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Abstract—Background This work aims to investigate the
feasibility of an explainable machine learning model based on
radiomics features to differentiate between giant cell arteritis
(GCA) and atherosclerosis in aortic ["*FJFDG-PET scans.
Method Twenty ['*F]FDG-PET scans (ten of patients with GCA,
ten with atherosclerosis) were retrospectively included. The aorta
was delineated into four segments (ascending, arch, descending,
and abdominal aorta). In total, 93 radiomic features and two
quantitative features were extracted from each of the 80 segments.
Four different feature selection methods and four classifiers were
used to identify important features for the machine learning model
and determine the probability. The model's performance was
evaluated using accuracy and AUC. To enhance explainability of
the model, feature importance was determined, and an occlusion
sensitivity map of the aorta was created.
Results The combination of the first-order skewness, GLDM
dependence non-uniformity, and GLRLM run entropy features
showed the highest accuracy and AUC of, 0.90+0.08 and
0.960+0.029, respectively.

Conclusion This study demonstrated the potential of an
explainable radiomics-based machine learning model for the
differentiation between GCA and atherosclerosis in ['*F]JFDG-
PET scans.

Keywords— giant cell arteritis, atherosclerosis, ["* FJFDG-
PET, explainable machine learning, radiomics

I. INTRODUCTION

Giant cell arteritis (GCA) is a systemic
inflammatory condition of the arterial vessel that often
cause the accumulation of immune cells within the vascular
walls. This can lead to vessel stenosis and consequent
occlusion. Atherosclerosis, also an inflammatory condition
of the arterial vessel, causes narrowing of the arterial vessel
by plaque forming with calcification and potential to
rupture [1]. The two conditions have similarities as both
conditions are characterized by inflammations in the
arterial wall and nonspecific symptoms. However,
differentiation between these two conditions is of
paramount importance, since the treatment of GCA
consists of high-dose glucocorticoids and the side effects of
this treatment can be substantial [2]. Therefore, treatment
stratification is crucial to minimize diagnostic uncertainty
to ensure appropriate treatment [3]. Diagnosis of both
conditions relies strongly on clinically used imaging

modalities: i.e. computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound (US), and 2-deoxy-
2-["8F]fluoro-D-glucose positron emission tomography
(['"*FIFDG-PET). As activated inflammatory cells exhibit
increased glycolytic activity, the ["®F]FDG-PET is an
indicator of inflammation [4]. However, since GCA and
atherosclerosis are both characterized by inflammations,
they exhibit similar elevated ['SF]JFDG uptake. Although
atherosclerosis shows a more ‘patchy’ pattern and GCA
looks more homogenous, visually distinguishing the two
conditions using ['*F]FDG-PET remains challenging [5].

The ['*FIFDG-PET images are typically evaluated
using qualitative or quantitative methods. Qualitative
grading is based on visual interpretation by a nuclear
medicine physician [6]. The quantitative analysis involves
a calculation of parameters such as the mean or maximum
standardized uptake value (SUV). However, both
approaches can be influenced by factors such as noise,
patient-specific variables, and lack of standardized
interpretation criteria [7]. Texture features derived from
['®F]FDG-PET images are increasingly investigated as
imaging biomarkers for the quantitative description of
heterogeneity [8]. These imaging biomarkers, referred to as
radiomics, analyze a high number of image features
containing important information that may not be
appreciated by the human eye [9]. The texture analysis
provides information about the distribution of specific
image properties, and has therefore a high potential to
capture differences in ['*F]FDG uptake pattern. The use of
radiomics in PET-based vascular imaging has shown that
texture analysis provides valuable information for plaque
characterization and the diagnosis of aortitis [10][11].
While texture analysis in conjunction to machine learning
(ML) has a sound technical background, using this method
in clinical application is yet to be confirmed. Moreover, the
ML models often lack interpretability and do not provide
understandable explanations for their predictions. Since the
decision-making process in ML is difficult to understand
for a clinical expert, an explainable ML model is highly
recommended [12]-[14].

Therefore, the aim of this study is to investigate
the feasibility of an explainable radiomics-based machine
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learning model to differentiate between GCA and
atherosclerosis in aortic ['*F]JFDG-PET images.

