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Abstract 

Background: Ischemia-reperfusion is accompanied by oxidative stress. Serum free thiols (FTs; 

sulfhydryl groups) reliably reflect systemic oxidative stress. This study evaluates longitudinal changes 

in FTs and their associations with outcomes after ST-segment elevation myocardial infarction 

(STEMI).  

Methods: FTs were detected in archived serum samples from 378 participants of a neutral 

randomized trial on metformin therapy after STEMI. FT levels were determined at presentation with 

STEMI and at 24 hours, 2 weeks, 4 months and 1 year thereafter. Outcomes included infarct size and 

left ventricular ejection fraction (LVEF), both determined with cardiac magnetic resonance imaging 

after 4 months, and 5-year major adverse cardiovascular events (MACE). 

Results: Serum FT concentrations at presentation and at 24 hours were 356 ± 91 and 353 ± 76 

µmol/L, respectively. The change in FTs between presentation and 24 hours (ΔFTs) was associated 

with outcomes in age- and sex-adjusted analysis (per 100 µmol/L FT increase, β=-0.87 for infarct size, 

95%-confidence interval (CI): -1.75 to -0.001, P=0.050; β=1.31, 95%-CI: 0.37 to 2.25 for LVEF, 

P=0.007). Associations between ΔFTs and LVEF were markedly stronger in patients with Thrombolysis 

in Myocardial Infarction flow of 0 or 1 before percutaneous coronary intervention (PCI)(β=2.73, 95%-

CI: 0.68 to 4.77, P=0.009). Declining FTs during the first 24 hours might be associated with higher 

incidence of 5-year MACE (P=0.09). 

Conclusions: Changes in oxidative stress early post-PCI may predict functional outcomes after STEMI. 

Our findings warrant validation in larger cohorts, and then may be used as rationale for development 

of thiol-targeted therapy in ischemic heart disease. 
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Introduction 

Patients presenting with ST-segment elevation myocardial infarction (STEMI) suffer from ischemic 

and reperfusion injury, which are both characterized by oxidative stress.[1] Oxidative stress is 

defined as an imbalance between oxidants and antioxidants in favor of oxidants, leading to the 

disruption of redox signaling and control and/or molecular damage.[2] Although reactive oxygen 

species (ROS) fulfill pivotal physiological functions, overproduction of ROS during ischemia-

reperfusion (I/R) may result in cellular and molecular damage and accompanying cell death.[3, 4] 

Thiols are organic antioxidant compounds containing a sulfhydryl (-SH) moiety. They exist both 

extracellularly (i.e. circulating or free thiols, of which albumin is the most relevant example), as well 

as intracellularly (predominantly low-molecular-weight thiols including glutathione and cysteine).[5] 

Free thiols play an important role in redox signaling, but also act as one of the most potent and 

versatile endogenous defense mechanisms against oxidative stress due to their ability to scavenge 

ROS and to serve as the main transducers of kinetically controlled redox exchange reactions.[5] Free 

(i.e. reduced) thiols are being oxidized in the presence of ROS to form disulphide bonds, which 

prevents ROS from inflicting oxidative modifications to lipids and proteins and subsequent 

myocardial structural damage.[5] Lower levels of free thiols are therefore a reflection of higher levels 

of oxidative stress.[6]  Conversely, higher levels of free thiols are indicative of a more favorable 

systemic redox status.[6]  

In previous studies, lower levels of free thiols have been linked to a variety of cardiovascular risk 

factors (e.g. smoking, hypertension and diabetes mellitus),[6–9] as well as to disease severity and 

outcomes in a number of oxidative stress-mediated human conditions.[10–13] To the best of our 

knowledge, serum free thiols have never been longitudinally evaluated after STEMI, nor linked to 

functional and clinical outcomes after STEMI. Especially, levels of free thiols in the (sub)acute phase 

after STEMI are of interest, because this could be helpful in establishing a therapeutic window, since 

free thiols are amendable by therapeutic modulation with N-acetylcysteine.[1, 14–16]   
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This study addressed several objectives. First, we investigated longitudinal changes in serum free 

thiols. Second, we studied whether serum free thiols were associated with myocardial infarct size 

and left ventricular ejection fraction (LVEF) at 4 months follow-up, and major adverse cardiovascular 

events (MACE) during 5 years after STEMI. 

