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Gradient Tracking for Coalitional Aggregation of Wind Power

Stefanny Ramirez1 and Dario Bauso2

Abstract— In this work we study coalition formation for a
set of independent wind power producers. The wind power
producers bid a contract in a day-ahead market, and they wish
to determine the optimal contract that maximizes their expected
profit. To cope with the volatility of the wind, the producers
can form coalitions and aggregate their power production. We
consider a communication topology and we assume that each
wind power producer gets information about the wind powers
realisation in the network through the contracts bidden by
its neighbours. To determine the optimal contract for each
coalition, we use a data learning approach based on gradient
tracking. We prove that, for each coalition, the producers
converge to the optimal contract for such a coalition. From the
optimal contract we obtain the profit of each coalition which
represents the coalitions’ values of the resulting coalitional
game. Then, we design a stabilizing allocation mechanism based
on the Shapley value.

I. INTRODUCTION

The energy generated by the wind can be very uncertain
due to its volatility. In this work, we study the coalition
formation for a set of independent wind power producers. We
show that aggregate production may reduce the risk deriving
from the volatility of the wind. We assume that the producers
that belong to a coalition aggregate their wind power produc-
tion and they determine the optimal contract that maximizes
the expected profit of such a coalition. Coalitional games for
the aggregation of wind power have been already studied by
Baeyens et al. [1], [2], [3]. The main difference with respect
to these works is that we obtain the optimal contract by
taking into account a communication topology between the
producers. We assume that each producer gets information
about the contracts bidden by its neighbours. We then apply a
distributed consensus mechanism based on gradient tracking,
and we prove that the producers converge to the optimal
contract in a distributed fashion.

In the literature different versions of the gradient tracking
algorithm have been studied. In [4], [5], [6] the authors
apply the idea of Newton-Raphson direction to track the
gradient. In [7] directed networks with lossy communication
are analysed. In [8], [9] strongly convex cost functions are
studied. In this paper we prove that our profit function is
concave and that it has a Lipschitz continuous gradient.
Furthermore, we consider an undirected graph and we adapt
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the gradient tracking algorithm by weighting the neighbours
of each producer according to the direction of their gradients.

We analyse the aggregation of the wind power generated
by independent producers from the perspective of trans-
ferable utilities coalitional games [10]. The value of the
coalition is given by the maximum average of the expected
profits of the producers in the coalition with respect the
contract that they offer jointly. We apply the Shapley value
as an allocation mechanism to distribute the profit among the
members of the coalition.

The paper is organized as follows. In Section II we
explain the Coalitional Game. In Section III we introduce the
problem and model. In Section IV we present the gradient
tracking algorithm. In Section V we provide the main results.
In Section VI we illustrate our results by a numerical
example. Finally, in Section VII we provide conclusions and
future directions.

II. COALITIONAL GAME
Coalitional games with transferable utilities are repre-

sented by the couple ⟨W,v⟩, where W = {1,2, . . . ,N} is the
set of players, which in this case corresponds to the set of
wind power producers. A coalition is any subset S ⊆ W ,
and the cardinality of a coalition is denoted by |S|. The
set W is also called the grand coalition. Let us denote by
2W the set of all possible coalitions of W . On the other
hand, v : 2W −→ R is the value function that assigns a
real value to each coalition S ⊆W . The computation of the
value of the coalition, denoted by v(S), is explained in the
following section. The main challenge in coalitional games
is to determine the way in which the value of the coalition is
allocated among the members of the coalition in a fair way.
Let us denote by x ∈RN the vector that determines the profit
allocation, where each entrance xi is the amount assigned
to player i ∈ S. We assume that the allocation vector is
determined by an external entity. Let us recall the following
definitions which will be used in the analysis of the game.

Definition 1: The Core of the game ⟨W,v⟩ is the set of
allocations that satisfy efficiency, individual rationality and
stability with respect to subcoalitions. It can be formally
defined as follows:

C (v) =

{
x ∈ R| ∑

i∈W
xi = v(W ), ∑

i∈S
xi ≥ v(S), ∀S ⊆W

}
.

