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We (the indivisible divinity that works in us) have dreamed the world. We have dreamed it
resistant, mysterious, visible, ubiquitous in space and firm in time, but we have allowed

slight, and eternal, bits of the irrational to form part of its architecture so as to know that it
is false.

Jorge Luis Borges, Avatars of the Tortoise

Blindness has not been for me a total misfortune; it should not be seen in a pathetic way. It
should be seen as a way of life: one of the styles of living.

Jorge Luis Borges, Blindness
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SUMMARY

In evolutionary biology, adaptive evolution is often envisaged as a "Blind Watchmaker".
Like a watchmaker, evolution can create complex and intricate systems, but it is blind
because it is an undirected process that does not follow a laid-out plan. Evolution thus
proceeds by trial and error and can find solutions only to present circumstances. This per-
spective, however, overlooks a crucial aspect of the evolutionary process. Organisms have
developed features throughout their evolutionary history that enhance their "evolvabil-
ity," allowing them to adapt to new conditions more effectively. Hence, evolution is not as
blind as standard evolutionary theory depicts it. There are numerous examples of traits
that do not confer an immediate advantage but instead promote long-term adaptability.
For instance, bacteria can increase their mutation rate under stressful conditions to has-
ten the production of new adaptive mutants, and developmental systems are structured
in such a way that random genetic changes are biased toward functional phenotypes. Life
has existed on Earth for 3.5 billion years and throughout this time, conditions have contin-
ually changed, and life has continually adapted to these changes by evolving. Accordingly,
the ability to adapt to new circumstances through evolution, i.e. evolvability, must be
a crucial factor in the success of biological lineages. However, standard evolutionary
biology does little to accommodate this idea within its framework. It does not enquire as
to why there could be organisms that are more evolvable than others, nor as to how these
differences in evolvability could be achieved. I argue that when we consider organisms as
interdependent and interconnected systems, instead of the haphazard combination of
components, it is possible to see how they have accumulated evolutionary "memories" of
past selection within their architecture. These memories can be invoked when adapting
to present-day challenges. Under this perspective, evolvability is incorporated into the
organisms’ architecture and evolution becomes more akin to a "Reminiscent Architect"
than to a "Blind Watchmaker".

The purpose of this thesis is to explore the role of organismal architecture in evolv-
ability and to incorporate these concepts into a more cohesive theoretical framework.

Chapter 1 introduces the concept of evolvability, and gives a general overview of
the themes of this thesis. It provides reasons for the importance of evolvability and
goes through the various definitions given to this term. It then moves on to analyse the
limitations of standard theory that make it difficult to study evolvability within its frame-
work. To facilitate the study of evolvability a new approach is proposed which focuses
on organismal architecture. Organismal architecture can accumulate information about
successful adaptations across long periods, making these past adaptations more readily
deployable when similar situations occur in the future. To achieve this new framework I
advocate for a multidisciplinary approach. Insights from evolutionary disciplines in the
computational fields are listed which already highlight the importance of architecture
in allowing evolvability. Chapter 1 concludes with a discussion of the methodological
approach taken in this thesis.

xiii
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Chapter 2 aims to provide a clearer framework for understanding the concept of evolv-
ability. Evolvability can refer to many different biological phenomena; this multifaceted
nature can sometimes cause misunderstandings about what one exactly means by this
term. To disentangle matters, the genetic, developmental and ecological factors that
influence evolvability are classified into three categories: factors that provide genetic
variation, factors that bias the effects of variation on fitness, and factors that shape the
selective process. Timescale is also important, as some evolvability factors exert effects
over many generations whereas others on a narrower timescale. We also distinguish
between mechanisms that broadly influence an organism’s genome and traits, versus
those with more restricted impact on specific adaptations. Additionally, we identify two
major perspectives on evolvability in the literature: as a general, enduring capacity of
lineages over evolutionary timescales, or focused on adapting to new environments or
niches. By providing this structured overview, the chapter clarifies some of the complexity
around evolvability and facilitates more accessible discussion among researchers, hoping
to minimise misunderstandings.

Chapter 3 addresses the second category mentioned above: factors that bias the
effects of variation on fitness. It is one of the central dogmas of biology that genetic
mutations are random concerning the “requirements” of natural selection. Yet, there
are many examples of adaptation-enhancing biases in the occurrence of phenotypic
variation. Employing simple models for the evolution of gene-regulatory networks, we
demonstrate how such adaptation-enhancing biases can readily evolve. Despite the
inherent randomness of the genetic mutation process, even small gene networks swiftly
evolved an architecture that influences the phenotypic effects of mutations. This bias
leads to a significant acceleration of adaptive evolution when the environment changes.
We call the specific configuration of the network that translates random genetic mutations
into evolution-enhancing phenotypic effects a "mutational transformer". Moreover, we
identify two different types of mutational transformers: "mutational amplifiers", which
allow large changes in the phenotype through few mutations (amplifying their effect),
and "mutational canalisers", which instead allow for the switching between two different
phenotypes via few mutations (effectively canalising mutations in one of two outcomes).

Chapter 3 is followed by two "intermezzos". Both are theoretical contributions to
published articles, which are included in this thesis because they helped to shape my
views on organismal architecture and formed the starting point of other thesis chapters.

In Chapters 2 and 3, I plead for a mechanistic approach to modelling evolutionary
processes. In Intermezzo 1, I sketch such an approach for the study of the evolution and
the evolutionary consequences of non-genetic inheritance. I first provide an overview
of the various theoretical approaches to incorporate non-genetic inheritance in an evo-
lutionary framework, highlighting their strengths and weaknesses. I then describe a
more mechanistic model consistent with my methodology that can incorporate recent
molecular and evolutionary insights on non-genetic inheritance.

Intermezzo 2 is the modelling component of an empirical study that demonstrates
experimentally that parasitic wasps can induce their fat metabolism. However, according
to conventional wisdom, they should have lost the corresponding metabolic pathway
millions of years ago. We argue that the wasps never really lost the trait, but simply
plastically switched it off for long periods of time. But then the question arises: how can
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functional plasticity be maintained if it is only sporadically employed? To answer this, we
developed a simple model for a plastic switch which can turn a metabolic pathway on or
off. We demonstrate that such a switch can readily evolve and subsequently stably persist
despite mutational erosion, even if the switch is rarely used.

Chapter 4 expands on the study from Intermezzo 2 and investigates how complex
adaptations can persist even when selection occurs only sporadically. Many organisms
possess adaptations that are beneficial only occasionally, once every few generations. The
study aims to understand how such adaptations evolve and remain intact despite being
eroded by genetic drift and the accumulation of mutations. Previous research on this
topic has mainly focused on simple traits, but most adaptations in nature are complex. To
address this, I conducted simulations to study the evolution of gene-regulatory networks
encoding for traits varying in complexity. It turned out that complex adaptations readily
emerge and remain stable at high quality for thousands of generations if the sporadicity
of selection is moderate (selection occurs once every 5 or 10 generations). When selection
is more infrequent (once every 100 generations), the adaptation still emerges and persists,
but the performance of the evolved networks is of lower quality. More complex network
architectures are able to maintain higher fitness, particularly when the selective task is
intricate. Hence, complex adaptations can arise and persist over extended periods, even
when they are fine-tuned only sporadically by selection.

In Chapter 5, I use biological insights to improve the design of Genetic Programming
algorithms used in machine learning. Genetic programming is a branch of computer
science which uses evolutionary algorithms to find new solutions to computational
problems. Specifically, I propose a new mutation method called Facilitated Mutation,
which enhances the efficiency of “Grammar-Guided Genetic Programming”. This is a
Genetic Programming technique that uses sets of grammatical rules of varying relevance
to translate a solution from a genotype to a phenotype. Facilitated Mutation introduces
different mutation rates for different grammatical rules. More important rules mutate
less frequently to preserve the core functionality, while less important ones are allowed to
mutate more often and explore different variations. This idea is inspired by observations
in biology, where organisms maintain the functionality of critical genes while allowing
less important genes to undergo more rapid mutations. The effectiveness of Facilitated
Mutation is compared against a traditional mutation approach on the task of evolving
neural network optimisers for image classification. The results show that Facilitated
Mutation performs better in key metrics, improving overall optimisation performance,
generating higher-quality solutions, and discovering a greater variety of high-quality
solutions.

Finally, Chapter 6 contains an overall discussion of my thesis. This chapter includes
two parts. First, I outline some broad philosophical considerations developed during the
production of this thesis. I advocate for a more pluralistic view of evolutionary theory,
where different types of theory and approaches should not be seen as conflicting, but as
different angles from which one can tackle a scientific question. Second, Chapter 6 reviews
and summarises the research findings of this thesis and identifies interesting future
directions for this field of study. The work in this thesis advocates for the importance of
organismal architecture in retaining evolutionary memories, enabling organisms that are
shaped by a blind process to improve their capacity to adapt to new environments.





SAMENVATTING

In de evolutiebiologie wordt adaptieve evolutie vaak gezien als een "blinde horlogemaker".
Net als een horlogemaker kan evolutie complexe en ingewikkelde systemen creëren, maar
het proces is blind omdat het ongestuurd is en geen vastomlijnd plan volgt. Evolutie werkt
dus met vallen en opstaan en kan alleen oplossingen vinden voor de huidige omstandighe-
den. Dit perspectief ziet echter een cruciaal aspect van het evolutieproces over het hoofd.
Organismen hebben in de loop van hun evolutionaire geschiedenis eigenschappen on-
twikkeld die hun "evolueerbaarheid" vergroten, waardoor ze zich effectiever kunnen
aanpassen aan nieuwe omstandigheden. Evolutie is dus niet zo blind als de standaard
evolutietheorie zou doen vermoeden. Er zijn talloze voorbeelden van eigenschappen die
geen direct voordeel opleveren, maar in plaats daarvan het aanpassingsvermogen op de
lange termijn bevorderen. Bacteriën kunnen bijvoorbeeld hun mutatiesnelheid onder
stressvolle omstandigheden verhogen om de productie van nieuwe adaptieve mutanten
te versnellen en ontwikkelingssystemen zijn zo gestructureerd dat willekeurige genetische
veranderingen in de richting van functionele fenotypes worden gestuurd. Er bestaat al 3,5
miljard jaar leven op aarde en gedurende deze tijd zijn de omstandigheden voortdurend
veranderd en heeft het leven zich voortdurend aan deze veranderingen aangepast door
te evolueren. Het vermogen om zich aan te passen aan nieuwe omstandigheden door
middel van evolutie, oftewel evolueerbaarheid, moet dus een cruciale factor zijn in het
succes van biologische lijnen. De standaard evolutiebiologie heeft echter weinig mogeli-
jkheden om dit idee binnen haar raamwerk te plaatsen. Er wordt niet onderzocht waarom
er organismen zouden kunnen zijn die beter evolueerbaar zijn dan andere, noch hoe
deze verschillen in evolueerbaarheid bereikt zouden kunnen zijn. Ik beweer dat als we
organismen beschouwen als onderling afhankelijke en verbonden systemen, in plaats van
lukrake combinaties van componenten, het mogelijk is om te zien hoe ze evolutionaire
"herinneringen" van vroegere selectie in hun architectuur hebben ingebouwd. Deze
herinneringen kunnen worden opgeroepen wanneer de organismen zich aanpassen aan
hedendaagse uitdagingen. Vanuit dit perspectief is evolueerbaarheid een onderdeel van
de architectuur van organismen en lijkt evolutie meer op een "Herinnerend Architect"
dan op een "Blinde Horlogemaker".

Het doel van dit proefschrift is om de invloedvan de architectuur van organismen op
evolueerbaarheid te onderzoeken en de rol van architectuur in het evolutieproces in een
theoretisch raamwerk te integreren.

Hoofdstuk 1 introduceert het concept van evolueerbaarheid en geeft een algemeen
overzicht van de thema’s van dit proefschrift. Er worden redenen gegeven voor het be-
lang van evolueerbaarheid en er wordt ingegaan op de verschillende definities van deze
term. Vervolgens worden de beperkingen van de standaardtheorie geanalyseerd die het
moeilijk maken om evolueerbaarheid binnen het raamwerk van de standaardtheorie te
bestuderen. Om de studie van evolueerbaarheid te vergemakkelijken wordt een nieuwe
benadering voorgesteld die zich richt op organismale architectuur. De architectuur van
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organismen kan informatie verzamelen over succesvolle aanpassingen over lange perio-
den, waardoor deze aanpassingen uit het verleden gemakkelijker kunnen worden ingezet
wanneer soortgelijke situaties zich in de toekomst voordoen. Om dit nieuwe raamwerk
te realiseren, pleit ik voor een multidisciplinaire aanpak, en ik geef een opsomming van
nzichten uit evolutionaire disciplines in andere computationele velden die het belang van
architectuur in het mogelijk maken van evolueerbaarheid al benadrukken. Hoofdstuk 1
sluit af met een bespreking van de methodologische aanpak in dit proefschrift.

Hoofdstuk 2 heeft als doel een duidelijker kader te bieden voor het begrijpen van
het concept van evolueerbaarheid. Evolueerbaarheid t kan verwijzen naar veel verschil-
lende biologische fenomenen; deze veelzijdigheid kan soms leiden tot misverstanden
over wat men precies bedoelt met deze term. Om de zaken uit elkaar te halen, worden
de genetische, ontwikkelings- en ecologische factoren die invloed hebben op evolueer-
baarheid ingedeeld in drie categorieën: factoren die genetische variatie verschaffen,
factoren die de effecten van variatie op fitness beïnvloeden en factoren die het selectieve
proces vormgeven. De tijdschaal is ook belangrijk, omdat sommige evolutionaire pro-
cessen een effect hebben over vele generaties terwijl andere een beperkter tijdsverloop
hebben. We maken ook onderscheid tussen mechanismen die de evolutie van tal van
eigenschappen beïnvloeden, versus mechanismen die een beperktere invloed hebben op
specifieke aanpassingen. Daarnaast identificeren we twee belangrijke perspectieven op
evolueerbaarheid in de literatuur: als een algemene, blijvende capaciteit van lijnen over
evolutionaire tijdschalen, of gericht op aanpassing aan nieuwe omgevingen of niches.
Door deze gestructureerde benadering hopen wij de discussies rond evolueerbaarheid te
verduidelijken en het gesprek tussen vakgebieden te vergemakkelijken.

Hoofdstuk 3 gaat in op de tweede categorie die hierboven is genoemd: factoren die
de effecten van variatie op fitness beïnvloeden. Het is een van de centrale dogma’s van
de biologie dat genetische mutaties willekeurig zijn wat betreft de "vereisten" van natu-
urlijke selectie. Toch laten veel voorbeelden zien dat de effecten van genetische mutaties
op fenotypische niveau vaak adaptatiebevorderend zijn. Met behulp van eenvoudige
modellen voor de evolutie van genregulatie netwerken laten we zien hoe willekeurige
genetische mutaties omgevormd kunnen worden in adaptatiebevorderende fenotyp-
ische variatie en hoe zo’n omvorming relatief makkelijk kan evolueren. Ondanks de
inherente willekeurigheid van het genetische mutatieproces, evolueerden zelfs kleine gen-
netwerken snel een architectuur die de fenotypische effecten van mutaties beïnvloedt.
Deze bias leidt tot een aanzienlijke versnelling van adaptieve evolutie wanneer de omgev-
ing verandert. We noemen de specifieke configuratie van het netwerk dat willekeurige
genetische mutaties vertaalt in evolutiebevorderende fenotypische effecten een "mutatie
omvormer". Bovendien identificeren we twee verschillende typen mutatie omvormers:
"mutatie versterkers", die door weinig mutaties grote veranderingen in het fenotype mo-
gelijk maken (hun effect versterken), en "mutatie kanaliseerders", die de overgang tussen
twee specifieke fenotypes vergemakkelijken (d.w.z., die mutaties effectief kanaliseren in
een van de twee uitkomsten).

Hoofdstuk 3 wordt gevolgd door twee "intermezzo’s". Beide zijn theoretische bij-
dragen aan gepubliceerde artikelen, die in dit proefschrift zijn opgenomen omdat ze
mijn opvattingen over de architectuur van organismen hebben helpen vormen en het
uitgangspunt vormden voor andere hoofdstukken van het proefschrift.
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In hoofdstuk 2 en 3 pleit ik voor een mechanistische benadering van het modelleren
van evolutionaire processen. In Intermezzo 1 schets ik zo’n benadering voor de evo-
lutionaire modellering van niet-genetische overerving. In een eerste stap geef ik een
overzicht van reeds bestaande pogingen om niet-genetische overerving op te nemen
in het evolutionair raamwerk en belicht ik hun sterke en zwakke punten. Vervolgens
beschrijf ik een meer mechanistisch model dat recente moleculaire en evolutionaire
inzichten over niet-genetische overerving incorporeert en nauw aansluit bij mijn missie
om de architectuur van organismen meer aandacht te geven.

Intermezzo 2 is de modelcomponent van een empirische studie die experimenteel
aantoont dat sluipwespen nog steeds in staat zijn, hun vetmetabolisme te induceren. Dit
is verrassend, want de vakwereled ging er vanauit dat deze wespen hun vetmetabolisme
al miljoenen jaren geleden zouden hebben verloren. Wij beargumenteren dat de wespen
de eigenschap nooit echt hebben verloren, maar gedurende lange perioden alleen heel af
en toe hebben ingeschakeld. Maar dan rijst de vraag: hoe kan zo’n plasticiteit behouden
blijven als deze slechts sporadisch wordt gebruikt? Om dit te beantwoorden hebben we
een eenvoudig model ontwikkeld voor een schakelaar die een metabolische route aan of
uit kan zetten. We laten zien dat zo’n schakelaar gemakkelijk kan evolueren en vervolgens
stabiel kan blijven bestaan ondanks mutatie-erosie, zelfs als de schakelaar zelden wordt
gebruikt.

Hoofdstuk 4 borduurt voort op het onderzoek uit Intermezzo 2 en onderzoekt hoe
complexe aanpassingen kunnen blijven bestaan, zelfs als selectie slechts sporadisch
plaatsvindt. Veel organismen bezitten aanpassingen die slechts af en toe, eens in de paar
generaties, gunstig zijn. Wij begrijpen nog steeds niet goed hoe dergelijke aanpassingen
kunnen evolueren en intact blijven ondanks dat ze worden aangetast door genetische
drift en de opeenstapeling van mutaties. Eerder onderzoek naar dit onderwerp heeft zich
gericht op eenvoudige eigenschappen, maar de meeste aanpassingen in de natuur zijn
complex. Om dit te onderzoeken heb ik met behulp van simulaties de evolutie van genreg-
ulatie netwerken bestudeerd die coderen voor eigenschappen die variëren in complexiteit.
Het bleek dat complexe aanpassingen gemakkelijk ontstaan en gedurende duizenden
generaties stabiel blijven mits selectie eens in de 5 of 10 generaties voorkomt. Wanneer
selectie minder frequent optreedt (eens in de 100 generaties), ontstaat de aanpassing nog
steeds en blijft ook bestaan, maar de kwaliteit van de aanpassing is duidelijk lager. De
kwaliteit blijft op een hoger niveau als de onderliggende netwerkarchitectuur complexer
is, ondanks het feit dat complexe netwerken makkelijker door mutaties ontregeld kunnen
worden.

In hoofdstuk 5 gebruik ik biologische inzichten om het ontwerp van algoritmen
voor genetisch programmeren, die worden gebruikt bij machinaal leren, te verbeteren.
Genetisch programmeren is een tak van de computerwetenschap die evolutionaire algo-
ritmen gebruikt om nieuwe oplossingen te vinden voor KI toepassingen. In dit hoofdstuk
bespreek ik de "Grammar-Guided Genetic Programming" methode, een veelbelovende
KI techniek die grammaticale regels introduceert om een concrete probleemstelling te
vertalen naar een computerprogramma. Ik stel een nieuwe methode voor, genaamd “Fa-
cilitated Mutation”, die het mutatieproces van de grammaticale relgels laat afhangen van
de specificiteit van deze regels. Algemene regels muteren maar heel af en toe, waardoor
de kernfunctionaliteit van het programma niet vaak wordt aangetast. Daarentegen mogen
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specifieke regels vaker mogen muteren, waardoor en verschillende varianten van het
programma kunnen worden verkden. Deze benadering is geïnspireerd op observaties
in de biologie, waar organismen de functionaliteit van kritieke genen behouden terwijl
ze minder belangrijke genen toestaan om sneller mutaties te ondergaan. In hoofdstuk 5
wordt de effectiviteit van Facilitated Mutation voor een uitdagend KI probleem vergeleken
met de traditionele mutatie benadering. We laten zien dat Facilitated Mutation ten
opzichte van alle onderzochte benchmarks beter presteert: er worden niet alleen betere
oplossingen gevonden, maar ook een grotere variëteit aan oplossingen van hoge kwaliteit.

Hoofdstuk 6 tenslotte bevat een algemene discussie van mijn proefschrift. Dit hoofd-
stuk bestaat uit twee delen. Eerst schets ik enkele brede filosofische overwegingen die
tijdens het schrijven van dit proefschrift zijn ontwikkeld. Ik pleit voor een meer pluralistis-
che kijk op de evolutietheorie, waarbij verschillende soorten theorieën en benaderingen
niet gezien moeten worden als conflicterend, maar als verschillende invalshoeken van
waaruit men een wetenschappelijke vraag kan benaderen. Ten tweede geeft hoofdstuk 6
een overzicht en samenvatting van de onderzoeksresultaten van dit proefschrift en iden-
tificeert het interessante toekomstige richtingen voor dit studiegebied. Het werk in dit
proefschrift pleit voor het belang van de architectuur van organismen bij het vasthouden
van evolutionaire herinneringen, waardoor organismen die gevormd zijn door een blind
proces hun vermogen om zich aan te passen aan nieuwe omgevingen kunnen verbeteren.
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INTRODUCTION

Stefano TISO

...if one could understand a flower as it has its Being in God
this would be a higher thing than the whole world!

attributed to Meister Eckhart

↓
Little flower—but if I could understand

What you are, root and all, and all in all,
I should know what God and man is

Alfred Tennyson, Flower in the Crannied Wall

↓
To see a World in a Grain of Sand.

And a Heaven in a Wild Flower.
Hold Infinity in the palm of your hand.

And Eternity in an hour.

William Blake, Auguries of Innocence

↓
...if we could understand a single flower we would know who we are and what the world is

Jorge Luis Borges, A Personal Anthology

3



4 1. INTRODUCTION

1.1. TENETS

More than three and half billion years ago, while Earth’s molten crust was still cooling
down, life took root on this planet, and to this day, it is still flourishing. In this dynamic
world where astronomical, geological, and ecological phenomena lead to ever-shifting
conditions, living beings face perpetually changing trials. Their only way to survive and
thrive is to adapt through the process of evolution by natural selection. Life and Evolution
are thus the two sides of the same coin since their inception. For this reason, I argue that
living beings throughout their long history must have, to an extent, evolved the ability to
evolve.

Like other scientists, I, therefore, consider “evolvability”, this capability to undergo
adaptive evolution, a fundamental driver of the success or downfall of biological lineages.
Yet, standard evolutionary theory has for a long time overlooked this topic, focusing on
a more short-term view of evolution. The long-term influence of evolvability has been
dismissed as negligible since, as Richard Dawkins eloquently expressed, evolution is
considered akin to “a blind watchmaker”.

In this thesis, I question some of the assumptions of standard evolutionary biology. I
try to show that, when these assumptions are relaxed, evolution does not seem so blind,
and that evolvability plays an important role, revealing a “reminiscing architect” next to
the “blind watchmaker”. Building upon past successes, evolvability empowers organisms
to meet ever-new challenges. The solutions to past adversities remain ingrained in the
architecture of those who survive, making them more prepared for future struggles. With
only a few additions to the mainstream perspective, we can arrive at new conclusions;
integrating evolvability and its consequences in a comprehensive evolutionary framework.
These additions are:

• To consider evolution as taking place in a dynamic environment, where selective
targets are never static but constantly changing. Organisms, therefore, do not adapt
to a single and unchanging selective target but evolve adaptive response strategies
to a series of challenges.

• To see organisms not as a sum of independent traits determined by independent
genes, but as the emergent result of the coordinated action of many interconnected
components. These components do not individually contribute to the organism’s
fitness, but structured together they build adaptive response mechanisms.

• Finally, and most importantly, to recognise that a fundamental determinant of
evolvability is the structural relationship between the mechanisms that give rise to
an organism i.e.: organismal architecture. It is in the architecture of organisms that
we can read the records of the steps they took to increase their evolvability.

In the following introduction, I will expand on and articulate this brief declaration of
intent. Firstly, I will elucidate the significance of the concept of evolvability and provide
an overview of its many definitions and key features. Secondly, I will critically evaluate the
limitations associated with the standard theoretical approach to studying evolvability. In
doing so, I will highlight the need for a more nuanced and comprehensive understanding
of this concept. Thirdly, I will present my rationale for exploring the role of architecture in



1.2. EVOLVABILITY 5

facilitating a deeper understanding of evolvability. Specifically, I will argue that studying
architecture can offer unique insights into higher-level evolutionary dynamics and can
help shed light on the fundamental principles that govern the evolution of complex
biological systems. Fourthly, I will explain the methodology that I intend to use to show
the relevance of architecture and evolvability, providing a detailed justification for its
suitability. Finally, I will give a brief outline of the research chapters contained in this
thesis and their significance to my overall goal.

1.2. EVOLVABILITY

One of the most striking aspects of life on Earth is the remarkable diversity and success of
different organisms, ranging from microscopic bacteria to complex humans. Despite their
vast differences, many types of organisms have managed to thrive and avoid extinction.
What sets successful organisms apart from those that go extinct? For instance, how
can we explain the almost complete absence of multicellular organisms that exclusively
use asexual reproduction (only one animal clade, Bdelloid rotifers, seems to exclusively
display this reproductive mode) [1–3] ? This question puzzles biologists, as asexual
reproduction has clear short-term advantages in replication efficiency. This question
is one of the greatest dilemmas in evolution. One explanation, for instance, is that the
persistence of multicellular sexual reproduction might be a necessary requirement for
multicellular organisms to escape the constant extinction threat of unicellular parasites
[4]. Although many multicellular organisms almost exclusively reproduce asexually they
can switch to sexual reproduction under stressful conditions. This way they can respond
by recombining their genetic material and find new solutions that allow them to survive.
The scarcity of obligate asexual reproduction in multicellular organisms can thus, at least
in part, be explained by the fact that many lineages that were obligatory asexual might
have been wiped out from the evolutionary record due to a fatal parasitic invasion.

Sexual reproduction could not only help escape the parasitic onslaught but could also
grant other selective advantages. For instance, it is also proposed it could help avoid other
deleterious factors such as mutational meltdown, which happens in asexual populations
and would not allow sustained survival of organisms of a certain complexity [5]. Thus,
while less efficient at replication than asexuality in the short-term, given the right initial
conditions (heterogeneous environment or selective pressures, small population and/or
frequent bottlenecks) sexual reproduction can persist long enough to then triumph over
asexuality thanks to its long-term benefits [1, 6].

On the other hand, one might ask: How can bacteria be able to survive their own
parasites (i.e. bacteriophages) if they are asexual? And indeed it might very well be that
they just developed a different design, which allows them to employ a strategy that differs
from that of multicellular organisms. Their simpler and streamlined design makes them
more robust to abrupt genetic changes and thus they are able to use other, somehow
more radical, mechanisms for genetic recombination such as: integrating random DNA
fragments picked up from the environment (transformation [7] ), transferring plasmids
to one another, even across very different bacterial families (horizontal gene transfer or
conjugation [8] ), and even by using some of their virus parasites themselves as vectors
for exchanging genetic materials (transduction [9] ). This is a clear example of how cer-
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tain designs can prove more advantageous than others in favouring adaptive evolution
under certain conditions (e.g. sexual reproduction for complex multicellular organisms;
transduction, conjugation, and transformation for the more streamlined bacteria), and
that organismal designs are driven by the necessity of being able to adapt to constantly
new selective challenges.

An organism’s ability to adaptively respond to new conditions is crucial for its survival
and propagation. However, it is not trivial to explain how the capability to produce these
adaptive responses evolved in the first place. Selection is blind, acting only on present,
short-term conditions and variation, and cannot target features that facilitate long-term
evolution to conditions that have not yet been met. Nevertheless, l will argue in this thesis
that long-term features can and did evolve along evolutionary history. Lineages that accu-
mulate short-term adaptations that eventually lead to long-term advantages will be able
to produce better-matched phenotypes to new conditions. Thus, these serendipitously
long-term oriented lineages will be more likely to persist and dominate the evolutionary
record compared to those lineages whose short-term adaptations did not confer them
the ability to respond adaptively to unforeseen conditions. For instance, when talking
about sexual reproduction it has been shown that it is advantageous to use it only in a
restricted set of circumstances [10, 11], but those few multicellular organisms who luckily
acquired it because of the initial short-term need for it, and then managed to maintain
it, were also those that to this day have been able to survive catastrophic events such as
new pathogens outbreaks and long term genetic melt-down. The ability to maintain and
gather long-term adaptation acquired through short-term selection is, in my opinion,
greatly influenced by how organisms structure the relationship among their different
traits, i.e. their architecture.

For this reason, I consider evolvability and evolvability-enhancing architecture fun-
damental to understanding long-term evolutionary dynamics, the factors that govern
the success or failure of biological designs, and the evolution of adaptive responses. By
including evolvability-enhancing architecture as a relevant factor, the framework of evolu-
tionary theory is expanded. While standard evolutionary theory mainly focuses on single
adaptation events through gradual changes it often treats long-term evolutionary phe-
nomena as simple statistical events dictated by speciation and extinction rates. Standard
theory to this day struggles to provide a proximate explanation of how microevolution
leads to macroevolution [12, 13]. Evolvability allows for a description of the different
strategies and constraints that different organisms have evolved while faring through
ever-changing conditions and therefore helps explain the emergence and disappearance
of groups of organisms (and their design) over time.

Evolvability can be defined broadly as "a system’s capability to undergo adaptive evo-
lution" (where capability here indicates the degree to which an organism is capable of
undergoing adaptive evolution, not the presence/absence of this ability). However, as
Pigliucci [14] argues in his opinion paper “Is evolvability evolvable?”, evolvability encom-
passes a family of related but distinct phenomena. When discussing evolvability, we are
referring not to a single concept but rather to overlapping ideas that illuminate different
facets of evolution in action. Therefore a general definition has limited utility for focused
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research questions, as this concept has a very broad range of potential applications and
spans multiple fields of research. As a result, scientists have proposed more specific
definitions tailored to their areas of study.

Pigliucci identifies three different types of definitions based on the different evolution-
ary levels/scales on which they focus: evolvability as the genetic variation within a popula-
tion which can act as the raw material for selection (genetic scale) [15], evolvability as the
ability of an organism to produce variation, i.e. variability (genotype-to-phenotype scale)
[16], and finally, evolvability as the capacity to undergo major evolutionary transitions
(macroevolutionary scale) [17]. Other definitions have been proposed in evolutionary
biology ( see [18, 19], and Box 1 of Chapter 1 of this thesis), but they more or less adhere
to the same pool of ideas. On the other hand, different fields of study have come up with
definitions on their own. These fields “cross-fertilize” with biology, while, on the other
hand, pursuing their own research interest, providing different definitions of evolvability.
For instance, Charles Ofria, Christoph Adami, and other students of Artificial Life systems
such as Avida, often define evolvability in terms of the ability to perform different or more
complex (algorithmic) operations [20–22]. The goal of this research is to see if organisms
can be seen in terms of algorithmic logic, and therefore if this type of logic could help
us through its principle to better describe and reproduce biological life and evolution.
Researchers coming from the field of artificial intelligence such as Kenneth Stanley often
see Evolvability as the ability of a system to produce innovative behaviours not observed
before [23, 24]. The goal of their research is to exploit the unsupervised process of evolu-
tion as an automated optimisation/creation process, that would allow them to find new
interesting solutions to difficult problems, without the need for a human designer and
unshackled from human cognitive biases. Finally, Richard Watson applies an information
theory and theory of learning approach to the concept of evolvability [25]. He defines
it as an organism’s capacity to encode (e.g. in its genome) adaptive solutions to past
selection pressures in a generalisable way, allowing effective responses to novel situations.
More evolvable lineages will better extract useful information from past selection events
and flexibly apply it to new conditions. Watson, using this perspective, is interested in
understanding if an unguided and unconscious process such as evolution can display
“cognitive-like” properties similar to learning.

