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Abstract 

The impact of nature on human health is significant, particularly in the field of medicine. In 

this chapter, a selective overview is provided on the contributions of plant-derived sources, 

microbial biosynthesis sources, and animal models to the field of medicine, which have been 

made by advancements in science and technology. Furthermore, this chapter describes the 

relevant research conducted within this thesis and its potential significance, approached from 

these three perspectives. 
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Introduction 

Nature is a treasure for mankind. We utilize natural resources to eat, to cure, to wear, to 

exchange, to study, to work, to play, and to live. As a medical scientists, almost everything 

from nature in our labs can be used as a cure or tool to serve human health. Whereas the 

resources on the earth are limited, and their attributes usually are not as perfect as we might 

hope, scientists dedicate their lives to further exploring nature, to reveal its mystery. This 

helps to promote the sustainable development and deployment of natural resources for making 

products that promote our health and well-being.  

In this thesis, novel tools for natural product discovery and development are being explored 

and exemplified with some handy species: a herb, Perilla frutescens; a bacterium, Bacillus 

subtilis; and an animal, Meriones unguiculatus. 

Herbal resources 

For the past millenniums in human history, natural products (NPs) have dominantly occupied 

the medical area as the “traditional medicine1” until the recent centuries. Among all 

traditional medicines, the herb is the main source of the NPs, for instance, in “The Grand 

Compendium of Materia Medica (Bĕn Căo Gāng Mù, 本草纲目)” about 60% of traditional 

Chinese medicines are herbs2. 

It is not difficult to find out the landmarks of the drugs derived from herbs in human history 

(see Table 1).  

Table 1 Herb-derived drugs. 

No. Drug Source Formula Structure Function 

1 Berberine3–5 

Coptis 

chinensis 

Franch. 

C20H18NO4
+ 

 

Anti-bacterial 

diarrhea 

2 Artemisinin6,7 
Artemisia 

annua 
C15H22O5 

 

Anti-malarial, 

anti-infective 

3 Camptothecin8,9 
Camptotheca 

acuminata 
C20H16N2O4 

 

Antineoplastic, 

topoisomerase-I 

inhibitor 
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4 Anisodamine10,11 

Anisodus 

tanguticus 

(Maxim.) 

Pascher 

C17H23NO4 

 

Spasmolysis, 

anticholine 

5 Paclitaxel12,13 
Taxus 

chinensis 
C47H51NO14 

 

Antineoplastic 

6 
Salvianolic acid 

A14,15 

Salvia 

miltiorrhiza 

Bge. 

C26H22O10 

 

Anti-myocardial 

infarction, 

protects 

cerebrovascular 

7 Ephedrine16,17 
Ephedra sinica 

Stapf 
C10H15NO 

 

Relieving asthma, 

and spasmolysis 

8 Puerarin18,19 
Puerarialobata 

(Willd.) Ohwi 
C21H20O9 

 

Protecting 

cardiovascular 

9 Breviscapine20,21 

Erigeron 

breviscapus 

(Vant.) Hand. 

-Mazz. 

C21H18O12 

 

Treating ischemic 

cerebrovascular 

disease 

10 Gastrodin22,23 
Gastrodia 

elata Bl. 
C13H18O7 

 

Tranquilizing, 

and hypnotic 

11 
Decanoyl 

acetaldehyde24,25 

Houttuynia 

cordata 

Thunb. 

C12H22O2 

 

Antibacterial 

12 Matrine26,27 
Sophora 

flavescens Alt. 
C15H24N2O 

 

Anti-hepatitis B   

13 Curcumin28,29 
Curcuma 

Longa L. 
C21H20O6 

 

Anti-hepatitis B 
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14 Selagine30,31 

Selaginella 

tamariscina 

(Beauv.) 

Spring 

C15H18N2O 

 

Brain protection 

15 Bifendate32 

Schisandra 

chinensis 

(Turcz.) Baill. 

C20H18O10 

 

Liver protection 

16 Bicyclol33,34 

Schisandra 

chinensis 

(Turcz.) Baill. 

C19H18O9 

 

Liver protection 

& anti-hepatitis   

17 Tanshinone35,36 

Salvia 

miltiorrhiza 

Bge. 

C18H12O3 

 

Cardio-cerebrovas

cular protection 

18 Higenamine37,38 

Aconitum 

carmichaelii 

Debeaux. 