(1)
Definition 2: A coalitional game ⟨W,v⟩ is supperadditive

if for any pair of disjoint coalitions S, T the following is
satisfied: v(S)+ v(T )≤ v(S∪T ), ∀S,T ⊂W, S∩T = /0.

Definition 3: A map α : 2W −→ [0,1] is balanced if for
all i ∈W , we have ∑S∈2W α(S)1i∈S = 1.
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Definition 4: A game ⟨W,v⟩ is a balanced game if for any
balanced map α , it holds ∑S∈2W α(S)v(S)≤ v(W ).

The following results highlight some properties on the
coalitional game ⟨W,v⟩. These results are borrowed and
adapted from [2].

Lemma 1: The coalitional game ⟨W,v⟩ is superadditive.
Proof: The proof follows from Lemma 22 in [2].

A consequence of the superadditivity of the game is that
the producers increase their expected profit by forming a
coalition and jointly offer a contract. The larger the coalition
the higher the expected profit. However, this property is not
sufficient to guarantee the existence of a nonempty core. The
following result states that the game is balanced. Based on
the Bondareva-Shapley theorem, it implies that the core of
the game is not empty and that there exists a stable payoff
allocation for the grand coalition.

Lemma 2: Let α : 2W −→ [0,1] be an arbitrary balanced
map. The coalitional game ⟨W,v⟩ is balanced.

Proof: The proof follows from Lemma 24 in [2].
To allocate the expected profit we apply the well known

allocation mechanism based on the Shapley value. The
allocation to player i ∈W , is then computed as follows:

xi = ∑
S⊂W/{i}

|S|!(N −|S|−1)!
N!

[v(S∪{i})− v(S)]. (2)

Note that the Shapley value involves all the permutations
of the N players. It can be computationally very expensive
as we increase the number of players. There exist different
algorithms to approximate the Shapley value and make its
computation more efficient [11], [12]. However, the study of
these algorithms is outside of the scope of this research.

III. PROBLEM STATEMENT AND MODEL

Let us consider a network of N wind power producers. The
topology of the network is represented by an undirected and
weighted graph G(W,E), where W = {1,2, . . . ,N} is the set
of nodes which correspond to the wind power producers. The
set E ⊆W ×W denotes the edges connecting the nodes. For
each (i, j)∈ E we assign a non-negative weight ai j, i, j ∈W .
The weights ai j satisfy the following assumption.

Assumption 1: The weights ai j satisfy ∑ j∈W ai j = 1 for
all i∈W , and ∑i∈W ai j = 1 for all j ∈W . Furthermore, ai j = 0
if (i, j) /∈ E, and aii > 0 for all i ∈W .

To take into account the volatility of the wind, the power
generated by each producer i∈W at time t ∈R is modeled by
a scalar valued stochastic process wi(t) ∈ [0,Wi], where Wi
denotes the capacity of the wind-farm of producer i. To
overcome the uncertainty of the wind, we assume that the
wind power producers can form coalitions and aggregate
their power outputs. Let us denote by S ⊆ W a generic
coalition of wind power producers. The aggregated power
of coalition S at time t is given by wS(t) = ∑i∈S wi(t), where
wS(t)∈ [0,WS] is also a scalar valued stochastic process, and
WS = ∑i∈S Wi. We assume that at the beginning of every
time interval τ , coalition S bids a contract denoted by Cτ(S).
We then have a two-settlement market system, consisting of
the ex-ante forward market and the ex-post mechanism to

penalize any contract deviations from the real wind power
produced by the coalition. Let Π(Cτ(S),wS,q,λ ) be the profit
of a coalition S⊆W , for an offered contract Cτ(S) in the time
interval τ . Let us denote by tτ