 

Methods 

Study population 

Serum free thiols were measured in archived serum samples of the GIPS-III (Metabolic modulation 

with metformin to reduce heart failure after acute myocardial infarction: Glycometabolic 

Intervention in Adjunct to Primary Percutaneous Coronary Intervention in STEMI; NCT01217307) 

randomized controlled trial. This trial was designed to evaluate the effect of 4 months metformin 

therapy on preservation of left ventricular function in patients without known diabetes that 

presented with a first STEMI. The design and outcomes of this trial were previously published.[17, 18] 

In brief, all patients admitted to the University Medical Center Groningen with a STEMI between 

January 2011 and May 2013 were considered eligible for the trial. Inclusion criteria were age older 

than 18 years, the presence of STEMI, and primary percutaneous coronary intervention (PCI) with 

implantation of at least 1 stent with a diameter of at least 3 mm resulting in TIMI flow grade 2 or 3 

post-PCI. Key exclusion criteria were previous myocardial infarction (MI), known diabetes, the need 

for coronary artery bypass graft surgery, severe renal dysfunction, and standard contraindications for 

cardiac magnetic resonance imaging (CMR). The study protocol of the GIPS-III trial was in accordance 

with the Declaration of Helsinki and was approved by the local ethics committee (Groningen, the 

Netherlands) and national regulatory authorities. Informed consent was obtained before any study 

related procedures.  

Characteristics during hospitalization 
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On admission, standard laboratory assessment and physical examination parameters were measured 

according to protocol. During hospitalization, blood was sampled at admission (before PCI) and at 3, 

6, 9, 12 and 24 hours thereafter to monitor cardiac enzymes. Serum samples for biobanking were 

drawn at presentation with STEMI, at 24 hours, 2 weeks, 4 months and 1 year.  

Measurement of serum free thiols 

Serum samples were stored at -80 °C until free thiol measurement. Free thiol groups were detected 

as previously described, with minor modifications.[19, 20] In short, after thawing, 75 μl serum 

samples were diluted 1:4 with a 0.1 M Tris buffer (pH 8.2) and then transferred to a microplate. The 

background absorption was measured, using a Sunrise microplate reader (Tecan Trading AG, 

Männedorf, Switzerland) at 412 nm, with a reference filter at 630 nm. Subsequently, 10 μl 3.8 mM 

5,5′-Dithio-bis(2-nitrobenzoic acid) (DTNB, CAS-number 69–78–3, Sigma Aldrich Corporation, Saint 

Louis, MO, USA) in a 0.1 M phosphate buffer (pH 7.0) was added to the samples. Following 20 min of 

incubation at room temperature, absorption was measured again. The concentration of free thiols in 

the samples was determined by parallel measurement of a L-cysteine (CAS-number 52–90–4, Fluka 

Biochemika, Buchs, Switzerland) calibration standard in the concentration range of 15.6–1000 μM in 

0.1 M Tris and 10 mM EDTA (pH 8.2). All measurements were performed in triplicate, where the 

mean value of three measurements was used as the serum free thiol concentration. The mean 

concentration was based on duplicate measurement in case that one out of three values was an 

obvious outlier based on visual inspection. Hemolytic samples or measurements with a coefficient of 

variation >15% were excluded from further analysis. 

