S i 
0 otherwise. 

ote that condition (i) is necessary for having V being well de- 

ned. Then for all solutions x (k ) of (15) at any k ∈ N 

V (x (k + 1)) − V (x (k )) 

= V σ (k +1) (x (k + 1)) − V σ (k ) (x (k )) 

= V σ (k +1) (�σ(k +1) ,σ (k ) (x (k )) − V σ (k ) (x (k )) ≤ (< )0 . 

hich by Corollary 4.6 guarantees the (asymptotic) stability of the 

quilibrium x = 0 for arbitrary switching signals. 

It can be seen that the condition (ii) above is necessary only for 

ertain switches i.e. after �i, j , and the condition is checked only 

or switches to �i, j and not for all switches to any other one-step 

ap matrix; furthermore, it only needs to be checked for all x ∈ S i 
nstead of all x ∈ R 

n . This makes the stability theorem above more

elaxed compared to the common Lyapunov approach. The follow- 

ng example illustrates the stability analysis by using the condition 

rovided by the theorem above. �

xample 4.8. Consider system (1) composed of the following two 

odes: 

E 0 , F 0 (x )) = 

([
1 0 

0 0 

]
, 

[
(x 1 + 1) 

1 
3 − 1 

x 
1 
3 

2 

])
, 

E 1 , F 1 (x )) = 

([
1 0 

0 0 

]
, 

[
(x 2 + 1) 

1 
5 − 1 

x 
1 
5 

1 

])
. 

asic computations provide 

er E 0 = span { (0 , 1) � } , S 0 = span { (1 , 0) � } , 
er E 1 = span { (0 , 1) � } , S 1 = span { (1 , 0) � } . 
ince ker E i � S j = R 

n , ∀ i, j ∈ { 0 , 1 } , clearly the condition

14) holds i.e. the system is solvable for arbitrary switching 

ignals. Choosing E + 
0 

= 

[
1 0 

0 0 

]
and E + 

1 
= 

[
1 0 

0 0 

]
and with 

ker E 0 
S 1 

= �
ker E 1 
S 0 

= 

[
1 0 

0 0 

]
provide 

0 (x (k )) = �0 , 0 (x (k )) = �1 , 0 (x (k )) = 

[
(x 1 + 1) 

1 
3 − 1 

0 

]
nd 

1 (x (k )) = �1 , 1 (x (k )) = �0 , 1 (x (k )) = 

[
(x 1 + 1) 

1 
5 − 1 

0 

]
. 
s

6 
As an individual system, x = 0 of each mode is stable with Lya- 

unov function e.g. V i (x ) = x 2 
1 

+ x 2 
2 
, i = 0 , 1 . Clearly, the conditions

i) and (ii) in Theorem 4.7 with strict inequality are satisfied, and 

oreover V 0 (x ) = V 1 (x )) . Hence, x = 0 of the switched system is

symptotically stable for arbitrary switching signals. With σ (k ) = 0 

f k = 0 , 2 , 4 , . . . and = 1 if k = 1 , 3 , 5 , . . . , the trajectory of the so-

ution is illustrated in Fig. 2 . �
Theorem 4.7 provides a sufficient condition for the stability of 

 for arbitrary switching signals, and each individual mode is, in 

act, necessary to be stable since stability is also required for a 

onstant switching signal. Therefore, stability for arbitrary switch- 

ng signals is equivalent to stability for arbitrary mode sequences 

with arbitrary switching times). Due to the fact that the sta- 

ility of all individual modes may result in stable switched sys- 

ems for some mode sequences and unstable switched systems for 

ome other mode sequences (this issue is already well-known in 

witched systems [6,15] ), one may be interested in testing the sta- 

ility only for a certain fixed and known mode sequence. In this 

ase, Theorem 4.7 can be relaxed to the following corollary. 

orollary 4.9 (Stability for a fixed mode sequence) . Co-nsider the 

olvable NSSS (1) under Assumption 4.1 via its surrogate system 

15) and a fixed and known mode sequence (σ ) = (σ0 , σ1 , . . . ) . 