0 and tτ
f the first and last time

instants of interval τ . The profit is computed as follows:

Π(Cτ(S),wS,q,λ ) =
∫ tτ

f

tτ
0

pCτ(S)−q[Cτ(S)−wS(r)]+

−λ [wS(r)−Cτ(S)]+dr, (3)

where p ∈ R+ is the settlement price paid in the day-ahead
forward market, and (q,λ ) ∈ R2

+ are the imbalance prices.
If there is a negative deviation from the contract offered
ex-ante, namely Cτ(S)−wS(r) < 0, the imbalance price λ

has to be paid ex-post. If there is a positive deviation from
the contract offered ex-ante, namely Cτ(S)−wS(r)> 0, the
imbalance price q has to be paid ex-post. The imbalance
prices (q,λ ) are also affected by volatility, and we assume
that they are statistically independent from the wind power
wS(t). We model these prices as random variables with
expected value denoted by µq and µλ , where µλ ≤ p ≤ µq.
In addition, x+ = max{x,0}, x ∈ R.

Let us denote by J(Cτ(S)) = E[Π(Cτ(S),wS,q,λ )] the
expected profit of coalition S, for an offered contract Cτ(S)
in the time interval τ . The wind power producers aim to
obtain the optimal contract such that their expected profit in
every time interval τ is maximized. We assume that each
wind power producer i ∈W has different information about
the wind power generated in the past by coalition S ⊆ W ,
and as a result each producer has a different probability
distribution associated with it. Let us denote by fi,S(w, t)
the probability distribution function of producer i for the
wind power generated by coalition S at time t. The expected
profit from the perspective of producer i for coalition S for
a contract Cτ(S), denoted by Ji,S(Cτ(S)), is given by:

Ji,S(Cτ(S)) = Ei,S[Π(Cτ(S),wS,q,λ )]

=
∫ tτ

f

tτ
0

[
pCτ(S)−µq

∫
∞

0
[Cτ(S)−w]+ fi,S(w, t)dw

−µλ

∫
∞

0
[w−Cτ(S)]+ fi,S(w, t)dw

]
dt. (4)

The optimization problem to solve is then as follows:

max
Cτ (S)

1
|S| ∑i∈S

Ji,S(Cτ(S)), s.t. Cτ(S) ∈ R+, (5)

where each expected profit function Ji,S : R+ −→R is known
only by producer i, for all i ∈W . The solution of (5) gives
the value of the coalition v(S). To solve problem (5) for each
coalition S ⊆W we apply a gradient tracking method.

IV. GRADIENT TRACKING

We assume that each wind power producer only gets
information about the contracts bidden by its neighbours.
As it is explained later, this assumption is necessary to
ensure convergence among the producers. Based on this
information each producer i ∈ W estimates a contract for
coalition S in each time interval τ , denoted by Cτ

i (S). The
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gradient tracking algorithm consists in the implementation
of a distributed consensus-based mechanism to track the
gradient of the expected profit function of a coalition S,
such that for each time interval τ in which the contract is
bidden the members of the coalition converge to the optimal
contract Cτ∗(S). To understand this mechanism, first let us
introduce the gradient method. The idea behind this method
is to find the optimal contract Cτ∗(S) that maximizes the
expected profit J(Cτ(S)) for coalition S in the time interval
τ by learning from the contracts of the neighbours of each
producer, and following the direction of the gradient of
the expected profit function around the contract Cτ(S). We
assume that the wind power producers in the network share
information with their neighbours about their contracts at
discrete time intervals. Every time the producers share this
information a new iteration of the algorithm is performed,
which is denoted by k. The value of k is reinitialized at zero
at the beginning of every time interval τ , namely at tτ

0 . At the
end of each time interval τ the producers aim to converge to
the optimal contract of the coalition, which is given by:

Cτ∗(S) = arg max
Cτ (S)∈R+

1
|S| ∑i∈S

Ji,S(Cτ(S)). (6)