Outcome parameters 

Infarct size and left ventricular ejection fraction (LVEF) were used as functional outcomes. Both were 

determined with cardiac magnetic resonance imaging (CMR) at 4 months follow-up. Details on 

imaging acquisition and analysis were reported elsewhere.[17, 18] An independent core laboratory 
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(Image Analysis Center, VU University Medical Center, Amsterdam, the Netherlands) evaluated the 

CMR scans, blinded for clinical patient data and treatment allocation. In addition, in GIPS-III, a clinical 

follow-up was performed by telephone during 5 years follow-up for the assessment of major adverse 

cardiovascular events (MACE). MACE was defined as the composite of cardiovascular death, 

reinfarction or unscheduled revascularization.  

Statistical analysis 

Normally distributed data were presented as mean ± standard deviation (SD). Skewed data were 

presented as median and interquartile range [IQR] and were normalized by logarithmic 

transformation for analyses. Discrete variables were presented as frequencies with percentages (%). 

Student’s t tests were used to compare groups for normally distributed continuous variables, Mann–

Whitney U tests for skewed continuous variables and Chi-square and Fisher’s exact tests for 

categorical variables. Associations between clinical parameters and free thiols levels at presentation 

and delta free thiols during the first 24 hours after STEMI were assessed using uni- and multivariable 

linear regression analyses. Variables with a P-value <0.1 in age- and sex-adjusted analyses were 

included in stepwise multivariable regression. Unless otherwise stated, identical models were 

composed using forward and backward regression analyses. Assumptions of residual variance 

normality and absence of collinearity were fulfilled. Subsequently, associations between free thiols 

and functional outcomes (infarct size and LVEF) were investigated with regression analysis, adjusting 

for age, sex, treatment allocation and relevant baseline parameters. Associations with 5-year MACE 

were assessed using Kaplan-Meier survival analysis in which groups were compared with log rank 

tests. Statistical analysis was performed with STATA version 14.0 (Stata Corp, College Station, Texas, 

USA). Graphs were drawn in GraphPad Prism 8. A two-tailed P-value of ≤0.05 was considered 

statistically significant.  
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Results 

Characteristics at presentation 

Serum free thiols were measured in 378 patients that presented with STEMI and participated in the 

GIPS-III trial.[18] Baseline characteristics of the study population are presented in Table S1. Mean age 

was 59 ± 12 years old and 25% were women. The mean (±SD) serum free thiol concentration at 

presentation was 356 ± 91 µmol/L. Relatively lower serum free thiols at presentation with STEMI, 

indicative of systemic oxidative stress, were associated with older age, female sex, and higher 

creatinine (all P<0.01). Other predictors of lower free thiols were non-anterior MI (P<0.01), TIMI flow 

before PCI of 2/3 (P<0.05), lower heart rate (P<0.01) and lower log triglycerides (P<0.001)(Table S2). 

Free thiols during follow-up 

Longitudinal changes in serum free thiols are presented in Figure S1. We observed that free thiol 

concentrations at 24 hours (353 ± 76 µmol/L) were on average comparable with free thiols at 

presentation (P=0.74), but a large distribution in change during the first 24 hours (delta free thiols; 2 

± 125 µmol/L) was observed. Females, patients with older age, higher free thiols at presentation, 

TIMI flow before PCI of 0/1 and higher heart rate at presentation were more likely to have a decline 

in free thiols during the first 24 hours (Table 1). 

Free thiols and functional outcomes 

At 4 months follow-up, mean infarct size and LVEF were 9.0% (±7.9) and 54% (±8.5), respectively. 

Free thiols at presentation with STEMI were not associated with infarct size or LVEF (Table S3 and 

Table 2). Delta free thiol levels (defined as the change in free thiols between presentation and 24 

hours), however, were associated with infarct size in univariate analysis (per 100 µmol/L increase in 

free thiols: β=-0.90, 95% CI: -1.77 to -0.03, P=0.044), and age- and sex-adjusted analysis (per 100 

µmol/L increase free thiols: β=-0.87, 95% CI: -1.75 to -0.001, P=0.050; Table S3). Delta free thiols 

during the first 24 hours were also associated with LVEF in univariate and age- and sex-adjusted 
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analysis (per 100 µmol/L increase: β=1.34, 95% CI: 0.40 to 2.28, P=0.005 and β=1.31, 95% CI: 0.37 to 

2.25, P=0.007, respectively; Table 2, Table S4). After adjustment for additional covariates in the 

model, however, the statistical significance of the associations with functional outcomes vanished. 