II. METHOD

A. Study subjects and image acquisition and
reconstruction

The study retrospectively included the data from twenty
patients from two different cohorts: i.e., ten patients with
GCA (GCA-group) [15] and ten patients with type 2
diabetes mellitus (atherosclerosis-group) [16]. People with
type 2 diabetes mellitus have in general high formation of
calcified atherosclerosis and as other vascular diseases were
an exclusion criterium of the cohort, vascular ['*F]FDG
update was assumed to be related to atherosclerosis [17]. To
avoid interference with the atherosclerosis cohort, GCA
patients with low levels of calcifications were selected.
Patients with a diagnosis of GCA were included if the
diagnosis of GCA stayed the same for at least 6 months after
the first symptoms and a ['®F]JFDG-PET/CT scan was
performed at the time of diagnosis. Patients were excluded
if they received more than three days of prednisolone
therapy at the time of the ["®F]FDG-PET/CT scan, to
prevent a false-negative ['®F]FDG-PET scan [18]. The
inclusion and exclusion criteria of the atherosclerosis-group
were previously described, but in short: patients diagnosed
with diabetes mellitus type 2 were included if they had an
assessable pulse wave velocity at screening and were on a
stable dose of medication to regulate blood pressure- and/or
lipid content [16]. Exclusion criteria were: current use of
glucose-lowering drugs, diagnosis of cardiac vascular
disease, and uncontrolled hypertension. All images were
acquired using an integrated PET/CT system (Biograph
mCT 40 or 64-slice: Siemens Healthineers, Knoxville, TN,
USA). The FDG-PET/CT was imaged according to the
European Association of Nuclear Medicine (EANM)
procedure guidelines for imaging following EARL criteria
[19]. All subjects fasted for at least six hours prior to FDG
injection (3 MBg/kg). The images were acquired 60 minutes
post-injection. ['*FJFDG-PET was acquired from skull to
knee, 3 min per bed position. All images were reconstructed
according to the EARL recommendations, and resulted in a
voxel spacing of 3.19x3.19x2mm?’. Prior to the ['*F]FDG-
PET, a low dose CT was acquired for attenuation correction
and anatomic localization.

B. Segmentation

In the CT images, the aortas of all patients were
manually annotated into volumes of interest (VOI) using
Affinity Viewer (version 2.0.3; Hermes Medical Solutions,
Stockholm, Sweden). Each aorta was divided into four
segments: the ascending aorta, aortic arch, descending
aorta, and abdominal aorta. After delineation on the low-
dose CT scan, the overlaying co-registered PET image was
used to ensure all arterial FDG uptake was included and any
spillover uptake from neighboring tissue was excluded
from the segmentation. ROIs were annotated by two
clinical experts. The final dataset consisted of 80 segments:
40 segments in GCA-group and 40 segments in
atherosclerosis-group.

C. Machine learning

The general approach for the machine learning (ML)
model is illustrated in Fig. 1. The PET voxels were
resampled using cubic B-Spline interpolation to an

871

isotropic voxel of 2.0x2.0x2.0mm?>. The PET images were
converted from activity (Bq/mL) into standardized uptake
value normalized to lean body mass (SUL), as
recommended for patients with a higher body fat
percentage, which includes both cohorts [20]. This
provides a more accurate assessment of FDG uptake.

Tissue activity
Injected dose
LBM

SUL = (1)

With a sex-wise LBM:

body weight
6680 + 216 X BMI

LBMM? = 9270 x

body weight
8780 + 244 X BMI

LBMFemle = 9270 x

For each segment, the SUL was discretized with a fixed
bin width of 0.5, defined by equation 2 [21]

Xgl.x_Xgl,min
Wp

Xax = +1 2)

Where Xqx is the resampled intensity of voxel x, X1 is the
intensity of voxel x before resampling, Xgiminis the lowest
intensity in the ROI and Wy is the bin width. Xax is rounded
to the nearest integer. The +1 is to make the lowest bin
value equal to 1 [22]. A total of 93 radiomics features were
extracted: i.e. 18 first-order statistic features (FOS), 24 grey
level co-occurrence matrix (GLCM) features, 16 grey level
size zone matrix (GLSZM) features, 16 grey level run-
length matrix (GLRLM), five neighboring grey tone
difference matrix features (NGRDM) and fourteen grey
level dependence matrix (GLDM) features. Besides the 93
radiomics features,, SULmax and SULmean, were extracted,
making a total of 95 extracted features. Shape features were
not included to exclude the influence of the manual
delineations. Features were extracted using the
standardized framework for radiomics in python,
pyRadiomics, which is in compliance with the Image
Biomarker Standardization Initiative (IBSI) guidelines
[22]. For feature selection purposes, all 95 features were
standardized using the Z-score calculated according to the
following equation:

X-u

o

Z= 3
where X represents the individual feature value, p the mean
calculated over all 80 segments for the feature, and ¢ the
standard deviation calculated over all 80 segments. After
standardization, features with a high linear correlation — a
Pearson correlation coefficient (Pearson’s ) above 0.9 —
were removed. The ML model was trained and validated
using 80% (n=64) of the dataset and tested on a holdout test
set which consist out of 20% (n=16) of the dataset. To
ensure a randomized and balanced split, the data was split
into train/validation and holdout sets based upon patient-
wise assignment.
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Figure 1: Flowchart of the different steps. Ninety-three radiomic features and SULmean and SULmax were extracted from the 80 segments of the PET images.
Feature selection and classification is trained on the training cohort(n=64), with a ten-fold cross validation. Predictive performance is evaluated on the holdout
set (n=16).

The feature selection and classification model was trained
by ten-fold cross-validation on the training data, randomly
assigned to the segments. Four feature selection methods
were used to perceive the most important features [23]: i.e.,
least absolute shrinkage and selection operator (LASSO),
support vector machines-recursive feature elimination
(SVM-RFE), ReliefF, and minimum redundancy and
maximum relevance ensemble (MRMRe). These feature
selection methods were chosen for their popularity in
literature, computational efficiency, and publicly available
implementations which increases reusability[23]. To assess
the optimal number of features necessary to differentiate
between GCA and atherosclerosis, ten feature selection
models were built (containing an increasing number of
features from one to ten)[24]. That resulted in 10x4 = 40
feature selection models. Four different classifiers were
used to assess the classification quality for each of these 40
ML models: i.e. logistic regression (LR), support vector
machine-radial basis function kernel (SVM-RBF), extreme
gradient boosting (XGBoost), and neural network (NN),
resulting in sixteen different models per ML model. For all
classifiers, the following hypermeters were tuned:
estimator (25, 100, 250) and learning rate (0.001, 0.05. 0.1,
0.4, 0.8). All others were set on default. Every combination
of hyperparameters were tested and the combination of
number of features, selection method, classifier and
hyperparameter with the highest area under the receiver
operating characteristic curve (AUC-ROC) was used to
train the models.

To make the ML model more interpretable, feature
importance of the selected features was determined using
the scores of the features calculated by the feature selection
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methods. Moreover, an occlusion sensitivity map of the
aorta segments was created using a kernel of (10x10x5), to
set specific regions of the segment to zero. For every region
the change in prediction probability was measured and
mapped to visualize the influence per region [13], [25],
[26]. The difference between the probability of the whole
segment and the probability after setting regions to zero,
was plotted in an occlusion map. Doing so, a heatmap from
the probability differences of the aortic segment was
created, depicting the importance of these regions.

All steps in feature selection and classification were
executed using the Sci-kit Learn package (Version 1.1.3) of
Python (Version 3.9.12).

D. Performance of ML model

The performance of all combinations: i.e. increasing
number of features from one to ten, four feature selection
methods and four classifiers, (10¥4*4 = 160) was evaluated
by the holdout set (n=16). The evaluation was performed
by accuracy, positive prediction value (PPV), negative
prediction value (NPV) and the AUC. For the model with
the highest AUC, a ROC curve was created and evaluated.

E. Statistical analysis

Normality of the data was tested using the Shapiro-Wilk
test. Depending on the normality, the baseline patient
characteristics of the two groups were compared using the
independent student’s t-test or the Mann-Whitney U test. A
p-value of < 0.05 was considered statistically significant.
Continuous variables are displayed as mean with standard
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deviation (meantstd) or median with range (median
[range]) dependent on the normality distribution of the
variable. The statistical analyses were performed using
Statistical Package for the Social Sciences version 27.0
software (SPSS Inc., Chicago, IL, USA).