While this plurality of definitions reflects the rich array of ideas that fall under the
banner of evolvability, it can also introduce conceptual confusion as sometimes different
definitions will point towards aspects of evolvability that are almost incommensurable.
For instance, for a researcher who studies evolvability as the amount of genetic variation
in a population [26], it can be very difficult to communicate with someone who researches
evolvability as the capability to generalise previous selective events and re-use them for
future challenges [25]. For this reason, if we want plurality to lead to richness instead
of confusion, we need to acknowledge the diversity, and potential incommunicability,
between different lines of research both when giving or scrutinising a definition.

The concept of evolvability not only helps expand fundamental theory and research
but has relevant practical implications as well. Evolvability can influence applied do-
mains like medicine, agriculture, and engineering, demonstrating the concept’s relevance
beyond theory. Evolvability could help to predict future events that would threaten hu-
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man stability such as the rise of new pandemics [27], or the accumulation of antibiotic
resistance [28]. On top of being used to prevent risks, research on evolvability could also
inform future policies aimed at improving our ecological impact on the planet, such as
biodiversity and conservation efforts, containment of invasive species, assessment of the
risk and impact of climate change [18]. Moreover, the concept of evolvability could drive
research into new advancements to increase our quality of life, for instance, breeding
crops for evolvability is a promising approach for tackling complex real-world problems
[29, 30]. Evolvability is not only a subject of interest in topics that are related to biological
evolution. Evolution has already been employed in the fields of engineering, robotics, and
informatics with increasingly impressive results [31–33]. Many researchers in these fields
would like to understand more about evolvability in this sense and extrapolate its general
properties. Their interest lies in the ability to apply unbounded evolutionary potential for
novelty to systems where solutions to real-life problems such as engineering or software
development are evolved instead of hand-crafted by humans. This ability of evolution
to produce unbounded complexity and novelty is sometimes referred to as open-ended
evolution, one of the main research goals especially of the artificial life community [34].

1.3. THE VIEW OF STANDARD EVOLUTIONARY THEORY

Despite a growing consensus, there remains significant debate regarding the importance
and prevalence of evolvability in shaping the course of evolution. Standard evolutionary
theory has historically paid relatively little attention to this topic and has yet to fully
integrate it within its framework [14].

The standard theory of evolution emerged in the early 20th century as a rigorous for-
malisation of evolution in the language of mathematics and statistics. It led to significant
advances in our understanding of evolutionary processes, including the reconciliation
of discrete inheritance with continuous traits by Ronald Fischer [35, 36], the concepts
of genetic linkage and genetic mapping by J.B.S. Haldane [37, 38], and the metaphor of
fitness landscapes by Sewall Wright [39–41]. This work has not only revolutionised the
way evolution was understood after its inception. To this day, its principles underpin the
fields of population and quantitative genetics, arguably the two most widespread and
relevant approaches to the study of evolution.

However, standard theory is not without limitations. At the time of its formulation,
scientists lacked the empirical and mechanistic understanding of an organism’s cellular,
physiological, and developmental processes, and appropriate techniques for studying
them. The limited computational power of the time also inhibited the amount of com-
plexity that could be modelled in evolutionary dynamics.

As a result, mathematical and statistical models were developed. These models, by
their nature, allow researchers to overlook the intricate mechanics of biological life focus-
ing on observable outcomes. Despite not being fully solvable analytically, equilibrium and
stability analyses, as well as approximation techniques can be applied to these models
without requiring extensive computational efforts. Studying the dynamics of natural se-
lection, however, is intrinsically complicated and to be able to use these models, limiting
assumptions have to be made. For instance, genotype-to-phenotype (G-P) mappings are
mainly described as simple 1:1 relations between genotype and phenotype, the effects of
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genetic mutation are often considered to be unbiased/random and infinitesimal, as the
number of loci underlying a trait, and evolution is studied at stable equilibrium conditions
with a single fixed selective optimum [36, 42].

This is not to say that standard theory r ejects the possibility of relevant complex
interactions between genotype and phenotype, the existence of non-random and non-
uniform mutation effects, or the importance of dynamic selective regimes. However,
accounting for non-linear interactions, except for particular sub-cases, is extremely hard
with just analytical tools, as it is for non-uniform mutation effects or studying evolution
outside of equilibrium conditions. Therefore, given these limitations, researchers at the
time wisely decided to focus their efforts in directions where the techniques available
could be most effectively used to guide research.

1.4. SEEING PAST THE BLIND WATCHMAKER

The focuses and limitations of standard theory limit its scope of inquiry and make it
inadequate for the study of evolvability, as they encourage a phenomenological approach
to evolutionary study and consequently a gene-centric, short-term view of evolution.

A phenomenological approach aims to describe only the observable outcomes of
an event, disregarding the internal mechanisms that lead to it. Classical theory, in this
spirit, mainly considers genes (the carriers of information) and phenotypes ( the decoded
information which is the target of selection) minimising the importance of the internal
processes that lead from one to the other.

A gene-centric view of evolution logically ensues from this perspective. Genes inde-
pendently and directly translate into selectable phenotypes, with no significant interme-
diate step, and are therefore considered the fundamental unit of selection and the only
relevant variable for understanding evolution. Genes are thus seen as selfish entities,
in constant competition with one another, coming together with the sole purpose of
maximising their own reproduction. It is the selective advantages of individual genes that
drive the fate of evolutionary dynamics.

This gene-centric view naturally leads to a “short-term” conception of evolution,
eloquently described by Richard Dawkins in his famous analogy of “evolution as a blind
watchmaker”. In this metaphor, genes can be seen as the individual pieces of a complex
clockwork mechanism (the organism), shaped in myriads of infinitesimally different
variations by the effect of small random kinks (mutations), and drawn and assembled
by a blind watchmaker (evolution). The watchmaker is blind and has no intention nor
foresight, shuffling components randomly with no knowledge of their current role nor
future usefulness. Evolution thus can only select for organisms in the present moment,
discarding those who fail and continuing to build upon those who survive, unable to
select an organism designed to face future challenges; as the watchmaker is blind and
therefore oblivious to them.

Evolvability, however, has not been completely dismissed by the standard theory and
those aspects that are treatable by a short-term population and quantitative genetics
approach have been successfully integrated [15, 26]. This line of research mainly focuses
on the role of present variation as raw material for selection and has a fruitful theoretical
history : from considering evolvability as a quantity similar to heritability (conceptualised
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by Houle in his seminal paper [26]), to, more recently, defining it as the alignment of
genetic variation with the gradient of selection (the G-Matrix, as done in the on-going
work of Hansen [43] ).

What these studies do not consider is another crucial aspect of evolvability: the capa-
bility to create new variation and to bias it towards adaptive outcomes. Framing evolution
this way (phenomenological, gene-centric, short-term, blind) naturally tends to preclude
other crucial aspects of evolvability from being a relevant factor to evolutionary dynamics:
the capability to create new variation and to bias it towards adaptive outcomes. When
organisms cannot be selected for their capability to adapt to new selective challenges
and genes constantly fight for their own survival disrupting interactions beneficial in the
long-term, it is hard to envision how the ability to produce new variation or to bias it
could ever arise.

A broader view of evolvability encompasses both adaptations in response to selection
and innovation through generating novelty.

To do so, it is necessary to move from a phenomenological approach toward a mech-
anistic one [44], where the aim is to explain the nature of the outcomes of evolution in
terms of biological processes. This approach is more in line with recent progress and
discoveries in the biological sciences. With the omic revolution and the rise of systems
biology, it is becoming more and more evident that gene interactions, biased effects of
mutations, and environmental conditions play a fundamental role in determining an
organism’s phenotype [45–47], and theoretical models show that by taking these elements
into considerations changes the outcomes of evolution [48–50]. Only when one looks
at the inner response mechanism, the innovative potential of the evolutionary process
can be understood and explained. Without a knowledge of the inner mechanism, no
interesting nor significant explanation can be given as to how organisms generate more
or less variation, nor how they can potentially shape this variation in their favour.

In particular, I argue that the design principles and motifs in organismal architecture
that facilitate evolvability reveal the otherwise hidden potentials of evolution (e.g. the
ability of population to adapt to new challenges not only based on their standing genetic
variation, but for instance as well thanks to the ability of the individual’s to produce
new and possibly adaptively biased variation). By examining the interplay between
architecture and evolvability, we gain a richer sense of what evolution can achieve and
how it might operate.

Evolutionary developmental biology offers a wealth of examples highlighting the role
of organismal architecture in evolvability. The astounding success of arthropods is at-
tributed by many to the modular and flexible architecture of their developmental program,
especially of their appendages [51]. The developmental genes of arthropods are organised
in such a way that they can be easily combined in different places at different times
[52, 53] to produce a wide variety of appendages. This ingenious architecture allowed
arthropods to easily evolve appendages to accomplish almost any task: from evolving
mouthparts for feeding, to antennae for perception, wings for aerial locomotion, and
even gills for breathing [54]. The best instance to display the success of this architecture
in enhancing the evolvability of arthropods is the so-called Cambrian explosion. Most
of the genes and developmental programs responsible for the burst of diversity in body
plans during that period are still being retained to this day [55]. While this variety has
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been shaved down and fine-tuned to a restricted series of main solutions it still retains
the capability for incredible innovative potential, re-exhuming ancestral configurations
to face new or returning challenges, as it has happened for instance in the re-convergent
evolution of mantis-shrimp raptorial appendages [56].

This example highlights the point that to understand the aspect of evolvability tied
to innovative potential, we must turn our attention to organismal architecture and its
history.

1.5. A REMINISCENT ARCHITECT

Understanding evolvability through the lens of organismal architecture can provide in-
sights into the higher-level dynamics that play out over long evolutionary timescales
such as those of lineages’ successes and downfalls. As a first thing, it is important to
define what organismal architecture means for the purposes of this thesis. A general
definition of organismal architecture can be given as: “the structural relationship among
the elements that compose an organism”. What these components are and how they
influence evolution changes depending on the scale being analysed, from the genetic
to the morphological level. At the genetic level, for instance, architecture refers to the
organisation and regulation of gene expression. For example, prokaryotic genetic ar-
chitecture is often streamlined, with genes linked spatially and functionally, allowing to
easily switch on and off entire metabolic functions, while on the other hand, eukaryotic
architecture scatters functionally related genes throughout the genome allowing for more
interconnected and fine-grained regulation [57]. At the developmental level, architecture
describes how different parts of the developmental program interconnect and build upon
each other to form morphological structures. For example, it is the architecture of the
interactions with other developmental factors of the Hox gene family that allows it to pro-
duce many different structures e.g.: limbs, central nervous system, and vertebrae, making
it fundamental during development across the tree of life [54]. A similar example can
be seen in the expression of Distal-less (Dll) in the formation of arthropod appendages
mentioned in the previous section [58]. At the morphological level instead, architecture
involves the arrangement and interaction of physiological processes, body parts, and
systems that determine an organism’s morphology and functioning. The architecture
of the chambered heart and lungs in vertebrates varies to accommodate the energetic
needs of different clades: the reptilian three-chambered heart allows for partial recharge
of anoxic blood, apt for sustaining the low-level metabolism of cold-blooded organisms,
while the mammalian four-chambered heart grants maximal efficiency in oxygenation,
sustaining high-demand metabolism [59]. These are just a few examples of what the
concept of architecture could mean, but as with the concept of evolvability, this term
encompasses a wide range of phenomena and its definition cannot be univocal.

The pivotal question this thesis asks is: How can an organismal architecture - how an
organism is structured and organised - influence the ability to evolve adaptively?

If natural selection acts in a short-term/blind manner, solely on the basis of an or-
ganism’s current phenotype and fitness, how can evolvability and adaptive capacity
nonetheless emerge over evolutionary time? Together with other scientists [18, 60–62], I
argue that this is because the solutions that enable organisms to overcome selective chal-
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lenges become ingrained in their architecture and that of their lineages. As environments
change in the future, this accrued evolutionary baggage can facilitate new adaptations.

This can be exemplified by the increase in the rate of acquisition of antibiotic resis-
tance in bacteria. Bacteria are becoming faster at responding to antibiotic treatments,
and more and more bacteria are acquiring resistance to the vast majority of antibiotic
treatments [63, 64]. One reason for this lies in their capacity to store past solutions in
their genetic architecture. Consider a population of bacteria exposed to a new antibiotic.
Mutations that happen to confer resistance often involve the re-purposing of influx/efflux
pumps to rid the cell of toxins as well as the modification of the composition of the
cell membrane [65]. Those individuals with mutations that apply the right membrane
modifications or recruit more of the correct pumps under stress will thus survive and
reproduce. If the same bacterial lineage then encounters a similar antibiotic in the future,
under similar stress conditions, this genomic memory may aid in evolving resistance
more quickly or easily (multi-drug resistance) as often antibiotics belonging to the same
or to a closely related family act in similar ways [66].

This example illustrates how the “ghost of selection past” [67, 68], stored in organisms’
architecture, could shape evolvability, making it possible for organisms to create and bias
variation towards adaptive outcomes. While natural selection alone cannot explain the
evolution of features that facilitate evolution itself, the architecture shaped by natural
selection gains a form of reminiscent foresight. Over vast timescales, the accumulation
of such evolutionary solutions and "memories” in developmental, genetic, cellular, and
morphological architectures enable increasing adaptability and resilience. Examples
of this are for instance, the plastic tuning of limb length depending on terrain type
in anole lizards [69], or the constraint of beak development only in the three relevant
dimensions useful to adjust to food type in Darwin’s finches [70, 71]. The ensemble of
historical adaptations equips the organism with latent abilities to meet new challenges.
This view suggests that the dichotomy between "blind" natural selection and the concept
of evolvability is false. Dawkins’s watchmaker is blind and unguided, mixing genes
into combinations, which sometimes by chance, happen to work. But besides it is a
reminiscent architect who takes care to integrate and preserve the watchmaker solutions
into the organisms’ architecture, and uses them as the base upon which to build future
adaptations. Thus, the reminiscing architect gradually constructs robust and functional
organisms with the help of the blind watchmaker. These organisms contain the record
of their past hurdles and can, thanks to this, weather through new conditions. Natural
selection forges the structures that enable evolution, broadly conceived, to become an
open-ended creative process. Evolvability-enhancing architecture arises inevitably from
accumulated experience. The effectiveness of natural selection at solving short-term
ever-changing problems thus yields evolvability for the long run.

However, as much as this conjecture might be interesting and the examples brought
in its favour compelling, it is extremely difficult to empirically capture the long-term
evolutionary dynamics of organismal architecture and its impact on evolvability. Whilst
we have sufficient empirical examples that show that organisms possess mechanisms
and strategies to create and bias variation toward favourable outcomes [44, 62, 72–76],
we understand little of how this mechanism can come to exist in the natural world.
Theory can come to our aid and has produced many different models that point towards
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promising directions for the role of the reminiscing architect in the game of the blind
watchmaker.

1.6. INSIGHTS FROM COMPUTATIONAL THEORY

The role of theoretical modelling in the study of evolvability has been paramount since its
inception. Being related to long-term dynamics, and involving a plethora of phenomena,
evolvability is often difficult to pinpoint in empirical experiments. In particular, this is
true for what concerns those studies that analyse the aspects that interest this thesis: the
production of adaptive variation in relation to organismal architecture.

To my knowledge, mathematical/computational models addressing the role of ar-
chitecture, variation production, and its canalisation towards adaptive outcomes, are
relatively recent, starting to appear in the literature less than two decades ago. Before that
time, the topic of the role of variation and architecture in evolvability was already being
discussed (e.g. see the seminal paper from Gunter Wagner and Lee Altenberg [16], the
work of Kirschner and Gerhart [19, 62, 76], and way before that the work of Waddington
[77]), but the discussion remained on the conceptual level and was mainly backed by
verbal arguments. Evolvability was already being modelled, however, this was done from
a population genetic approach seeing evolvability as the existent variation in a population
[26] and with no regard to organismal architecture (as I already mentioned previously).

In most cases for the models analysing the role of architecture and variation with re-
spect to evolvability, the attention is focused on the regulatory architecture at the genetic
level (not to be confused with the structural architecture of genes in the nucleus). These
models usually employ various representations of a Gene Regulatory Network (GRN) that
leads to the expression of a phenotype. GRN models consider gene-to-gene interactions
as the key mechanism from which the phenotype emerges, contrary to the more standard
view (population genetics, quantitative genetics, adaptive dynamics, etc.) in which the
allelic values are sufficient to derive the phenotype. GRN models often include nonlinear
interactions (typically disregarded by standard theory) and model a much higher number
of loci than models in population genetics and assume much stronger gene effects than
models in quantitative genetics. Overall GRN models encapsulate a more mechanistic
approach, which makes them more apt to study the evolution of evolvability and organis-
mal architecture. This type of modelling is not only used to study theoretical evolutionary
questions, other disciplines like evolutionary developmental biology (evo-devo) [78] and
evolutionary systems biology [79] make as well ample use of these tools and are arguably
the fields that first conceived this approach. To my knowledge, a comprehensive review
of the different GRN representations in more theoretical/conceptual research is not yet
available. Although in no way complete, I will try to provide a brief overview of some of the
relevant models and the insights they provided in the coming paragraphs. In particular, I
will focus on those models and insights that have guided me to formulate my conception
of the relation between evolvability and organismal architecture. These insights are:

• The capability of architecture to evolve through natural selection to bias mutations
towards adaptive outcomes.

• The fact that complex architectures can easily evolve to robustness: i.e. reduce the
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negative effects of deleterious mutations and enlarge the search space of evolution-
ary solutions.

• The proof that architectures in changing environments can evolve to become mod-
ular i.e.: having an independent functional component that can be flexibly changed
and recombined

• And finally but most importantly that architectures indeed have a form of “develop-
mental memory” or as I call it reminiscent foresight: i.e. they can retain solutions
to the past selective challenge and redeploy them when in need.

Some of the first models to explicitly address the relationship between evolvability
and architecture, are those from Pauline Hogeweg [59, 61, 72]. Hogeweg and collaborators
show how natural selection can spontaneously restructure architecture to lead to the
production of adaptively biased variation. They model an organism’s GRN with a complex
and evolvable architecture representing its metabolic pathways. GRNs evolve in a regime
of two changing environments (i.e. selective challenges) that require switching between
two different types of metabolism. Individuals in these simulations evolve evolvability
through simple natural selection, becoming increasingly faster at adapting to changes
in the environment. This is made possible as the architecture of the GRNs evolves to
minimise the number of mutations needed to switch from one optimal phenotype to
the other and reduce the number of deleterious mutations that could afflict the network.
Some architectures adapt so well that they are able to evolve a “switch” structure, that
with a single mutation makes the organism adapt from one environment to the other.

The models of Andreas Wagner address the influence of architecture on the effects
of mutation and variation as well. A good part of their work focuses on a specific ar-
chitectural property: robustness [80–83]. Robustness is the capability of a system (i.e.
an organism) to undergo multiple perturbations (i.e. mutations) without disrupting its
overall function (i.e. changing the phenotype) [84]. A. Wagner and his collaborators show
in a series of models of both GRNs [80] and RNA sequences [83] that robustness is a
property that can easily evolve in these systems and that, as already claimed by other
researchers in systems biology [84–87], robustness favours evolvability. This at first glance
might seem counterintuitive, since weaker effects of mutations should lead to less phe-
notypic variation and innovation, thus reducing evolvability. However, A. Wagner and
collaborators demonstrate that this is a false dichotomy. Robust systems allow the evolu-
tionary process to travel along “pathways of neutral mutations” (consecutive mutations
in the genotype that do not perturb the phenotype); joining adaptive phenotypes that
would otherwise seem impossible to reach through “blind” natural selection, for instance,
because the most direct path between the two is made of maladaptive steps. Being able
to circumvent maladaptive pitfalls to reach more adaptive phenotypes provides robust
architectures with a higher “heritable phenotypic variation”, making them more evolvable
[83]. A. Wagner imputes robustness to how the architecture influences the mapping from
genotype to phenotype (G-P map). In particular, he advocates that it is the disparity in
the degrees of freedom/dimensionality between genotype and phenotype spaces that
makes this possible. When modelling genotype-to-phenotype translation as a network of
interactions (i.e. mechanistically), the number of possible connections and combinations
between its elements is exponentially higher than the number of possible outcomes (in a
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similar way to how the number of possible neural connections in the brain is much bigger
than the atoms in the universe, while the possible number of behaviours a brain can
express arguably is not). This naturally leads multiple genotypes to map onto the same
phenotype, thus making it easier to find neutral phenotypic paths that can lead to adap-
tation. The idea of the role of high-dimensionality and redundancy in G-P landscapes
playing a role in evolution is reprised by other researchers, see for instance Gavrilets 2010
[88] and [50].

Another important line of research that focuses on the effects of architecture on
the G-P landscape (like Andreas Wagner) and variation bias in changing environments
(like Hogeweg) is that of Günter P. Wagner and Jeremy Draghi [89, 90]. Together with
Lee Altenberg, G.P. Wagner is the proposer of the first “variability-based” definition of
evolvability: “Evolvability as the ability of random variations to sometimes produce
improvement.” [16]. In the same article, he also advocates the importance of another “ar-
chitectural” concept for studying evolvability: modularity [70]. Modularity is the property
of a system where functionally distinct parts work independently from each other [70]. In
an organism with a modular architecture, different components will perform different
functions (i.e. during development different sets of genes will take care of developing
different sets of organs), making it so that mutation on one component won’t hinder the
functioning of another. Like robustness, modularity is a design principle that has been
long recognised as important in organismal architecture and evolvability. Modularity
allows evolution to freely re-shape one component to a new task without compromising
the functionality of the whole organism, thus increasing the range of possible solutions to
a selective challenge [16, 86, 87, 91]. G.P. Wagner and Draghi show in a modelling study
both that architectures evolving in changing environments can imprint onto themselves
the different selective challenges they face, organising different adaptations into separate
functional modules [89], and that architectures can bias variation toward adaptive out-
comes, strategically positioning themselves in the G-P space so that few mutations can
switch from one to another adaptive phenotype if the environment changes [90].

G.P. Wagner has contributed to a wealth of theoretical studies on evolvability and
architecture, often collaborating with researchers from other disciplines that are more
computationally oriented. One collaborator was Richard Watson [60], a researcher with a
background in computational and cognitive sciences. Watson and collaborators demon-
strate with a GRN model how evolution can display “learning-like” behaviour. They
evolve GRNs to display target expression patterns. Once the GRNs are perfectly adapted,
researchers scramble the network’s configuration to become completely random and
show that nonetheless, if the architecture is preserved, said GRNs are able to “remem-
ber” and eventually re-express the expression pattern they were selected for. Even more
surprisingly, if the GRNs are evolved to display not only one but various target patterns,
once disturbed they not only can reproduce one of the previous patterns but are able to
produce patterns that are the synthesis of the ones they adapted to. This indicates that
evolution is not only able to remember but to generalise over past adaptations. Watson,
together with Eörs Szathmáry, articulates the vision and possible implications of com-
paring evolutionary processes and their relation to evolvability to learning processes in a
subsequent paper [25]. Here they state:” evolvability is to evolution as generalisation is to
learning” and I would add, as they implicitly do in the paper that “Organismal architecture
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is to evolvability as memory is to generalisation”. Indeed what this, as well as subsequent
research from Watson shows, the place in which “developmental memories” are stored
and engrained, is none other than the structural relations between the components of
their GRNs [92].

The conceptual framework that Watson applies to his research and the way he frames
his insights are not native to evolutionary theory. Most of the concepts he adopts originate
from the field of computational science. In particular, the terminology Watson uses when
discussing evolution as a learning process is rooted in the concept of learning or training
in Artificial Intelligence (see [25, 92]). This is not exclusive to Watson’s research, in the
line of research on evolvability and architecture there is no lack of crossovers from other
disciplines. For instance, many papers on the evolution of modularity often model the
evolution of circuitry or robot controllers, clearly showing their roots in engineering disci-
plines that stepped over into evolutionary theory [91, 93, 94]. This is not a coincidence as
the evolutionary, engineering, and computational fields share many points of interest,
the most evident one being: the adaptation of complex systems to complex tasks [59, 95].
The use of evolution is indeed no stranger to many lines of research that have nothing to
do with biology, and are instead interested in solving more practical problems such as
optimal circuit configuration, algorithm design, and artificial intelligence [96, 97]. Most
of these practical problems, in one form or the other, are often related to some form of
computation, and indeed the field of Evolutionary computation has been existing now
for almost half a century [97]. As the example from Watson clearly shows, integrating
decades-long research on evolution and evolvability from other disciplines could prove
to be very fruitful for evolutionary biology, and the opposite is also true. For this reason,
I would also like to give a quick overview of studies outside biology that also focus on
architecture and evolvability.

1.7. CROSSOVER: EVOLVABILITY AND ARCHITECTURE IN COM-
PUTATIONAL SCIENCES AND OTHER DISCIPLINES

A first example is that of research conducted by Jeff Clune (who also collaborated with
Richard Watson in ) together with Jean Baptiste Mouret and Hod Lipson [98]. All these
scientists come from purely computational or robotic engineering backgrounds, nonethe-
less, their research had important resonance also in the biological community. In their
paper, Clune and collaborators show that modularity can evolve in networks in very
simple conditions, namely: by simply imposing a cost on connections. They evolve net-
works similar to Artificial Neural Networks (widely employed in Artificial Intelligence)
and select for their proficiency in pattern recognition and Boolean logic tasks that change
over time. They demonstrate that networks that pay a fitness cost for their connections,
evolve to minimise this cost and become more modular, while those networks that are not
subjected to connection costs, never evolve a modular structure (they remain integrated
[91]). Moreover, and more importantly, they go on to show that modular networks are
more evolvable, being able to adapt to new tasks faster and better than those that remain
integrated. Despite this paper originating from researchers whose backgrounds are only
tangentially related to biology, the similitude is obvious between this system and how we
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think modularity could favour evolvability in organisms [70, 99–103]. A similar study was
conducted by Kashan a few years earlier on the evolution of logic-gate circuits [93] (the
building blocks of computational hardware).

Another interesting research line is that of Kriegman [94] in the field of evolutionary
robotics [104, 105]. In this discipline, researchers use evolution to find new and innovative
robot designs or robot controllers. This often involves a form of development, where the
body of the robot and/or its controller are not directly implemented, but instead emerge
dynamically from the instruction of a genetically encoded developmental program. For
example, Kriegman and colleagues evolved soft-bodied robots for a locomotory task [94].
The development of the body design as well as the locomotory controller of the robot
are divided into two separate modules. This decoupling increases evolvability, through
a process called differential canalisation. During evolution, the two developmental sys-
tems take two different evolutionary pathways: the development of the body canalises
[77], becoming robust to mutations, and reliably presenting a working body design in-
dependently of the controller (modular behaviour). This, in turn, allows evolution to
experiment with a range of controller solutions without the risk of disrupting the overall
ability for locomotion. This way the overall evolvability of this system is increased, as it
can explore more solutions through the controller, and at the same time it buffers the
effects of maladaptive variations with a robust body design. Kriegman and collaborators
speculate that this pattern of differential canalisation could be driven by the evolutionary
advantage of having a high bias towards neutral or adaptive mutations (for the controller)
at the cost of losing variability (canalisation) in the function of another component (the
body design). Finally, they relate this concept to the idea of genetic assimilation by Marie
Jane West-Eberhard [106] (the constitutive expression of the previously plastic expression
of a trait) and propose it as a possible explanation.

Both examples display how insights and approaches from different disciplines can
enrich our understanding of biological evolution, helping us to illuminate the role of
architectural principles in guiding evolvability. Nonetheless, the two pieces of research
clearly nod in the direction of evolutionary biology, and their goals remain largely theoret-
ical and aligned with those of a good portion of evolutionary biologists. There are however
branches of research in computational sciences, that specifically focus on using evolu-
tionary principles to resolve very practical problems, and have very little interest in the
biological coherence of the underlying concepts. These fields are for instance Neuroevo-
lution (evolution of the architecture of Artificial Neural Networks) [107], AI evolutionary
algorithms (the design of different modes of evolution, normally for evolving/training
such networks) [31], and genetic programming (the evolution of programs) [108]. What
is a fascinating aspect of these disciplines is that the scientists involved often approach
evolution from a completely different perspective than a biologist would. Their final goal
is to evolve either an artificial neural network, an algorithm, or a program that is the best
at executing a certain task. Little interest is given to the soundness of the rationale behind
design choices. Instead, the value of a result is usually established based on clear and
practical benchmarking tests, which often involve outperforming or matching the quality
of results of other state-of-the-art methods. Therefore, researchers in this field do not try
to reproduce evolution as it is in the biological world. They, instead, retro-engineer it,
taking inspiration from biology only when useful, and try to create the optimal design
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for evolution to solve a problem of interest (i.e. playing Atari games, robot locomotion,
controlling virtual football players [109]). As scientifically flawed as it might sound to a
biologist, this more unrestricted way of studying evolution (not biological evolution, just
evolution as an algorithm) has led to many interesting insights and creative evolutionary
outcomes [110]. I argue that achievements from these foreign disciplines can serve as an
inspiration to biology [111] and advance its line of research (of course the opposite is also
true, see Ch 4 of this thesis).

Of particular interest to me is the fact that despite their detachment from biological
principles and evolution, we find that architecture and evolvability are still central ideas
in this research.

Research from Kenneth Stanley and Risto Miikkulainen proves that an algorithm that
allows neural networks to evolve by gradually augmenting their topologies (NEAT) can
outperform fixed-topology trained networks in many tasks [112]. The intention behind
NEAT is to allow evolution to “both optimise and complexify solutions simultaneously,
offering the possibility of evolving increasingly complex solutions over generations” [112].
NEAT does so by maintaining and incrementally improving via evolution parts of the
network architecture. The idea of evolvability (defined by Stanley as the ability to produce
innovation) is also very involved in the conception of NEAT, and indeed in many cases,
NEAT has been proven to enhance the evolvability of the system in which it is used
[113, 114]. NEAT has given rise to a very prolific line of research and is one of the best-
known representations of ANN evolution [94, 115–119]. Its framework has now been
expanded for almost two decades in a family of architecturally oriented encodings that
allow a more efficient evolution of artificial neural networks for a plethora of tasks.

Another interesting architectural insight provided by Kenneth Stanley and Sebastian
Risi is their proof that evolution can form very complex and high-performing ensembles
by being able to find a way to efficiently connect high-dimension components (in their
case architectural blocks of artificial neural networks with hundreds of thousands of
connections/parameters each) through low-dimension interfaces (i.e. through only a few
connections) [120]. This process mirrors the fashion in which different developmental
programs interact only via a few of the many genes that compose them [70]. Even more in-
terestingly, they show that mutations on these “compressed” low-dimensional interfaces
produce coordinated and functional changes across the “expanded” high-dimensional
components. This behaviour is well-known in artificial intelligence and is specifically
exploited by the “Auto-encoder” architectures [121, 122] (sometimes referred to as hour-
glass networks). Autoencoders are famous for being able to produce generative art and
the (sometimes hilarious, sometimes scary) so-called deep-fakes [123, 124]. They can do
so via compressing and expanding information, thus forming information bottlenecks.
Scientists have shown that these bottlenecks contain the crucial features of the incoming
information and are thus much easier to fine-tune for a specific task [121, 122]. This
leads to speculation that biological organisms might be able to bias variation adaptively
in a similar way. Bowtie architectures are well-known across biology and very similar
to auto-encoders. They have the same low-dimensional information bottlenecks that
connect different high-dimensional components [125, 126]. Mutating preferentially these
variational hotspots at the interface of different functional systems thus, like autoen-
coders, could favour the production of coordinated and functional variation. This idea is
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not completely new in evolutionary biology and it has, in different terms, already been
presented by Kirschner and Gerhart in their theory of facilitated variation [62]. I suspect,
however, that Kirschner and Gerhart were oblivious to this “convergence” with Artificial
Intelligence, as auto-encoders became popular only in the recent decade [124]. No one
to my knowledge has ever explicitly made the connection between these two ideas until
now. However, it has to be said that autoencoders are being used in evolutionary com-
putation already and that Richard Watson as well has been recently working with this
representation [127].

Lastly, I would like to focus on Grammatically Guided Genetic Programming (GGGP)
[128], a branch of genetic programming (GP) [108]. The goal of GP in general, as already
mentioned previously, can be outlined as the attempt to design programs to solve specific
computational tasks via evolution. This is thought to be a particularly fruitful approach
for those computational tasks to which no known optimal solution exists (i.e. calculus
optimisation, path-making algorithms, robotic arm kinetic control, ANN training opti-
misation), and where therefore evolution’s creative potential can shine. GP represents
programs as binary trees, which can be easily parsed recursively and executed, and the
structure of these trees is genetically encoded in a variety of ways. Practitioners of GGGP
explicitly design all the different operators of the program and encode them into a gram-
mar system. In this grammar different types of operators cover different grammatical
functions (e.g. a sum operator conjoins two other operators, a parenthesis operator forms
a new branching point in the grammatical sentence, a numerical constant closes the sen-
tence, etc.). Although this is referred to as ‘grammar’, the base idea of this line of research
is to use expert knowledge about a problem to design a system of relationships between
operators so that evolution can more easily explore the solution space i.e.: to design the
architecture of a system to increase its capacity to adapt - evolvability. This approach has
been successfully applied to a variety of tasks, from designing neural architectures [129]
to image recognition [130], and pathfinding [131]. Its explicit attention to architecture,
as well as its general applicability [132], make GGGP a fertile ground for applying and
gleaning insights on architecture and evolvability (see Chapter 4 of this thesis).