Free thiol levels at 24 hours were not associated with infarct size, only with LVEF (per 100 µmol/L 

increase: β=1.75, 95% CI: 0.27 to 3.24, P=0.021). This association with LVEF was still present after 

adjustment for age- and sex-adjusted (per 100 µmol/L increase: β=1.97, 95% CI: 0.43 to 3.51, 

P=0.012; Table 2), but lost statistical significance in multivariable analysis.  

Associations between free thiols at 24 hours and LVEF were modified by interaction of TIMI flow pre-

PCI subgroups (P for interaction=0.039). In patients that presented with a TIMI flow pre-PCI of 0 or 1, 

a 100 µmol/L increase in free thiol levels over the first 24 hours was associated with higher LVEF 

(β=1.44, 95% CI: 0.22 to 2.66, P=0.021) in age- and sex-adjusted analysis, whereas in patients that 

presented with TIMI flow 2 or 3 at reperfusion no association was observed (Table 3, Table S5, Figure 

1). For free thiols at 24 hours similar results were observed (TIMI 0/1; per 100 µmol/L increase: 

β=2.73, 95% CI: 0.68 to 4.77, P=0.009 vs. TIMI 2/3; per 100 µmol/L increase: β=0.05, 95% CI: -2.14 to 

2.24, P=0.96; Table 3, Table S5). For the associations with infarct size, comparable differences were 

observed within the TIMI flow subgroups, although the associations between free thiols and infarct 

size in the TIMI flow 0/1 group did not reach statistical significance (P=0.05 to 0.1, Table S6). 

Free thiols and clinical outcomes 

During 5 years of follow-up 63 patients (17.7%) underwent an ischemic driven intervention (n=48) or 

deceased (n=16, of which 1 patient died after ischemic driven re-intervention). In patients with a net 

decrease in serum free thiols during the first 24 hours, more events during 5-year follow-up were 

observed, however this difference was non-significant (log rank P=0.09; Figure S2). For free thiols at 

other timepoints, no associations with clinical outcomes were observed.  
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Discussion 

This study demonstrates that changes in serum free thiols, indicative of variations in oxidative stress 

levels, early after PCI, associate with functional outcomes after STEMI, especially in patients 

presenting with closed coronary arteries (TIMI flow pre-PCI 0/1). Our results provide rationale for 

future mechanistic studies that investigate the role of free thiols early post-PCI, and for studies 

investigating free thiols as potential treatment target for patients presenting with STEMI and 

coronary artery occlusion. 

Ischemia and the subsequent reperfusion are major triggers for oxidative stress. During 

ischemia, the antioxidant enzyme superoxide dismutase (SOD) becomes less active, together with a 

decline in reduced glutathione and a reduction in free thiols.[21] Subsequently, the reintroduction of 

oxygen to an ischemic area leads to a burst of ROS, triggering oxidative stress. Moreover, permanent 

mitochondrial damage and inflammatory responses drive a prolonged course of ROS generation.[22]  

 Free thiols are potent antioxidants that directly scavenge ROS, thereby preventing ROS from 

inflicting cellular damage. Aside from functioning as potent oxidant scavengers, extracellular free 

thiols also act as central hubs in our redox system by controlling redox exchange reactions between 

organs and between extracellular and intracellular environments, and by mediating protein 

structure,[23] activity and functions.[7] Since free thiols play a central role in our redox system, a 

decline in circulating free thiols reliably reflects systemic or local oxidative stress.[24] A decrease in 

free thiol concentration has indeed been linked to a wide variety of oxidative stress-associated 

diseases,[6, 10, 13, 25] but have not been longitudinally evaluated in the acute phase after STEMI. 