In the centralized gradient method, a new value of the
contract for coalition S ⊆W is obtained as follows:

Ck+1(S) =Ck(S)+ γ ∑
h∈S

∇Jh,S(Ck(S)), (7)

where ∇Jh,S(Ck(S)) is the gradient of the profit function of
producer h at Ck(S). Let us denote by Wi the set of neigh-
bours of producer i. In the distributed consensus mechanism,
at each iteration k producer i∈W obtains its own contract for
coalition S and takes the weighted average of the contracts
obtained by its neighbours for this coalition, denoted by
Ck

j (S) for all j ∈Wi. Hence, (7) can be rewritten as follows:

Ck+1
i (S) = ∑

j∈Wi

ai jCk
j (S)+ γ ∑

h∈S
∇Jh,S(Ck

h(S)). (8)

Note that in (8) the term ∑ j∈Wi ai jCk
j (S) enforces convergence

among the wind powers producers in S ⊆ W . On the other
hand, the gradient term ∑h∈S ∇Jh,S(Ck

h(S)) represents global
information for the coalition S. However, each producer i∈ S
only has access to local information from its neighbours. In
the gradient tracking method the gradient term is tracked
by a local ascent direction, which is updated at every
iteration k through a dynamic average consensus iteration.
Let us denote by yk

i (S) the local direction of the wind power
producer i ∈W at iteration k. Thus, the value of the contract
for producer i at the next iteration is updated as follows:

Ck+1
i (S) = ∑

j∈Wi

ai jCk
j (S)+ γyk

i (S). (9)

In addition, the dynamic average consensus to update the
local direction and track the gradient is computed as follows:

yk+1
i (S) = ∑

j∈Wi

ai jyk
j(S)+

(
∇Ji,S(Ck+1

i (S))−∇Ji,S(Ck
i (S))

)
.

(10)

At every iteration k, each producer has its own belief
about the direction of the expected cost function for coalition
S, as well as the information about the direction of the
expected costs obtained by its neighbours. Let us separate
the set of neighbours of producer i in two disjoint subsets.
Subset Wi(k)+ represents the set of neighbours of producer i
that have a local direction yk

j(S), j ∈ Wi, greater than the
local direction of producer i at iteration k. Similarly, the
subset Wi(k)− represents the set of neighbours of producer i
that have a local direction yk

j(S), j ∈ Wi, lower than or
equal to the local direction of producer i at iteration k. We
assume that, to reach consensus, at each iteration k each
wind power producer i assigns a different weight θ k

i to its
neighbours depending on which subset they belong to. Let
θ k

i =
|W−

i (k)|
|Wi| be the fraction of neighbours in the subset

W−
i (k). Equation (10) can be rewritten as follows:

yk+1
i (S) =θ

k
i ∑

j∈W−
i (k)

ai jyk
j(S)+(1−θ

k
i ) ∑

j∈W+
i (k)

ai jyk
j(S)

+
(

∇Ji,S(Ck+1
i (S))−∇Ji,S(Ck

i (S))
)
. (11)

The gradient tracking method applied in this research from
the perspective of a generic producer i for a coalition S ⊆W
is explicitly explained in Algorithm 1.

Algorithm 1 Gradient tracking
Input: Number of players N, topology of the network,
prices p, expected value of imbalance prices (µq,µλ ), step
size γ , probability distribution function of the wind
Output: Contract Cτ

i (S), and gradient tracker yτ
i (S), i ∈ S

Initialization: C0
i (S) and y0

i (S) = ∇Ji,S(C0
i (S))

1: for every k = 0,1, . . . do
2: Gather Ck

j (S) from neighbours j ∈Wi

3: Gather yk
j(S) from neighbours j ∈Wi

4: Obtain the sets W−
i (k) and W+

i (k)
5: Compute θ k

i
6: Update Ck+1

i (S) according to (9)
7: Update yk+1

i (S) according to (11)
8: end for

It is worth mentioning that in order to apply Algorithm 1
the expected profit function Ji,S(·) has to be concave.