1.8. METHODOLOGY

Now that I have stated my ideas and provided sufficient conceptual background, I can
illustrate how I intend to research the role of organismal architecture in evolvability and
the rationale behind my choices. A rationale is indeed necessary for this line of research,
since, as I hope to have sufficiently demonstrated in the previous sections, one defining
aspect of evolvability research is the astounding plurality of all its aspects, from the
conceptual (discussed above) to the methodological (discussed below). The examples
given in the previous two sections provide a good survey of the diversity of techniques
and approaches one could apply to the study of architecture. From different choices of
representation of architecture e.g.:

1. a GRN described by interconnectable metabolic reaction rates,

2. a GRN that is a fully connected binary network,
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3. a GRN that resembles a simple ANN,

4. a GRN that mimics a logic gate circuit,

5. a complex state-of-the-art Artificial Intelligence Neural Network Architecture,

6. a robot morphological and motor developmental program,

7. a grammatical system (see GGGP)

to different choices in the set of selective challenges in which individuals evolve e.g.:

1. Optimal metabolic end-product expression via equation system optimisation,

2. Stable matching of one or multiple expression patterns,

3. Execution of alternating Boolean logic operations,

4. Pattern recognition of modularly changing bit sequences,

5. Simultaneous and sequential binary output matching,

6. Emergent speed of locomotion,

7. Image recognition, path-finding, or robotic arm coordination

Modelling choices are almost limitless, and this introduction does not even get close
to covering all of them (for other systems in use see RNA landscapes used by Hogeweg and
Wagner [59, 83], or Artificial life systems such as AVIDA [20], Tierra [133] and the various
iterations of the cellular automata models [134]). On top of this, I would like to mention
that I did also not cover in detail the role that different selective challenges play as well in
influencing evolvability (as this exceeds the already hefty scope of this introduction).

In the face of so many choices, one can easily feel overwhelmed. Moreover, one
needs to recognise that, despite some of these models do try, and in some rare cases
even succeed, to accurately capture some aspects of biological reality, there is a huge gap,
both qualitative and quantitative (see Discussion), between the outcomes predicted by
theoretical models and the natural world. Therefore, it is important when making a model
to face the immense sea of possible implementations with clear goals and intentions, as
well as to acknowledge the difference between models and reality. To do so, I choose an
approach of intermediate complexity (in line with the philosophy of my research group).
The idea of intermediate complexity is enucleated in the eloquent (yet so devilishly
vague!) quote from Albert Einstein that says: “Make everything as simple as possible,
but not simpler.” [135] which I would rephrase, to help the reader understand, as: “Keep
everything as simple as possible, then add one grain of complexity, and then, again,
keep this grain as simple as possible.”. The idea of such an approach is to start from
simple yet reasonable assumptions, understand where the limits of those assumptions
are, and in a methodical and almost naively simple manner, relax one assumption. One
should strive to make the most simple and yet most significant change possible, and
then let the new properties and outcomes of the so-changed process spontaneously
emerge. Once this is done, and ideally all ramifications have been assessed, the process
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can be iterated again. Intermediate complexity is a “what if” approach, that seeks not to
predict real events, but to give us a glimpse of what other potential dynamics we might
be missing out on by restricting ourselves to a certain set of assumptions. This is the
idea behind my research methods: through models, not to describe and predict what the
interplay between organismal architecture and evolvability actually does, but to prime
our intuition (mine and that of every other scientist interested in the topic) to what it
could be doing. To ground this idea more concretely, I will now illustrate my modelling
choices in researching evolvability and organismal architecture. Let me first recapitulate
the principles and limitations of standard evolutionary theory. This theory finds its
strengths in its simplicity and overall cohesiveness. Evolutionary processes are described
in a mathematical and statistical framework, where individuals are often subsumed into
populations and specific traits to average quantities. This allows it to describe a wide
range of complex dynamics in simple terms, and, accepting the simplifications that
come with it, to rigorously predict their outcomes. However, as I already explained, this
approach also leads to a phenomenological and short-term view of evolution. Under
this view, only individual traits and not their interactions are selected, and long-term
evolutionary advantages cannot be accounted for by natural selection. For the theory to
move on from this impasse, and be able to account for phenomena like evolvability, it is
necessary to take a mechanistic approach, acknowledging in particular that organismal
architecture can provide new and important insights. Therefore I aim, in line with my
rationale, to implement the simplest expansion possible to be able to model systems so
that variation between individuals is explicitly accounted for, and interactions between
genes and their architectures are relevant to evolution. This way I hope to observe in
minimal conditions if and how evolvability emerges from their newly expanded dynamics.
For this reason, my simulations have two key expansions from classical theory: each
individual is explicitly modelled (instead of being averaged at the population level) and
its phenotype is determined by the outcome of the activity of a GRN with a minimally
complex architecture (instead of separate genes with little interaction among each other).
A good approximation of the modelling method I use can be seen in the research from G.
Wagner and Draghi [90], as well as van Gestel and Weissing (specifically the GRN) [50].
Individuals’ GRNs are usually composed of a few, but tightly interconnected, genes. The
GRNs have (innately) an architecture of connections, but this usually has an extremely
simple topology that cannot evolve. Overall, their functioning and behaviour are very
similar to some of the most elementary ANN architectures i.e.: multilayer perceptrons
[136, 137]. This similarity is not a coincidence, as it has been mathematically proven that
these basic ANN architectural templates have all the minimal requirements (if scaled
to a sufficient size i.e.: number of genes/neurons) to be able to accomplish any given
task (i.e. approximate any given function/ be Turing complete) [138]. This makes them
ideal for my goals as they are the simplest possible mechanistic representation of a
gene network that still allows for new (and potentially any) behaviour to evolve. These
choices, however, exclude the observation of many interesting dynamics, such as the
evolution of modularity, particular design motifs, or highly complex behaviours. At the
same time, this allows me to focus my analysis on other aspects more clearly (in a similar
way to how the standard theory foregoes most organismal complexity in exchange for
exceptional clarity in its formalism). By maintaining such a low degree of complexity, it
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is possible to capture dynamics in systems so simple that they are easy and intuitive to
understand for a wide variety of scholars, making this concept more accessible to the
entire community. Moreover, simulations, in some cases, are simple enough that they
can be translated from a computational model into a mathematical formula. This re-
formalization could help to bridge the gap between the phenomenological/mathematical
approach of the standard theory with the mechanistic/computational approach that
evolvability studies normally adopt. In conclusion, I hope to highlight the advantages this
approach offers, and why I find it particularly appealing in trying to “pick up” a general
pattern across many phenomena and combine knowledge from different fields. Overall
my modelling does not want to produce digital experiments, but instead aims to provide
computational metaphors; continuing Waddington’s conviction that models should be
“Tools for Thought” [139].

1.9. THIS THESIS

This final section will give a brief overview of the contents of this thesis. The work in this
thesis will first deal with conceptual work on evolvability (Chapter 2), it will move on
modelling (Chapter 3 and 4 and the two intermezzos), to then give an example of multidis-
ciplinary research between evolutionary fields (Chapter 5), and finally will conclude with
a few philosophical consideration on the field of evolutionary studies and a distillation of
this thesis’ results (Chapter 6 / Discussion).

Chapter 2 discusses the many facets of ‘evolvability’ and argues that a mechanistic
perspective can clarify and resolve long-standing debates in the field and facilitate com-
munication between different disciplines. Thinking in terms of mechanisms can help
to more clearly identify what facet of evolvability one is studying, allowing one to more
easily pinpoint the scope and limitations of one’s research. We also review the current
definitions used for evolvability and highlight a previously unremarked difference in the
way different groups of researchers conceptualise it.

Chapter 3, provides a ‘proof of principle’ that adaptive developmental biases at the
phenotypic level can readily evolve, even if the mutation process at the genetic level is
unbiased and random. We term the particular type of mutational bias we are interested
in: “mutational transformation”. A mutational transformer is a mechanism through
which the phenotype switches from one adaptive state to another via a single or few
genetic mutations. Using individual-based simulations, we show how mutational switches
can evolve in gene regulatory networks with simple and complicated architecture. We
observe two distinct modes of mutational switching depending on the type of allowed
gen interactions: mutational amplifiers for linear interactions and mutational canalisers
for nonlinear.

My thesis also includes two ‘intermezzos’: research that I conducted in the initial
stages of my PhD. Both intermezzos were published as part of a larger study. I here only
reproduce the theoretical aspects of the study, as they are relevant to Chapter 4 of this
thesis.

In the first intermezzo, which is part of the published paper. I discuss another
potential application of the mechanistic modelling approach to study the evolution and
evolutionary consequences of non-genetic inheritance. I first give an overview of the
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many different models with which evolutionary biology has described and treated non-
genetic inheritance, highlighting their strengths and pitfalls. I then proceed to describe a
potential model in line with my methodology, which would allow the incorporation of the
molecular and evolutionary insights collected in the publication.

The second Intermezzo includes a modelling study part of the published paper [140]
that provides an explanation for the puzzling fact that parasitic wasps can be induced
to switch on their fat metabolism, although they seemed to have lost the corresponding
metabolic pathway millions of years ago. This finding seems to contradict Dollo’s law of
irreversibility, which states that complex traits cannot be re-evolved once lost. The model
demonstrates that a switching device (switching on or off a metabolic pathway) can be
stably maintained in the face of mutational erosion, even if the switch is only rarely used.
This supports that the wasps’ metabolic pathway persists plastically dormant rather than
re-evolving after irreversible loss.

Chapter 4 extends the study in Intermezzo 2 by considering the evolutionary emer-
gence and robustness of gene-regulatory networks with a complex task (not just a switch-
ing device) in situations where the adaptation is only sporadically under selection. The
model reveals complex reaction norm phenotypes evolve under regimes of sporadic selec-
tion. Both genotypes pre-adapted under constant selection, and those not pre-adapted
perform equally well. Counterintuitively, larger genotypes withstand mutations better in
certain conditions. Overall, the results demonstrate complex regulation can emerge even
with minimal selective pressure.

Research in Chapter 5 leverages recent insights from evolutionary theory to improve
the design of Genetic Programming (GP) algorithms aimed at Machine Learning. Specif-
ically, mutational regimes are designed that improve the search efficiency and perfor-
mance of a certain class of Neural Network optimisers. The new mutational regimes prove
to be computationally efficient while at the same time increasing the quality and diversity
of an image recognition task, demonstrating cross-fertilisation between fields.

Finally, Chapter 6 contains an overarching discussion of my thesis. This chapter
contains two parts. First, I lay out some considerations and conclusions of a broad
scientific/theoretical and philosophical nature. Second, I review and summarize the
findings of my research and outline interesting future directions for this field of study.
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CAPTURING THE FACETS OF

EVOLVABILITY IN A MECHANISTIC

FRAMEWORK

Stefano Tiso*, Jana M. Riederer*, Timo J.B. van Eldijk*, Franz J. Weissing

If Simorgh unveils its face to you, you will find that all the birds, be they thirty or forty or
more, are but the shadows cast by that unveiling. What shadow is ever separated from its
maker? Do you see? The shadow and its maker are one and the same, so get over surfaces

and delve into mysteries.
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ABSTRACT

“Evolvability” – the capability to undergo adaptive evolution – is a key concept for un-
derstanding and predicting the response of biological systems to environmental change.
Evolvability has various facets and is applied in many ways, easily leading to misunder-
standings among researchers. To clarify matters, we first categorize the mechanisms and
organismal features underlying evolvability into determinants providing variation, deter-
minants shaping the effect of variation on fitness, and determinants shaping the selection
process. Second, we stress the importance of timescale when studying evolvability. Third,
we distinguish between evolvability determinants with a broad and a narrow scope. Finally,
we highlight two contrasting perspectives on evolvability: general evolvability and specific
evolvability. We hope that this framework facilitates communication and guides future
research.

2.1. EVOLVABILITY IS AN IMPORTANT YET ELUSIVE CONCEPT

Understanding adaptation to changing environments is more important than ever. Cli-
mate change, antibiotic resistance, and viral vaccine evasion represent major societal
challenges: is an endangered species able to adapt to environmental change? Will a
bacterial pathogen evolve antibiotic resistance? Can a virus evade vaccine-based immu-
nization? At the core of these issues lies a common element: the capability of organisms
to adapt – evolvability [2]. Evolvability research sheds new light on genomic architecture
[3], the structure of regulatory networks [4, 5], and many other features of biological
systems (see Glossary). It has yielded surprising new insights, such as: adaptive evolution
can proceed at a similar pace as ecological change, resulting in intricate and unexpected
eco-evolutionary dynamics [6, 7], evolvability and robustness do not conflict but mutually
reinforce each other [4, 8, 9]; and organisms with high evolvability can “generalize” over
environments [10, 11]. Furthermore, evolvability research may add new perspectives
to formulating a predictive theory of evolution (see Box 1 and Outstanding Questions).
Evolvability is studied by diverse approaches. For instance, Johansson et al. [12] inspect
the genetic variance-covariance matrix; Woods et al. [13] compare the speed of adaptation
of bacterial strains; and Martín-Serra et. al [14] focus on morphological integration and
modularity. These approaches, though all valid, are widely disparate: all aim to under-
stand evolvability, yet each focuses on a different facet. This plurality is also reflected in
the fact that evolvability has been defined in many different ways (see Box 1). We aim to
highlight the different facets of evolvability and how they relate to each other, to facilitate
a more nuanced and cohesive discourse on the topic. Throughout, we define evolvability
as the capability of a biological system to undergo adaptive evolution (see Box 1 for a
justification).



2.2. TOWARD A MECHANISTIC APPROACH TO EVOLVABILITY 37

BOX 1. DEFINITIONS OF EVOLVABILITY

Here we will briefly discuss some definitions of evolvability, as they provide a good
overview of the diversity of approaches in the field of evolvability research [15–17].
One important early definition revolves around the additive genetic coefficient
of variation. It defines evolvability as the ability to respond to selection as gov-
erned by the presence or absence of standing genetic variation (often assessed
in the G matrix) [18–20]. Another important perspective was given by Wagner
and Altenberg [21], who made a distinction between variation and variability, i.e.
the propensity of characters to vary. Evolvability is then considered not as the
currently present variation but instead as the ability to generate new variation. A
third, different perspective on evolvability considers the ability to generate major
innovations [22, 23]. For a comprehensive review of these developments, the
reader is referred to [2]. Note that these definitions of evolvability are reflected
in our first category of determinants, as they all view evolvability as determined
by the presence or provisioning of variation. One additional aspect of the defini-
tions of evolvability (also called “evolutionary potential” or “adaptive capacity”) is
the relationship between variation and adaptation. While earlier treatments (as
discussed in [2]) define evolvability as the ability of a biological system to evolve,
irrespective of whether evolution is adaptive or not, recent definitions tend to
restrict the concept to adaptive processes. For example, Payne and Wagner [24]
combine the aspects of variation and adaptation when they define evolvability
as “... the ability of a biological system to produce phenotypic variation that is
both heritable and adaptive”. Other definitions in this vein have been provided by
[8, 18, 25–30]. Following the general trend in the field, we here focus on adaptive
evolution as well. When defining evolvability as the “capability of a biological
system to undergo adaptive evolution” we do not mean the presence or absence of
this capability, but rather we consider its degree in a continuous fashion. Adopting
an adaptive perspective does by no means imply that non-adaptive processes
(e.g. genetic drift) are irrelevant; in fact, many of the determinants of evolvability
reflect such processes (e.g. mutation). However, there are at least two reasons
for focusing on adaptive evolution. First, many applications of evolvability (e.g.
evolution of antibiotic resistance, adaptation to anthropogenic change) consider
the adaptation to environmental challenges. Second, relating the rate and out-
come of evolution to underlying selection pressures provides a yardstick, making
it possible to differentiate between organismal and environmental features [18]
and allowing comparisons across organisms. Both features are important first
steps toward a predictive theory of evolution [31].

2.2. TOWARD A MECHANISTIC APPROACH TO EVOLVABILITY

Evolvability is often viewed in terms of outcomes (e.g. speed of adaptation). As the same
outcome can be achieved in many ways, it is useful to study evolvability by a mechanistic
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approach [24]: viewing evolvability not as a phenomenon per se but as a product of the
mechanisms and organismal features that underlie it. A mechanistic perspective also
clarifies discussions on the evolution of evolvability [2, 24]: while questions regarding
the evolution of “the capability to undergo adaptive evolution” easily turn abstract, they
become more obvious and transparent when translated into questions regarding the
evolution of concrete mechanisms (e.g. the mutation rate).

2.3. CATEGORIZING THE DETERMINANTS OF EVOLVABILITY

We refer to the mechanisms and organismal features that govern evolvability as deter-
minants of evolvability. These affect different aspects of adaptive evolution, and con-
sequently shape evolvability in different ways. We here identify three ways in which
determinants can shape evolvability, based on what aspect of adaptive evolution they
affect, and categorize them accordingly (figure 1). Firstly, determinants may affect evolv-
ability by providing variation. The mutation rate is the most obvious example of such a
determinant [3, 33–35]. Secondly, determinants may affect evolvability by influencing
the effect of variation on fitness. For example, developmental biases may predispose
mutations towards being beneficial [36–39]. Thirdly, determinants may affect evolvability
by shaping the selection process – shorter generation times, for example, may speed up
adaptation [40, 41].

2.3.1. CATEGORY 1: PROVIDING VARIATION

Heritable variation serves as the raw material for evolution. Hence, our first category
refers to those mechanisms that generate and maintain variation. For example, mutations
generate variation in many ways, ranging from point mutations to genome rearrange-
ments. Interestingly, mutation rates vary widely between organisms as well as within
genomes [42–44], and they can be regulated based on the environment (e.g. stress-
induced mutagenesis, [45]) – indicating that evolvability can evolve through the evolution
of the mutation rate. Examples of determinants maintaining variation include evolu-
tionary capacitors such as heat shock proteins. HSP-90 in Saccharomyces cerevisiae, for
instance, acts as a chaperone protein aiding correct protein folding. Chaperoning can
shield sequence mutations from selection, thus maintaining variation. This can later be
released under stressful conditions [46, 47]. Developmental canalization can affect evolv-
ability in a similar manner, in that it allows the accumulation of cryptic genetic variation
[48]. Furthermore, capacitors may also be behavioural in nature, as parental care and
thermoregulatory behaviour also allow cryptic genetic variation to accumulate [49, 50].
Horizontal gene transfer may also be viewed as a category 1 determinant, as it allows
variants to be maintained that would otherwise be lost from the population, for instance
by establishing an “accessory genome” [51, 52] or through the so-called rescuable gene
hypothesis [53]. Not all heritable variation is genetic: epigenetic inheritance, inheritance
of environmental features, and cultural inheritance can also affect adaptive evolution
[54, 55]. Hence, category 1 also includes mechanisms providing non-genetic heritable
variation.
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Figure 1 | The way that mechanisms and organismal features affect evolvability can be classified into three
categories. Each one contributes to evolvability in a different way. This can be compared to the process of
baking a cake: the end result depends on several fundamentally different aspects - the amount of ingredients,
the quality of ingredients and the baking process. We suggest that evolvability is analogously affected by three
different classes of determinants: those providing variation (“the amount of sugar”), those shaping the effect
of variation on fitness (“the type of sugar”), and those shaping the selection process (“the baking process”).
An example of a determinant providing variation is the mutation rate, where mutation encapsulates a wide
variety of phenomena ranging from point mutations to genome rearrangements. Developmental biases are
examples for determinants that shape the effect of variation on fitness. Consider for instance the developmental
system underlying the eyespot pattern on the wings of the butterfly Bicyclus anynana. This system is organized
in such a manner that mutations can easily change the colour composition of the two wing eyespots in the
same direction, whilst mutations changing the colour composition in opposite directions are extremely rare
(depiction based on [32]). Depending on whether the selective pressure favours eyespots with the same colour
composition or not, this bias may facilitate or impede evolvability. Finally, an example of a determinant that
shapes the selection process is generation time: a shorter generation time allows faster adaptation – in absolute
time, bacteria evolve faster than elephants.
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2.3.2. CATEGORY 2: SHAPING THE EFFECT OF VARIATION ON FITNESS

The mapping from mutation to fitness is affected by a variety of mechanisms: mutations
may be random with respect to the genotype, but their effects on the phenotype and
consequently fitness are often not [9, 56]. Through features such as genomic, develop-
mental, and regulatory architecture, the genotype-to-phenotype-to-fitness map can bias
the fitness effects of mutations [18, 37]. Category 2 thus contains determinants that influ-
ence the effect of variation on fitness. Examples can be found in the evo-devo literature
[32, 37, 39, 57], which describes various biases introduced through the developmental
process (developmental bias, for an example see the butterfly Bicyclus anynana in Fig. 1).
The effect of variation on fitness can also be biased by genomic and regulatory architec-
ture [5, 58]. In yeast, for example, genes for which upregulation is selectively favoured in
a higher-temperature environment are grouped on the same chromosome. Therefore,
a duplication of this chromosome suffices to achieve upregulation of all relevant genes;
without such genome organisation, many independent mutations would be required to
obtain an equivalent high-temperature adaptation [59].

2.3.3. CATEGORY 3: SHAPING THE SELECTION PROCESS

Starting from the same variation, evolution can still proceed at a very different pace
and/or can lead to very different outcomes. Thus, category 3 contains determinants that
impact evolvability not by shaping variation, but rather by shaping how the selective
process acts on this variation. Examples are organismal features influencing population
structure (e.g. dispersal tendency or mating patterns), as population structure may
strongly affect adaptive evolution [60]. For instance, limited dispersal is hypothesized to
have aided the rapid evolution of eusociality in diverse clades of insects [61]. Two other
examples of category 3 determinants are generation time and the mode of reproduction.
In coevolutionary host-pathogen arms races, the shorter generation time of pathogens
provides them with an evolvability advantage, as they can evolve faster per time unit than
their host [23]. Considering the Red Queen hypothesis, it becomes evident that hosts need
other adaptations (e.g. sexual reproduction or a variation-generating immune system) to
cope with pathogens on a longer-term perspective [62]. In the coevolution of hosts and
their symbionts, the rapid evolution and/or diversification of the symbiont is often not in
the interest of their host. Accordingly, the hosts of various symbiotic systems reduce the
symbiont’s evolvability by actively interfering with the symbiont’s sexual reproduction
[63].

2.4. HOW A MECHANISTIC CATEGORISATION AIDS OUR UNDER-
STANDING OF EVOLVABILITY

Some determinants of evolvability can be classified into more than one category. This is a
deliberate feature of the proposed categorisation, as it highlights that a determinant can
affect evolvability in different ways. The categorisation prompts the researcher to critically
consider how mechanisms and processes shape adaptive evolution. An illustrative exam-
ple can be found in the literature on evolvability and plasticity. Some have argued that
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plasticity impedes evolvability: plastic responses shield organisms from selection, pre-
venting genetic adaptation (category 3) [64]. Others have argued that plasticity allows the
accumulation of cryptic genetic variation (category 1) [11, 65], thus potentially enhancing
evolvability, because plastic traits are only expressed under particular environmental con-
ditions. Finally, arguments derived from Gene Regulatory Network models conclude that
the evolution of plasticity can restructure the genotype-phenotype map in such a way that
random mutations are more likely to produce adaptive phenotypes (category 2) [66, 67].
Our categorisation of determinants thus showcases these often subtle but nevertheless
crucial distinctions. The effect of modularity on evolvability provides another example.
Inspection of the underlying mechanisms reveals that modularity has not one but two
impacts on evolvability. Firstly, it facilitates innovation by allowing pre-existing modules
to be combined in different configurations, thus providing variation (category 1) [68].
Secondly, it also allows individual modules to vary independently, without affecting the
functionality of the entire system (reducing antagonistic pleiotropy): this makes deleteri-
ous mutations less impactful, thus creating an adaptive bias that shapes the fitness effects
of variation (category 2) [69]. This reduced impact of deleterious mutations (category 2)
may also allow organisms to tolerate higher mutation rates (category 1) - showing that
determinants in different categories can interact in a reciprocal manner: the processes
that provide variation (category 1), bias the fitness effects of variation (category 2), and
shape the selection process (category 3) are not independent of each other. Our view
on the determinants of evolvability is suited to different approaches to evolution and
evolvability. The first category (providing variation) contains not only mechanisms that
provide new mutations, but also mechanisms that facilitate major innovations (however,
the relationship between evolvability and major innovations is not yet well understood).
Similarly, the second category considers not only instances of genotypic and develop-
mental biases, but also includes broader ideas such as phenotypic accommodation and
the theory of facilitated variation [38, 70–72]. Finally, the third category considers not
only genetic mechanisms (such as horizontal gene transfer, which also allows beneficial
variants to spread more quickly [73]) but also - amongst others - niche construction,
where organisms shape their own selective environment [74].

2.5. EXPLICITLY CONSIDERING TIMESCALE RESOLVES APPARENT

INCONGRUENCIES

Determinants differ in the timescale on which they act – thus, when comparing evolvabil-
ity across biological systems, the outcome is crucially dependent on timescale (see figure
2). Considering timescale can help to resolve several apparent discrepancies.

This is exemplified by comparing determinants that provide variation (category 1):
consider the impact of standing genetic variation [19] and the impact of mechanisms
generating variation [21] on evolvability ([2], see Box 1). In the short term, adaptation is
more strongly influenced by standing genetic variation, whereas mechanisms generating
and maintaining variation are of greater significance when considering longer-term evo-
lutionary trajectories [26]. Some approach evolvability in terms of speed of evolution [75],
whilst others approach it in terms of attained level of adaptation [18, 76]. Both aspects are
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Figure 2 | When studying evolvability it is important to explicitly consider timescale; observing at different
times can lead to different conclusions. Suppose that we observe the ability of two fish species to adapt to a
new food source. Our conclusions on which of the two is more evolvable (is better able to adapt to the new
selective challenge) will depend on the time at which we observe their level of adaptation. At time t1, the
purple fish species is more adapted (and hence seems more evolvable), but at time t2, the green fish species is
more adapted (and hence seems more evolvable). This occurs because rates of adaptation are not constant
across time - thus, being explicit about the timescale of observation can resolve apparent discrepancies when
comparing the evolvability of different organisms.
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relevant [15], but they are often two sides of the same coin, which becomes apparent when
explicitly considering timescale. Consider, for example, different modes of inheritance.
Epigenetically inherited traits can provide fast adaptation - yet this adaptation is often
relatively inaccurate, given that the relative instability of epigenetic marks impedes the
reliable maintenance of a certain optimal phenotype. In contrast, genetic adaptation
proceeds more slowly, but in view of the high fidelity of genetic inheritance it may, in
the long term, result in a higher level of adaptation. Therefore, epigenetic inheritance
confers higher evolvability in the short term, and genetic inheritance confers higher evolv-
ability in the long term [54]. Another discrepancy that can be resolved by considering
timescale is the debate over the evolvability benefits of sexual reproduction, with both
sexual and asexual reproduction being linked to increased evolvability [2, 77]. All other
things being equal, the response to selection (and hence the rate of adaptive evolution) is
higher under asexual reproduction, as in case of sexual reproduction selection can only
act upon the additive component of genetic variation [78] (category 3). Therefore, asexual
reproduction facilitates evolvability in the short term. In the longer term, sexual repro-
duction confers a higher evolvability, as the slower speed of evolution is outweighed by
the ability to better explore the fitness landscape and reach global rather than local peaks.
The claims that sexual reproduction increases evolvability, and the claims that asexual
reproduction increases evolvability can thus both be true, just at different timescales (see
figure 2). Overall, the above examples show that the effects and relative importance of
determinants vary over time. Therefore, explicitly considering timescale is crucial when
studying evolvability.

2.6. ACCOUNTING FOR ENVIRONMENTAL CONTEXT SHOWS THAT

DETERMINANTS DIFFER IN SCOPE

Evolvability is the capability to undergo adaptive evolution; it is therefore necessary
to consider in relation to which environmental challenge such adaptation arises. This
reveals an additional property of determinants: their scope. Some determinants affect
evolvability across many different environmental challenges; we consider these to have a
broad scope. For example, mutation rates impact evolvability in virtually all environments.
Other determinants have a narrow scope as they only shape evolvability in a restricted
set of environments. For example, the grouping of temperature-relevant genes on one
chromosome in yeast [59] only enhances evolvability to a change in temperature; it does
not impact adaptation to other environmental challenges. The scope of determinants
pushes the researcher to consider the range of environments in which a determinant is
relevant. Determinants relevant for adaptation to one environment may not be as relevant
when considering adaptation to another. For example, in the radiation of Darwin’s finches,
developmental biases in beak development have been implicated in their adaptation to
different seed sizes [79, 80]. However, evolvability with regards to beak shape will not be
relevant with regards to other environmental challenges, such as temperature regulation
or predator escape. By contrast, a higher mutation rate will affect evolutionary adaptation
with regards to many different environmental challenges.
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2.7. TWO PERSPECTIVES ON EVOLVABILITY

A very different distinction does not refer to the determinants of evolvability, but to the
scholars studying evolvability. Depending on their scientific discipline, research question,
or model system, scholars differ in whether they view evolvability as “general” or “specific”
with regards to environmental challenges (figure 2).

Scientists adopting a specific evolvability perspective refer to the capability of a biolog-
ical system to undergo adaptive evolution to a specific environment or a specific challenge
– the main focus therefore is on how well a biological system can meet a specific selective
target. This perspective is useful when studying adaptation to a particular challenge, e.g.
when exploring the capability of bacteria to evolve resistance to a particular antibiotic,
the capability of a virus to evolve resistance to a vaccine, or the ability of an endangered
species to evolve adaptations to a specific anthropogenic threat [81, 82]. In contrast,
scientists adopting a general evolvability perspective view evolvability as the capability
of a biological system to adapt to a wide spectrum of environments or of challenges –
thus effectively considering evolvability irrespective of the environmental context. This
perspective is useful when considering adaptation to unpredictable environments, and is
also frequently used in studies exploring the link between evolvability and diversification
[76, 83, 84]. Whilst specific and general evolvability are both useful conceptualizations of
evolvability, insights gained from one do not necessarily translate into insights about the
other. Depending on the chosen perspective, the same observation can lead to different
conclusions (figure 2), it informs what questions are asked, and affects how results are
interpreted. Consider a population that is able to adapt rapidly to a specific challenge,
such as a bacterial strain quickly evolving resistance to a particular antibiotic. From
the perspective of specific evolvability this strain has a high evolvability, whilst viewed
from the perspective of general evolvability this single instance of rapid adaptation says
nothing about the ability of the strain to adapt to other challenges (heat stress, pH stress,
etc.). The distinction between general and specific evolvability should not be confused
with the scope of a determinant: the latter is a property of a determinant, whereas the
former concerns two different ways of viewing evolvability.

2.8. CONCLUDING REMARKS

Evolvability is an intricate concept with many facets. Different facets are at centre stage
in different lines of research. Furthermore, evolvability is conceptualized in two different
ways: specific and general evolvability. Being aware of these differences is crucial for
fostering an integrated and structured view on evolvability research. Throughout we
argue that evolvability should not be studied as a phenomenon per se, but as a product
of the mechanisms underlying it. Moreover, it is useful to clearly distinguish between
determinants that provide variation, shape the effect of variation on fitness and shape the
selection process. A structured mechanistic approach clarifies debates in the literature
and provides a sound basis for studying the evolution of evolvability. Evolvability cannot
be quantified by a single number. Both speed of evolution and level of adaptation are
relevant, but they are not independent. Scholars should explicitly consider this when
conducting evolvability research. We hope that the proposed mechanistic approach
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Figure 3 | Specific and general evolvability represent two different perspectives on evolvability. This influences
questions and interpretation of results in evolvability research. Different scientists can reach different
conclusions from the same observations. This figure illustrates how scientists with different perspectives
(on the left: specific evolvability, on the right: general evolvability) interpret the same observations regarding
adaptation very differently. Observation A: A fish species can easily adapt to using cookies as a food source.
From the specific evolvability perspective (S1), this is interpreted as high evolvability with respect to cookies.
From the general evolvability perspective (G1), it is not possible to draw conclusions, since no information is
available regarding the ability to adapt to other food sources (environments). Observation B: A fish species
cannot adapt to using cookies as food source, but (e.g. due to modular mouth parts) can undergo adaptation
to a wide range of other food sources (environments). From a specific evolvability perspective (S2), this is
interpreted as a lack of evolvability with regards to cookies. From a general evolvability perspective (G2), the
ability to adapt to a wide range of different environments (ability to deal with dietary shifts) indicates a high
evolvability. Notice that the two perspectives characterize scholars of evolvability, rather than the determinants
of evolvability. The two perspectives should therefore not be confused with determinants acting at short vs long
timescales, or with determinants having narrow vs broad scope.
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facilitates communication across disciplines, helps to address major questions regarding
evolvability (see Outstanding Questions), and provides guidelines for designing future
studies on evolvability.