C16H17NO3 

 

Cardiac function 

test drug 

19 Vinblastine39 

Catharanthus 

roseus (L.) G. 

Don 

C46H58N4O9 

 

Antineoplastic 

20 Rutin40,41 
Ruta 

graveolens L. 
C27H30O16 

 

Vascular 

protection 

21 
Deoxyschizandrin42,

43 

Schisandra 

chinensis 

(Turcz.) Baill. 

C24H32O6 

 

Liver protection 

& anti-hepatitis 

22 
Tetrahydropalmatine
44,45 

Corydalis 

yanhusuo 

W.T.Wang 

C21H25NO4 

 

Non-narcotic 

analgesic, 

adrenergic agent 

https://pubchem.ncbi.nlm.nih.gov/#query=C15H18N2O
https://pubchem.ncbi.nlm.nih.gov/#query=C19H18O9
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23 
Tetramethylpyrazine
46 

Ligusticum  

chuanxiong 

Hort. 

C8H12N2 
 

Vasodilator 

24 Sinomenine47 
Sinomenium 

acutum 
C19H23NO4 

 

Antirheumatic  

25 Butylphthalide48,49 
Apium 

graveolens 
C12H14O2 

 

Neuroprotective, 

platelet 

aggregation 

inhibitor 

26 Piperine50,51 
Piper nigrum 

L. 
C17H19NO3 

 

Cytochrome 

P-450 enzyme 

inhibitor 

27 
Shanzhiside methyl 

ester52,53 

Lamiophlomis 

rotata (Benth.) 

Kudo 

C17H26O11 

 

Anti-rheumatic 

diseases 

28 

8-O-Acetyl 

shanzhiside methyl 

ester52,54 

Lamiophlomis 

rotata (Benth.) 

Kudo 

C19H28O12 

 

Analgesic 

29 Triptolide55,56 

Tripterygium 

wilfordii Hook. 

f 

C20H24O6 

 

Antineoplastic 

30 Diosgenin57,58 

Dioscorea 

polystachya 

Turczaninow 

C27H42O3 

 

Anti-cholestasis, 

anti-lipemic 

31 
Notoginsenoside 

Fe59 

Panax 

notoginseng 

(Burk.) F. H. 

Chen ex C. Y. 

Wu et K.m. 

Feng 

C47H80O17 

 

Hemostasis 

https://pubchem.ncbi.nlm.nih.gov/#query=C12H14O2
https://pubchem.ncbi.nlm.nih.gov/#query=C17H19NO3
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As far as we know, all the mentioned herbal drugs in Table 1 are still playing an important 

role in the clinic. Unfortunately, many of the valuable herbs, are also rare leading to shortages 

and destruction of natural habitats. Therefore, scientists endeavored to find replacements for 

medical manufacturing, e.g. same family substitute, recycled herb residues, replacement by 

using different plant parts, and, finally, biosynthesis. Below are some examples of the 

alternative resources developed for high-value medicinal plants (see Table 2). 

Table 2 Alternative resources of herbs. 

Herb Medicinal 

part 

Efficacy68 Substitute 

Panax ginseng C. 

A. Meyer 

Root, 

rhizome 

To tonify the original qi greatly, resume 

pulse, secure collapse, tonify spleen, 

replenish kidney, engender fluid, nourish 

the blood, tranquilize the mind, and 

replenish wisdom. 

Stem and leaf of Panax 

ginseng; root and rhizome 

of Codonopsis pilosula 

(Franch.) Nannf.69–71 

Cephalotaxus 

fortune Hook. f. 

Seed, 

root, stem, 

leaf 

To expel parasite, moisten lung for 

arresting cough, and antineoplastic. 

Endophytic fungus of 

Cephalotaxus fortunei72 

Dendrobium 

nobile Lindl 

Stem To boost the stomach, engender fluids, 

nourish yin, and clear heat. 

The whole plant of 

Pholidota yunnanensis 

Rolfe73 

Cistanche Stem To tonify the kidney yang, replenish 

essence and blood, moisten the intestines, 

Stem of Cistanche salsa 

32 
Glycyrrhizic 

acid60,61 

Glycyrrhiza 

uralensis 

Fisch. 

C42H62O16 

 

Anti- 

inflammatory  

33 
Glycyrrhetic 

Acid60,62 

Glycyrrhiza 

uralensis 

Fisch. 