V. MAIN RESULTS

In this section we analyse the properties of the expected
profit function Ji,S(·), and we show the convergence of Algo-
rithm 1. Since the wind power producers share information
about their contracts at discrete time, let us discretize the
profit function (3) with respect to time as follows:

Π(Ck
i (S),wS,q,λ ) =

m=tτ
f

∑
m=tτ

0

[
pCk

i (S)−q[Ck
i (S)−wS(m)]+

−λ [wS(m)−Ck
i (S)]

+
]
. (12)
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Let us denote by fi,S(w,m) the probability distribution
function estimated by producer i for coalition S at time m.
The corresponding expected profit is then given by:

Ji,S(Ck
i (S)) = Ei,S[Π(Ck

i (S),wS,q,λ )] =
m=tτ

f

∑
m=tτ

0

[
pCk

i (S) (13)

−µq

(∫ Ck
i (S)

0

(
Ck

i (S) fi,S(w,m)−w fi,S(w,m)
)

dw

)

−µλ

(∫
∞

Ck
i (S)

(
w fi,S(w,m)−Ck

i (S) fi,S(w,m)
)

dw
)]

.

Lemma 3: The expected profit function of producer i,
Ji,S(Ck

i (S)) = Ei,S[Π(Ck
i (S),wS,q,λ )] is concave.

Proof: The first derivative of Ji,S(Ck
i (S)) with respect

to Ck
i (S) is:

d
dCk

i (S)
Ji,S(Ck

i (S)) =
m=tτ

f

∑
m=tτ

0

[
p−µq

∫ Ck
i (S)

0
fi,S(w,m)dw

+µλ

(
1−

∫ Ck
i (S)

0
fi,S(w,m)dw

)]
. (14)

By computing the second derivative we obtain:

d2

dCk
i (S)2

Ji,S(Ck
i (S)) =

m=tτ
f

∑
m=tτ

0

−(µq +µλ ) fi,S(Ck
i (S),m)≤ 0.

(15)
Hence the expected profit function Ji,S(Ck

i (S)) has a max-
imum and the function is concave.

Note that the expected profit is a scalar-value function
that takes values in R+. Then, the gradient corresponds to
the derivative of the function, namely:

∇Ji,s(Ck
i (S)) =

d
dCk

i (S)
Ji,S(Ck

i (S)). (16)

Lemma 4: The expected profit function of producer i,
Ji,S(Ck

i (S)) has a Lipschitz continuous gradient with con-
stant L > 0, such that:

|∇Ji,S(Ck
i (S))−∇Ji,S(Cℓ

i (S))| ≤ L|Ck
i (S)−Cℓ

i (S)|, (17)

∀Ck
i (S),C

ℓ
i (S) ∈ R+,

where the gradient ∇Ji,S(·) is defined as in (16).
Proof: From (13) we have that for any coalition S ⊆W

the expected profit function Ji,S(·) is continuous in the
interval [0,WS]. Furthermore, as we can see in the proof of
Lemma 3 the first and second derivative of (13) exist, they are
continuous and well defined in the interval [0,WS]. Then, the
derivative of the expected profit function is differentiable. Let
Ck

i (S),C
r
i (S),C

ℓ
i (S) ∈ R+, such that Ck

i (S) ≤ Cr
i (S) ≤ Cℓ

i (S).
Hence, by applying the mean value theorem we
have that ∇Ji,S(Ck

i (S))−∇Ji,S(Cℓ
i (S))

Ck
i (S)−Cℓ

i (S)
= ∇2Ji,S(Cr

i (S)) =⇒∣∣∣∣∇Ji,S(Ck
i (S))−∇Ji,S(Cℓ

i (S))
Ck

i (S)−Cℓ
i (S)

∣∣∣∣ = ∣∣∇2Ji,S(Cr
i (S))