A few cross-sectional studies investigated thiol-disulfide homeostasis in patients with acute 

MI, and although different measurement techniques were employed, they consistently showed 

lower levels of free thiols and higher levels of oxidation products (e.g. oxidized protein thiols: 

disulfides) in patients with acute MI.[26–28] In addition, several studies have demonstrated inverse 

associations between free thiols and coronary atherosclerosis severity,[29, 30] complications early 
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after STEMI such as left ventricular systolic dysfunction and acute heart failure,[31] and fatal MI 

outcomes.[32] Only one study reported on associations between free thiol levels and MACE 6 

months after MI.[33] Until date, however, no studies have yet been performed that measure free 

thiols before and after PCI, with adequate long-term follow-up and pre-defined functional outcomes 

after STEMI such as infarct size and LVEF. 

Although free thiols were longitudinally measured, this study focused on changes during the 

acute phase since these appeared to be most strongly predictive for long-term functional outcomes.  

Notably, we observed a significant interaction with TIMI flow before PCI for the association between 

the change in serum free thiols during the first 24 hours (delta free thiols) and the functional 

outcomes. While we observed that in patients with a TIMI flow pre-PCI of 0 or 1 (representing 

absence of flow/poor reperfusion) delta free thiols were significantly associated with LVEF, patients 

with TIMI flow 2 or 3 (representing partial and complete reperfusion) did not demonstrate these 

associations. A potential explanation for this phenomenon could be that profound changes in free 

thiols levels already occurred before presentation in patients with TIMI flow pre-PCI of 2/3, as a 

result of the reperfusion that already took place, limiting the predictive value of the delta free thiols 

between presentation and 24 hours. Another explanation may be a different health/redox status 

before the onset of MI, which might influence reperfusion and alters the associations with functional 

outcomes. Unfortunately, due to the nature of the disease, we were not able to evaluate baseline 

redox status before the onset of ischemia. 

Next to the prognostic value of serum free thiols, our results also shed light on the potential 

for future development of redox-targeted therapeutics in the context of ischemic heart disease. 

Targeting I/R injury in the acute phase in patients presenting with STEMI is complex and requires 

timely administration and adequate levels of a therapeutic compound during the very first moments 

after reperfusion.[34] We observed that an ongoing depletion of free thiols during the first 24 hours 

post-STEMI confer predictive value in relation to functional outcomes, especially LVEF. This may 
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suggest that there is a possible therapeutic window for redox-directed interventions that might 

target oxidative stress in the remote non-infarcted area, which may potentially improve LVEF.[35] For 

example, redox-active compounds capable of reversing oxidative thiol modifications such as 

thioredoxins, glutaredoxins and peroxiredoxins represent a complex network of antioxidants still 

requiring further study but holding potential to reveal relevant therapeutic targets for 

cardioprotection.[36] Similarly, hydrogen sulfide (H2S)-targeted compounds e.g. N-acetylcysteine,[37] 

sodium thiosulfate (STS),[38, 39] or taurine[40, 41] may become relevant therapeutic candidates, 

because H2S, is a gaseous signaling molecule, which has indirect antioxidant properties by activating 

antioxidant pathways and increase glutathione levels, but also has the capacity to scavenge ROS and 

reduce disulphide bonds, resulting in free thiol formation.[42] However, to date trials with N-

acetylcysteine for cardioprotection have been inconclusive.[43] Notably, it remains important to 

cautiously analyze a patient’s individual redox status before implementing therapeutic modulation, 

because it has been suggested that thiol-modulating strategies should be reserved for patients with 

an evidently disturbed redox system, since thiol supplementation could potentially disrupt 

physiological redox signaling.[36] Therefore, more mechanistic studies and studies with strict 

protocols, evaluating to which extent long-term functional outcomes after STEMI could be improved 

by exogenous redox system modifications, are warranted. 