2.9. ACKNOWLEDGMENTS

We thank the members of the MARM group and the Komdeur group at the University of
Groningen for stimulating discussion and comments on the manuscript, and Carlotta
Borgato for assistance with the design of the figures. We also thank Armin Moczek, David
Berger, and two anonymous reviewers for their helpful comments and insights. F.J.W., S.T.
and T.J.B.v.E. acknowledge funding from the European Research Council (ERC Advanced
Grant No. 789240); J.M.R. is supported by a GELIFES scholarship from the University of
Groningen. Finally, we thank the imaginary fish of unknown species that volunteered to
be fed imaginary baked goods for the advancement of science.



REFERENCES 47

GLOSSARY:

Biological system: We here define a biological system to be any biological entity
that can be subject to evolution by natural selection. Cryptic genetic variation:
Standing genetic variation that has little effect on phenotypic variation under nor-
mal conditions, but generates variation under changed conditions. The release of
this variation can facilitate (or hamper) adaptation and thus impact evolvability.
Developmental bias: The developmental mechanisms underlying a trait can in-
troduce biases in the variation in the phenotype, even if the underlying mutations
are unbiased. These biases can be (but need not be) aligned with the direction
of selection, in which case they facilitate adaptive evolution. Developmental
canalization: Robustness to genetic or environmental perturbations frequently
exhibited by developmental systems, leading to a stable phenotypic outcome.
Evolutionary capacitor: Mechanism that prevents the expression of genetic varia-
tion under some conditions, thus allowing the accumulation of cryptic genetic
variation, and ‘releases’ this variation under other conditions, thus exposing it to
selection. Gene regulatory network (GRN) model: Model that explicitly represents
the genotype-to-phenotype-map, as a complex network of regulatory interactions
between genes. GRN models have been studied extensively in the context of
evolutionary developmental biology and evolvability. Modularity: The ability of
subsets of a system (“modules”) to function independently of other parts of the
system (see [68]). Modularity can impact evolvability in various ways: for example,
independent modules can be easily combined in different ways, and furthermore
do not interfere with each other’s functioning. Phenotypic plasticity: The expres-
sion of different phenotypes by the same genotype in response to environmental
conditions. The impact of phenotypic plasticity on evolvability is subject to much
debate (see for example [11, 64–67]): their relationship is complex and not yet well
understood. Robustness: The capability of the state of a biological system to per-
sist under (environmental or genetic) perturbation. For example, robustness may
refer to the ability to maintain a certain phenotype in the face of environmental
fluctuations or genetic mutations. Intuitively one might consider evolvability (the
ability to change) and robustness (the ability to withstand change) to be opposed,
however, it has been shown that they can be two sides of the same coin [4, 8].
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ABSTRACT

At the genetic level, mutations are generally assumed to be random with respect to the
’demands’ of natural selection. Yet, it has been demonstrated that mutations are often
biased with respect to their phenotypic effects. Such biases can be important, as they allow
the rapid adaptation of a population to changing conditions. Here, we demonstrate that
adaptation-enhancing biases can readily evolve in a fluctuating environment. To this
end, we consider a population that is exposed to a stochastically changing environment.
The environment can be in two states for which different phenotypes are adaptive. The
phenotype of an individual is determined by a gene regulatory network that cannot sense
the environmental state and can therefore only adapt to environmental change through
mutation and selection. In our model, the mutation process at the genetic level is random
and not evolvable. Yet, even small networks rapidly evolve a structure that biases the
phenotypic effects of mutations in such a way that adaptive evolution after environmental
change is speeded up considerably. We term the mechanism responsible for this increase
in evolvability a “mutational transformer”. A mutational transformer is a network con-
figuration where the phenotypic effects of genetic mutations are distributed in such a way
that substantial adaptation to new conditions can be achieved via a single or few genetic
mutations. We show that in our model mutational transformers are based on two distinct
mechanisms: mutation amplification and mutation canalisation.

3.1. INTRODUCTION

Evolvability concerns “the capability of a biological system to undergo adaptive evolution”[1–
3]. The mechanisms that govern evolvability are subject to evolution themselves; hence,
evolvability is far from a static property but is shaped by selection and other evolutionary
processes. For instance, mutation rates can evolve to increase the production of variation
under stressful conditions, thereby enhancing evolvability [4–6]. Evolvability can also
change over the generations through the evolution of mechanisms that amplify, buffer,
or bias the effect of (genetic) variation on fitness [7–9], phenomena that are sometimes
referred to as developmental bias and/or canalisation [1, 10, 11]. These mechanisms alter
the genotype-to-phenotype map that describes how changes at the genetic level translate
into phenotypic differences. Any alteration of this map can have implications for the
dynamics and outcome of evolutionary processes [12–14]. Some genotype-to-phenotype
maps enhance evolvability more than others [1]. This may simply be a coincidence or
a side-effect of other processes. However, it is worth considering the possibility that
the structure of the genotype-to-phenotype map has been selected for evolvability, so
as to facilitate rapid adaptation to frequently encountered environmental changes. In
several empirical systems, there is evidence for this, as after a commonly encountered
environmental change, a highly adaptive phenotype can be achieved via a single or very
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few mutations with large phenotypic effect. A first example concerns the rapid emer-
gence of antibiotically resistant subpopulations that quickly arise in bacterial populations
grown from a single susceptible clone (‘heteroresistance’). This extremely fast acquisi-
tion of resistance is associated with the spontaneous tandem amplification of specific
resistance-enhancing genes [15–19]. A second example concerns the adaptation of the
yeast Saccharomyces cerevisiae to heat stress. Rapid adaptation to a higher-temperature
environment can be provided by the duplication of a single chromosome. This duplication
simultaneously upregulates a multitude of genes that provide adaptation to a higher tem-
perature [20]. In these and other examples, the structure of the genotype-to-phenotype
seems to have evolved to facilitate rapid adaptation. The idea that the structure of the
genotype-to-phenotype map evolves to facilitate the generation of adaptive variation
has also been proposed and extensively discussed in the theory of facilitated variation [21].

But how can the genotype-to-phenotype map evolve in a way that random genetic muta-
tions have phenotypic effects that speed up adaptive evolution? A key theoretical study on
this question was performed by Anton Crombach and Paulien Hogeweg [10], who consid-
ered the evolution of gene regulatory networks (GRNs) that generated expression patterns,
which in turn resulted in a specific phenotypic effect. A population of individuals evolved
in an environment that alternated between two states, each selecting for a different target
GRN expression pattern. The authors observed that throughout evolution the GRNs
re-organized to allow for increasingly rapid switching between the two target expression
patterns. Moreover, the increasing rate of adaptation was accompanied by a reduction in
the number of mutations required to switch between expression patterns. These findings
clearly demonstrate that structural features can evolve to enhance evolvability: whilst
the frequency and type of genetic mutations remain random and constant, the GRNs
evolve to be structured in such a way that a single or very few mutations are sufficient
to switch to a phenotype that is well-adapted to the new environment. In a follow-up
study, Hogeweg and colleagues [22] showed that such a mutational configuration can also
evolve in GRNs that are able to sense the environment and, hence, can evolve phenotypic
plasticity. The results of [10] and [22] showcase clear instances of the evolution of develop-
mental biases toward an adaptive phenotype. We here term the underlying configuration
a “mutational transformer”: the GRN is structure transforms the phenotypic impact of
mutations in such a way that a single or very few mutations allow for a switch to a different
adaptive phenotype, facilitating rapid adaptation. The name indicates that a population
has evolved to use mutation (and not plasticity) to rapidly switch between alternative
adaptive phenotypic states.

The studies of Hogeweg and colleagues provide proof of principle that mutational trans-
formers can evolve. However, the GRNs and their phenotypic effects in [10] and [22] are
quite complex, making it difficult to see how the mutational transformers arise and how
they function. Moreover, it remains unclear whether such complexity is essential for muta-
tional transformers to evolve. Here, we therefore take a minimal modelling approach that
allows us to study in detail whether, when, and how the distribution of phenotypic effects
of random genetic mutations evolves under changing environmental conditions. To this
end, we consider simple heritable GRNs consisting of a small number of interacting nodes
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and a single phenotypic output value. The performance of a network is determined by
how well this output value matches the current state of the environment. In line with [10],
we evolve these GRNs in an environment that randomly alternates between two different
states. The GRNs considered cannot sense their environment, making it impossible to
evolve phenotypic plasticity. Accordingly, individuals whose phenotype matches one
environment will inevitably be mismatched to the other. Thus, the only way in which an
individual’s phenotype can track environmental change is through mutation and genetic
evolution of their GRN. Over a long period of evolution, in which the population has been
repeatedly selected to adapt to a transition between environmental states, we expect the
evolution of a mutational transformer, that is, the evolution of networks that rely on a
smaller number of mutations to change their phenotype from one optimal phenotype
to the other. In a first step, we will demonstrate that mutational transformers do indeed
evolve even in very simple networks, consisting of merely two nodes and encoded by just
three gene loci. This allows us to investigate the evolution and functioning of a mutational
transformer in considerable depth and detail. Subsequently, we study how the complex-
ity of the GRN influences the evolution of a mutational transformer. Besides varying
the number of nodes, we also investigate whether non-linear interactions in the gene
regulatory network allow for the evolution of more efficient mutational transformers.

3.2. MODEL

3.2.1. MODEL OVERVIEW

The model structure is illustrated in Figure 1. Each simulation follows a population of
fixed size (1,000 individuals) over a period of 1 million generations. Generations are
discrete and non-overlapping and reproduction is asexual. The individuals are living
in an environment that can be in one of two states (E1 or E2). The state is constant
throughout a generation (and the same for all individuals), but it switches stochastically
to the other state once in a while. Each individual has a phenotype y that is determined
by a heritable gene regulatory network. Phenotype y =+0.5 is optimal in environment E1,
while y =−0.5 is optimal in environment E2. The ‘fitness’ (expected reproductive success)
of an individual is negatively related to the distance of its phenotype y from the optimal
value yopt of its environment.

Each individual harbours a GRN that is encoded by N gene loci (where N depends
on the network architecture). The alleles at these loci are real numbers whose values
represent the strength of gene-gene interactions and basal gene-activity levels (Figure 1A).
Together, the GRN alleles of an individual determine the individual’s phenotype. These
alleles are transmitted from parent to offspring, subject to rare mutations. At the start
of each generation, 1,000 offspring are produced. In a first step, a parent is assigned to
each offspring by drawing an individual from the previous generation (with replacement)
by means of a weighted lottery where the weighing factor of each potential parent is
proportional to the fitness of that individual. This procedure ensures that the ‘fitness’ of
each individual in the parental population is proportional to the individual’s expected
reproductive success. Each newly produced offspring inherits all GRN alleles from its
parent. Subsequently, mutation takes place: at each GRN locus, a mutation takes place
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Figure 1 | Graphical illustration of the model. A. Determination of the phenotype of an individual. Each
individual harbours a heritable gene regulatory network (GRN) that determines the individual’s phenotype.
The panel shows the simplest network, which consists of two connected nodes (coloured circles). The working
of the network is characterised by two baseline activation levels b1 and b2, the connection weight w , and
the expression function f (x), which is either the identity function (left) or a sigmoidal function (right). The
phenotype y of an individual is fully determined by these ingredients. The parameters b1, b2, and w are
encoded by alleles at three gene loci and transmitted from a parent to its offspring, subject to rare mutations. All
three loci have the same mutation rate and the mutational step size is normally distributed around zero. B. The
environment fluctuates stochastically between two states (E1 and E2). The duration of the periods between
environmental switch events is geometrically distributed, with a mean value of 100 generations. In each state,
there is a different optimal phenotypic value (indicated in green). C. Individuals are selected to minimise
the mismatch between their phenotype y and the optimal phenotype yopt in the current environment: the
expected reproductive success of an individual is given by a Gaussian function of this mismatch and therefore
decreases with the squared mismatch between y and yopt D. Selection and mutation determine (together with
genetic drift) determine how the genotype distribution (and the corresponding phenotype distribution) changes
from one generation to the next.



60 3. THE EVOLUTION OF MUTATIONAL TRANSFORMERS

with a certain mutation probability that is fixed and the same for all loci. If a mutation
takes place, the parental allele a is changed by adding a small number (the mutational
step size) to it. For all loci, the mutational step sizes are drawn from the same normal
distribution with mean zero and a small mutational variance. After mutation has taken
place, the offspring’s phenotype is determined, which, in turn, determines the fitness of
the offspring. This procedure results in an evolutionary trajectory that is governed by
the interplay of selection, mutation, and genetic drift. At the genetic level, the mutation
process is completely random, that is, not affected by the state (or the state dynamics) of
the environment: the mutation rate and the distribution of mutational step sizes remain
constant throughout each simulation. However, the phenotypic effect of a mutation
depends on the allelic values at the GRN loci (see below). Accordingly, the distribution
of phenotypic mutational effects can evolve. We are interested in the evolution of this
distribution and the corresponding evolution of the ‘evolvability’ of the population, which
we quantify by the speed with which the new phenotypic optimum is approached after
each change of the environment.

3.2.2. ENVIRONMENTAL CHANGE

In each generation, the environment is in one of two states (E1 or E2). At the start of each
generation, the environment switches from the previous state to the alternative state
with probability x = 0.01. Hence the duration of environmental stasis is geometrically
distributed with mean value x−1 = 100 generations.

3.2.3. FITNESS

The optimal phenotype in environmental state E1 is yopt =+0.5, while it is yopt =−0.5
in state E2. The fitness of an individual with phenotype y = yopt decreases with the
mismatch with the environmental optimum in a Gaussian manner:

F (y) = exp(−S ∗ (y − yopt )2)

. The parameter S quantifies the strength of selection. In all our simulations S = 2.

3.2.4. GENE REGULATORY NETWORKS

The phenotype of an individual is encoded by a gene regulatory network. There are
various ways to model GRNs. We here follow [23], where the flow of information through
the network (via gene activation and inhibition) is modelled in close analogy to that of
artificial neural networks. The GRNs considered are multilayered and feedforward: they
consist of one initial node, multiple layers of internal nodes, and one output node. The
type of network will be indicated by the notation n1 −n2 −n3 −1, where nk is the number
of nodes in layer k, and the 1 to the right denotes the output node. For Instance, 1-2-2-2-1
refers to a network with one initial layer of one node and three internal layers with two
nodes per layer. The simplest network considered does not have internal layers and is of
type 1-1. This network is shown in Figure 1A. Each node j of the GRN has an activation
state x j and produces an output zi = f (xi ), where f is the so-called transfer function of
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the node. The activation state of a node j is given by the node’s baseline activation and a
weighted sum of the outputs of the nodes in the previous layer:

xi = b j +
∑

i
wi j ∗ zi = b j +

∑
i

wi j ∗ f (xi )

, where i ranges over all nodes of the previous layer. The baseline activation values b j

and the connection weights wi j are real numbers that are transmitted from parents to
their offspring (subject to rare mutations). Together with the transfer function, they fully
determine the functioning of the GRN and the resulting phenotype: The initial nodes have
no inputs from other nodes. Accordingly, their activation state is xi = bi and its output is
zi = f (bi ). Together with the weighing factors w0 j , where j ranges over the nodes of the
second layer, this determines the activation states xi and the output zi = f (xi ) of these
nodes. These again determine the activation states and the output values of the nodes
in the third layer, and so on. In the end, the output node ω is reached. As before, the
activation level xω of this node is determined by this node’s baseline activation level bω
and a weighted sum of the outputs of the nodes of the previous layer. In our model, the
output of the terminal node zω = f (xω) corresponds to the phenotype of the individual
(y = zω = f (xω)). The simplest network of type 1-1 (illustrated in Figure 1A) has only two
nodes: the input node 0 and the output node ω. Hence, there are only three heritable
parameters: the baseline activation levels b0 and bω and the weighing factor w0ω, which,
for simplicity, we call w . In view of the above rules, the phenotype of an individual with a
1-1 network is therefore given by:

y = f (xω) = f (bω+w ∗ z0) = f (bω+w ∗ f (b0))

. We will consider two transfer functions. The simplest is the identity function f (x) = x.
In this case, the phenotype of an individual is given by the relationshipy = bω+w ∗b0.
The second is the sigmoidal function (illustrated in Figure 1A) f (x) = x

1+|x| .

3.2.5. INHERITANCE AND MUTATION

Individuals are haploid and have an allele at all GRN loci, that is, at the loci encoding
the baseline activation values b j and the connection weights wi j . The alleles are real
numbers that are transmitted from parents to their offspring, subject to mutation. The
per-locus mutation probability is µ= 0.01. If a mutation occurs, a mutational step size
is drawn from a normal distribution N (0,σ) with mean sigma and mutational standard
deviation σ= 0.1. This step size is added to the parental value, yielding the new mutated
value.

3.2.6. QUANTIFYING EVOLVABILITY

To assess whether long-term evolution in a fluctuating environment enhances evolvability,
we need to quantify the rate of adaptation to a new environmental state after a change
in the environment. To this end, we operationally define the “time to adaptation” as
the number of generations it takes until the mean fitness of the population reaches a
threshold value of 0.9. In two situations, no “time to adaptation” is recorded: (a) if the



62 3. THE EVOLUTION OF MUTATIONAL TRANSFORMERS

threshold value is not reached before another change in environmental state occurs, and
(b) if immediately after a change in environment the mean fitness of the population
already exceeds the threshold value. However, we record how often situations (a) and (b)
do occur.

3.3. RESULTS

3.3.1. NETWORK STRUCTURE AND THE EVOLUTION OF MUTATIONAL TRANS-
FORMERS

The example simulation in Figure 2 illustrates that, in the course of long-term evolution,
the time to adaptation substantially decreases even in the case of a simple 1-1 GRN with
identity transfer function. The substantial decrease in the time to adaptation from the
start of the simulation (Figure 2A) to the end of the simulation (Figure 2B) suggests that a
“mutational transformer” has evolved, that is, a change in the way how random mutations
at the genetic level translate into changes of the phenotype. To check for the generality of
this result, we run multiple replicate simulations for a wide range of GRN architectures.
GRNs varied in the number of layers, the number of nodes per layer, and the type of
transfer function. Figure 3 shows the results for four network architectures (1, 1-1, 10-
2-1-1-1 and 5-5-5-1 ) and both transfer functions. In each case, the time to adaptation
was reported in relation to the duration of evolution. If a mutational transformer evolves,
the time to adaptation should decrease in the course of evolution. This does not happen
for the trivial “network” 1 (consisting of just one output node and therefore arguably
not really a network). As shown in Figure 3A, the time to adaptation did not noticeably
decrease in the course of evolution, neither for the identity nor for the sigmoidal transfer
function. In contrast, there is a pronounced decrease in the time to adaptation in GRNs
of type 1-1 (Figure 3B), both in the case of an identity transfer function (for which this
phenomenon is illustrated by Figure 2) and even more so in case of a sigmoidal transfer
function

The boxplots in Figure 3CD show, for the GRNs considered, the time to adaptation in
the second half of the evolutionary trajectory. In all cases, the initial time to adaptation
was typically 50 generations or more. With the exception of the trivial “network” 1, the
time to adaptation decreased in all cases to a median value between 5 and 10 in the second
half of the simulations (the final 500,000 generations). In other words, all non-trivial GRNs
allowed for the evolution of a faster rate of adaptation (i.e., higher evolvability). There is
no clear relationship between network complexity and the evolved time to adaptation.
However, for any network architecture considered, the evolved time to adaptation was
markedly shorter for the sigmoidal transfer function than for the identity function. We
will now investigate in more detail how the reduction in adaptation time was achieved.
For this, it will be useful to consider the two transfer functions separately.
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Figure 2 | Time to adaptation at (A) the start and (B) the end of long-term evolution. For an example simulation
based on a 1-1 network with identity transfer function, the graphs show the drop and increase in mean fitness
after two instances of environmental change. The state of the environment is indicated by the background
colour (blue:yo pt = 0.5, red: yo pt =−0.5). The dashed line indicates the threshold value of 0.9 used to quantify
the time to adaptation. In the early part of the simulation (Panel A: generations 200 to 400), the mean fitness of
the population recovers much more slowly after environmental change than in the end of the simulation (Panel
B: the final 200 generations).
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Figure 3 | Evolution of the time to adaptation for GRNs differing in complexity and transfer function. A. For
the trivial “network” with just one output node, no evolutionary trend in the time to adaptation was observed,
neither in the case of the identity transfer function (left panel) nor in the case of a sigmoidal transfer function
(right panel). Point colours indicate the two different environments. B. For the 1-1 network, the time to
adaptation markedly decreased in the initial phase of evolution (first 10,000 generations), for both transfer
functions. C. Evolved time to adaptation during the last 500,000 generations of the simulation for GRNs differing
in architecture (1, 1-1, 10-2-1-1-1 and 5-5-5-1) and transfer function (identity or sigmoidal). In the boxplots, the
data of 7-10 replicate simulations are combined. With the exception of the trivial “network” 1, a fast adaptation
rate evolved in all GRNs. D. A zoomed-in version of panel C, showing only those types of GRN that evolved a fast
rate of adaptation. This panel shows that the GRNs with a sigmoidal transfer function evolved a faster rate of
adaptation than GRNs with the same architecture but an identity transfer function.
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3.3.2. MUTATIONAL AMPLIFIERS CAUSE MUTATIONAL TRANSFORMATION IN

LINEAR GRNS

To understand the inner workings of a network that evolved a fast mutation rate, we first
study the simplest type of GRN: a network with two nodes and a linear transfer function
(1-1). The behaviour of this GRN is controlled by only three loci: b1, w , and b2. When
analysing the results of many replicate simulations, we observe that in this linear GRN,
either the w locus or the b1 locus evolves to become responsible for the fast adaptation;
this locus is the sensitive locus that acts as a mutational transformer. This is illustrated by
Figure 4, which shows for an evolved example network the phenotypic effects of genetic
mutations at each of the three loci. While the phenotypic effects of mutations at the
b1 and b2 locus are very small (Figure 4AC), the sensitive w-locus acts as a “mutation
amplifier”: mutations at this locus have a large effect on the phenotype, allowing the
rapid evolution of the phenotype to a new optimum, should the environment require
this. In fact, the distribution of phenotypic effects induced by small-scale and normally
distributed mutations at the w-locus encompass both phenotypic optima. Hence, if
a GRN is adapted to one phenotypic optimum, the other phenotypic optimum can be
produced by just one or two mutations. To summarise these findings: The amplification
of small mutations on the sensitive locus to large phenotypic changes, allows the alternate
optimal phenotype to be reached through a single mutation, thereby facilitating rapid
adaptation when the environment changes, creating a mutational transformer. These
results can be explained by the fact that for the network considered the phenotype of an
individual is given by (see Methods). This shows that b1 and w have a similar effect on the
phenotype and explains why both corresponding loci can be sensitive. The phenotypic
effect of mutations at the w locus are amplified by a factor b1, the current value of b1.
Hence, the allele at the b1 locus regulates the phenotypic effects of w-mutations, and
vice versa.

3.3.3. NON-LINEAR GRNS EVOLVE MORE REFINED MUTATIONAL TRANS-
FORMERS

For all network architecture considered, the evolved time to adaptation was markedly
shorter for the sigmoidal transfer function than for the identity function (Figure 3D). We
hypothesise that non-linear gene interactions allow for the evolution of a more refined
mutational transformer. To understand this, we now examine the simplest nonlinear
GRN that managed to evolve a mutational transformer (i.e. 1-1, see Figure 5). Figure
5A illustrates that in the initial phase of evolution (in generations 200 to 400, left panel)
it takes more than 50 generations before, after a change of the environment, the mean
fitness of the population has regained the value 0.9, while the time to adaptation is much
faster (between 5 and 10 generations) in the final stage of evolution (right panel). This
is achieved by a marked differentiation of the alleles b1, w , and b2 at the three GRN loci
(Figure 5B). This raises the question: how does the evolution of these loci translate to
the evolution of a mutational transformer? To investigate this, we record the phenotypes
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Figure 4 | Phenotypic effects of mutations at the three loci of a 1-1 GRN that evolved a fast rate of adaptation.
Data in (A-C) reflect a mutational analysis of a 1-1 GRN with linear transfer function that had evolved a fast
rate of adaptation. The panels show the phenotypic effects of random mutations at A. the b1 locus, B. the w
locus, and C. the b2 locus. The allelic values before mutation are indicated by the solid red line. The phenotype
produced by the unmutated GRN (indicated by the dotted red line) matches the current environmental optimum
(which happens to be equal to -0.5). The dotted green line indicates the alternative optimum (0.5), the “desired”
value after a change in environment. While the mutational effects on the phenotype are relatively small in case
of the b1 and the b2 locus, the w locus acts as a mutation amplifier: the other phenotypic optimum can be
reached with just one or two mutations, which is the defining property of a mutational transformer.
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produced by 1000 different mutations at each locus of the best-performing GRN at a
certain time point (Figure 5C). Initially, all loci are similarly sensitive to mutations and the
distribution of the phenotypes produced is unimodal. Most mutations will only slightly
alter the value of the currently expressed phenotype. This explains why, at the start of
the simulation, the recovery of the population after an environmental change is slow and
gradual: after an environmental change, many mutations are required to shift to the new
optimal phenotype. Towards the end of the simulation, when the population is able to
recover rapidly from environmental change (i.e. the mutational transformer has evolved),
we observe that the phenotype is highly sensitive to mutations at a particular, sensitive,
locus. We observed this same pattern in the linear GRNs, where a single gene evolved
to be sensitive to mutations. However, instead of being unimodal as for the 1-1 GRN
with an identity transfer function (Figure 4), the distribution of phenotypes produced by
mutations at the sensitive locus of non-linear 1-1 GRN is bimodal, that is, with two peaks
(Figure 5C, panels 3 and 4). The two peaks coincide with the two optimal phenotypes
showing that the GRN has evolved to bias the effect of random mutations toward these
phenotypes. The distribution of phenotypic effects of mutations on the sensitive locus
is shaped such that the phenotype to which the population is currently adapted is most
frequently produced. The second peak in the distribution of the phenotypic effects of
mutations corresponds with the optimal phenotype of the alternative environment. This
mechanism seems to be symmetrical: after adaptation to an environmental change, the
new optimal phenotype is now produced more often. If mutation leads to an intermediate
phenotype that is between the two different optimal phenotypes, mutations are equally
likely to produce either of the two optimal phenotypes. In all non-linear GRNs considered
(1-1, 10-2-1-1-1 and 5-5-5-1 ), a sensitive locus with similar properties evolved and it
always occurred in the initial part of the GRN (either at the b0 locus or at one of the loci
encoding the weighing factor w0 j of the connection between the initial node and a node
j in the first processing layer).

3.3.4. THE INNER WORKINGS OF A REFINED MUTATIONAL TRANSFORMER: A

MUTATION CANALISER

The mutational transformers that evolve in non-linear GRNs represent a more refined
solution when compared to the mutational amplifiers observed in linear GRNs. This is
highlighted by the faster recovery of performance after an environmental change (Figure
3C-D). The non-linear GRNs evolve their architecture, not only to put the two optimal
phenotypes in the range of a single mutation step, but also to canalise the phenotypic
outcomes of mutations towards particular phenotypic values. We term this more refined
mechanism underlying the evolution of a mutational transformer in nonlinear GRNs a
mutation canaliser. The behaviour of the non-linear 1-1 GRN is governed by only three
parameters which allow for numerical analysis (Figure 6). This allowed us to study how
mutations on the sensitive locus affect not only the output of the second node (phenotype)
but also how they affect the output of the first (intermediate) node. Applying normally dis-
tributed mutations to the evolved value of locus b1 leads to a slightly skewed distribution
of node 1 output values. The values of the b2 and w loci have evolved so that when the
skewed distribution of outputs of node 1 is fed into node 2 it is transformed to a bimodal
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Figure 5 | Evolution of a refined mutational transformer. The figure shows a representative simulation of the
evolution of a 1-1 GRN with sigmoidal transfer function. A. Evolutionary trajectory of mean population fitness
at the start (generations 200 to 400, left panel) and the end (final 200 generations, right panel) of the simulation.
The state of the environment is indicated by the background colour (blue:yopt = 0.5, red:yopt = −0.5 ). B.
Evolved allelic values at the three network loci at the start (left panel) and the end (right panel) of the simulation.
C. Distributions of the phenotypic effects of mutations at four different time points during the simulation. The
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an environmental change. A comparison of the phenotypic-effect distributions at the early time points with
those at the later time points reveals that for two of the GRN loci genetic mutations have a small effect on the
phenotype, while the GRN locus encoding b1 is “sensitive”: mutations at this locus produce a broad spectrum
of phenotypes. Moreover, the distribution of phenotypic effects at the sensitive locus is strongly asymmetric
and bimodal, with a sharp peak close to the current environmental optimum and a second maximum close to
the phenotypic optimum at the other environmental state.
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distribution of phenotypes (output values). As can be seen in Figure 6 A, the ability of
node 2 to transform the asymmetrical distribution of outputs of node 1 into a bimodal
distribution of phenotypes relies on the presence of a non-linear (sigmoidal) transform
function. This shows why in our minimal model the ability to canalise mutations to-
wards particular phenotypic values is contingent on the presence of a non-linear transfer
function. As we previously noted the mechanism of a mutational canaliser seems to be
symmetrical, after mutation to the other environmental optimum a bimodal distribution
of phenotypes is maintained. Figure 6 B shows that this symmetry is a consequence of the
sigmoid transfer function. If we apply the average mutation to the sensitive locus (b1 =+
0.1 in Figure 6 B) this causes the bimodal distribution to “flip”. The main phenotypic peak
now sits on the alternative optimum and the smaller peak on the current optimum. This,
therefore, shows that canalisers not only have evolved to easily move to an alternative
adaptive phenotype but that they have also evolved an architecture that allows them to
easily revert back to the previous adaptive phenotype as well.