ssume for all i ∈ { 0 , 1 , . . . , p } , �i : S i → R 

n is continuous on S i ⊂ R 

n 

nd each mode is (asymptotically) stable with the corresponding Lya- 

unov function V i satisfying Corollary 3.10 . If the following conditions 

old: 

 i (x ) = V j (x ) ∀ x ∈ S i ∩ S j ∀ i, j ∈ { 0 , 1 , . . . , p } (20a)

 σ j+1 (�σ j+1 ,σ j 
(x )) −V σ j 

(x )(< ) ≤ 0 ∀ x ∈ S σ j 
\{ 0 } (20b)

for j = 0 , 1 , . . . , then x = 0 of (1) is (asymptotically) stable for the

iven mode sequence (σ ) . 

In the corollary above, the second condition is tested only for 

very two consecutive different modes that appear in the given 

ode sequence. Furthermore, this corollary can be extended to 

witched systems with graph-constrained mode sequences (see e.g. 

1,19] ) where the second condition is needed to be tested only 

or mode transitions that appear as edges in the graph of feasi- 

le mode sequences. Finally, note that condition (20a) still requires 

hecking all possible mode pairs; this is needed to define the com- 

on Lyapunov function as in the proof of Theorem 4.7 . A further 

elaxation seems possible but needs a slightly adapted proof tech- 

ique via time-varying Lyapunov functions which is a topic of fu- 

ure research. Another interesting extension is the consideration 

f possible unstable modes (as e.g. in Agarwal [1] ) together with 

well time conditions or graph-based switching. 

. Summary 

The solution theory and stability analysis for nonlinear singular 

ystems in discrete time, both for nonswitched and switched cases, 
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ere studied in this paper. Solvability conditions have been pro- 

osed, and the corresponding one-step map has been introduced 

o get the equivalent “surrogate” ordinary system. Moreover, by 

tilizing the one-step map representation, sufficient conditions for 

tability have been proposed via common Lyapunov function and 

witched Lyapunov function. The second stability condition is more 

onvenient than the first which is rather conservative. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgments 

This work was partially supported by the NWO Vidi-grant 

39.032.733 and Diponegoro University Ph.D. scholarship contract 

o. 7989/UN7.P.2/KS/2019 . 

eferences 

[1] N. Agarwal, Stabilizing graph-dependent linear switched systems with unsta- 
ble subsystems, Eur. J. Control 53 (2020) 20–28, doi: 10.1016/j.ejcon.2019.10. 

005 . 

[2] P.K. Anh, P.T. Linh, D.D. Thuan, S. Trenn, The one-step-map for switched singu- 
lar systems in discrete-time, in: Proc. 58th IEEE Conf. Decision Control (CDC) 

2019, 2019, pp. 605–610, doi: 10.1109/CDC40024.2019.9030154 . 
[3] I. Bauer, H.G. Bock, S. Körkel, J.P. Schlöder, Numerical methods for optimum 

experimental design in DAE systems, J. Comput. Appl. Math. 120 (1) (20 0 0) 
1–25, doi: 10.1016/S0377-0427(0 0)0 030 0-9 . 

[4] A .A . Belov, O.G. Andrianova, A.P. Kurdyukov, Control of Discrete-Time Descrip- 

tor Systems, vol. 39, Springer International Publishing, Cham, 2018 . 
[5] A. Ben-Israel, T. Greville, Generalized Inverse, Springer-Verlag, New York, 

2003 . 
[6] M. Branicky, Multiple Lyapunov functions and other analysis tools for switched 

and hybrid systems, IEEE Trans. Autom. Control 43 (4) (1998) 475–482, doi: 10. 
1109/9.664150 . 
7

[7] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value 
Problems in Differential-Algebraic Equations, North-Holland, Amsterdam, 1989 . 

[8] J.J. Craig, Introduction to Robotics: Mechanics and Control, third ed., Pearson 
Education International, 2005 . 

[9] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sci- 
ences, 118, Springer-Verlag, Berlin, 1989, doi: 10.10 07/BFb0 0 02475 . 

[10] G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer New 

York, NY, 2010 . 