Limitations 

Strengths of our study include the size, well-documented and longitudinal nature of our study, 

combined with an extensive follow-up and detailed pre-defined functional outcomes. Several 

limitations however also warrant recognition. For instance, the observational character of the study 

did not allow the establishment of potential causality between extracellular free thiol status and 

functional outcomes. Second, this study was not designed to prove or suggest an additional 

prognostic role for free thiols, on top of existing predictors, e.g. TIMI flow and enzymatic infarct size. 

Third, we lacked total protein or albumin levels, which precluded a more precise estimation of 
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circulating free thiol levels since adjustment to one of both would be an appropriate but indirect way 

of accounting for total thiol content and fluid status.[7, 10] Finally, due to a possible lack of statistical 

power we were unable to draw firm conclusions on the studied associations between free thiols and 

functional outcomes. Especially for the TIMI flow subgroups our results should be considered as 

hypothesis generating. In addition, Cox proportional hazards regression analyses had to be omitted 

due to paucity of events. Therefore, our results warrant validation in larger cohorts of patients with 

atherosclerotic cardiovascular diseases.  

 

Conclusions 

Our hypothesis generating study shows that changes in levels of systemic oxidative stress early post-

PCI may predict infarct size and LVEF in patients experiencing STEMI, especially those presenting 

without reperfusion. If our findings can be validated in larger cohorts, it might be of interest to study 

whether free thiol modulation may hold therapeutic potential in patients with ischemic heart 

disease. 
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Tables and figures 

Table 1 | Age- and sex-adjusted and multivariable associations of baseline parameters with delta free thiols during the first 24 hours 

 Age- and sex-adjusted Multivariable 

Variable Std β 95% CI P-value Std β 95% CI P-value 

Age, years 0.01 -0.10 to 0.12 0.85 -0.16 -0.23 to -0.08 <0.001 

Female sex 0.013 -0.10 to 0.12 0.82 -0.12 -0.19 to -0.05 0.001 

Treatment allocation 0.012 -0.10 to 0.12 0.84 0.002 -0.07 to 0.07 0.96 

ACE-inhibitor at admission -0.12 -0.23 to -0.004 0.04    

Systolic BP, mmHg -0.11 -0.22 to 0.0001 0.05    

Diastolic BP, mmHg -0.14 -0.25 to -0.03 0.01    

Heart rate, bpm -0.21 -0.32 to -0.10 <0.001 -0.08 -0.15 to -0.007 0.031 

TIMI flow pre-PCI 0/1 vs 2/3 (ref) -0.14 -0.25 to -0.03 0.01 -0.08 -0.15 to -0.010 0.026 

Anterior myocardial infarction* -0.18 -0.29 to -0.07 <0.001    

log ASAT at presentation, U/L -0.15 -0.26 to -0.03 0.01    

ALAT at presentation, U/L -0.11 -0.23 to -0.003 0.05    

Alkaline phosphatase at presentation, U/L -0.12 -0.24 to 0.002 0.06    
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log Glucose at presentation, mmol/L -0.11 -0.22 to 0.001 0.05    

log LDH at presentation, U/L -0.11 -0.22 to 0.004 0.06    

Serum free thiols at baseline, µmol/L -0.85 -0.92 to -0.78 <0.001 -0.80 -0.87 to -0.783 <0.001 

P-values ≤0.05 are bold printed.  

* defined as culprit in left anterior descending coronary artery. Next to age, sex and treatment allocation, variables with P- values <0.1 in age- and sex-

adjusted analyses were considered for multivariable regression analysis. In the forward regression model instead of heart rate and TIMI flow pre-PCI, LDH 

was a significant predictor, however the overall R2 of that model was lower.   