3.4. DISCUSSION

We have demonstrated that even in a very simple model of a GRN the genotype-to-
phenotype map can evolve to facilitate rapid adaptation to fluctuating environments.
Even with such a simple genotype-to-phenotype map consisting of just three loci, evo-
lution can lead to a mapping, such that adaptation to an environmental change occurs
very fast and through a single mutation. Building on the work of those who studied this
phenomenon before us [10, 22], we term this phenomenon a mutational transformer,
where the phenotypic state rapidly changes between alternative adaptive states through
mutation. Mutational transformers evolve in both GRNs with both linear and non-linear
gene interactions. Whilst both types of mutational transformers facilitate rapid adapta-
tion, the time to adaptation is shorter for non-linear GRNs. This points to the fact that
these two different types of GRN lead to the evolution of mutational transformers that
function through two distinct mechanisms. Both mechanisms enhance the evolvability
of GRNs. However they do so in two distinct ways. Linear GRNs rapidly switch phenotype
by amplifying the phenotypic effects of small mutations on a specific locus. Thus these
GRNs evolve to reach a relatively wide range of phenotypes through a single mutation; we
term this type of mechanism a mutation amplifier. A mutational amplifier increases the
amount of phenotypic variation that is created through mutation, providing a wider range
of phenotypic variance on which selection can act. We show that the range of phenotypic
variation is tuned to the specific distance between the two adaptive phenotypes encoun-
tered during evolution. Whilst the range of phenotypic variation is tuned, the phenotypes
generated through mutation are not biassed towards the particular adaptive values. This
also highlights a key drawback of mutation amplifiers; whilst they accelerate evolution
when a population is maladapted (not on a fitness peak), they lead to the production of
a lot of deleterious phenotypes when a population is well adapted (on a fitness peak).
These properties of mutation amplifiers are reminiscent of results obtained by those
studying the evolution of mutation rates, here it has been shown that high mutation rates
are advantageous only when a population is maladapted [5]. On the other hand, non-
linear GRNs (sigmoid transfer function) evolve a more refined mutational transformer.
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Figure 6 | Transformation of normally distributed genetic mutations into a bimodal distribution of pheno-
typic effects. The plots in each panel (A, B) show how different 1-1 networks transform a normal distribution
of mutations on the sensitive locus (b1 in this case) into a (different) distribution of phenotypes. A represents
an evolved and adapted GRN, and B shows the same GRN but now with a mutated/perturbed value of its
sensitive locus, The values of the sensitive locus are on the x-axis of the plots on the left column, while the
values of the phenotype are projected on the y-axis of the plots on the right column. The plots on the left show
the mapping of mutations on b1 to outputs of node 1, the solid red line corresponds with the non-mutated
original value of b1, while the dashed red line shows the value of the corresponding original output. The
plots on the right show how the distribution of outputs of node 1 (now on the x-axis) is transformed into a
distribution of phenotypes (outputs of node 2, y-axis). Also in this case the red and dashed line mark the
non-mutated input and output values, while the dashed green lines show the values of the two environmental
optima. A: The mutations-to-phenotype mapping of an evolved network. The distribution of outputs of node 1
produced by mutations is skewed but not bimodal. The distribution of phenotypic values in node 2 instead is
clearly bimodal, with two peaks corresponding to the two optimal phenotypic values of the two environmental
states. Therefore, mutations on node 1 of an evolved network will preferentially produce adaptive outcomes.
In the evolved network we can see how node 1, although being the one sensitive to mutations that cause the
mutational transformer (see Figure 5 C), does not create the bimodal distribution of phenotypes. It instead
skews the distribution of mutations. The asymmetry in these outputs is then used in node 2 to create a bimodal
distribution of phenotypes. B: The mutations-to-phenotype mapping of a network for where the sensitive
locus (b1) is perturbed (adding the average mutation step = 0.1 to its evolved value). Node 1 still skews the
distribution of outputs but towards slightly lower values. This causes the creation of a bimodal distribution of
outputs in node 2 but now with the two peaks inverted. If before the main peak of the bimodal distribution sat
on the environmental optimum value of 0.5, now it sits on the other optimum value -0.5. At the same time, the
smaller peak now sits at 0.5 instead of -0.5. This shows that the architectures of these GRNs evolved to be able
to match the environmental optimum and, as well, rapidly switch to the other environmental optimum via a
single mutation.
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In these GRNs, the distribution of phenotypes generated through mutation is targeted
towards the two adaptive phenotypes encountered during evolution. The non-linear
interactions are essential to this strategy: they allow normally distributed mutations to
create a bimodal distribution of phenotypes. In other words, the genotype-to-phenotype
map evolves to canalise the effects of mutations towards adaptive outcomes; we term
this mechanism a mutation canaliser. A mutational canaliser, biases variation towards
particular adaptive outcomes, shaping the way mutations affect fitness. This more re-
fined mechanism explains why non-linear GRNs adapt faster in response to a change
in environment than their linear counterparts. Interestingly the mechanism behind the
mutation canaliser seems to closely resemble the phenomenon described by Crombach
and Hogeweg [10], where the evolution of the genotype-to-phenotype map increased
the frequency of beneficial mutations. When comparing the mutation amplifier and
the mutation canaliser two key differences are apparent. Since the mutation canaliser
preferentially produces adaptive outcomes it has a much lower production of deleterious
phenotypes when the population is well-adapted (on a fitness peak) compared to the
mutation amplifier. However, this lower production of deleterious phenotypes comes at a
cost: mutation canalisers are only expected to enhance adaptation when environmental
fluctuations are repetitive (i.e. previous adaptive challenges are representative of future
adaptive challenges), whereas a mutation amplifier is also expected to enhance adapta-
tion in more irregularly fluctuating environments. In other words, mutational amplifiers
have a broader scope than mutational canalisers (see also [1]). Whilst above we compare
and contrast the two caricatures of the mutation amplifier and the mutation canaliser, it
is worth noting that in our opinion mutation amplification and mutation canalization
are not mutually exclusive, it is possible to amplify the phenotypic effects of mutations
whilst also somewhat biassing the effects of mutation towards particular adaptive out-
comes. In our model the environmental fluctuations are repetitive, switching between
two different adaptive values, therefore previous adaptive challenges are representative
of future adaptive challenges. It is clear that mutation amplifiers can enhance adaptation
in such repetitively fluctuating environments. However, given that the phenotypic varia-
tion generated by a mutation amplifier is not directed towards a particular phenotype,
mutation amplifiers are also expected to enhance adaptation in environments that fluc-
tuate in a more irregular manner. We think that a mechanism similar to the mutational
amplifier and the mutational canaliser might be responsible for the pattern we observed
in some empirical examples described above, such as heteroresistance, yeast thermal
adaptation, and evolution of lactose metabolism. The rapid switching to an adaptive
phenotype using a single or very few mutational steps closely resembles the behaviour
of mutational transformers in our model. In each of these three empirical cases it is
very likely that populations have previously repeatedly faced the relevant environmental
change (antibiotics presence/absence, different growth temperatures, loss of lactose
metabolising plasmid). Therefore we strongly suspect that in these cases the structure of
the underlying GRN is not a fluke, it is instead the product of the evolution of evolvability,
which has led to the creation of a mutational transformer. Furthermore, the mutational
canaliser is reminiscent of many of the examples of developmental bias described in
the literature. Consider for example how the structure of the GRN shapes the available
variation in Bicyclus anynana [24], where the structure of the underlying GRN seems to
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favour the production of particular phenotypic variants over others. Our results are largely
aligned with those obtained by Crombach and Hogeweg [10], and Cuypers et al. [22],
who studied similar questions using a different set of models. Their models used more
complex GRNs and explicitly modelled a wide set of biological mechanisms, aiming to
more closely mimic biological complexity. We instead set out to create a minimal model
of a mutational transformer, which allowed us to uncover in detail the evolution of the
underlying mechanisms. We have demonstrated the evolution of mutational transformers
across a wide range of different network architectures. It can be concluded that a minimal
complexity of two nodes (three loci) is required, a network with a single node is not able
to evolve a mutational transformer. Surprisingly, complexity beyond two nodes does not
seem to improve the functioning (i.e. time to adaptation) of the mutational transformer.
We demonstrate that mechanisms that shape the effect of mutations on the phenotype
can readily evolve in very simple systems. The fact that mutational transformers read-
ily evolve in our extremely simple GRN model leads us to expect they may be a rather
widespread phenomenon, in organisms facing fluctuating environments. Mutational
transformers might be especially prevalent when organisms face repetitively fluctuating
environments, where past adaptive challenges are likely to be similar to future adaptive
challenges. Future work should explore exactly if and how mutational transformers can
evolve under more diverse and complex environmental regimes (e.g.: more than two
alternating environmental optima) or environments where the phenotype is represented
by more than one dimension). In a more general sense, our results indicate that the
genotype-to-phenotype map can easily evolve to shape the phenotypic effects of muta-
tion towards adaptive outcomes, even with minimal complexity. This outcome seems
to contradict the assumptions of standard evolutionary theory, which assigns little rele-
vance to the exact nature of the genotype-to-phenotype map. However, recent work has
shown that explicitly considering the structure of the genotype-to-phenotype map greatly
influences the outcomes of evolutionary models [23, 25]. Our results are in line with
these findings, we demonstrate that even a simple model of a genotype-to-phenotype
map produces dynamics rarely observed in more classical models i.e. the evolution of
evolvability. All in all we show in detail how mutational transformers evolve and function.
We argue that mutational transformers can greatly impact evolutionary dynamics and
that their emergence represents a clear example of the evolution of evolvability.
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During the initial months of my Ph.D. program, I had the opportunity to participate
in a workshop that aimed to foster collaboration between evolutionary biologists and
molecular biologists, with a specific focus on the topic of non-genetic inheritance. The
workshop aimed to cross-fertilize each other’s perspectives via the exchange of expertise
between these two fields. The molecular biologists in the workshop provided a compre-
hensive understanding of the various non-genetic mechanisms that operate across the
tree of life, thereby enriching the toolkit available to evolutionary biologists for studying
the significance and implications of non-genetic inheritance in the process of evolution.
Evolutionary biologists, on the other hand, would help ground molecular mechanisms
in the broader context of the theory of evolution and adaptation. This helped molecular
biologists gain a more comprehensive understanding of the theoretical underpinnings of
evolution and identify meaningful and relevant cases of non-genetic inheritance which
would be worth further investigation and attention.

This fruitful cross-talk and collaboration ultimately led to the publication of a review
paper:

Understanding ’Non-genetic’ Inheritance: Insights from Molecular-Evolutionary Crosstalk.
Adrian-Kalchhauser, I., Sultan, S.E., Shama, L.N.S., Spence-Jones, H., Tiso, S., Keller Valsec-
chi, C.I., Weissing, F.J. Trends in Ecology and Evolution 35(12), 1078–1089 (2020)

For this publication, we critically evaluated the strengths and weaknesses of previous
theoretical approaches and proposed a novel modeling framework that leveraged the
mechanistic insights from molecular biology to overcome some of the limitations in the
field.

This interlude consists of three short sections. The first summarizes the main in-
sights of the cross talk. The second reviews existing evolutionary models of non-genetic
inheritance. The third uses the insights obtained from the crosstalk to sketch a more
mechanistic modelling approach to non-genetic inheritance.

I-1.1. FOUR KEY INSIGHTS OF A MOLECULAR-EVOLUTIONARY

CROSSTALK ON NON-GENETIC INHERITANCE

A brief review of the molecular mechanisms underlying ’non-genetic’ inheritance (NGI)
reveals a daunting diversity and complexity of epigenetic, cytoplasmic, and other mecha-
nisms. Evolutionary ecologists interested in NGI may profit from the following insights
(articulated in 1):

1. Most forms of NGI correspond to inherited gene regulation (IGR). IGR provides
a unifying concept for the diverse heritable factors that may alter offspring gene
expression.

2. In IGR systems, genetic and non-genetic factors are strongly interdependent. IGR
systems are functionally intertwined with DNA sequences rather than existing as
separate entities. Studies of NGI must take this interdependence into consideration.

3. IGR mechanisms exhibit enormous phylogenetic and operational variation. The



I-1.2. EXISTING MODELS OF NON-GENETIC INHERITANCE 79

precise mechanisms underlying IGR vary across taxa and can exhibit diverse opera-
tional characteristics. Therefore, considerable caution is required when generalis-
ing findings across taxa or contexts.

4. Epigenetic elements are of a probabilistic nature. Epigenetic factors act as prob-
abilistic and interactive regulatory elements, challenging the traditional view of
deterministic "epialleles" with defined genomic locations and effects.

These features can inform choices for future theoretical IGR research that implements
an approach with a focus on regulation mechanisms. ’Non-genetic’ and genetic aspects
of inheritance are often treated as separate streams of information, both conceptually
and experimentally. Accordingly, statistical and modeling approaches often rely on the
(linear) decomposition into ‘genetic’ and ’non-genetic’ effects, and on the independent
quantification of these effects. Yet, gene sequence variants and heritable factors that
regulate their activity are, in fact, deeply interwoven, suggesting that an interaction-based
perspective may be more fruitful. How can the interplay of genetic and ’non-genetic’
factors be incorporated in eco-evolutionary models in a realistic manner? The close
interaction of genetic and ’non-genetic’ regulatory elements calls for the development of
regulatory network models, together with new tools for deriving overarching principles
from such mechanistic models.

I-1.2. EXISTING MODELS OF NON-GENETIC INHERITANCE

Mathematical and computational models play a crucial role in mapping the implications
of epigenetic modifications, maternal effects, and other aspects of ’non-genetic’ inheri-
tance for ecology and evolution. Even the relatively simple initial models (e.g. 2) reveal
that adding these additional modes of inheritance to genetic models can systematically
and strongly affect the dynamics and outcome of adaptive evolution. At present, there are
two dominant modeling approaches.

1. Extensions of population genetic and quantitative genetic models: Here, classic
population genetics and quantitative genetics models are expanded by including
’non-genetic’ inheritance to study possible effects on evolutionary dynamics. These
models are further used for estimating genetic parameters such as heritabilities
and the phenotypic resemblance of relatives (e.g. 3, 4).

1.1 Population genetics models tend to focus on the special case of epialleles at a
single locus (e.g. 5, 6). Even for simple scenarios, such models are very com-
plex, making them mathematically intractable. Accordingly, they are generally
studied numerically or by means of computer simulations. Some population
genetics models do not model the evolutionary dynamics directly, but instead,
assume that evolution corresponds to an adaptive walk on a fitness landscape
[7]. Such models can be applied to a broad class of ’non-genetic’ mechanisms
[8], but have often entailed somewhat unrealistic assumptions regarding how
fitness reflects the interplay of genetic and ’non-genetic’ factors (e.g. that
fitness can be split into separate genetic and epigenetic portions).
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1.2 Quantitative genetics models (e.g. 2, 9, 10) are technically more tractable, but
they are based on strong and empirically-untested assumptions (such as a
normal distribution of genetic and ’non genetic’ effects, with stable variances
and covariances). Perhaps most importantly, quantitative genetics models
tend to assume that genetic and ’non-genetic’ effects are additive (or that
selection is very weak, implying that non-additive effects are negligible). Such
additivity assumptions are not supported by the available data (e.g. 11) and
do not align with the view that ’non-genetic’ inheritance is best understood
as inherited gene regulatory information.

1.3 By means of a Price equation approach, population genetics and quantitative
genetics models can be viewed from a unified perspective [12]. This provides
useful insights such as the result that ’non-genetic’ inheritance can foster
rapid adaptation when the population is far from a fitness peak, while it will
often lead to a fitness reduction in an already well-adapted population [13].
To date, however, applications of the Price equation (e.g. 12) have also relied
on simplifying and potentially misleading assumptions such as the additivity
of genetic and ’non-genetic’ effects.

2. Conceptual models based on the interplay of ’information channels’: Here, genetic
and ’non-genetic’ effects are viewed as cues providing potentially adaptive infor-
mation about the state of the environment (e.g. 14, 15). These models seek to ask
what kinds of cues (for instance, inherited parental effects versus an individual’s
current information) will evolve to be used in a given scenario (depending on such
factors as temporal versus spatial environmental fluctuation and transgenerational
correlation). In contrast to most population genetics and quantitative genetics
models, the information channel approach explicitly models the machinery inte-
grating and interpreting different kinds of information. This allows an important
additional question to be addressed: how do these information-integrating systems
themselves evolve? At present, however, information channel models reflect highly
simplifying assumptions regarding the nature of genetic and ’non-genetic’ cues and
the way these cues are processed: the phenotype results from the weighted summa-
tion of different cues, and the information-processing machinery is represented by
the weighing factors.

I-1.3. A GENE REGULATORY NETWORK MODEL INCORPORATING

NON-GENETIC INHERITANCE

To our knowledge, a mechanistic model for the evolutionary causes and consequences of
’non-genetic’ inheritance that reflects the three key features of these systems (as explained
in Section I-1.1) has not yet been proposed. Figure 1 illustrates a possible structure for
such a model. The ‘interpretive machinery’ of a cell [12] is represented by a regulatory
network where genetic and non-genetic factors interact in a variety of ways. Such a flexi-
ble network model could do justice to the various interactions among genetic, epigenetic,
and environmental factors, providing for an inclusive understanding of inherited gene
regulatory information, and might serve as a useful check of the robustness of the pre-
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Figure 1 | Proposed mechanistic modelling framework for studying the evolution of IGR The model is based on a
gene regulatory network (GRN), which integrates environmental (env1,env2) and genetic (g1,2) information
to produce a phenotype (phen). To account for IGR, we assume that in addition to the phenotype, epigenetic
factors/signals are produced(epi1 epi2, which can affect the functioning of the GRN of the offspring. The
connection weights of the GRN represent the influence of gene products (like transcription factors) on the
expression of other genes. These connection weights are inheritable, but some of them (wavy connections)
can be modified by epigenetic factors/effects. The graph in the picture illustrates that epigenetic factors can
either down (epi1) or up (epi2) regulate the expression of genes in the next generation. The effects of these
factors can be either unspecific or specific, e.g. in the figure, it is shown how epigenetic factors are targeted to
specific (evolvable) gene sequences. Note that epigenetic factors can influence the connections controlling the
expression of the factor themselves in future generations.
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dictions made by the approaches discussed above. Figure 1 illustrates the transmission
of epigenetic information from a parent in generation 1 to an offspring in generation 2.
Both individuals harbor a gene regulatory network (GRN, blue lines) that determines the
phenotype in response to genetic and environmental information. As in standard GRN
models (e.g. 16), the nodes (blue circles) represent regulatory genes, and the connec-
tions between nodes represent the influence of transcription factors (or other regulatory
elements) on the expression of other genes. The GRN integrates environmental (envi )
and genetic (g j ) information to produce the phenotype (phen). To study the effects of
inherited gene regulation, we propose to expand the standard GRN models in two ways.
First, as illustrated in the parent, the GRN not only mediates the expression of the phe-
notype; it also induces the production of epigenetic factors (epik ) that are transmitted
to the offspring. Which epigenetic factors are produced depends on the genotype and
the environment of the parent. Second, as illustrated in the offspring, the connections
between the nodes of the GRN are not solely genetically determined. Some connections
(indicated by waves) can be up (+) or down (-) regulated by inherited epigenetic factors.
The effects of these factors can be either unspecific (big + or – signs) or targeted to specific
evolvable gene sequences (green and red arrows). Notice that in the proposed model the
production of epigenetic factors in the offspring is partly determined by the epigenetic
factors inherited from its parent, potentially resulting in a ‘relay race’ mode of regulation
[1].
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During my Ph.D. we collaborated with researchers from Louvain University (BE)
on a study on the apparent reverse evolution of lipogenesis in parasitic wasps [1]. we
contributed by providing the theoretical framework to contextualize and corroborate the
empirical section of this project. Together with my colleagues, I developed an individual-
based model that showed how adaptive plastic responses can maintain functionality
against deleterious mutation for very long periods of time. Our conclusions from this
model helped to explain the apparent disappearance and re-evolution of complex traits
(such as lipogenesis) and resolve the apparent conflict of these observations with Dollo’s
law of irreversibility [2, 3].

Caroline Nieberding, Bertanne Visser, and their collaborators detected the presence
of fatty acid synthesis (lipogenesis) in the parasitic wasp of the species Leptopilina hetero-
toma. These parasitic wasps were never recorded to express lipogenic activity before and
were thought to have lost this complex metabolic trait 200 million years previous as Ellers
and Visser pointed out in a previous publication [4]. The overall absence of this trait in
parasitoid Hymenoptera is explained by the fact that parasitic wasps’ development takes
place inside fat-rich insect larvae [4]. Therefore, these wasps do not need to produce their
own fat as they can easily gain this resource from their host; and since lipogenesis is a
costly trait to maintain, they have gradually lost it. In the same publication, however, the
authors remark that in some cases host-generalist species seemed to have re-evolved
lipogenesis from scratch. This discovery seemed to contradict one of the few law-like prin-
ciples in evolutionary biology: Dollo’s law of irreversibility[2]. This principle articulated by
19th-century Belgian paleontologist Louis Dollo states that: "an organism never returns
exactly to a former state, even if it finds itself placed in conditions of existence identical to
those in which it has previously lived."[3], meaning that an organism will never re-evolve
the same complex adaptation again, once they have lost it. To reconcile Dollo’s law of
irreversibility and the reappearance of the apparently lost lipogenic metabolism, Ellers,
Nieberding and Visser speculated that lipogenesis was never actually lost in parasitic
wasps, but instead kept dormant in the vast majority of cases and plastically reactivated
only when strictly necessary. In [1], and later Nieberding, Visser et al. it was indeed shown
that lipogenesis reappears when these wasps are raised in larval hosts under starvation.
These starved hosts have very low body-fat percentages and thus do not present the
parasitic wasps with the fat-rich environment in which they normally develop, forcing
them to re-express lipogenesis. This explanation, however, requires that a plastic response
can maintain functionality over long periods of time even if selection is not acting on
it. One would normally expect that, in the absence of selection deleterious mutations
would accumulate and gradually deteriorate the expressed trait. However, we argued
that when considering a network of genes and their non-linear interactions, instead of
single genes that only interact linearly, the effects of deleterious mutations would be
greatly reduced. Interconnected and non-linear genomes are able to evolve mutational
robustness [5–7] allowing unselected traits to remain functional for much longer periods
of time. To corroborate this argument, we designed an individual-based simulation to test
if indeed it was possible for a plastic phenotype-switch to maintain correct functionality
(i.e. on in rare fat-poor environments, off in frequent fat-rich environments). The results
from this model show that the on–off switch underlying plasticity can evolve mutational
robustness and be maintained in the genome for hundreds to thousands of generations.
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This helped to solidify the conceptual background necessary to support the claims and
explanation of the empirical findings. This work resulted in a publication:

Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
wasps. Visser, B., Alborn, H.T., Rondeaux, S., Haillot, M., Hance, T., Rebar, D., Riederer,
J.M., Tiso, S., Eldijk, T.J.B., Weissing, F.J., Nieberding, C.M. Scientific Reports 11(1), 1–13
(2021) [1]

Below, I give an account of the modelling aspects of the article. This part is relevant
for my thesis, as it inspired my work on sporadic selection in Chapter 4.

I-2.1. THE MODEL

We consider the general situation where phenotypic plasticity is only sporadically adap-
tive and ask the question of whether and under what circumstances plasticity can remain
functional over long evolutionary time periods when the regulatory processes underlying
plasticity are gradually broken down by mutations. We consider a regulatory mecha-
nism that switches on or off a pathway (like fat synthesis) in response to environmental
conditions (e.g., host fat content).

I-2.1.1. FITNESS CONSIDERATIONS

We assume that the local environment of an individual is characterized by two factors: fat
content F and nutrient content N, where nutrients represent sugars and other carbohy-
drates that can be used to synthesize fat. Nutrients are measured in units corresponding
to the amount of fat that can be synthesized from them. We assume that fitness (viability
and/or fecundity) is directly proportional to the amount of fat stored by the individual.
When fat synthesis is switched off, this amount is equal to F, the amount of fat in the
environment. When fat synthesis is switched on, the amount of fat stored is assumed to be
N −c + (1−k)F . This expression reflects the following assumptions: (i) fat is synthesized
from the available nutrients, but this comes at a fitness cost c; (ii) fat can still be absorbed
from the environment but at a reduced rate (1-k). It is adaptive to switch on fat synthesis
if N − c + (1−k)F is larger than F, or equivalently if F < (N − c)/k. The right-hand side of
this inequality is a straight line, which is illustrated by the blue line in Fig. 1. The three
boxes in Fig. 1 illustrate three types of environmental conditions.

• Red box: low-fat environments. Here, F < (N − c)/k is always satisfied, implying
that fat synthesis should be switched on constitutively.

• Yellow box: high-fat environments. Here, F > (N −c)/k, implying that fat synthesis
should be switched off constitutively.

• Orange box: intermediate-fat environments. Here, fat synthesis should be plastic
and switched on if for the given environment (N, F) the fat content is below the blue
line and switched off otherwise.
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Figure 1 | Environmental conditions encountered by the model organisms. For a given combination of en-
vironmental nutrient content N and environmental fat content F , it is adaptive to switch on fat synthesis if
(N ,F ) is below the blue line (corresponding to F < (N − c)/k) and to switch it off otherwise. The three boxes
illustrate three types of environment: a low-fat environment (red) where fat synthesis should be switched on
constitutively; a high-fat environment (yellow) where fat synthesis should be switched off constitutively; and an
intermediate-fat environment (orange) where a plastic switch is selectively favored.
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The simulations reported here were all run for the parameters k = 1
2 and c = 1

4 . We also
investigated many other combinations of these parameters; in all cases, the results were
very similar to those reported here.

I-2.1.2. GENE REGULATORY NETWORKS (GRN)

In our model, the switching device was implemented by an evolving gene regulatory
network (GRN, as in 8). As shown in Fig. 2, the networks considered had two receptor (or
input) nodes, several (levels of) processor nodes, and an effector node. The two receptor
nodes sense the fat and nutrient content in the local environment, respectively. The
effector node switches on fat synthesis if the combined weighted inputs from all nodes
connected to the effector node exceeds a threshold value T and switches it off otherwise.
We ran simulations for GRNs of varying complexity, but for simplicity, we here focus on
the simplest possible network, consisting of just two receptor nodes and an effector node.
If F and N are the local fat and nutrient content and wF and wN are the corresponding
weighing factors, fat synthesis is switched on if wF F + wN N > T (and off otherwise).
Hence, this simple GRN is characterised by the weighing factors wF and wN and the
threshold T.

Simulations (shown in Fig. 3) are based on the most straightforward possible network,
consisting of two receptor nodes (sensing the fat and the nutrient content in the local
environment, respectively) and an effector node that switches on fat synthesis if the
combined weighted input of the two receptor nodes exceeds a threshold value T and
switches it off otherwise. Hence, fat synthesis is switched on if wF F +wN N > T (and
off otherwise). The GRN is characterized by the weighing factors wF and wN and the
threshold T. These parameters are transmitted from parents to offspring, and they evolve
subject to mutation and selection. For the simple GRN described above, the switching
device is 100% adaptive when the switch is on (i.e., wF F +wN N > T ) if F < (N − c)/k
and off otherwise. A simple calculation yields that this is the case if: wN > 0,wF =
−k wN and T = c wN .

I-2.1.3. EVOLUTION OF THE GRN

For simplicity, we consider an asexual haploid population with discrete, non-overlapping
generations and fixed population size N=10,000. Each individual has several gene loci,
each locus encoding one parameter of the GRN. In the case of the simple network de-
scribed above, there are three gene loci, each with infinitely many alleles. Each individual
harbors three alleles, which correspond to the GRN parameters wF ,wN , and T, and hence
determine the functioning of the genetic switch. In the simulations, each individual
encounters a randomly chosen environment (N, F). Based on its (genetically encoded)
GRN, the individual decides on whether to switch on or off fat synthesis. If the synthesis
is switched on, the individual’s fitness is given by N − c + (1−k)F ; otherwise, its fitness
is given by F. Subsequently, the individuals produce offspring, where the number of
offspring produced is proportional to the individual’s fitness. Each offspring inherits the
genetic parameters of its parent, subject to mutation. With probability µ (per locus) a
mutation occurs. In such a case the parental value (in the case of a simple network: the
parent’s allelic value wF ,wN , or T) is changed to a mutated value (wF +δ, wN +δ, or T +δ),



90 I-2. EVOLUTIONARY PERSISTENCE OF A PLASTIC SWITCH

Figure 2 | Top: GRNs of varying complexity were simulated. The results reported here refer to the simplest
GRN considered (encircled). Bottom: In-detail illustration of the functioning of the simplest GRN. Two local
concentrations of fat and nutrients F and N feed into two separate connections and are multiplied by the
respective connections weights:wF wN . The values of the two weighted inputs are then summed together. If
the sum is > then the threshold value T the switch for plastic lipogenesis is switched on, otherwise it is kept off.

where the mutational step size δ is drawn from a normal distribution with mean zero and
standard deviation σ. In the reported simulations, we chose µ= 0.001 and σ= 0.1. The
speed of evolution is proportional to µ ·σ2, implying that the rate of change in Fig. 3 (both
the decay of plasticity and the rate of regaining adaptive plasticity) are positively related
to µ and σ.

I-2.1.4. PREADAPTATION OF THE GRNS

Starting with a population with randomly initialized alleles for the GRN parameters, we
first let the population evolve for 10,000 generations in the intermediate-fat environment
(the orange box in Fig. 1). In all replicate simulations, a “perfectly adapted switch”
(corresponding to wN > 0 and F =−kwN and T = cwN ) evolved, typically within 1,000
generations. Still, the evolved GRNs differed across replicates, as they evolved different
values of w N > 0. These evolved networks were used to seed the populations in the
subsequent “decay” simulations.

I-2.1.5. EVOLUTIONARY DECAY OF THE GRNS

For the decay experiments reported in Fig. 3, we initiated a large number of monomorphic
replicate populations with one of the perfectly adapted GRNs from the preadaptation
phase. These populations were exposed for an extended period of time (1,000,000 genera-
tions) to a high-fat environment (the yellow box in Fig. 1), where all preadapted GRNs
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switched off fat synthesis. However, in some scenarios, the environmental conditions
changed back sporadically (with probability q) to the intermediate-fat environment (the
orange box in Fig. 1), where it is adaptive to switch on lipogenesis in 50% of the envi-
ronmental conditions (when (N, F) is below the blue line in Fig. 1). In Fig. 3, we report
on the changing rates q = 0.0 (no changing back; red), q = 0.001 (changing back once
every 1,000 generations; purple), and q = 0.01 (changing back once every 100 generations;
pink). When such a change occurred, the population was exposed to the intermediate-fat
environment for t generations (Fig. 3 is based on t = 3).

Throughout the simulation, the performance of the network was monitored every 100
generations as follows: 100 GRNs were chosen at random from the population, and each
of these GRNs was exposed to 100 randomly chosen environmental conditions from the
intermediate-fat environment (orange box in Fig. 1). From this, we could determine the
average percentage of “correct” decisions (where the network should be switched on if
and only if F < (N −c)/k. 1.0 means that the GRN is still making 100% adaptive decisions;
0.5 means that the GRN only makes 50% adaptive decisions, as would be expected by
a random GRN or a GRN that switches the pathway constitutively on or off. This mea-
sure for performance in the “old” intermediate-fat environment was determined for 100
replicate simulations per scenario and plotted in Fig. 3 (mean ± standard deviation).

I-2.2. SIMULATION RESULTS: ROBUSTNESS ALLOWS FOR A PLAS-
TIC ADAPTIVE SWITCH TO BE MAINTAINED EVEN WHEN

RARELY USED

If plasticity of fat synthesis arose in the common ancestor of parasitic wasps, and wasps
are generally exposed to lipid-rich hosts, the question arises whether a switching device
that is not used for extensive periods of time should be lost during the course of evolution.
To investigate this, we ran individual-based simulations that monitored the sustained
functionality of a switching device (a gene regulatory network that could decay by muta-
tion) that is only sporadically used in evolutionary time. Figure 3 shows that the switching
device rapidly disintegrates (red simulations) if it is never used (see the methods section
for model assumptions, modeling details, and simulation settings). However, even very
infrequent use (pink: every 100 generations; purple: every 1000 generations) suffices
to keep the switching device largely intact. Interestingly, the switching device does not
erode gradually, but instead slowly evolves an improved performance over evolutionary
time (i.e., the percentage of correct decisions increases with the increasing number of
generations). An inspection of the evolving gene regulatory networks (GRNs) reveals that
they become more and more robust (i.e., less and less affected by mutational decay), in
line with earlier findings on network evolution [9].

The simulations in Fig. 3 are representative of all networks and parameters considered.
Whenever q = 0.0, the performance of the regulatory switch eroded in evolutionary time,
but typically at a much lower rate in the case of the more complex GRNs. Whenever
q = 0.01, the performance of the switch went back to levels above 90% and even above
95% for the more complex GRNs. Even for q = 0.001, a sustained performance level above
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Figure 3 | We first evolved replicate GRNs in a variable environment where it is adaptive to switch on a metabolic
pathway (fat synthesis) under low-fat conditions and to switch it off under high-fat conditions. In generation
0, a monomorphic population was established, where all N = 10,000 individuals were endowed with the
same well-performing GRN (different across replicates). Subsequently, the population evolved subject to
selection, mutation (µ = 0.001 per gene locus), and genetic drift in a fat-rich environment, where it is adaptive
to constitutively switch off the metabolic pathway. Every 100 generations, we monitored the performance of a
sample of GRNs (percentage correct decisions) in the original (fat-variable) environment: 1.0 means that the
GRN is still making 100% adaptive decisions; 0.5 means that the GRN only makes 50% adaptive decisions, as
would be expected by a random GRN or a GRN that switches the pathway constitutively on or off. The colored
graphs show the average performance (± standard deviation) of the GRNs for three scenarios (100 replicates per
simulation). Red: the population never again encounters the fat-variable environment; performance converges
to 0.5, corresponding to constitutively switching off fat synthesis and hence the loss of adaptive plasticity. Pink:
the individuals encounter a fat-variable environment on average every 100 generations; after an initial rapid
drop in performance, a sustained high performance (> 90% correct decisions) of the GRNs is regained after
about 100,000 generations. Purple: the individuals encounter a fat-variable environment on average every 1000
generations; after an initial rapid drop in performance, an intermediate performance (> 75% correct decisions)
is regained gradually.
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75% was obtained in all cases. Intriguingly, in the last two scenarios the performance level
first drops rapidly (from 1.0 to a much lower level, although this drop is less pronounced
in the more complex GRNs) and subsequently recovers to reach high levels again. Ap-
parently, the GRNs have evolved a higher level of robustness, a property that seems to
be typical for evolving networks [6, 7, 10]. For the simple GRN studied in Fig. 3, this
outcome can be explained as follows. The initial network was characterized by the genetic
parameters wN > 0, wF =−k ·wN and T = c ·wN (see above), where wN was typically a
small positive number. In the course of evolutionary time, the relation between the three
evolving parameters remained approximately the same, but wN (and with it the other
parameters) evolved to much larger values. This automatically resulted in an increasingly
robust network, since mutations with a given step size distribution affect the performance
of a network much less when the corresponding parameter is large in absolute value. We
also considered alternative network structures (see Fig. 2), and obtained very similar
results.