III. RESULTS

A. Patient characteristics

The median age of the GCA and atherosclerosis group
were 63 [56 — 74] years and 64 [44 — 76] years (p=0.57),
respectively. The average body mass index of the two
groups was 27.3+5.4 and 32.0+7.8 (p=0.14).

Table I shows the baseline characteristics of the study
population.

B. Feature extraction, selection, and classification

Of'the 95 extracted features, 53 features had a Pearson’s
r value higher than 0.9 and were therefore removed from
the dataset. The remaining dataset consisted of 42 features.
The holdout set (containing 16 aorta segments) was used to
assess the predictive value of the ML models for all feature
selection methods and classifiers.

The AUC was used to assess the classification quality
for each individual number of features, and for all four
feature selection methods and all four classifier
combinations Fig. 2 illustrates the highest AUC as a
function of the increasing number of features used in the
holdout set. Table II shows the feature selection method
and classifier used for every number of features. Three and
four features show the highest, identical AUC with
accuracy slightly higher for three features. Table II
provides the performance for different numbers of features,
where a model with three features was the most optimal:
ie., accuracy=0.90+0.08, PPV=0.90+0.05, and
NPV=0.90+0.05. In order of importance, these features
included FOS-feature skewness, GLDM non-uniformity,
and GLRLM run entropy. For FOS skewness and GLRLM
run entropy, the GCA group showed significantly higher
values (p<0.001). For the GLDM non-uniformity feature,
there was no significant difference between the two groups
(»=0.13).

Fig. 3a illustrates the mean AUC for ten-fold validation
of feature selection methods (rows) and classifiers
(columns) for a ML model containing three features. The
ROC of this model is shown in Fig. 3b. Among all
combinations, the feature selection method MRMRe and
classifier NN showed the highest performance with an
AUC of 0.960+0.029. MRMRe in combination with NN,
LR, SVM-RBF, or XGB showed the highest AUC values

TABLE I: Baseline characteristics of the two groups

GCA group Atherosclerosis
Characteristics (n=10) group (n=10) p-value
Age (years (median 63[56 — 74] 64 [44— 76] 0.57
[range]))
Sex (female) 6 (60%) 5 (50%) 0.66
BMI (kg/m?
(mean=SDY)) 27.345.4 32.0+7.8 0.14
Diabetes mellitus <0.001
type I (yes) 1 (10%) 10 (100%)
FBGL (mmol/L
(median [range])) 6.5[5.2-10.8] 6.3[5.6-7.2] 0.27

in all of the cases, while the feature selection method SVM-
RFE resulted in the lowest AUC values, regardless of the
classifier used. The influence of the step-wise blocked
10x10x5 kernel to the ML model is illustrated as a
occlusion map for the GCA aorta. The occlusion map from
one of the GCA ascending aorta segments is illustrated in
Fig. 4. The lighter regions in the occlusion map indicate a
greater influence on the prediction outcome for GCA, while
the darker regions indicate a greater influence on the
prediction outcome for atherosclerosis.

0.960 —&— Test set

0.955 4

0.950 4

Y 0.945

0.940 1

0.935 4

0.930

2 4 6 8 10
Number of features

Figure 2: AUC as a function of number of features for the holdout set

TABLE II: Performance evaluation for different number of features,
holdout set (n=16), mean of 10-fold. The sum of TP, TN, FP, FN = 16.

Number TP TN FP FN Accuracy AUC FS

of (SD) (SD) method

features -

classifier

1 63 73 1.7 0.7 0.85+0.05 0.955 MRMRe
+0.022 - NN

2 53 84 0.6 1.7 086+0.05 0956 MRMRe
+0.012 —NN

3 61 83 07 09 0.90+£0.08 0.960 MRMRe
+0.029 —NN

4 61 74 16 09 084+0.07 0.960 MRMRe

+0.023 - SVM-
RBF

5 63 73 17 0.7 085+0.05 0956 MRMRe

+0.024 - SVM-
RBF

6 62 71 19 08 0.83+0.04 00951 MRMRe
+0.019 -LR

7 61 69 21 09 0.81£0.04 0946 MRMRe
+0.026 -LR

8 61 67 23 09 080+0.05 0940 MRMRe
+0.028 -LR

9 59 66 24 1.1 0.7840.05 0.930 MRMRe
+0.031 -LR

10 5.4 8 1 1.6 0.8440.07 0.929 MRMRe

+0.037 - XGB

SD = standard deviation; BMI = body mass index; FBGL = fasting
blood glucose level

TP = true positive; TN = true negative; FP = false positive; FN = false
negative; AUC = area under the operator curve.
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Figure 3: A) Heatmap presenting performance in terms of AUC for
different feature selection methods and classifiers. The combination of
MRMRe and NN shows the highest predictive performance for three
selected features .B) ROC curve the best performing combination of
feature selection method (MRMRe) and classifier (NN) for ten folds,
number of features = 3.