∣∣ . Note that from

the second derivative of the expected profit (15) we obtain∣∣∇2Ji,S(Cr
i (S))

∣∣ =

∣∣∣∣∑m=tτ
f

m=tτ
0
[−(µq +µλ ) fi,S(Cr

i (S),m)]

∣∣∣∣ =

∑
m=tτ

f
m=tτ

0
(µq + µλ ) fi,S(Cr

i (S),m) ≤ ∆τ(µq + µλ ), where

∆τ = tτ
f − t0

f . Then we have that
∣∣∣∣∇Ji,S(Ck

i (S))−∇Ji,S(Cℓ
i (S))

Ck
i (S)−Cℓ

i (S)

∣∣∣∣ ≤
∆τ(µq + µλ ) =⇒

∣∣∇Ji,S(Ck
i (S))−∇Ji,S(Cℓ

i (S))
∣∣ ≤

L
∣∣Ck

i (S)−Cℓ
i (S)

∣∣ , with constant L = ∆τ(µq + µλ ) > 0.
Hence, the gradient ∇Ji,S(Ck

i (S)) is Lipschitz continuous.
As a consequence of Lemma 3 and Lemma 4, since

Ji,S(Ck
i (S)) is concave we can conclude that the average of

the expected profit 1
|S| ∑i∈S Ji,S(Ck

i (S)) is also concave and
that it has a unique optimal value.

Before showing the convergence of Algorithm 1 to the
optimal contract Cτ∗(S) let us analyse the average of the
local solutions Ck

i (S), and the average of the trackers yk
i (k),

for all i ∈W . Let us denote by C̄k(S) the average of the local
solutions at iteration k and by ȳk(S) the average tracker:

C̄k(S) :=
1
N ∑

i∈W
Ck

i (S), (18)

ȳk(S) :=
1
N ∑

i∈W
yk

i (S). (19)

From (9) and (18), and since from Assumption 1
∑i∈W ai j = 1, the average of the contract for coalition S at
iteration k+1 is given by:

C̄k+1(S) =
1
N ∑

i∈W
Ck+1

i (S) =
1
N ∑

i∈W

[
∑
j∈Wi

ai jCk
j (S)+ γyk

i (S)

]

=
1
N ∑

j∈Wi

(
Ck

j (S) ∑
i∈W

ai j

)
+

1
N

γ ∑
i∈W

yk
i (S) = C̄k(S)+ γ ȳk(S).

(20)

Let us now analyse (19) for the special case θ k
i = 1.

Namely when all the producers have a local direction lower
than or equal to producer i ∈W , that is when W−

i =Wi. This
analysis for the special case is used later on in the proof of
Theorem 1. From (11), when θ k

i = 1 we have:

ȳk+1(S) =
1
N ∑

i∈W
yk+1

i (S)

=
1
N ∑

i∈W

[
∑
j∈W

ai jyk
j(S)+

(
∇Ji,S(Ck+1

i (S))−∇Ji,S(Ck
i (S))

)]
= ȳk(S)+

1
N ∑

i∈W

(
∇Ji,S(Ck+1

i (S))−∇Ji,S(Ck
i (S))

)
. (21)

From equation (21), and knowing from Algorithm 1 that the
initialization of the tracking is y0

i (S) = ∇Ji,S(C0
i (S)), for the

special case θ k
i = 1 we obtain that:

ȳk+1(S)− 1
N ∑

i∈W
∇Ji,S(Ck+1

i (S)) = ȳk(S)− 1
N ∑

i∈W
∇Ji,S(Ck

i (S))

= ȳk−1(S)+
1
N ∑

i∈W

(
∇Ji,S(Ck

i (S))−∇Ji,S(Ck−1
i (S))

)
− 1

N ∑
i∈W

∇Ji,S(Ck
i (S)) = ȳk−1(S)−∇Ji,S(Ck−1

i (S)) = . . .