I-2.3. DISCUSSION

We showed that a switch underlying plastic responses evolves mutational robustness
and can withstand decay if it remains unused for extended periods of time. Another
modeling study found that adaptive plasticity will be maintained in the genome for
108 generations [11]. Our simulation study shows that non-switching rapidly evolves
in a fat-rich environment (leading to the loss of plasticity), but once the device has
evolved mutational robustness, only incidental ‘switching on’ of the trait is sufficient for
plasticity to be maintained within the genome. Plasticity itself can thus be highly robust
to mutational change, which can apply also to other traits and systems. Our results further
revealed large differences in the slopes of reaction norms between families, suggesting
that there is genetic variation for plastic expression of fat synthesis. The plasticity of fat
synthesis itself may thus evolve according to the local fat availability of host populations
in the wild.

Phenotypically plastic organisms can incur different types of costs [12]. In our simple
model, we only consider the cost of phenotype-environment mismatching, that is, the
costs of expressing the ‘wrong’ phenotype in a given environment. When placed in a
high-fat environment, the preadapted GRNs in our simulations take the ‘right’ decision to
switch off lipogenesis. Accordingly, they do not face any costs of mismatching. Yet, the
genetic switch rapidly decays (as indicated in Fig. 3 by the rapid drop in performance
when tested in an intermediate-fat environment), due to the accumulation of mutations.
It is not unlikely that there are additional fitness costs of plasticity, such as the costs for the
production and maintenance of the machinery underlying plasticity [12]. In the presence
of such constitutive costs, plasticity will be selected against when organisms are living
in an environment where only one phenotype is optimal (as in the high- and low-fat
environments in Fig. 1). This would obviously affect the evolutionary dynamics in Fig.
3, but the size of the effect is difficult to judge, as the constitutive costs of plasticity are
notoriously difficult to quantify. In the case of the simple switching device considered in
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our model, we consider the constitutive costs of plasticity as marginal, but these costs
might be substantial in other scenarios.
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ABSTRACT

Many organisms exhibit complex adaptations that are only beneficial sporadically, once
every few generations. How can such adaptations evolve and how can they be maintained
when being eroded by genetic drift and mutation accumulation? Theoretical work on
these questions has focused on simple traits, but many persisting adaptations are com-
plex. Here, we take a simulation approach, based on evolving gene regulatory networks
(GRNs), to study the evolutionary emergence and maintenance of a complex trait under
sporadic selection. We systematically change the sporadicity of selection, the intricacy of
the selective task, and the complexity of the network. The simulations reveal that complex
adaptations readily emerge and are stably maintained at high quality over thousands of
generations if the sporadicity of selection is moderate (selection taking place once every
5 or 10 generations). In the case of more extreme sporadicity (selection once every 100
generations), the adaptation still emerges and remains visible, but the performance of
the evolving networks is of lower quality. In our model, the genome-wide mutation rate
increases with network complexity. Despite the larger mutational load, more complex
network architectures maintained a higher fitness, especially when the selective task is
intricate. Robustness evolved through stabilizing selection on canalizing mutations. In
conclusion, our study demonstrates that complex adaptations can arise and persist across
extended time spans, even they are honed only sporadically by selection.
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4.1. INTRODUCTION

How do organisms cope with sporadic events that significantly impact their survival and
fitness? While much of the existing research has focused on adaptation to frequent or
cyclical events, such as seasonal changes or other periodic phenomena, little attention
has been paid to understanding how organisms cope and respond to rare but impactful
events such as wildfires, floods, or the advent of novel pathogens [1–4]. These events
are often happen so sporadically on a human timescale that it becomes empirically
challenging to study their evolutionary consequences. Nonetheless, on an evolutionary
timescale, they could still be happening regularly enough to force organisms to maintain
(or even evolve) adaptive mechanisms to deal with them [5]. Empirical evidence suggests
that there is an abundance of traits maintained over long periods of time, which serve
their adaptive purpose only on rare occasions. Escherichia coli populations can revert
immediately to their original anaerobic metabolism even after 30 years of being cultured
in oxygen-rich environments [6]. Caenorhabditis elegans can maintain resistance to a
bacterial pathogen even when exposed to it only sporadically[7]. Parasitic wasps can
activate their dormant fat metabolism in response to extreme starvation conditions that
occur very infrequently [8]. Semi-blind cave-fish still retain visual preferences for partners
[9], and a vast literature indicates that complex vestigial behaviours can be maintained
for long periods even when not being selected for [10–17] and could potentially serve as
facilitators of innovation [18]. These observations are interesting and somehow counter-
intuitive, as one would expect unselected traits to be lost due to the accumulation of
deleterious mutations. However, despite the many empirical studies providing insights
on this topic directly or indirectly, to our knowledge, little theoretical work is being con-
ducted [19]. Some theoretical studies exist [20–22], however, these studies mainly focus
on simple adaptations. For instance, [23, 24], considers the effect of mutations on a single
gene that correlates linearly with fitness. Little is known about more intricate scenarios,
where traits are multidimensional and determined by multiple genes, with complex non-
linear genotype-to-phenotype (G-P) mappings. It is this type of complex trait, however,
that most of the above-mentioned observations in nature seem to refer to. Theoretical
knowledge is of fundamental importance, as studying how long-term sporadic selective
events affect evolutionary outcomes in the wild is almost impossible. Understanding
how organisms cope with sporadic selective events can have significant implications
for hard-pressing matters such as rare-pathogen resistance, species preservation, and
adaptation to the increase in extreme weather events due to climate change. Additionally,
when considering the evolutionary implications of sporadic selective events a second
question ought to be addressed: their emergence. Understanding how and if adaptations
can emerge through sporadic selection is as relevant as determining the mechanisms of
their maintenance. By means of a simulation study, we, therefore, address two questions:
can complex adaptations to sporadic events be maintained against the accumulation of
deleterious mutations? And can these adaptations emerge in the first place when they are
so rarely selected for?

Theoretical studies on the maintenance and decay of a trait in the absence of selec-
tion have been conducted as far back as the founding of the Modern Synthesis, in the
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framework of population and quantitative genetics [25–29]. Some of these studies provide
the verbal arguments on how traits could be lost in the absence of selection [25–27], while
other also provide analytical predictions [28, 29]. However, these studies consider simple
traits encoded by single loci which directly correlate with fitness. There seems to be a
common agreement early on that complex gene interactions (as well as other factors)
must be considered to paint the full picture [27, 28].

Other lines of research also focus on the effect of unselected mutations on the out-
comes of evolution such as research on mutational meltdown and the Neutral Theory
of Evolution [21, 23, 24]. Mutational meltdown studies focus on providing predictions
on how fast adaptations can be irreparably lost due to the accumulation of deleterious
mutations in finite asexual and sexual populations. Lynch’s work in particular [23, 24],
through both analytical and computational models explains how the loss of adaptation
is dependent on mutation rates, population demographics, and mutational effects. In
particular mutation rate exponentially correlates with the time needed to lose adaptation
(named extinction in the original papers as organism fitness in their models is based on a
single trait).

All the aforementioned studies operate within the theoretical framework of population
and quantitative genetics, which, has significant limitations in its ability to represent
complex traits and G-P mappings. Nonetheless, theoretical literature coming from these
approaches is well accepted, leading, in more recent decades, to little expansion on
the topic from other theoretical perspectives [8, 20, 30], despite a relative abundance of
empirical studies [15, 31–35].

Masel et al. [20] extend such theory by using mathematical models to delineate
conditions under which rarely utilized adaptive plastic traits can persist over evolutionary
timescales. Their key finding is that sufficiently frequent environmental fluctuations must
reverse the degradation of plastic traits, in order to counteract ongoing mutation and
selection pressures. However, this relies on rather strict binary assumptions, including
that individuals either fully possess the plastic trait or completely lack it, and that any
improper trait expression is instantaneously lethal. In Visser et al. [8] we tackle a similar
question, by implementing individual-based simulations of slightly more complex, but yet
relatively simple (one-dimensional phenotype controlled by three loci), gene regulatory
switches underlying plasticity. We observe that such switches can evolve increasing
robustness to mutation during extended periods of disuse, thereby allowing long-term
trait retention even with only sporadic activation. While both papers emphasize the
primacy of environmental change frequencies relative to trait-eroding pressures, Masel’s
et al. model requires the former to regularly override the latter, whereas Visser’s et al.
model shows that intrinsic evolution of the switch to resist mutation can also suffice.

The research on GRN evolution [36–38], addresses the issues with the simplicity of
the G-P representation mentioned above, and provides interesting insights. GRNs often
exhibit a property that is not observed in more traditional models where genes are con-
sidered disconnected entities: robustness [39, 40]. This refers to their ability to stably
maintain a trait despite perturbations such as mutations or changes in the environment
[41], which is also what we observed in [8]. Robustness is typically studied in the context
of its impact on the evolution of novel traits and the evolvability of a system, with little
attention given to its role in sporadic selection events, robustness likely also can enable
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the maintenance complex adaptations through prolonged mutation accumulation punc-
tuated by periodic selection. While robustness may help preserve adaptations during long
periods of accumulation of deleterious mutations, it may also limit variation for selection
to act upon during sporadic instances of selection. Some research, however, suggests
that robustness can protect against long periods of mutation accumulation while still
facilitating rapid adaptation and diversity [42].

In this paper, we will investigate a model to study persistence, loss, or even emergence of
complex traits when selection only happens sporadically. To do so, we use an individual-
based model for the evolution of an adaptive reaction norm. Adaptive reaction norms
need to capture phenotype changes across an environmental gradient, representing thus a
complex adaptive challenge. Within each individual, the reaction norm is produced by an
underlying gene regulatory network (GRN). Thus the reaction norms provide a defined tar-
get for a complex phenotype, while the GRNs allow complexity in the genotype-phenotype
map. Finally, we implement sporadic selection by alternating brief periods of selection
with longer intervals without selection. When selection is applied, an individual’s chance
of reproducing is proportional to how well their phenotype matches the target environ-
ment, otherwise, when selection is absent all individuals are equally likely to reproduce.
The absence of selection for long time spans allows mutations to neutrally accumulate
across the population. By varying the length of these intervals, we can examine how the
frequency of selection affects the maintenance and emergence of complex traits. Overall,
with this modeling framework, we are able to enquire about the effects on the evolution of
adaptations to sporadic selective events of selection frequency, complexity of the selective
challenge, and G-P architecture. We conduct two types of experiments: maintenance
experiments, where we allow the reaction norm to evolve under constant selection before
exposing it to sporadic selection, and emergence experiments, where selection is sporadic
from the start. For each experiment type, we run simulations for different lengths of
mutation accumulation periods, as well as controls to compare with the outcomes of
evolution in pure mutation accumulation or constant selection. Finally, we test the effects
of evolution on GRNs with varying degrees of architectural complexity faced with different
selective challenges .

We, therefore, investigate the following questions: can complex adaptations be main-
tained or even arise when selected only sporadically? At what frequency does sporadic
selection cause complex adaptations to decay due to mutation accumulation? How does
the complexity of the GRN and selective challenges affect complex adaptations under
sporadic selection?

4.2. THE MODEL

4.2.1. OVERVIEW

The model structure is illustrated in Figure 1. Each simulation follows an evolving popu-
lation of 1000 individuals over 100’000 generations. Generations are discrete and non-
overlapping and reproduction is asexual. Each individual harbors a (heritable) gene-
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Figure 1 | Model structure. (A) We consider a population where each individual harbors a gene regulatory
network (GRN). Each GRN is characterized by weighing factors wi and baseline activities t j that are genetically
encoded (and evolving), constant throughout an individual lifetime, and transmitted from parent to offspring
(subject to some mutation). For a given set of weights and baseline activities, a GRN processes cues (inputs),
resulting in a cue-specific phenotypic response (outputs). This input-output relationship is the ‘reaction norm’
encoded by the GRN. (B) Individuals are selected based on how well the reaction norm encoded by their GRN
matches a target function (red curve). The area between the GRN-encoded reaction norm and the target
function indicates the ‘mismatch’ between GRN and the target. We assume that the ‘performance’ of a GRN
(which is proportional to the lifetime reproductive success of its bearers) decreases exponentially with the
mismatch. (C) Individuals are selected only sporadically (for n generations, followed by N-n generations without
selection). We conducted two types of simulation experiments. In the ‘maintenance’ experiments, we studied
the build-up of adaptation in the first period of 3,3 x 104 generations of continual selection (every generation)
and the subsequent decay of adaptation in the remainder of 7,7 x 104 generations of sporadic selection. In
the ‘emergence’ experiments, we studied the build-up of adaptation in a period of 105 generations of sporadic
selection. (D) This panel indicates how, over the generations, the GRNs evolve by the interplay of performance-
based selection, its absence, and mutation.
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regulatory network (GRN) that processes environmental inputs and produces an output
y for each input x (Fig. 1 A). The input-output relationship created by the GRN of in-
dividual i is described by a function y = Ri (x), which we call the "reaction norm" of
individual i (Fig. 1 B). Selection acts on these reaction norms and, hence, on the un-
derlying GRNs. However, selection only occurs sporadically (Fig. 1 C - D)- in many
generations, selection does not occur, and all GRNs have the same expected reproductive
success. In those generations where selection occurs, the task is to match an environ-
mental function y = E(x), where E remains the same throughout the whole simulation.
When selection occurs, those individuals whose reaction norm Ri matches the target
function E most closely have the highest expected reproductive success. More specifically,
the expected reproductive success of an individual i is proportional to e(−∆i (Ri ,E)), where
∆i (Ri ,E) = ∫ 1

−1 |Ri (x)−E(x)|d x is the average distance between the functions Ri and E
(Fig. 1 B). For convenience, we approximated ∆i (Ri ,E ) by the distance |Ri (x j )−E (x j )| for
40 randomly chosen values x j ∈ [−1,1]. At the end of each generation, 1,000 offspring are
produced (by a weighted lottery) in such a way that the expected number of offspring
of individual i is either 1 (in generations without selection) or e(−∆i (Ri ,E)) (in generations
with selection). Each offspring inherits the GRN of its parent, subject to mutation (as
specified in more detail below). We record how well populations adapt to match a target
reaction norm function E despite the long period of mutation accumulation. We run
simulations with different E functions, different GRNs architectures, and different levels
of sporadicity of selection. Finally, we test for two different scenarios, one in which first
populations evolve in constant selection and are only subsequently exposed to sporadic
selection (maintenance of adaptation) and one in which sporadic selection goes on from
the start (emergence of adaptation) (Fig. 1 C).

4.2.2. PERFORMANCE AND SELECTION

The performance of an individual with a reaction norm Ri is negatively related to the mis-
match ∆(Ri ,E) between Ri and the optimal reaction norm E . To evaluate the mismatch
we take the distance ∆i (Ri ,E) = 1

n ·∑n
j=1 |Ri (x j )−E(x j )| averaged over all of the 40 envi-

ronmental inputs x j ∈ x⃗{x1, ..., x40} ∈ [−1,1] individuals are exposed to (∆i ). We then use a
Gaussian function to quantify and rescale performance between 0 and 1: Pi = exp(−∆i )
In those generations where selection is acting, performance is a proxy for Darwinian
fitness: the expected number of offspring that an individual i contributes to the next
generation is proportional to the individual’s performance Pi . In generations without
selection the number of offspring per individual is Poisson distributed with a mean value
of 1. In both cases, the offspring inherits the parent’s regulatory network, after mutation
(see below). Through evolutionary time, the task of the network can be thought of as
the approximation of functions r nopt : populations are selected to “encode” the complex
relationship between environmental cues and optimal phenotype.

Performance-based selection only happens sporadically. It will take place for brief
intervals of time across longer stretches of relaxed selection, while mutations will keep
accumulating. The notation we use to indicate different regimes is n/N . n indicates
the number of generations where performance-based selection will take place at the
start of an N generations-long period, for the remainder of N relaxed selection will be
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acting. Once N generations have passed, the cycle will repeat, and performance-based
selection will act again. We run simulations for a total of 6 different regimes of sporadic
selection: 1/1 or constant selection, 1/5, 1/10, 10/100, 1/100, and 0/1 or no selection.
From now onward in this text, when we will refer to the term selection it will signify
performance-based selection, unless explicitly specified otherwise.

4.2.3. SIMULATION SCENARIOS

We design two different types of simulations: maintenance and emergence. During
maintenance experiments, populations will undergo a first period (1/3 of the 100’000
total generations of the simulations) of constant selection, to ensure that a functioning
adaptation is evolved, and only later will start being exposed to sporadic selection. In
emergence experiments instead, populations will be exposed to sporadic selection from
the beginning. We run these two types of experiments for all 6 regimes of sporadic
selection listed above.

4.2.4. THE NETWORKS

The reaction norm Ri of each individual i is encoded by a heritable multi-layered, feed-
forward, regulatory network. It consists of one single input, one to three layers of internal
nodes, and one output node. The input is contributed by the environment and is not
part of the network itself. The following notation will be used to represent the size of
the networks: 1-n1-n2-n3-o, 1 represents the single input/environmental cue, nk is the
number of nodes in internal layer k, and o is the number of output values. For instance,
1-2-2-2-1 refers to a network with one input, 3 internal layers with two nodes per internal
layer, and one output node. In this investigation, all networks will receive only one
input/environmental cue and will only have one output/phenotypic response. We vary
the number of internal layers and of nodes per layer for the different scenarios we study.
Therefore all networks in this experiment have a 1-*-[...]-*-1 structure. Each node has
a baseline value and a series of incoming connections: the ith weight is the weight of
the connection to the ith node in the previous layer. Baseline values and weights are
unbounded real numbers. Given a series of inputs, nodes generate an output. In the first
layer of internal nodes, the environmental cue x acts as an input. In the next layers, the
output of each node in the previous layer becomes one input. This operation is repeated
until the final layer is reached, resulting in the output of the network. Given a series of
inputs, the output of a node is calculated with the following formula:

out put = f (b +
ni nput s∑

i=1
oi ∗wi )

, where b = baseline value, oi = output of the previous node i , wi = weight of the connec-
tion to previous node i , and f (z)

f (z) = (
z

1+|z| )

The activation function f (z), is a monotonic sigmoidal function, bounded between -1 and
1. Hence, usage of this function ensures that all node values, including that of the output
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node, are in the interval [-1,1]. It also allows non-linear interactions within the network,
which is important for its functioning [43]. The value of nodes in the first internal layer is
calculated with the environmental input, then gets passed on as input to the second layer,
etc, until the output is obtained in the final layer.

4.2.5. REPRODUCTION AND INHERITANCE

Networks are encoded by a number of heritable loci proportional to the number of nodes
in the network (input node excluded). For each node, there is:

1. One baseline value locus, an infinite-allele locus (represented by an unbounded
real number) encoding the baseline value of the node

2. As many weight loci as there are nodes in the previous layers. They are infinite-allele
loci (represented by unbounded real numbers) encoding the connection weight
between each node in the previous layer and the current node

Different elements of the network can mutate:

1. Baseline node value. With a rate of 0.01, the baseline value locus of a node changes
to another allele: the previous value changes by an amount drawn from a normal
distribution N (µ,σ), where µ= 0 and σ= 0.1.

2. Connection weights. With a rate of 0.01, a weight locus changes to another allele:
the previous value changes by an amount drawn from a normal distribution N (µ,σ),
where µ= 0 and σ= 0.1.

4.2.6. ENVIRONMENTAL TARGET FUNCTIONS

All individuals are presented with the same series of 40 environmental cues (x) uniformly
sampled across the range of possible environmental valuesR ∈ [−1,1]. We run simulations
for three different environmental target functions that are presented y polynomials of
increasing complexity. The three functions, which are illustrated in Figure 4 are:

1. type 1 (simple):
E1(x) = x3

, is monotonically increasing with an inflection point at x=0.

2. type 2 (intermediate):
E2(x) = 3x −4x3

, is U-shaped for x < 0, with a minimum at x =−0.5., and hump-shaped for x > 0,
with a maximum at x = 0.5.

3. type 3 (complex):

E3(x) =−0.8+9.32x2 −15.84x4 +6.33x6

, with maxima at x =−0.5 and x = 0.5 and a minimum at x = 0.
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4.3. RESULTS

We first study how in both maintenance and emergence experiments (see Fig. 1C) the
evolutionary outcome depends on the ‘sporadicity’ of selection. We look for distinguishing
features between the two types of experiments in the evolution of complex traits by both
looking at the final results of evolution and in-detail evolutionary trajectories of single
replicate simulations. These results are based on our default setting: a type 2 target
reaction norm and a type 1-2-2-2-1 GRN (as in Fig. 1). In the final part of the Results
section, we show how the evolutionary outcome is affected by the complexity of the target
function and the complexity of the evolving GRNs.

4.3.1. EFFECT OF SPORADICITY ON THE EMERGENCE AND MAINTENANCE OF

A COMPLEX ADAPTATION

Figure 2 summarizes the outcome of 600 long-term simulations run for six increasingly
sporadic regimes of selection. We compare the average performance for the last 10’000
generations of 50 replicate simulations across 6 increasingly sporadic regimes of selection
(constant selection, selection for 1 in 5 generations, 1 in 10, 10 in 100, 1 in 100, and no
selection) for both maintenance and emergence experiments. When selection is constant
(1/1) the two types of experiments are the same, the final level of adaptation is highest
(same for both experiments, average performance = 0.72, Fig. 2 left plot), and the best
replicates match the target almost perfectly (Fig. 2 top panels on the right). When no
selection takes place instead (No_selection), performance levels are at a low baseline
level(Fig. 2 left-side average performance ≈ 0.4, Fig. 2 left plot) and adaptation gets
completely lost (Fig 2 bottom panels on the right). Performance decreases as selection be-
comes increasingly sparse. Within these extremes, the performance of the evolved GRNs
decreases. Nonetheless, the average performance remains quite high unless selection
is very infrequent. Populations from 1/5 experiments have on average the same level of
performance as populations from 10/100 experiments. There is a significant drop only
when selection becomes extremely sporadic (1/100). Performance stays the same for the
two regimes 1 in 10 and 10 in 100, suggesting that the relative frequency of generations
with selection on mutation accumulation (n/N ) is more important than the spacing of
selective events. Looking at in-detail snapshots of different evolved replicates (Fig. 2
panels on the right), a common pattern emerges across different regimes. Reaction norms
are generally S-shaped, with different degrees of matching to the target reaction norm
(type 2 in this case, a function with one local minimum, one local maximum, and an
inflection point in-between). Even at low levels of adaptation evolved reaction norms can
match the an inflection point between the local minimum and maximum precisely, while
their extremities often remain flat and do not match the curve around the minimum and
maximum. The matching increases for more frequent selection and reaction norms are
also able to more closely match the minimum and maximum, usually by stretching their S
shape and eventually adding one or two extra curvatures (see Fig. 2 panel on the right for
the regime 10/100). However, not even the top-performing GRNs (1/1 regimes) manage to
match the target reaction norm perfectly, despite being very close. The detailed snapshots
also show that variation in the population changes along regimes: for 1/1 regimes almost
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Figure 2 | Final GRN performance in the emergence and maintenance scenario for different degrees of
sporadicity. For six different selection regimes n/N (n rounds of selection followed by N −n rounds without
selection), ranging from constant selection (1/1) to highly sporadic selection (1/100) and no selection (0/1) as
a control, 50 replicate simulations were run for both the emergence (‘E’, blue) and the maintenance (‘M’, red)
scenario. The violin plots show the average performance of these replicates over the final 104 (of in total 105)
generations. For both scenarios, the panels to the right illustrate the evolutionary outcome in specific replicates
differing in average performance. Each sub-panel shows the target function (thick red curve) and the evolved
GRN reaction norms of the 1,000 individuals in the population (thin white curves). These panels, therefore,
exhibit the degree of variation within a population and visualize the mismatch between the target function
and the evolved reaction norms. These simulations were run for networks with three inner layers with 2 nodes
each (1-2-2-2-1), and a target environmental function of type2 with 1 minimum and 1 maximum (intermediate
complexity).
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Emergence of adaptation Maintenance of adaptation

0: No selection

constant selection no selection

1/5: 1 generation of selection every 5 generations

constant selection sporadic selectionsporadic selection

no selection

1/100: 1 generation of  selection every 100 generations

sporadic selectionsporadic selection constant selection

Figure 3 | Examples of evolutionary trajectories in the emergence (left) and maintenance (right) scenario
for (A) low sporadicity (n/N = 1/5), (B) high sporadicity (n/N = 1/100), and (C) in the absence of selection. In
each of the six cases, one representative simulation is shown. For each simulation, the lower plot shows how
the average population performance (± one standard deviation) changes over the course of the generations.
The thumbnail graphs on top of these plots illustrate the state of the population in six different generations (t =
2,000, 15,000, 32,000, 50,000, 75,000, and 99,000). Each of the thumbnails shows the target function (thick red
curve) and the reaction norm of the GRNs of the 1,000 population members in the corresponding generation.
These simulations were run for networks with three inner layers with 2 nodes each (1-2-2-2-1), and a target
reaction norm with 1 minimum and 1 maximum (intermediate complexity).

no variation is observable, with almost all reaction norms largely overlapping on the entire
environmental range. However, lower regimes show a much higher variation (see 10/100)
and in some cases even polymorphism (see 1/100). Finally, emergence and maintenance
experiments reach comparable levels of adaptation. One might have expected that having
an initial kick-start via constant selection before being exposed to substantial amounts
of mutation accumulation/unselected mutations (maintenance experiments, Fig. 2 red
color) would confer an advantage in obtaining higher performance levels. Instead, an
equally high level of performance can be obtained by evolving adaptation from scratch,
having to contend with long periods of mutation accumulation from the start (emergence
experiments, Fig. 2 blue color).
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4.3.2. A MORE DETAILED LOOK AT THE EVOLUTIONARY TRAJECTORIES

Figure 3 shows the evolutionary dynamics of replicates for different sporadic selection
regimes in greater detail, comparing side-by-side simulations in the same selection regime
but from emergence and maintenance experiments. Despite achieving similar final re-
sults, emergence and maintenance experiments follow different evolutionary trajectories.
In maintenance experiments (Fig. 3 plots on the right column), adapted reaction norms
manage to evolve during the period of constant selection to which the population is
subjected. Performance plateaus at a high level rapidly (in the first ≈ 4000 to 6000 genera-
tions). Afterward, when sporadic selection starts (generation 33’000), performance drops
and begins to oscillate, with the reaction norms increasing in diversity. Although the drop
and oscillations eventually stabilise, a full recovery of the original level of performance
is never achieved. The opposite trend is observed for emergence experiments. Perfor-
mance grows more slowly (usually performance plateaus around ≈33’000 to ≈ 40’ 000
generations), and both oscillations in performance and diversity in the reaction norms
decrease over time. The evolutionary dynamics also vary depending on the frequency of
selection events. As selection becomes more sporadic, maintenance experiments exhibit
a more pronounced drop in performance and increased oscillations while diversity of
reaction norms grows. Emergence experiments take gradually longer for their perfor-
mance to plateau, the sparser selection is. In a mildly sporadic selection regime (1/5,
Fig 3A), performance in the emergence and maintenance experiments reaches a similar
level in a comparably short amount of time (≈4000 generations). Reaction norms in the
emergence experiment are more diverse and performance undergoes a second increase
around generation 32’000, surpassing the maintenance experiment. This shows that in
some emergence experiments, performance can increase even past the level obtained by
the populations subjected to constant selection in maintenance experiments. However
this is not always the case, and maintenance experiments can achieve as well higher per-
formance than their emergence counterpart (as shown by the violin plots in Fig. 2). In the
case of very sporadic selection (1/100, Fig. 3B), performance plateaus more slowly in the
emergence experiments and diversity is higher. It is possible to observe a clear-cut case of
polymorphism in the population around generation 32 ‘000. Nonetheless, the population
gradually converges to one phenotype, and performance increases and plateaus also in
this regime, despite more slowly. For maintenance experiments, there is a significant drop
in performance and the reaction norms become more and more heterogeneous after
sporadic selection starts. Finally, for pure mutation accumulation regimes (No_Selection,
Fig. 3C), adaptation either never develops (emergence experiments) or is very rapidly lost
(maintenance experiments). These latter simulations were run in order to confirm that
in other regimes, even when selection is very rare, performance is not maintained just
because GRNs produce adapted reaction norms by default but because selection is able
to drive their evolution.

4.3.3. EFFECTS OF THE TARGET FUNCTION AND NETWORK ARCHITECTURE

ON THE EVOLUTIONARY OUTCOME

Figure 4 shows that the results listed above hold for a wide range of different target
reaction norms and genetic architectures. We ran simulations for simple, intermediate,
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Figure 4 | Effect of target reaction norm and network architecture on the relationship between the sporadicity
of selection and final population performance. Figure 2 (inserted as a thumbnail) shows how the final popula-
tion performance depends on the sporadicity of selection for one target reaction norm (type 2) and one network
architecture (type 1-2-2-2-1). Here, this figure is generalized by considering all combinations of three target
reaction norms (types 1, 2, and 3; solid, dashed, and dotted lines respectively) and three network architectures
(types 1-2-1, 1-2-2-2-1, and 1-8-8-8-1; yellow, blue, and purple colors) for a total of 5400 simulations. Emergence
and maintenance results are aggregated in this plot as no substantial difference appears. Colored lines in the
plot represent the trend in performance of a specific architecture x target reaction norm combination (e.g
dashed blue represents the combination performance trend for the combination shown in Fig. 2). The two
vertical red lines delimit the interval of selection regimes where performance is maintained stably.
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and complex target reaction norms and GRN architectures (9 possible reaction norm and
architecture combinations, for a total of 5400 simulations, see Methods for a more detailed
explanation). Each architecture can have different numbers of layers and nodes per layer;
the more genetic loci and layers compose it the better one architecture will be able to
produce complex reaction norms. It is important to notice that the per-locus mutation
rate is kept constant across architectures, meaning that more complex architectures
are subjected to a higher per-genome mutational load. Fig. 2 and 3 showcase results
only for a combination of target reaction norm and complexity both with intermediate
complexity (type 1-2-2-2-1 GRN and type 2 target reaction norm). However, the same
results are observed in all the possible permutations of reaction norms and architectures
we explored. Performance is highest when selection is constant, is stably maintained
across a wide range of sporadic selection regimes, starts to decrease only in extreme
conditions, and is completely lost only when no selection takes place. The simpler the
reaction norm the higher performance will be in all regimes (except for No_selection,
where of course the target reaction norm is not relevant). For the simplest reaction norm (1
single local maximum) performance is the highest as expected, with all three architectures
performing comparatively well. The most complex architecture (1-8-8-8-1) performs
significantly better for more complex reaction norms. This is interesting, since, despite a
higher mutational load, the most complex architectures not only maintain functionality
across sporadic selection but are also able to better adapt to complex selective tasks.
The 1-2-1 and 1-2-2-2-1 architectures have similar performances with the exception of
1-2-2-2-1 performing better in constant selection. One interesting observation is that
when selection becomes extremely sporadic (1/100) the 1-8-8-8-1 architecture has a
more pronounced drop in performance and has a similar level to the two other smaller
architectures. The results shown in Fig. 2 represent a scenario of intermediate complexity,
where the outcome is actually not as good as the best possible scenario achieved by more
complex GRNs. The fact that sub-optimal scenarios such as the ones in Fig.2 still show
the capability to maintain adaptation in sporadic selection suggests that our results are
indeed general over a wide range of parameters.

4.4. DISCUSSION

Our study investigates the impact of sporadic selection on the evolution of complex adap-
tations in gene regulatory networks (GRNs). We report three main findings: 1) sporadic
selection can preserve complex adaptations even across extended periods of mutation
accumulation; 2) complex adaptations can emerge as readily as they are maintained; and
3) the complexity of the genome and the selective challenge does not affect the general
trend in adaptation, but complex genomes can better adapt to complex challenges despite
an increased mutational load. In the following discussion, we delve deeper into these
results and their implications.

Longer periods of mutation accumulation have a detrimental impact on the adapta-
tion level of a trait. However, mutation accumulation has a lesser effect than anticipated.
Selection directs evolution toward adaptive outcomes even when it is two orders of mag-
nitude shorter than mutation accumulation periods (i.e., 1 generation of selection for
every 100). Performance remains consistent across a broad range of regimes, with fitness



112 4. EVOLUTION OF COMPLEX ADAPTATIONS UNDER SPORADIC SELECTION

decreasing in a step-wise manner rather than linearly. Furthermore, the relative frequency
of selection against accumulation periods is more relevant in determining the quality of
adaptation than the total amount of mutation accumulation. When comparing selection
1 generation for every 10 and every 10 for every 100, one might expect that deleterious
variants would fixate more frequently if mutations accumulate for 90 generations instead
of 9. Surprisingly, the final performance does not differ between the two regimes.