IV. DISCUSSION

In this study, we demonstrated the feasibility for
radiomic analysis to differentiate between GCA and
atherosclerosis in the aorta based upon ['*F]JFDG-PET
images. The results of our study indicated that among all
the combinations tested, the feature selection method
MRMRe in conjunction with the classifier NN exhibited
the best performance. Furthermore, the ML model with
three features had a highest AUC of 0.96+0.029. This
model employed the following three features to distinguish
GCA from atherosclerosis: FOS-skewness, GLDM non-
uniformity, and GLRLM run entropy. Positive values for
skewness indicate that there is a substantial number of
bright pixels within the ROI, indicating higher ["*F]FDG
uptake[22]. This is in accordance with different studies
showing a higher intensity for GCA compared with
atherosclerosis [5], [27], [28], [29]. GLDM and GLRLM
are both textural features that quantify heterogeneity by
analyzing the spatial arrangement of voxel values [30].
GLDM non-uniformity measures the similarity of grey-
level intensity values, whereas GLRLM run entropy
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assesses the randomness in the grey levels. For both, a
higher value indicating a more heterogeneous texture
pattern [22]. In our study, there was not a significant
difference between the groups for the GLDM non-
uniformity feature (p=0.13). The value for GLRLM run
entropy is significantly higher in the GCA group compared
with the atherosclerosis group (p<0.001). This finding
indicates a higher randomness of texture in GCA, which is
not in accordance with visual findings, stating a more
homogenous pattern in GCA [5], [6]. The outcome from
our study suggest that high values are observed in both
groups, only values for the GCA group are higher. Visually
it can be difficult to notice the difference, the ML model,
on the other hand, can distinguish these differences using
the extracted features.

In radiomics, there is no consensus on the final
number of features. Some studies suggest that the final
number of features should be approximately ten percent of
the number of patients [31], while other studies suggest any
number regardless of the number of patients [30]. To
decrease the chance of overfitting we set the maximum
number of features to ten.

To the best of our knowledge, only two previous
studies, both from Duff et al. used radiomics to diagnose
GCA, showing high performance with AUC scores ranging
from 0.80 to 1.00 [11], [32]. However, the dataset was
pruned to exclude GCA-patients without imaging evidence
of active GCA, and to exclude control subjects with
atherosclerosis.

The occlusion map of the aorta segment showed
that the lighter the regions, the higher the positive
probability difference. This suggest that these regions
contain important information for GCA prediction. On the
other hand, darker regions, with a negative probability
difference, contain most likely information for
atherosclerosis prediction. Overlaying the occlusion map
allows for the nuclear medicine physician to identify the
regions of importance for decision-making.

There are some limitations to this study. Firstly,
the small dataset potentially limits the generalizability of
the results and the ability of the model to perform well on
new data [33]. Therefore, a larger dataset is preferable to
validate the model. Moreover, the limited sample size
increases the risk of overfitting. Although feature selection
methods and a holdout set were used to avoid overfitting,
there was still a possibility of overfitting. Secondly, this is
a single-center, single-scanner retrospective study. To
further develop, validate and generalize the predictive
model, a prospective multi-center study is needed.
Furthermore, the aorta is manually segmented by two
observers. However, a (semi)-automated segmentation
method would be preferred to increase reproducibility and
decrease human error.
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Figure 4: Occlusion map of aorta segment (kernel size 10x10x5), showing
which regions contain important information for the decision-making
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process of the ML model.

V. CONCLUSION

In conclusion, our findings demonstrate that the

utilization of the feature selection method MRMRe in
combination with the classifier NN resulted in a high AUC
and accuracy for differentiation between GCA and
atherosclerosis in [®F]JFDG-PET images. Moreover,
feature importance and an occlusion map of the aorta
segments can help to understand the decision-making
process of the ML model.
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