=ȳ0(S)− 1
N ∑

i∈W
∇Ji,S(C0

i (S)) = 0. (22)
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We now have all the necessary information to prove
that the result from Algorithm 1 converges to the optimal
contract, as it is stated in the following theorem.

Theorem 1: The local solutions of the individual con-
tracts for a coalition S, Ck

i (S) for all i ∈ W , obtained from
Algorithm 1 converge asymptotically to the optimal con-
tract Cτ∗(S), namely limk−→∞ |Ck

i (S)−Cτ∗(S)|= 0, ∀i ∈ S.
Proof: We know that Ji,S(Ck

i (S)) is a concave function.
Therefore, its gradient is monotonically decreasing with
respect to Ck

i (S). Let us analyse the gradient of the expected
profit ∇Ji,S(Ck

i (S)). From (15) we have:

∣∣∣∇Ji,S(Ck
i (S))

∣∣∣=
∣∣∣∣∣∣
m=tτ

f

∑
m=tτ

0

[
p−µq

∫ Ck
i (S)

0
fi,S(w,m)dw

+µλ

(
1−

∫ Ck
i (S)

0
fi,S(w,m)dw

)]∣∣∣∣∣≤
m=tτ

f

∑
m=tτ

0

(p+µλ ).

In Algorithm 1 we track the gradient by following its
local direction. For a small enough step size γ , the gradi-
ent ∇Ji,S(Ck

i (S)) is monotonic with respect to the iterations.
Hence, the average of the gradient 1

N ∑i∈W ∇Ji,S(Ck
i (S)) is

also monotonic and bounded, and we can ensure that it
converges. Furthermore, since the expected cost Ji,S(Ck

i (S))
is concave, for a small enough step size γ , the absolute value
of the gradient |∇Ji,S(Ck

i (S))| decreases with the iterations.
This can be captured by the following expression:

1
N ∑

i∈W
lim

k−→∞

∣∣∣∇Ji,S(Ck+1
i (S))

∣∣∣= 1
N ∑

i∈W
lim

k−→∞

∣∣∣∇Ji,S(Ck
i (S))

∣∣∣= 0.

(23)

From the previous equality it is clear that in the
limit the expected profit functions of all producers
have the same direction of the gradient. Therefore,
W−

i = Wi, and limk−→∞ θ k
i = 1. From (22) we know

that when θ k
i = 1, the average of the gradient tracking

ȳk
S = 1

N ∑i∈W ∇Ji,S(Ck
i (S)). In addition, from (23) we have

that limk−→∞
1
N ∑i∈W |∇Ji,S(Ck

i (S))| = 0. Hence, in the limit
the average of the optimal contract given by (20) converges.
Namely, limk−→∞ C̄(S)k+1 = limk−→∞ C̄k(S) + γ ȳk

i (S) =
limk−→∞ C̄k(S)+ γ

1
N ∑i∈W ∇Ji,S(Ck

i (S)) = limk−→∞ C̄(S)k.
On the other hand, from Lemma 3 and Lemma 4

we know that the optimal contract Cτ∗(S) is unique.
In addition, at the optimal value the gradient of
the average of the expected profit function (5) is
equal to zero, then we have 1

N ∑i∈W ∇Ji,S(Cτ∗(S)) =
limk−→∞

1
N ∑i∈W ∇Ji,S(Ck

i (S)) =⇒ limk−→∞ C̄k(S) =Cτ∗(S).
By definition of C̄k(S), and since the gradient is equal

to zero only at the unique optimal contract Cτ∗(S), we
obtain that limk−→∞ C̄k(S) = limk−→∞

1
N ∑i∈W Ck

i (S) =
Cτ∗(S) =⇒ limk−→∞

∣∣ 1
N ∑i∈W Ck

i (S)−Cτ∗(S)
∣∣ = 0.