Complex adaptations can emerge as readily as they can be maintained during sporadic
selection. Populations achieve the same level of performance if they are allowed to evolve
a complex adaptation in constant selection beforehand (maintenance experiments) or
if they evolve in sporadic selection from the beginning (emergence experiments). This
finding can help explain how organisms can be adapted to challenges they do not usu-
ally encounter , as they can acquire adaptations to new environmental conditions as
long as they face them sporadically. This result holds even when selection is extremely
rare (1 generation for every 100). However, maintenance and emergence experiments
reach the same level of adaptation through different evolutionary trajectories. Mainte-
nance experiments evolve adaptations early on; when sporadic selection begins, they can
maintain them, although their performance gradually declines. In contrast, emergence
experiments take longer to discover adaptations but continue improving despite sporadic
selection. In some instances (but not all), emergence experiments lead to even better
adaptations than maintenance experiments.

Adaptation of GRNs in sporadic selection maintains the same general pattern across
various degrees of complexity. All network architectures achieve similar (and high) per-
formance for simple selective challenges, but complex architectures perform better in
complex challenges. We did not expect this outcome for two reasons. First, the per-gene
mutation rate is fixed across architectures. Thus, larger architectures are subject to a
higher mutational load (e.g., a reproducing type 1-8-8-8-1 GRN, which is encoded by 170
gene loci, has an average of 1.7 mutations per genome, while a type 1-2-1 GRN, which
is encoded by 9 gene loci has ten times fewer chances). Second, more interacting genes
require more time to co-evolve the adaptive expression of a trait. These factors should
make the performance of a more complex GRN more susceptible to extended periods
of mutation accumulation. Yet, complex GRNs significantly outperform simpler ones in
complex selective challenges and perform equally well in simple ones across regimes of
sporadic selection. This suggests that larger GRNs can evolve configurations that readily
fit complex reaction norms without incurring a substantial cost in mutational fragility or
speed of evolution. However, this ability has limits: for extremely rare selection regimes
(1/100), complex architectures experience a more significant drop in performance, equal-
izing all architectures’ performance.

Comparing our results with those from other studies with similar goals [8, 20, 25, 28–
30, 33, 44] we find a number of aligned conclusions, as well as relevant differences that
highlight the merits and limitations of our modeling approach. Our findings indicate that
GRNs can evolve configurations that buffer the effects of mutations on their phenotypes
and fitness. Previous theoretical models, mainly coming from classic population and
quantitative genetics, have suggested that traits can be preserved for a relatively long
time if they are not directly selected against [20, 25, 29, 33, 44]. We concur to some extent,
but our conclusions only partially align with these predictions. While we observe that
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complex traits can be maintained for extended periods even when selection is extremely
rare, complex traits in our model rapidly degrade under pure mutation accumulation (see
Fig. 3 bottom-right plot). This discrepancy with previous studies can be attributed to our
model specifically representing complex adaptations, in contrast to most other models,
which study simple adaptations encoded by simple genomes. In our model, the target
adaptation is complex, encoded by a GRN with genes interacting non-linearly to express
a range of phenotypes. Consequently, mutations have a more significant impact, and
uncontrolled mutation accumulation can degrade adaptations more rapidly, as some of
the studies we cited predict [26, 28]. Nonetheless, even in this scenario, sporadic pulses
of selection (even when much shorter in duration than the periods of accumulation) can
exponentially increase the length of time for which an adaptation is maintained, to the
point that they can prevent its loss or enable its emergence.

These outcomes underscore the importance of considering multiple approaches
when modeling evolutionary phenomena and demonstrate that mechanistic models
that explicitly describe regulatory mechanisms can yield new insights. We argue that
considering regulation is crucial not only because it leads to more nuanced outcomes
but also because it is a realistic assumption. Regulatory processes are involved in the
expression of almost any trait, even in cases we generally consider to be constitutively
expressed, such as the evolution of agouti fur coloration for mimetism [45].

One aspect we would like to expand on in future work is implementing the possibility
of extinction, which is currently absent. In our model, the population size remains
constant, irrespective of selection occurs or not. Accordingly, we have considered a
scenario of ’soft selection’, where reproductive success is determined by the relative
performance of individuals. In case of ’hard selection’, maladapted populations could
decline, making it more and more difficult to regain adaptive mutations. Nevertheless, our
model could be a good approximation for scenarios where sporadic selection does not act
on the survival component but the reproductive component of fitness. For instance this
would be the case in a scenario where a resource appears sporadically and is accessible
only through a particular adaptation (e.g. an abundance of seeds that require a specific
beak shape, favorable temperatures that allow redirecting fat reserves into the mating
ornaments, etc.). These scenarios where adequately responding provides a selective
advantage rather than preventing a disadvantage are common, and the most likely to lead
to the emergence of new traits via sporadic selection. Scenarios where not responding
reduces survival or reproduction could be more restrictive for “sporadic adaptations” to
persist. One important factor that is often taken into consideration when studying the
decay of traits in the absence of selection is the cost of maintaining the trait itself (this is
especially true for plastic response traits [6]). Results of various models already show that
traits decay much faster when there is a cost to the maintenance of the trait, [20, 29, 30].
However, our model does not explicitly consider fitness costs for maintaining complex
adaptations. If it did, its outcomes would likely be different, especially across GRN
architectures. Most likely, more complex architectures would not do better. Considering
the expression of complex traits to be costly in terms of fitness has a solid empirical
and logical basis, and we acknowledge that our model does not take this into account.
Nonetheless, this is intentional, a more important but indirect cost is the focus of this
study: the cost of having a large and fragile architecture. To avoid confounding effects,
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we decided to not implement explicit costs. Examples include the display of singing
behavior (leg motions) in mute crickets and the preservation of anaerobic metabolism
in E.coli after 30 years of oxygen-rich selection. It is not always the case that there is
a cost to maintaining complex traits, or that this cost cannot be offset. For instance,
in parasitoid wasps, most enzymes for complex fat synthesis also play roles in other
processes, offsetting costs when not producing fat. Another limitation of this model is
that reproduction is asexual. In biological populations, sexual reproduction is ubiquitous
and leads to recombination of alleles within populations. This could speed up both the
generation of complex traits, as well as their decay in the absence of selection. Future
models should implement sexual reproduction to capture these effects.

Future work should focus on implementing some of the additions mentioned above,
such as the possibility of extinction, costs for maintaining complex traits, and sexual
reproduction. These additions would likely modify the outcomes, potentially restricting
the parameter space in which sporadic selection leads to the emergence and maintenance
of complex traits. However, implementing these factors may also reveal new insights into
the relationships between complexity, robustness, and evolvability.

Despite its limitations, this model provides insights into how complexity can arise and
be maintained in biological systems, even in the absence of consistent selection pressures.
The results suggest that complex traits and architectures may be more evolvable and
robust to mutation than traditionally thought. This has implications for understanding the
prevalence of complex adaptations in nature, as well as for theories of major evolutionary
transitions and the origins of complexity. In summary, while limited in scope, our model
provides evidence that sporadic selection can lead to the emergence and maintenance
of complex traits, especially when the underlying architecture is robust to mutations.
These insights contribute to a more nuanced understanding of how complexity arises
and persists in evolving systems. With further development, this model system has the
potential to yield additional insights into the evolution of complexity.
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ABSTRACT

Grammar-Guided Genetic Programming (GGGP) employs a variety of concepts from evo-
lutionary theory to autonomously design solutions for a given task. Recent insights from
evolutionary biology can lead to further improvements in GGGP algorithms. In this paper,
we propose a new mutation approach called Facilitated Mutation (FM) that is based on
the theory of Facilitated Variation. We evaluate the performance of FM on the evolution of
neural network optimizers for image classification, a relevant task in Evolutionary Compu-
tation, with important implications for the field of Machine Learning. We compare FM
and FM combined with crossover (FMX) against a typical mutation approach to assess
the benefits of the approach. We find that FMX provides statistical improvements in key
metrics, creating a superior optimizer overall (+0.5% average test accuracy), improving
the average quality of solutions (+53% average population fitness), and discovering more
diverse high-quality behaviours (+523 high-quality solutions discovered on average). Ad-
ditionally, FM and FMX reduce the number of fitness evaluations in an evolutionary run,
reducing computational costs. FM’s implementation cost is minimal and the approach
is theoretically applicable to any algorithm where genes are associated with a grammar
non-terminal, making this approach applicable in many existing GGGP systems.
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5.1. INTRODUCTION

Genetic Programming (GP) is an Evolutionary Algorithm (EA) that evolves programs to
solve a given task. A relevant branch of GP is Grammar-Guided Genetic Programming
(GGGP) which uses a grammar to translate the representation (i.e., the genotype, a data
structure representing the program) into an executable program (i.e., the phenotype
or solution). In GGGP, practitioners can include domain knowledge by designing the
grammar to bias the evolutionary search toward certain solutions. This advantage has led
to successful applications of GGGP in many problem domains [1–3].

Despite these successes, GGGP can face difficulties exploring challenging solution
spaces. Some GGGP approaches are prone to poor locality [4], meaning that small changes
in the genotype lead to drastic changes in the phenotype. These problems are evident in
tasks like the evolution of optimizers for neural network training. Carvalho et al. [5] use
GGGP to evolve optimizers that compete with state-of-the-art human-designed solutions.
While the result is favorable, the low average fitness of the population and the scarcity of
reasonable solutions suggest that evolution is not exploring the solution space efficiently.
Evolution appears to be randomly sampling the solution space (occasionally stumbling
on promising genotypes) [6], rather than systematically improving upon incrementally fit
solutions. Locality is often regarded as a matter of representation [4], but insights from
evolutionary biology hint that variation operators may be part of the problem.

In nature, different parts of the genome display different amounts of susceptibility to
mutation [7]. Core genes that have a vital function tend to mutate less [8], while genes
with minor effects tend to mutate more often [9]. GGGP problems may share some of
these dynamics with natural systems. Nevertheless, GGGP traditionally applies variation
operators (mutation and crossover) uniformly across all genes without differentiating
their functional role [10]. By not discriminating among the different types of genes,
researchers have little control over the effect of variation on the phenotype and, thus, on
the evolutionary trajectory of the system.

In this work, we propose a method to overcome the uncontrolled effects of mutations
and allow a more faithful inheritance of traits by mimicking biological systems. We call
our method Facilitated Mutation (FM), as it, in part, takes inspiration from the theory of
Facilitated variation proposed by Kirschner and Gerhart in [11]. In FM, each grammar
non-terminal uses a different mutation rate according to its predicted influence on the
phenotype: low-impact mutations are frequent, while high-impact mutations are rare. We
expect FM to enable the evolutionary algorithm to explore the solution space in a more
structured way, reducing reliance on random sampling. Note that FM is not a mutation
operator, it is simply a novel way to apply existing mutation operators. Consequently, the
implementation cost of FM is minimal and the efficacy is related to the mutation operator
used.

We validate FM by evolving optimizers to train neural networks for image-recognition
tasks. We compare our new mutational approach with the one used in past works [5].
Our contributions are as follows: 1) The best optimizers found by FM are statistically
superior to the best optimizers found by competing approaches. 2) The average fitness of
the population is statistically superior using FM. 3) FM statistically increases the diversity
of discovered viable solutions. 4) FM reduces the computational cost of experiments.
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The remainder of this manuscript will be structured as follows: In the Background,
we provide the rationale from evolutionary biology guiding our design choices, as well
as the current work in evolving optimizers and how it relates to larger GP and GGGP
challenges. In the Methods, we describe the implementation of FM and how it applies to
optimizer evolution. In the Experimental Setup, we describe our validation experiments
and the metrics we use to compare FM against more traditional mutational approaches.
In the Results, we compare results from two versions of FM against two versions of
traditional mutation approaches on four metrics: performance of the best solution,
average performance of the evolved solutions, diversity, and computational cost. Finally,
in the Conclusions section, we summarize our findings and extend our reasoning to
general consideration and future directions.

5.2. BACKGROUND

5.2.1. INSIGHTS FROM BIOLOGICAL EVOLUTIONARY THEORY

Significant advancements in genomics, cell physiology, and developmental biology al-
lowed evolutionary biology to gain an unprecedented understanding of the role of muta-
tions and their effects on evolution. Of particular interest are insights on heterogeneous
mutation rates and heterogeneous mutation effects.

Mutations that lead to phenotypic change do not happen homogeneously across the
genome [12, 13]. There are conserved genes that code for fundamental core processes, that
only mutate their function rarely, being more robust to mutation.[14, 15]. Many cellular
and developmental processes are fundamentally unchanged since their emergence, such
as the formation of micro-tubule structures [16, 17], cell adhesion processes [18–20], and
anteroposterior axis formation [21]. Most mutations, instead, affect the phenotype by
changing regulatory elements [22]. Changes in these elements do not alter the function of
the core processes but regulate their activities and how they combine [23].

Not only do mutations not happen randomly across the genome, but they also have
non-random effects on the phenotype depending on where they happen. If a mutation
alters the functioning of a core process, it will fundamentally change the inner workings
of the organism, most likely leading to a non-viable phenotype. Instead, mutations
on regulatory sequences change the levels of expression of core processes and their
interactions, producing functional phenotypes that are variations on the original theme.

Like biological systems, in evolutionary computation (EC) different genes play dif-
ferent roles in determining the final phenotype. However, unlike biological systems, EC
often implements only a single mutation rate for all genes. By taking heterogeneous mu-
tation rates and heterogeneous mutation effects into account EC systems might be able
to display other interesting dynamics discussed by evolutionary biology: developmental
biases and facilitated variation.

Empirical and theoretical research in evolutionary-developmental biology suggests
that evolution has led to (and might have selected for) organisms whose core processes
bias random mutations to produce a non-random subset of phenotypes. In the literature,
this phenomenon is called developmental bias [24, 25]. Examples of developmental
biases are: the number and distribution of digits, limbs, and segments in tetrapods [26],
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the structural and pigment coloration of insect wing [27], and flower morphology [28].

In line with the observations illustrated so far, the Theory of Facilitated Variation by
Gerhart and Kirschner [11] postulates that organisms are structured to produce variation
easily and that this variation is biased towards adaptive phenotypes. Organisms can do
this because they contain an archive of evolved core processes that rarely change due
to mutations and maintain functionality independently of context. Core processes can
easily combine their activities through mutations on regulatory sequences and, since they
maintain functionality across contexts, the outcome of these combinations is biased to
be neutral or beneficial.

The predictions of this theory have profound implications for evolutionary dynamics.
Facilitated variation can explain how evolution is dramatically faster than we expect since
it selects core processes that favor the rapid discovery of functional solutions, instead of
proceeding randomly [29]. By applying heterogeneous mutation rates and considering
the heterogeneous effects of mutations, EC systems could behave in similar ways to
what Facilitated variation predicts, possibly improving their efficiency and effectiveness.
By slowing the mutation rate of core genes and increasing the rate of regulatory ones,
evolution would explore only a few core processes at the time (low mutation rate), but
in different combinations (high mutation rate). This would steer the search trajectory
towards a reduced subset of all the possible solutions, giving time to select and improve
the most successful ones before new ones are introduced. Thus, EC systems could
incrementally build an archive of good solutions that can recombine together effectively,
granting a better exploration of the solution space.

5.2.2. MUTATION AND CROSSOVER IN GGGP

In GGGP the genome of individuals encodes for a set of derived rules, defined by how its
genome is translated by a grammar. These production rules can either be non-terminals
(invoking more production rules) or terminals (constants or operations). Mutations in
GGGP change the genome, potentially changing one or more of the chained production
rules.

A change in a production rule can lead to an important reshaping of the resulting
behavior. Mutating a terminal into a non-terminal (which will invoke more production
rules) will expand the number of executed operations. Mutating a non-terminal into
a terminal instead will cancel a series of operations, preventing them from ever being
called. Thus, it is important to realize that, independently of which representation is
used (e.g. Grammatical Evolution [GE], Structured Grammatical Evolution [SGE], etc.),
GGGP mutations can cause different effects of different magnitudes depending on where
they happen. GGGP often uses mutations in tandem with another variation operator:
crossover. This is done to improve the exploration of the solution space. During crossover,
a region of the genotype of one individual is swapped with a region from another one.
The resulting individual is therefore a novel combination of the two parent genotypes.
However, there is no guarantee that this new combination will resemble a combination of
the two parents. Traditionally in GGGP, crossover methods are operated not by identifying
functionally equivalent regions of the genome, but by simply exchanging non-terminals.
Therefore, crossover in GGGP leads to highly diverse, but very unstructured variation.
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As biology suggests, if core components are not protected, arbitrarily changing the
genome structure (both through mutations and crossover) will likely lead to system-wide
deleterious effects. Nonetheless, studies in GGGP normally use a uniform rate of mutation
over the entire genome and rely heavily on crossover.

5.2.3. EVOLUTION OF OPTIMIZERS SHOWCASES BOTH POTENTIAL AND IS-
SUES OF GGGP

Optimizers are a relevant research topic in computer science as their application domains
like Machine Learning, have deep practical implications.

These algorithms can train Artificial Neural Networks to solve a target task using back-
propagation [30]. Recent research shows that GP is a viable way to design competitive
optimizers. GP systems such as PushGP[31–33] and AutoML-Zero[34] both have notable
results in evolving optimizers.

GGGP also achieves important results through the AutoLR framework [5], which is
based on the sub-branch of GGGP known as Structured Grammatical Evolution (SGE)
[35]. AutoLR is capable of evolving human-competitive optimizers from scratch without
prior knowledge of the components used by human-made ones. However, despite the
good results, some problems are evident in the way that AutoLR navigates the solution
space. Very few solutions obtain a high fitness and most discovered solutions are non-
functional. Moreover, high fitness solutions emerge mainly during early evolution and
do not improve any further, suggesting that the evolutionary algorithm may be behaving
similarly to random search[6, 36, 37]. Random search can be helpful to explore a solution
space [38–40], but it does not fit the goals of Evolutionary Computation to incrementally
produce diverse and competitive solutions.

The shortcomings of AutoLR are likely caused by the fragility of the solutions to homo-
geneous mutation rates and indiscriminate use of crossover. Much like natural systems
have core processes necessary for viable phenotypes, optimizers have core components
(e.g., the gradient) that are likely to generate non-viable phenotypes when changed. But
unlike natural systems, current optimizer evolution in GGGP does not consider hetero-
geneous mutation rates and mutation effects. These issues are not exclusive to AutoLR
and GGGP. In fact, this is a well-known problem in GP [6, 36, 37], where algorithms of-
ten display low locality (changes in the genotype are disproportionally reflected on the
phenotype) [35, 41].

Some researchers have already worked to mitigate this issue. Whigham [42] already
in 1996 proposed the fine-tuning of heterogeneous mutation rates in GGGP. However,
this is a small part of broader work from Whigham at the time, and only covers this idea
briefly, not considering how biological evolution insights can inform design decisions in
this subject. There is also work that explores forms of heterogeneous mutation outside
of GP. Evolution Strategies (ES) are an entire type of EA that focuses heavily on adaptive
control of parameters [43]. These systems adapt mutation rates and mutation steps for
more successful mutation outcomes. However, these systems are commonly used for
continuous search problems and do not address the same tasks as GGGP. Additionally, ES
do not have grammars that can easily link different genes to different mutation rates in a
structured, expertly informed way. As such, the possible benefits of a solution that mimics
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Figure 1 | Traditionally, mutation operators use a single mutation rate (1a) for all grammar non-terminals (1b).
In FM, there is a separate mutation rate for each non-terminal (1c)

the patterns of natural mutations to address poor locality remains largely unexplored.

5.3. METHODS

5.3.1. FACILITATED MUTATION

The traditional GGGP approach applies mutationsuniformly across the genome not ex-
ploiting more fine-tuned mutations as natural systems do. In this work, we propose a new
mutation approach for GGGP, Facilitated Mutation (FM), to replicate natural mutations.

Like in nature, mutations on different genes in GP produce different effects. FM uses
heterogeneous mutation rates to support these differences.

The goal of this endeavor is to lead to an efficient, incremental search of the solution
space, bringing tangible benefits.

Specifically, FM leverages the structure of the existing grammar to create several tiers
of mutations. Each grammar non-terminal uses a different mutation rate: lower for
more impactful non-terminals, higher for less influential ones, as shown in Figure 1c.
Separate mutation rates allow practitioners to use their expert knowledge to tune the rate
of different mutation effects optimally.

It is important to notice that FM is not a mutation operator, the approach only reg-
ulates the application of the ones already in use.FM is consequently widely applicable
since it does not require the implementation of new complex algorithms or operators.
Instead, it only requires small adjustments to the way that mutation is applied in the
system.

Moreover, biological insights suggest that swapping arbitrary regions of the genotype
via crossover will more often than not disrupt the coordinated activity of genes, causing
high-impact deleterious variation. Thus FM, when it employs it, sets crossover at low
rates to allow time for new combinations of genes to fine-tune their concerted action.
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5.3.2. FACILITATED MUTATION IN OPTIMIZER EVOLUTION

In this work, we apply the ideas of FM to AutoLR [5], a framework for the evolution of
neural network optimizers based on a GGGP engine called SGE [35]. The evolution of
optimizers is an excellent task to evaluate FM. Optimizers have clearly distinguishable
core components (e.g., gradient) crucial to their functioning, and regulatory components
(e.g., tuning parameter values) dedicate to their fine-tuning. These distinct components
would benefit from different mutation rates.

However, the original AutoLR grammar combines some crucial and tuning compo-
nents in the same non-terminals. Specifically, the gradient shares a non-terminal with
other, less important ones. The gradient is the most important component of an opti-
mizer, any change to the gradient in an active gene will likely result in a complete overhaul
of the solutions’ behavior. To improve the efficacy of FM, we create a new grammar that
separates components with different roles in different non-terminals. The new grammar
still maintains the original grammar’s functionality, as it uses the same components. In
Figure 2, we show the two grammars, side-by-side. The complete grammars can be found
at [44, 45]We refer the reader to the AutoLR paper [5] for details on the design decisions,
operations, and variables of the original grammar.

Leveraging these new non-terminals, we set specific mutation rates based on expert
knowledge. We assign a 0.15 mutation rate to constants, allowing easy tuning of parame-
ters. We assign a 0.05 mutation rate for changes between constants and other variables.
We assign a 0.01 mutation rate to all other non-terminals. This 0.01 mutation rate affects
changes that influence the behavior of the optimizer the most i.e.: changes from the
gradient to anything else, as well as changes in the operations between variables. Figure
1c presents the complete set of parameters. Finally, we allow FM to make use of crossover
(FM with crossover: FMX), but at a rate that is significantly smaller than previous setups
(FMX crossover rate = 0.01 << original crossover rate = 0.9). We chose this crossover rate
to be just high enough to avoid stagnation on local minima but not high enough to disrupt
solutions that emerge from mutation.

5.4. EXPERIMENTAL SETUP

We validate Facilitated Mutation by using AutoLR to evolve optimizers that train a Con-
volutional Neural Network for image classification. Optimizers are assigned a fitness
value based on the classification accuracy achieved by the network they trainand undergo
tournament selection of size two.Winners of the tournament reproduce with a probability
of undergoing mutation and crossover.This procedure is repeated until the population
for the next generation is filled up. The population size is 100 individuals, and evolution
runs for 200 generations. The best solution of each generation is preserved via elitism .
We run 30 independent simulations for four different mutation approaches:

1. Facilitated Mutation with rare crossover (FMX): our novel solution implementing
both changes to mutation rates and to crossover (low rate).

2. Facilitated Mutation (FM): our novel solution in isolation to investigate its effec-
tiveness in the absence of crossover.
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<start> ::=<expr>
<expr> ::=<func>|<term>
<func> ::=<expr>+<expr>|

<expr>*<expr>|
...

<term> ::=<const>|
alpha |grad |
...

<const> ::=0.0 |5E−5 |
...

(a) Original Grammar.

<start> ::=<expr>
<expr> ::=<func>|<term>
<func> ::=<expr>+<expr>|

<expr>*<expr>|
...

<term> ::=<var_const>|
grad | ...

<var_const> ::=<const>|
alpha | ...

<const> ::=0.0 |5E−5 |
...

(b) Grammar for Facilitated Mutation.

Figure 2 | The original grammar used in AutoLR (2a) and the adapted version for Facilitated Mutation (2b).
Non-terminals that have been added or changed are underlined.

3. Original mutation without crossover (OM): the original solution without crossover,
for direct comparisons with FM.

4. Original mutation with crossover (OMX): the original setup used in past works [5].

Table 5.1 describes the evolution parameters for each approach. We use four metrics to
analyze and compare the results from the different mutational approaches (FMX, FM,
OM, OMX):

• Best Fitness: The fitness of the best evolved solution in a simulation.

• Population Fitness: The average fitness of the population. We also consider the
distribution of fitness in the population.

• Population Diversity: The number of different viable and distinct solutions in
a population. We distinguish solutions by the equation encoding the optimizer.
We set a threshold of accuracyto distinguish non-viable (< 0.5) and viable (> 0.5)
solutions.

• Computational Cost: Number of training events over the evolutionary run. Most
computational costs in AutoLR come from the training necessary for the fitness
evaluation.AutoLR avoids re-evaluating solutions it has already encountered (see
5.4.2); thus, algorithms that bias variation can reduce computational costs.
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Table 5.1 | Evolutionary parameters for the four different setups

Parameters
Value

FMX FM OM OMX
Crossover Rate 0.01 0.0 0.0 0.9
Mutation Rate Heterogeneous Homogeneous (0.15)

Population Size 100
Generations 200

Elitism 1%
Tournament Size 2

Max Depth 17

5.4.1. TASK, TRAINING AND FITNESS EVALUATION

We evolve the optimizers to train a simple convolutional neural network [46] for image
classification on Fashion-MNIST [47]. Fashion-MNIST is a data set with 60000 28x28
gray-scale training images. Each image depicts an article of clothing belonging to one
of ten categories (e.g., T-shirt/top, trousers, pullover). The optimizer trains the network
to label these images correctly. Training has two stop conditions. First, the procedure
terminates when a maximum number of epochs is reached. Second, an early stop mech-
anism terminates the procedure if there is no progress for a set number of consecutive
epochs. To ensure a fair fitness assessment, we split Fashion-MNIST into three data sets:
Training Data - During training, the network assigns labels to this data and the optimizer
changes the network’s weights based on the errors of the assigned label. The optimizer
directly interacts with this data. Validation Data - During training, validation metrics are
calculated on this data to monitor progress. The early stop mechanism monitors these
validation metrics to terminate training when no progress is made. The optimizer does
not interact directly with this data. Fitness Data - After training concludes, accuracy is
calculated using this data and used as the optimizer’s fitness. The optimizer does not
directly interact with this data, ensuring an unbiased fitness assessment.

A table summarizing the parameter values used in our Fashion-MNIST experiments
is presented in the supplementary material (Supplementary Material Table 1).

5.4.2. SOLUTION ARCHIVE AND VIABLE SOLUTION PRE-SELECTION

Once fitness is calculated, the optimizer and its fitness are recorded in an archive. Before
evaluating any optimizer, the system will check the archive for an existing record to avoid
re-evaluation, since multiple genomes can encode for the same optimizer. Additionally,
the system can detect dysfunctional optimizers before evaluation: an optimizer that
does not use the gradient cannot train a neural network, so AutoLR assigns them a poor
fitness value (0.1) and skips evaluationThese two procedures together save considerable
computational resources.



5.5. RESULTS 129

5.4.3. POST-HOC ANALYSIS

While the fitness function provides a quick assessment of the quality of an optimizer, it
is ultimately an abridged procedure that focuses on efficiency. We use limited training
size, few training epochs, and an early stop mechanism to speed up computation during
the evolutionary simulations. However, these expedients limit the thoroughness of the
training and thus hinder the assessment of the full capabilities of an optimizer. We
perform a post-hoc analysis on the best evolved solution for each approach to assess
their quality more accurately. The procedure for post-hoc analysis is similar to the fitness
evaluation, with a few key differences. Training uses 56500 examples instead of 6500 and
continues for 1000 epochs instead of 100. Moreover, the early stop mechanism is removed.
After training, the weights that achieved the best validation-accuracy are restored for
a final test-accuracy assessment. The system calculates the test-accuracy using 10000
images from the Fashion-MNIST test data. This test data is a separate data set, never
used during evolution, thus ensuring an accurate assessment of the optimizers’ ability
to generalize to new data. We repeat the entire procedure 15 times, training the network
from scratch and recalculating the test accuracy in each repetition. After all these steps,
the average test-accuracy of an optimizer is the best measure of its actual quality.

5.5. RESULTS

In this section, we report and analyze the results obtained from the 30 runs of each of
the four mutation approaches (FMX, FM, OMX, OM). For a summary of the results, see
Table 5.2, best results for each metric are highlighted in bold. We conduct a statistical
comparison between the different mutational approaches using the t-test (significance
level set to α < 0.05) and calculate the effect size and p-value [48]. A full overview can
be found in the supplementary material (Supplementary Material Tables 2 and 3). In
this section’s figures, if there are statistically significant differences displayed, we use
asterisks to show the significance level and omit the full p-values (0.05 > p > 0.01 =
*, 0.01 ≥ p ≥ 0.001 = **, 0.01 ≥ p ≥ 0.001 = ***, p < 0.0001 = ****). The four different
metrics: Best fitness, Population fitness, Population diversity and Computational cost
are discussed separately in different subsections.

5.5.1. BEST FITNESS

We perform post-hoc analysis on the single best optimizer out of the 30 different runs
from each approach and compare their final quality. The result of the test and validation
accuracy assessments, as well as the p-value results from pairwise optimizer comparisons,
are shown in Figure 3. Looking at the results, one can see that the approaches that rely on
FM produce the best results overall.

After post-hoc analysis, FMX produced the most effective optimizer, classifying 93.3%
of test images correctly on average. FMX’s optimizer is statistically superior to all other
approaches in test and validation-accuracy. The FM and OMX optimizers are comparable
in test-accuracy, despite FM being superior in validation-accuracy. OM evolved the
weakest optimizer. These results confirm that FM aids evolution in producing superior
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Table 5.2 | Results summary

Approach
Metrics

Best
Fitness

Population
Fitness

Population
Diversity

Computational
Cost

FMX 0.933[L] 0.625[L] 599[M] 2915
FM 0.931 0.608[L] 323 2137[M]
OM 0.927 0.281 122 2978

OMX 0.928 0.093 73 10933
Values for the four metrics across approaches. Best results are in bold with Cohen’s d [48] effect size
as "S": small; "M":medium; and "L":large
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Figure 3 | Test and validation accuracies of the best optimizer for each setup in post-hoc analysis.
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Figure 4 | Fitness of the best individual of the 30 populations over time for the four different approaches. Bold
lines show mean values in each approach.

optimizers. Both OM and FM improve when combined with crossover, suggesting that
this operator contributes to discovering the best solutions despite its apparent destructive
effects.

We also analyzed the consistency of the approaches, comparing the best solutions
found during evolution by all 30 runs of each approach (shown in Figure 4). FMX, OM, and
OMX have comparable consistency in discovering high-fitness solutions. OM and OMX
methods plateau rapidly as their mutational approaches explore the solution space very
fast but impair incremental change, meanwhile FMX reaches a comparable level more
gradually by steadily improving upon discovered solutions. FM is the most inconsistent,
with a substantial number of runs below 0.5 fitness for the best solution.

This is due to the absence of crossover combined with the prevalence of neutral
mutations, and the use of a solution archive. Without crossing over, FM mutation can
only navigate the solution space via frequent regulatory mutations that do not affect
the solution i.e.: neutral mutations. This evolutionary pattern is called neutral search,
and it allows solutions to move across the solution space while being shielded from
selection. Neutral search is computationally efficient in AutoLR because the system
only spends time evaluating new solutions and not new genotypes. However, since runs
for all mutational approaches terminate after a fixed number of generations, FM will
explore fewer solutions than the others. Therefore, FM is penalized by AutoLR as it
has fewer chances of discovering promising optimizers and is more prone to get stuck
into sub-optimal regions of the solution space. On the other hand, FMX can discover
higher-performance solutions thanks to the low rate of crossing over, which nudges the
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Figure 5 | Average fitness of the 30 populations over time for the four different approaches.

population into unexplored regions of the solution space, where new solutions can be
evaluated. OMX and OM need not rely on the crossover as their highly disruptive mutation
approach is sufficient to move them to new regions of the solution space.