[11] L. Haohui, T. Yun, The voltage stability of a DAE model for singlemachine infi- 

nite bus system, Autom. Electr. Power Syst. 24 (20 0 0) 11–15 . 
12] A. Iggidr, M. Bensoubaya, New results on the stability of discrete-time systems 

and applications to control problems, J. Math. Anal. Appl. 219 (2) (1998) 392–
414, doi: 10.1006/jmaa.1997.5827 . 

[13] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations. Analysis and Numer- 
ical Solution, EMS Publishing House, Zürich, Switzerland, 2006, doi: 10.4171/ 

017 . 

[14] J. Lian, C. Li, D. Liu, Input-to-state stability for discrete-time non-linear 
switched singular systems, IET Control Theory Appl. 11 (2017) 2893–2899, 

doi: 10.1049/iet-cta.2017.0028 . 
[15] D. Liberzon, Switching in Systems and Control, Systems and Control: Founda- 

tions and Applications, Birkhäuser, Boston, 2003 . 
[16] Y. Liu, J. Wang, C. Gao, Z. Gao, X. Wu, On stability for discrete-time non-

linear singular systems with switching actuators via average dwell time ap- 

proach, Trans. Inst. Meas. Control 39 (12) (2017) 1771–1776, doi: 10.1177/ 
0142331216646822 . 

[17] R.W. Newcomb, B. Dziurla, Some circuits and systems applications of semistate 
theory, Circuits Syst. Signal Process. 8 (1989) 235–260 . 

[18] R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc. 51 
(1955) 406–413 . 

[19] M. Philippe, R. Essick, G.E. Dullerud, R.M. Jungers, Stability of discrete- 

time switching systems with constrained switching sequences, Automatica 72 
(2016) 242–250, doi: 10.1016/j.automatica.2016.05.015 . 

20] T. Schmidt, Parametrschaetzung bei Mehrkoerpersystemen mit Zwangsbedin- 
gungen, VDIVerlag, Dusseldorf, 1994 . 

21] Sutrisno, S. Trenn, Switched linear singular systems in discrete time: solution 
theory and observability notions, 2023. Preprint. 

22] L.A. Tuan, V.N. Phat, Existence of solutions and finite-time stability for nonlin- 

ear singular discrete-time neural networks, Bull. Malaysian Math. Sci. Soc. 42 
(2019) 2423–2442, doi: 10.1007/s40840- 018- 0608- y . 

23] M. Vidyasagar, Nonlinear Systems Analysis, second ed., Prentice-Hall, Engle- 
wood Cliffs, NJ, 1993 . 

24] C. Yang, Q. Zhang, S. Huang, Input-to-state stability of a class of Luré de- 
scriptor systems, Int. J. Robust. Nonlinear Control 23 (12) (2013) 1324–1337, 

doi: 10.1002/rnc.2821 . 

https://doi.org/10.13039/501100003246
https://doi.org/10.13039/501100005844
https://doi.org/10.1016/j.ejcon.2019.10.penalty -@M 005
https://doi.org/10.1109/CDC40024.2019.9030154
https://doi.org/10.1016/S0377-0427(00)00300-9
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0004
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0005
https://doi.org/10.1109/9.664150
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0007
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0008
https://doi.org/10.1007/BFb0002475
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0010
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0011
https://doi.org/10.1006/jmaa.1997.5827
https://doi.org/10.4171/017
https://doi.org/10.1049/iet-cta.2017.0028
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0015
https://doi.org/10.1177/0142331216646822
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0017
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0018
https://doi.org/10.1016/j.automatica.2016.05.015
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0020
https://doi.org/10.1007/s40840-018-0608-y
http://refhub.elsevier.com/S0947-3580(23)00081-X/sbref0022
https://doi.org/10.1002/rnc.2821

	Nonlinear switched singular systems in discrete time: The one-step map and stability under arbitrary switching signals
	1 Introduction
	2 Preliminaries
	3 (Nonswitched) nonlinear singular systems
	3.1 Solution theory
	3.2 Stability based on lyapunov function

	4 Switched nonlinear singular systems
	4.1 Solution theory
	4.2 Stability theory

	5 Summary
	Declaration of Competing Interest
	Acknowledgments
	References