Abbreviations: ACE, angiotensin converting enzyme; ALAT, Alanine transaminase; ASAT, Aspartate transaminase; BP, blood pressure; bpm, beats per minute; 

CI, confidence interval; LDH, lactate dehydrogenase; PCI, percutaneous coronary intervention; std, standardized; TIMI, Thrombolysis in Myocardial 

Infarction. 
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Table 2 | Associations of free thiols with LVEF at 4 months follow-up 

 Univariable Age- and sex-adjusted Multivariable # 

Variable β 95% CI P-value β 95% CI P-value β 95% CI P-value 

Free thiols before PCI*  -1.02 -2.20 to 0.15 0.088   > 0.10    

Δ Free thiols, first 24 hours* 1.34 0.40 to 2.28 0.005 1.31 0.37 to 2.25 0.007^ 0.76 -0.19 to 1.71 0.12^ 

Free thiols at 24 hours* 1.75 0.27 to 3.24 0.021 1.97 0.43 to 3.51 0.012 1.11 -0.41 to 2.64 0.15 

Free thiols at 2 weeks* 1.87 -0.04 to 3.78 0.054 1.98 0.05 to 3.90 0.044 1.29 -0.59 to 3.18 0.18 

Free thiols at 4 months*   > 0.10   > 0.10    

β: unstandardized regression coefficient 

P-values ≤0.05 in bold print.  

* Free thiols at each time point were modelled separately, β values are given for every 100 µmol/L increase in free thiols. 

# Next to age, sex and metformin treatment, the following variables were entered into the stepwise model: TIMI-flow pre and post-PCI, myocardial blush 

grade, anterior myocardial infarction (defined as culprit in left anterior descending coronary artery), ischemic time and log NT-proBNP.  

^ The full regression model is depicted in Table S4. 

Abbreviations: CI, confidence interval: PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction. 
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Table 3 | Associations of free thiols with LVEF in subgroups with and without reperfusion at presentation 

 Univariable Age- and sex-adjusted Multivariable * 

Variable β 95% CI P-value β 95% CI P-value β 95% CI P-value 

Δ free thiols, first 24 hours, per 100 µmol/L         

No reperfusion, TIMI 0 or 1 1.50 0.27 to 2.72 0.017 1.44 0.22 to 2.66 0.021^ 1.11 -0.06 to 2.28 0.063^ 

Reperfusion, TIMI 2 or 3 0.20 -1.32 to 1.71 0.80 0.24 -1.27 to 1.74 0.75^   >0.10^ 

Free thiols 24 hours, per 100 µmol/L         

No reperfusion, TIMI 0 or 1 2.83 0.85 to 4.82 0.005 2.73 0.68 to 4.77 0.009 1.79 -0.20 to 3.78 0.078 

Reperfusion, TIMI 2 or 3 -0.56 -2.66 to 1.54 0.59 0.05 -2.14 to 2.24 0.96   >0.10 

β: unstandardized regression coefficient. P-values ≤0.05 in bold print.   

* Next to age, sex and metformin treatment, the following variables were entered into the multivariable model: TIMI flow post-PCI, myocardial blush grade, 

anterior myocardial infarction (defined as culprit in left anterior descending coronary artery), ischemic time and log NT-proBNP.  

^ The full regression model is depicted in Table S5.  

Abbreviations: CI, confidence interval; PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction. 
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Figure 1 | Associations between delta free thiols and LVEF by TIMI flow pre-PCI subgroups 
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Plot showing unadjusted regression lines with 95% confidence interval and LVEFs (n=237) for each individual data point of delta free thiols during the first 24 

hours after admission on a log 2 scale. Plots were depicted separately for patients with TIMI flow pre-PCI of 0/1 at presentation with STEMI (left panel) and 

for patients with TIMI flow pre-PCI of 2/3 (right panel). Abbreviations: LVEF, left ventricular ejection fraction; STEMI, ST-segment elevation myocardial 

infarction; PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction. 
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Highlights 

 

 Free thiols (FT) are antioxidants and their serum levels reflect oxidative stress 
 

 FT depletion post-PCI is associated with larger infarct size and lower LVEF 
 

 Associations of FT with outcomes were diluted in multivariable analysis  
 

 Associations of FT with outcomes were stronger in patients presenting without reperfusion 
 

 FT may have a therapeutic potential in acute myocardial infarction 
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