5.5.2. POPULATION FITNESS

FM and FMX substantially improve the average solution fitness in the population. At
any point in time, FM and FMX populations have higher average fitness than OM/OMX
(Figure 5). FMX and FM have an average population fitness of ≈ 0.6, OM and OMX have
average fitnesses of ≈ 0.3 and ≈ 0.1, respectively, as Figure 6 shows. We find that this
difference is statistically significant at the end of evolution.

In OMX and OM, average solutions in a population have a fitness one order of mag-
nitude smaller than the best one (OMX and OM average solution fitness ≈ 0.1, OMX
and OM best solution fitness ≈ 0.9). This is in accordance with results from previous
studies[5]. In contrast to FMX, OMX proceeds by randomly sampling good solutions from
a vast solution space thanks to its uniform mutation rate and high crossover rate (0.9)
but does not traverse the search space efficiently, inhibiting fit solutions from producing
incrementally fitter offspring. These results demonstrate the delicate role of crossover rate
in balancing exploration and exploitation and the importance of tuning this parameter
correctly. A high crossover rate has a highly negative impact on population fitness. Popu-
lation fitness in OMX (crossover rate = 0.9) is significantly lower than its crossover-free
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Figure 6 | Average fitness in the last generation of each run for all approaches.

counterpart OM (crossover rate = 0). This difference contrasts with the positive effect that
small crossover rates can have, as observed in Section 5.5.1. FMX and FM population
fitnesses do not show the same drop. The difference in the response to crossover may
caused by the different crossover rates (FMX crossover rate = 0.01 << OMX crossover
rate = 0.9). Further study into how each approach reacts to changes in crossover rate is
necessary to confirm this idea since such experiments are outside the scope of this work.

Improved population fitness supports the hypothesis that FM and FMX approaches
can improve the navigation of the solution space. However, analyzing the population’s
fitness alone is not sufficient. Many identical copies with high fitness could lead to
the same result. It is essential to analyze the diversity of solutions discovered by each
approach to asses if FM and FMX approaches can explore the solution space better.

5.5.3. POPULATION DIVERSITY

We measure population diversity as the number of viable unique behaviors in the pop-
ulation. The metric we use is a modified version of the variety measure proposed by
Koza [49]. This measure is defined as "the percentage of individuals for which no exact
duplicate exists elsewhere in the population" we adapt this to work on number of unique
behaviors rather than percentages but retain the focus on "individuals for which no exact
duplicate exists elsewhere in the population" which we abbreviate to "unique behaviors
in the population". We could use an edit-distance based measure instead, but we find
that a simple, behavior focused measure is the best match for this study.

Optimizers are fragile and non-viable solutions are frequent, thus including non-
viable solutions in our analysis would confound information about the diversity of op-
timizers that actually contribute to evolution. We find "the number of viable unique
behaviors" by considering solutions with a fitness above the threshold of 0.5, that are
able to train the network in some capacity. We statistically compare the total number of
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Figure 7 | Unique behaviours above 0.5 fitness discovered per run. Higher values mean more diversity.

unique viable behaviors discovered per run (Figure 7, for the number of unique behaviors
regardless of fitness see Supplementary Material Figure 1).

FMX produces a significantly higher diversity of viable solutions than all other ap-
proaches (on average 600 viable unique solutions per run). FM produces on average
300 and OM 120, although this difference is not statistically significant, while OMX is
statistically worse than all other approaches with just 70 unique viable solutions per run
on average (Figure 7).

The lack of diversity in OMX clues us into the failures of this approach and confirms
our hypothesis that FMs and FMX can explore the solution space more efficiently. Despite
the vast amount of new behaviours that crossover introduces into the population, OMX
cannot convert this into functioning behaviours that aid evolution. The combined insights
about diversity and population fitness suggest that FMX and FM can keep a diverse, viable
population longer than OM and OMX. In sum, these experiments suggest that FM and
FMX succeed in the stated goal of improving the search for the solution space, possibly
allowing them to avoid stagnation.

However, the results raise questions about performance. We previously hypothesized
that FM might be computationally cheaper by evaluating fewer solutions thanks to an
increase in neutral search. This analysis of diversity suggests that FM evaluates more
viable solutions. One possible explanation for this result is that FM is saving resources on
evaluations that are not reflected in our measure of diversity. Specifically, FM may reduce
the number of evaluations below the threshold used to analyze diversity. To clarify this
aspect, we analyze the computational cost of the experiments directly.
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Figure 8 | Total number of evaluated optimizers, for all approaches. Lower values mean less computational
costs.

5.5.4. COMPUTATIONAL COSTS

Most of the computational costs of AutoLR come from the neural network training neces-
sary for the fitness evaluation. In Figure 8, we statistically compare the number of training
and evaluations (the main computational cost) executed in all approaches. AutoLR uses a
solution archive and pre-selects only for functional optimizers to avoid redundant and
irrelevant evaluations. Due to these mechanisms, the number of optimizers evaluated in
a run is the number of unique behaviours that include at least one gradient component.
All approaches we have implemented for the first time in this work (FMX, FM, OM) are
statistically cheaper in terms of computational cost than previously implemented ones
(OMX), see Figure 8). There is no statistically significant difference between FMX, FM, and
OM (although FM sits just outside the established significance threshold when compared
to OM, with a p-value = 0.057, see Supplementary Material Table 3). Moreover, the results
seem to indicate that FM is empirically cheaper than all the other approaches, but this
difference is not statistically significant. FM thus seems to manage to be cheaper while at
the same time having a high diversity of good optimizers (see Section 5.5.3). This suggests
that FM performs neutral search (saving computational resources) in high-fitness regions
of the problem space.
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5.6. CONCLUSIONS

This paper proposes Facilitated Mutation, a mutational approach for GGGP inspired by
biological evolution. Facilitated mutation splits the single mutation rate commonly used
in these approaches into different values for each grammar non-terminal. We compare
Facilitated Mutation approaches with (FMX) and without crossover (FM) against more
traditional mutational approaches with (OMX) and without (OM) crossover. We validate
these approaches on optimizer evolution, an evolutionary machine learning task with
a challenging solution space, and real-world applications, and compare them based on
the best optimizer discovered, average population fitness, population diversity , and
computational cost .

FMX is comparable or better to original mutation approaches in all aspects. When
compared to the best OM-based alternative: FMX evolved a better optimizer (+0.5%
network test accuracy than OMX ), and on average: produced better and discovered more
solutions (+34% population fitness, +477 viable solutions) than OM These benefits come
with no significant downsides, the approach has similar computational costs to OM and
is significantly cheaper than OMX (saving ≈ 118000 fitness evaluations).

Comparing the two mutation approaches without crossover (FM vs. OM), we find that
FM discovered a better optimizer (+0.4% network test accuracy), improved population fit-
ness by +32%, discovered 200 additional viable individuals and decreased computational
costs by 850 fitness evaluations on average.

While we only study its benefits in the context of an SGE-based framework, FM is
applicable to any GGGP where each gene is directly associated with a grammar non-
terminal. FM is simple in implementation and applicable to any GP problem, but the
effectiveness depends on the type of problem and the choice of proper grammar and
mutation rates.

5.6.1. FUTURE WORK

FM and FMX achieve several remarkable results in this work, but these mutational ap-
proaches can still be pushed further.

In this work, the rates of mutation and crossover have not been further fine-tuned
after their initial choice. There are many ways to further optimize mutation rates for
FM; most notably, we think a promising direction is to let the mutation rates themselves
evolve. Since the submission of this work, we have created a new version of FM with
adaptive mutation rates and outlined a grammar design procedure to amplify the benefits
of this type of mutation [50].

Our analysis of crossover in this work can also be expanded. We focused on assess-
ing the benefits of our solution through an informed decision of crossover rate (FMX
crossover rate = 0.01) and drawing comparisons with another work with a comparable
setup (OMX crossover rate = 0.9). However, we do not investigate how the different muta-
tion approaches respond to different crossover rates. Crossover significantly improved
the best fitness of both approaches so it is essential to study how these methods respond
to varying crossover rates.

The analysis of the different mutational approaches can also be expanded to under-
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stand all their implications better. While we found viable measures for all aspects of the
evolution we studied, technical limitations stopped us from looking at other metrics, such
as solution complexity, the phenotypic distance between solutions, and the total run time
of experiments.

Other aspects of evolution could also be studied, such as detecting optimizers that
evolution discovers repeatedly and how these vary depending on the approach. The
improved diversity and population fitness of FM approaches also warrant further research
into whether the approach can also improve the system’s evolvability and adaptation to
different networks and tasks through transfer learning. In particular we find important
to evaluate the performance of our approach in more challenging image recognition
data sets (e.g., CIFAR-10). From our first analyses it appears that the performance for
the Fashion-MNIST data set is saturated (see 4). FM methods may show an even larger
margin of improvement in more complex data sets, where simpler mutational regimes
(OM) could not navigate the higher complexity of the search space.

FM may improve performance even further for structured problems (e.g., robot con-
trol, path finding) where there is a limited set of possible actions that can be fully defined
by the grammar. This contrasts with optimizer evolution, where the set of variables
and operations used for evolution is arbitrarily restricted, infinitely varied and endlessly
debatable.

Finally, previous works compared the evolved optimizers with human-made solutions.
We did not perform this type of analysis since the focus of this work was on improving
evolution, but such insights would be interesting in an extended version of this paper.
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6
CONCLUSION

There will be time, there will be time
To prepare a face to meet the faces that you meet;

There will be time to murder and create,
And time for all the works and days of hands

That lift and drop a question on your plate;
Time for you and time for me,

And time yet for a hundred indecisions,
And for a hundred visions and revisions

Before the taking of a toast and tea.
. . .

Do I dare
Disturb the universe?

In a minute there is time
For decisions and revisions which a minute will reverse.

TS Eliot, The Love Song of J. Alfred Prufrock
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144 6. CONCLUSION

In this final chapter of my thesis, I will try to convey the scientific insights I have
gleaned during my trajectory as a PhD candidate. However, first, I think it is important
to acknowledge that research is conducted by people (me in this case) and that people,
willing or not, have personal and biased opinions. This chapter is written with a philo-
sophical view in mind. To promote a clearer understanding of my conclusions, or at
least a clearer perspective on the importance I attribute to them, I think it is necessary to
articulate this view. To this end, I will divide this chapter into two parts: In the first part,
I will try my hand at some philosophical considerations, to provide clarity about what
my perspective is. In the second part, I will summarise my findings and the conclusions I
draw, as well as the limitations and future directions I see for this line of research.

6.1. PART 1: A POST-MODERN SYNTHESIS

6.1.1. A POST-MODERN PUN

The section title “A Post-Modern Synthesis”, is obviously a pun, playing on the name of
one of the bulwarks of the evolutionary theory: the Modern Synthesis; and the now so
popular, although not universally liked, philosophical term: post-modern. The aim of the
pun is to show what my (somehow post-modern) philosophical standpoint is concerning
the study of evolution. I think that we should abandon some modernist categorical
concepts of evolutionary thinking (which I may unjustly associate with the Modern
Synthesis here) in favour of a more supple, more post-modern, demeanour. The Modern
Synthesis of Evolutionary Biology refers to an attempt at a comprehensive explanation of
how evolution works developed in the early 20th century. It tries to reconcile Darwin’s
theory of natural selection with the principles of a population-oriented view of Mendelian
genetics emphasising that: (1) Mendelian genetics can be reconciled with quantitative
genetics (at that time called Biometry [1, 2]), and (2) the laws underlying both mendelian
genetics and quantitative genetics are both compatible with evolution by natural selection
(i.e. improved adaptation over the generations). The latter is not self-evident, as it had
been shown by Weismann that Darwin’s own theory of inheritance was incompatible
with his ideas on adaptive evolution (see [3] for an in-depth rundown). On its ideas,
the standard evolutionary theory was constructed, with all its advantages and downfalls
(phenomenological, short-term, gene-centric; as already discussed in Chapter 1). The
standard theory has been helming research for almost a century now. Nonetheless, in
recent times some evolutionary biologists, counting me amongst their ranks, say that
the standard theory is too restrictive to paint the full picture. Many have called for
expansions to the paradigm, but it seems that it is extremely difficult to come up with
a general evolutionary “synthesis”. And here enters the post-modern part of this pun. I
argue that if we are ever going to have a synthesis in Evolutionary biology this is going
to be a post-modern one, a pluralistic one. Post-modernism arose from the rubble of
the Second World War which was, for many, the end of the Modern Era. It ushered
in a cohort of ideas that made Modernity tremble, such as there is no universal truth,
progress, or good, matter comes before meaning, and human language is inadequate
to communicate beyond our basic needs. Amid this philosophical storm of “slings and
arrows", nonetheless sat a smouldering ember of hope. A hope that decided not to ignore
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or justify our incomprehensible and contradictory nature, but to embrace it in all its
facets. A hope which still dared to say: there is something worth it, but it is not that easy!
This is what I see in post-modernism, and this is why I find myself adhering to some of its
views. It is from the philosophy of post-modernism that I take some ideas I would like to
apply to evolutionary biology, in particular, that of pluralism.

6.1.2. PLURALISM IN POST-MODERNISM

The idea of pluralism is best embodied, in my opinion, by Simone de Beauvoir in: “The
Ethics of Ambiguity”. The message from Beauvoir’s work is that we should do away with a
logic made of dichotomies. Things are neither black nor white, instead, they often are
points in the middle of one, or even many, spectrums. One can only hope to see the
world as completely as possible by looking through as many of its facets as possible. It
is important, however, to note that pluralism should not be confused with relativism.
Pluralism does not imply abandoning basic rules of argumentation: arguments need to
be logically correct, and sound and can, and should, be evaluated against each other.
However, many arguments can coexist to explain the same phenomenon. In sum, I
use post-modern in my title to refer to pluralism as one of the ways to obtain an actual
evolutionary “synthesis”. Advocating for the idea that in evolutionary studies, and science
in general, many views should not entail conflict per se, but instead, they allow us to
appreciate evolution in a richer way. Pluralism does not only entail different views. You
could also have pluralism in terms of explanation or methods. Different approaches can
suit different purposes: e.g. population genetics to predict the changes in frequency of
beneficial alleles in the upcoming generations of artificially selected crops, and evo -devo
to discover new evolutionary mechanisms these alleles allow.

6.1.3. PLURALISM IN EVOLUTIONARY BIOLOGY

I argue that this pluralistic view has its uses in evolutionary biology (and science in gen-
eral) and that it can help us advance our understanding of the natural world. The relation
of pluralism to scientific research is metaphorically similar to the relation of a multidi-
mensional fitness landscape to the study of adaptive trajectories [4] or the relation of a
complex Gene Regulatory Network (GRN) to the study of evolvability and robustness [5]
(see Chapter 1). By adding dimensions, and therefore degrees of freedom, to evolution-
ary models (e.g. looking at fitness landscapes with more than three dimensions [4], or
considering more realistic, and therefore more intricate, Genotype-Phenotype maps [5])
evolution has many more paths to achieve a certain adaptation than previously expected.
In the same fashion if we, through pluralism, enlarge the dimensions in which we can
approach evolutionary questions via different perspectives (e.g. via a population genet-
ics approach, a mechanistic GRN approach, or seeing evolution as a learning process)
we can increase the number of research lines we can leverage to explain evolutionary
phenomena.

Some lines of research not only serve as a metaphor for the usefulness of pluralism
but are in and of themselves an example of this pluralism in action. What I mean by
pluralism in this case, is the willingness of certain scientists to detach themselves from the
traditional paradigm with which some natural phenomena are interpreted, and approach
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them from a completely different angle. In a certain sense, I equate pluralism to a very
strong form of multi-disciplinarity, where not only findings from one field can be used
to enhance research in another (see for instance the recent improvements in protein-
folding prediction thanks to artificial intelligence), but the entire frame of reference is
used. This attitude in my opinion can lead to significant leaps forward in our scientific
understanding with relatively little effort.

I will quickly discuss my interpretation of the three examples already mentioned in this
thesis: the Modern Synthesis, the work concept of bioinformatics, and the interpretation
of evolutionary processes as a form of learning. The Modern Synthesis is perhaps the
most famous and important example of pluralism applied to evolutionary studies. It is
common knowledge that Darwin left this world with one regret: his inability to explain the
mechanism of inheritance. He knew that this missing explanation could undermine its
entire theory. It was the work of Gregor Mendel and his discovery of the gene that solved
this conundrum (alas! a bit too late for Darwin ). However, initially, Mendel’s work, by
proving the existence of discrete units of inheritance (the genes), did seem to put Darwin’s
theory in jeopardy as it could not explain the presence of continuous traits in nature.
The work of Fisher, Haldane, Wright, Huxley, and many other scientists who contributed
to the Modern Synthesis at the time allowed us to reconcile this seemingly fatal flaw of
evolutionary theory and push it forward. They did so by bringing into the fold of this
discipline the language and ideas of statistics and physics. This allowed them to explain
the complexity and continuity of the natural world through its discrete components. If
not for the work of these scientists, and the research that followed from it, the research I
conduct on evolvability would most likely not exist. Another important example that also
played a role in my research is that of bioinformatics by Pauline Hogeweg. As Hogeweg
explains in detail in her opinion paper [6], she and Hesper started using this term in
the 1970s. By choosing the name bioinformatics, they starkly outlined their research
against other fields such as biochemistry or biophysics, making it clear and immediate
that t he focus of their research was the way information is transmitted and transformed,
and that they considered this aspect a key feature of life. By explicitly looking at how
information flows in biological systems, their intent was to bridge the gap between
phenomena at different organisational scales via emergent properties. This information-
focused computational approach has arguably given birth to a whole branch of more
mechanistic, individual-based, and emergent models. These types of models would later
be adopted by evolutionary biologists (such as Gunther Wagner, Andreas Wagner, and
Hogeweg herself) to study aspects of evolution normally inaccessible to standard theory.
Most of the research on evolvability comes from this branch, and it is in its spirit that I
conduct mine as well.

Finally, also connected to ideas from informatics, the work of Richard Watson is, as
well, an excellent example of a pluralistic approach in evolutionary biology. Richard
Watson, a computational scientist by formation, takes ideas from the field of Machine
Learning and applies them to interpret evolutionary processes. In two seminal papers
[7, 8] Watson traces the interesting parallel between evolution and reinforcement learning,
one form of learning in Artificial Intelligence, used to solve complex problems for which
the solution is unknown. By unveiling this similitude, Watson brings a new perspective
to explain evolvability, where each past evolutionary success is imprinted and stored in
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the organism’s “memory”. A process that gradually leads to the “generalisation” of a set
of selective problems, allowing organisms to deploy/evolve efficient solutions more and
more easily. It is in the light of these insights that I developed my ideas and defined my
focus in the vast field of evolvability research. I did this though with the additional insight,
coming from Hogeweg’s research, that it is in the representation (i.e. the architecture)
that one can observe how this process takes place.

In conclusion, pluralism in these different approaches does not only benefit the individ-
ual research lines. Evolutionary biology as a whole can, in the light of pluralism, benefit
from their coexistence. The study of evolution is a young science when compared to
physics, chemistry, or even natural biology, with just a little over a century of research
to its credit. Yet evolutionary biology poses some of the most complex questions about
the most complex forms of matter in the known universe: life. No star nor galaxy holds
a candle in terms of complexity to the metabolism of even the smallest bacterium (its
biology), even less so to its interactions with other species (its ecology), not to mention its
changes through time (its evolution). For this reason, we are far from having clear answers
to most of these questions, and sometimes there is even much debate on their validity
in the first place. A pluralistic approach, with its richness of views and interpretations,
can help us chart this unknown territory that is evolution. In this endeavour, different
types of research can occupy different niches, pushing forward the overall progress. Sci-
entists such as Watson and Hogeweg propose new and explorative theoretical concepts,
others work to incorporate these insights into existing frameworks and generalise them,
and others still strive to apply them in real-world contexts. In this pluralistic “research
ecosystem”, I would like my niche to be one that stimulates research by creating a new
lexicon of evolutionary dynamics. Via the use of conceptual models that strive to push the
boundaries of current theory, I aim not to describe or predict the natural world directly,
but instead to tease the attention of the community towards new interesting phenomena.

6.2. PART 2: INSIGHTS ON EVOLVABILITY AND ARCHITECTURE

The body of my insights can be divided into two types: those I gained from reasoning
and researching broad topics related to evolvability aiming to combine and connect
ideas in new ways (Chapters 1, 2, and Intermezzo 1), and those which I derived from
analysing computational models, often involving a mechanistic comprehension of the
role of architecture in evolvability (Chapters 3, 4, 5, and Intermezzo 2). When talking
about the "architecture" of a GRN in my models, I typically refer not to different topologies
(number of nodes and the way the nodes are connected), but to the specific configuration
of the strengths of the gene-to-gene interactions. I also conducted some research on
evolving GRN topology together with a Master’s student (Clem Carle), and as a follow-up
to Chapter 5 but this work is not included in this PhD thesis. Each insight relates to one
research chapter and possibly one intermezzo. I will discuss my insights in the order they
appear in this thesis.

In Chapter 1 I argue that an architectural perspective provides a cohesive frame-
work for understanding evolvability across levels of biological organisation. Organismal
architecture: the structural relationships between the elements of an organism, is the
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feature that ultimately allows evolution to act not only as a “blind watchmaker” but also
as a "reminiscing architect". Selection blindly shapes organisms to overcome selective
challenges, but these adaptations become ingrained in their architecture facilitating the
persistence of adaptations. This way evolution can store and re-deploy adaptations to
build upon what has come before. My architectural perspective on evolvability stems
from a broader idea that a mechanistic approach (i.e. paying attention to explicitly con-
sider the mechanisms underlying biological phenomena) is key to highlighting important
evolutionary dynamics. A mechanistic perspective can help reconcile the plurality of
concepts around evolvability [9]. In Chapter 2, I argue that it is possible to categorise
different determinants for evolvability on a mechanistic basis. I identify three categories
of ways in which biological mechanisms can influence evolvability: by providing variation
(e.g. mutation rate), by biassing the effects of variation on fitness (e.g. developmental
bias), and finally by shaping the selection process (e.g. of the effect of generation time on
the speed of adaptive evolution). By thinking in terms of mechanisms and how they act it
becomes evident that the same mechanism can often influence evolvability in multiple
ways - for example, an organism’s plastic response to the environment can affect both
variation and the biassing of variation effects. Chapter 2 also shows how the timescale as
well as the type of scientific questions/approaches themselves can heavily influence the
conclusions one could draw from the same data. These different conclusions, although
coming from different presuppositions, are not mutually exclusive and can concur with
a general explanation. I argue, therefore, that rather than attempting to subsume all
observations under a single conceptual framework, it is important to clearly state the
framework being used to avoid misunderstanding.

In summary, my research suggests a mechanistic and architectural framework pro-
vides a productive perspective for studying evolvability. Within this view, evolvability in all
its manifestations arises from the structural relationships that connect the components
of living systems across levels of organisation. An appreciation of architecture is key to
developing a cohesive understanding of how evolvability contributes to the adaptive suc-
cess of life on Earth. This concept helps to better appreciate the results of the simulation
studies I conducted.

In Chapter 3 I indeed observe that when interconnected together, even simple ensem-
bles of inheritable regulatory units (genes), can easily display potential for the evolution
of evolvability through natural selection. This finding is in line with pre-existing liter-
ature on Gene Regulatory Network studies that show how by accounting for complex
networks of interactions between genes, evolvability can be easily observed evolving
[10, 11]. However, in this case, my research brings the additional insight that architectures
need not be complex to achieve this. As we show, even simple GRN systems with less
than five genes and simple linear interactions can structure themselves to increase their
ability to adapt to varying selective challenges. In this study, individuals achieved this
result by evolving an architecture that biases the effects of random mutations toward
adaptive outcomes. Small mutations can cause substantial changes in the phenotype,
allowing it to “switch” from one adaptive state to another rapidly. This expedites adapta-
tion after an environmental shift, thus increasing evolvability. Contrary to expectations,
non-linear gene interactions are not required to evolve such a switch and an increase
in evolvability. Thus, even architectures entailing only linear interactions can integrate
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information about the selective challenge into their architecture. This finding highlights
how for evolvability, the existence of structural relationships between the elements of an
organism may matter more than their nature (linear vs. non-linear). In Chapter 4 I show
that adaptations can evolve and endure even when selection occurs infrequently. This has
two important implications. Once adaptations are obtained, they can stay ingrained in
organisms for an extended period without being repeatedly selected, serving as evolution-
ary "memory" that can be recalled again if need be. Secondly, organisms can evolve this
type of adaptation, and consequently acquire evolutionary "memory," even by just being
exposed to selection rarely. This finding can help explain how organisms often display
complex adaptations to environments to which apparently they have never or only very
sporadically exposed (as discussed as well in Intermezzo 2). These findings in my model
hold for a wide range of GRN architectures, selection event rarity, and selective challenges.
They are also partially in line with previous theoretical models, which show that adap-
tations can be maintained for long periods in infinite populations with simple binary
phenotypes. However, by including finite populations, complex multidimensional pheno-
types, and more complex genomes (e.g., GRNs instead of simple genotype-to-phenotype
mappings), my model yields different and new results from the previous ones as well.
Despite being capable of being maintained for long periods of time in rare selection, in
my model, adaptations decay very rapidly when selection is completely absent. This
does not happen in previous models, where adaptations can resist for extremely long
periods of time (tens of thousands of generations) under pure mutational drift. The fact
that in my model adaptations decay rapidly when only mutations take place and instead
persist when selection happens infrequently, shows that individuals evolve a form of
robustness to mutations in response to rare selective events. The fact that in previous
models individuals can simply maintain adaptation for long periods without any selective
incentive, suggests that in their case robustness was innate and not evolved. Therefore
once again, considering architecture (GRN vs. simple genotype-to-phenotype mappings)
leads to interesting and different results than more standard modelling would predict.
The evolution of robustness in response to rare selection can be interpreted as the ability
of GRNs to integrate past selective events in their architecture (in this case understood as
the strength of their gene-to-gene interaction) through evolution, similar to the findings
in Chapter 3. Even very simple GRN architectures (less than 10 genes) display this ability.
However, I also found that GRNs of varying sizes have different evolutionary properties.
When selected against more complicated selective challenges, larger architectures show
a higher level of adaptation. This happens despite these larger architectures possessing
more mutable loci, and therefore being more prone to mutations that might disrupt their
functioning. Our model suggests that bigger and potentially more fragile architectures
are not necessarily an impairment or a cost. Evolution seems able to compensate for
their potential fragility by more easily tuning them to complex tasks and making them
robust thanks to the many degrees of freedom they offer with their high number of genes.
Overall, these findings (chapters 3 and 4 and Intermezzo 2) highlight the importance of
the structural relationships between elements of an organism in improving its ability to
adapt.

In the cross-over research in Evolutionary Computation that I conducted in Chapter
5, I show how ideas from evolutionary biology can support research in other evolutionary
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fields, particularly that of Grammar Guided Genetic Programming (GGGP). In this project,
I show how biasing mutation rates and effects can improve efficiency when evolution
searches for adaptations. These ideas are partially inspired by the theory of Facilitated
Variation from Kirschner and Gerhart [12], whose work on evolvability is influential [13] in
evolutionary biology but not very well known in the field of evolutionary computation. My
modelling choices in this chapter adhere to a more phenomenological approach. I do not
let biased mutation effects emerge spontaneously, rather, I explicitly implement different
mutation rates for tiers of genes with different effects. However, this phenomenological
implementation is only possible thanks to the focus on the structural relationships of
the genotype-to-phenotype map used in GGGP. This representation is embodied by a
grammar that, by definition, describes the relationships between the components that
participate in phenotype formation. By taking advantage of the architectural features of
this grammar it is possible to efficiently assign appropriate mutation rates that allow my
method to beat other state-of-the-art solutions. This shows yet again that organismal
architecture is a key aspect in understanding and predicting evolutionary dynamics.

GGGP has numerous intriguing properties that make it a promising candidate for fu-
ture evolutionary studies as well. The amount of potential grammar that can be designed
is virtually limitless, and more importantly, the elements of the grammar itself, as well as
its associated mutation rates can be readily evolved too. This opens up a wide range of
applications, both practical and theoretical.

In particular, the study of evolvability can benefit from this modelling framework.
Individuals can be evolved against many different well-characterised tasks (i.e. selective
challenges) used in Artificial Intelligence and their phenotype can be easily interpreted
thanks to the grammar determining its genotype-phenotype map. Moreover, I find the
utilisation of image recognition as a selective task particularly interesting, as it can be
calibrated to various degrees of complexity. This could allow researchers to study evolv-
ability on a fine-grained scale. In a project not shown in this thesis, I (and my collaborator
Pedro Carvalho) extend the study presented in Chapter 5 to determine if our method
improves adaptation not only for one but for multiple image recognition tasks. The idea
is that by starting from simple image-recognition tasks and progressively increasing their
complexity the biased mutation rates will allow the preservation of functional modules.
Thanks to the grammar, these modules are easily identifiable in the genome, and it is pos-
sible to observe if they are redeployed for more complex challenges. Preliminary results
suggest that solutions evolved with our method adapt more rapidly to new challenges
(have higher evolvability) and display more streamlined and coherent phenotypes. This
solution maintains high performance not only for the present selective challenge to which
they are exposed but also for past ones.

In summary, my research highlights how an architectural perspective could be crucial for
developing a comprehensive understanding of evolvability. The structural relationships
between components at all levels of biological organisation fundamentally shape how
evolvability arises and contributes to adaptive evolution. Whether considering insights
on defining and reconciling evolvability, or insights derived from computational mod-
els of regulatory networks, architecture lies at the heart of evolvability. Simple network
architectures can evolve complex mechanisms for biasing mutations and adapting to
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infrequent selection pressures. And ideas inspired by biological systems architectures can
even benefit other evolutionary methods like evolutionary computation. Organismal ar-
chitecture is the key to comprehending evolvability in all its diverse manifestations, from
genetic evolution to non-genetic inheritance and beyond. By adopting an architectural
vantage point, we gain a cohesive framework for exploring evolvability as a fundamental
property of life.

6.2.1. FUTURE DIRECTIONS: STUDYING EVOLVABILITY AND NOVELTY, OPEN-
ENDED EVOLUTION

The GRN models I discuss in this thesis have an important limitation when it comes to
the study of evolvability: they can provide only limited insights into evolvability intended
as the ability to produce evolutionary novelty. GRN models are an appropriate tool
for studying "fine-tuning evolvability," or how variation can be shaped by adjusting
architecture. However, these models tell us little about what might have underlined
high-level evolutionary phenomena, such as the major evolutionary transitions (such
as aerobic metabolism, sexual reproduction, multicellularity, bilateral symmetry, etc.).
Despite allowing for unpredictable and counterintuitive outcomes, these models have a
pre-established, unchangeable set of behaviours, thus making it quite impossible for them
to come up with game-changing solutions. It is extremely difficult to design a simulation
where GRNs that, as in Chapter 3, are selected to adapt to different environments, end up
discovering multicellularity. Behaviours in these systems need to be pre-programmed
and cannot be altered, so evolution can only fine-tune and complexify the dynamics,
not revolutionise them. If one wants to observe the emergence of such phenomena the
simulation needs to be appropriately “seeded” for those. I think that understanding how
evolution can produce novel traits is one of the most fascinating enigmas of evolutionary
studies.Understanding major transitions in evolution is a challenge for all evolutionary
scientists and not only biologists. To this day, we have not yet been able to produce
a model where evolution does not eventually stagnate and instead demonstrates the
“open-endedness” we observe in life’s historical record.

This is one of the main interests of the research field of Artificial Life, in particular of
that sub-group of scientists who are striving to obtain or detect evidence of “Open-ended
evolution” [14–16]. A debate is ongoing within this multi-disciplinary community as to
what is “Open-ended evolution”, how one can measure it and most importantly how one
can obtain it. This debate is unknown to most biologists, as the scientists involved often
hail from computational backgrounds. However, interesting insights have been garnered,
and rigorous metrics of “open-endedness” are under constant development and review
[17]. I think evolutionary biology should step in more decisively and bring its contribution
to this discussion.

Harnessing insights from other disciplines and potentially aiding them in their en-
deavours could create a fertile ecosystem. Different evolutionary disciplines could help
each other in speeding up progress along multiple lines of research. For instance, I think
that many of the models adopted by artificial life scientists could be of great interest to
biologists [18, 19]. The field of Artificial Life is a very creative modelling field, where few
modelling paradigms are established, and uniqueness in mechanisms and dynamics is
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valued. This attitude leads to a wide variety of models, which are substantially different.
Thus, when general insights are drawn from this varied bouquet of representations of
evolution it makes a strong argument for their soundness. At the same time, providing
more accurate insights into how biological organisms work could offer better guidance
for artificial life modelling choices.
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