We know that for all i ∈ W the contracts Ck
i (S)

converge to the same value in the limit. Then, we
have that 1

N ∑i∈W limk−→∞

∣∣Ck
i (S)−Cτ∗(S)

∣∣ = 0 =⇒
limk−→∞

∣∣Ck
i (S)−Cτ∗(S)

∣∣ = 0. Therefore, limk−→∞ Ck
i (S) =

Cτ∗(S).

VI. NUMERICAL ANALYSIS

In this section we apply the model and results obtained
in the previous sections to an example of five wind power
producers, namely W = {1,2,3,4,5}. We generate randomly
the stochastic weighted network with five nodes. The com-
munication topology of this network is depicted in Figure 1.

1 5

4

32

0.426
0.3220.247

0.415

0.246
0.17

0.2590.005

0.092 0.093

0.145

0.495

Fig. 1. Communication topology of five wind power producers.

We consider that the settlement price is p = 7e, and the
expected value of the imbalanced prices µq and µλ are 10
and 5e, respectively. We assume that after sharing the wind
information, each producer approximates the wind power
model by a normal distribution. The parameters estimated
by the producers for each coalition, based on the size of the
coalition, are determined according to Table I. The values of
the mean lie inside the interval [µ,µ]. Similarly the values
of the standard deviation lie inside the interval [σ ,σ ].

TABLE I
WIND DISTRIBUTIONS FOR EACH COALITION S ⊆W .

Coalition’s
size µ µ σ σ

1 5 15 1 3
2 10 30 1 3
3 20 40 1 3
4 30 50 1 3
5 40 65 1 3

After applying Algorithm 1 with a step size γ = 0.1, we
observe that for each coalition, the producers converge to
the optimal contract (Figure 2). Furthermore, in Figure 3 it
is possible to see how the gradient tracking of the expected
profit of each producer i ∈W converges to zero.

The allocations to the players are obtained by applying the
Shapley value (2). In Figure 4 we can observe the benefit of
aggregation. It depicts the allocation xi to each individual
wind power producer in the grand coalition. The blue bar
represents the value of the individual player v({i}) obtained
based on its individual expected profit. The red bar represents
the additional amount gained by the producer when it belongs
to the grand coalition, namely xi − v({i}).

6387

Authorized licensed use limited to: University of Groningen. Downloaded on January 17,2024 at 11:36:17 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20 30 40 50

Iteration k

45

50

55

60

65

70

C
o

n
tr

a
c
t 

C
(W

)

0 2 4 6

50

60

70

Producer 1

Producer 2

Producer 3

Producer 4

Producer 5

Fig. 2. Convergence to the optimal contract Cτ∗(W )
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Fig. 3. Convergence of the gradient tracking yi(W ) to zero
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Fig. 4. Benefit of aggregation represented by the allocation xi. The blue
bar corresponds to the value of the individual player v({i}), and the red bar
the amount gained by the player in the coalition xi − v({i}).

VII. CONCLUSIONS

In this work we analyse the coalition formation of a set
of independent wind power producers. To reduce the risk
deriving from the volatility of the wind we assume that the
producers bid a contract jointly in a day-ahead market, and
that they wish to determine the optimal contract that maxi-
mizes their expected profit. To determine the optimal contract
for each coalition we use a data learning approach that
considers a distributed consensus-based mechanism, called
gradient tracking. To develop this mechanism we take into
account the communication topology of the producers and
we assume that each wind power producer gets information
about the contracts bidden by its neighbours. We prove that,
for each coalition, the producers converge to the optimal
contract for such a coalition. From the optimal contract we
obtain the profit of each coalition, which represents the coali-
tions’ values of the resulting coalitional game. To distribute
the profit among the members of the coalition we make use of
the Shapley value as an allocation mechanism. Future work
involves the study of an approximation mechanism for the
computation of the Shapley value, the analysis of a dynamic
coalitional game as well as a dynamic allocation, and the
application of a time varying step size for the implementation
of the gradient tracking algorithm.
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