C30H46O4 

 

Anti- 

inflammatory  

34 Shikimic acid63,64 
Illicium verum 

Hook. f. 
C7H10O5 

 

Antibacterial 

35 Baicalin65–67 

Scutellaria 

baicalensis 

Georgi 

C21H18O11 

 

Anti-asthmatic, 

anti-inflammatory

, anti-infective  
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deserticola Ma and open the bowels. (C.A.Mey.) Beck74 

Daemonorops 

draco Bl.  

Resin To activate blood, relieve pain, resolve 

stasis, stanch bleeding, promote tissue 

regeneration, and promote wound healing. 

Artificially induced Resina 

Draconis75 

Taxus brevifolia Bark To relieve pain and inflammation, 

anti-hypertensive and antineoplastic. 

Taxus cell culture or 

semi-synthetic (baccatin 

III) from leafs76 

Cordyceps 

sinensis (Berk.) 

Sacc.  

Stroma To tonify the kidney, replenish lung, stanch 

bleeding, and resolve phlegm. 

Stroma of Cordyceps 

militaris (L.ex Fr.) Link. 77 

 

Microbial synthesis 

Whereas some scholars have devoted themselves to searching the herbal families and testing 

the medicinal parts, some others go the other way: biosynthesis. People have engineered 

bacteria to synthesize herb-derived compounds for the pharmaceutical industry, e.g. Taxol78 

and artemisinin79. Among engineered bacteria, E. coli and B. subtilis are the most frequently 

used species. Interestingly, B. subtilis is more suitable to synthesize medical compounds, 

since it has the GRAS status (generally regarded as safe).  

Actually, Bacillus subtilis has many advantages for being used in biosynthesis. It can not only 

form protective endospores, which permit it to withstand some extreme environment80,81, but 

also possesses a fast-growth rate in simple media, high protein- secretion capacity, and 

excellent fermentation properties82,83. In industries, people can find B. subtilis in various 

fields, e.g. food enzymes, feed additives in agriculture, aquaculture, food and beverage 

processing, and pharmaceuticals84,85.  

Although the main use of B. subtilis is in producing secreted enzymes, such as proteases and 

α-amylases, it is also being used for industrial production of natural products such as 

riboflavin86.   

In the past decades, scientists have discovered that B. subtilis is a promising host for terpenoid 

production87. Terpenoids, which are composed of isoprene units, are also known as 

isoprenoids. They form a large group of natural chemicals, comprising around 25% of small 

natural compounds88. Structurally, according to the number of isoprene units, they can be 

divided into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), 

diterpenoids (C20), sesterterpenoids (C25), triterpenoids (C30), tetraterpenoids (C40) and 
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polyterpenoids89. They are everywhere in our daily lives and have been broadly used in 

numerous fields, including energy, cosmetics, food, and pharmaceuticals. 

In the medical area, terpenoids have been used to treat virus and bacterial infection, 

inflammation, and carcinoma, and many of them have been reported to act as antioxidant90. 

Some examples are artemisinin (antimalarial), paclitaxel (anticancer), ginsenosides (nutrient 

and anticancer), and carotenoids (anti-oxidant).91–95 These functional terpenoids can be 

extracted from plants, however, the concentrations usually are very low. Extracting them, 

commonly, is not cost-efficient. Moreover, harvesting from the wild will endanger the natural 

spread of the plants in the environment. Although chemical synthesis can solve part of the 

issue, normally those compounds have a complex structure and show stereoselectivity. Thus, 

biosynthesis becomes essential to durably produce those promising natural products.   

As a natural isoprene producer, B. subtilis was reported as a propitious potential platform for 

terpenoid biosynthesis. It has an endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) 

pathway for isoprene precursor biosynthesis96. The pathway starts with the enzyme 

1-deoxy-D-xylulose-5-phosphate synthase (Dxs), which catalyzes the condensation of 

pyruvate and glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate (DXP)97. 

Then the 1-deoxy-D-xylulose-5-phosphate reductoiso-merase IspC reduces and isomerizes the 

DXP to produce MEP98. After these two recognized rate-limiting steps99, 

4-diphosphocytidyl-2-C-methylerythritol synthase (IspD) introduces the cytidine 

monophosphate (CMP) moiety to MEP and brings out the 4-diphosphocytidyl-2-C- 

methyl-D-erythritol (CDP-ME). Subsequently, IspE adds the phosphate groups to the 

CDP-ME, which generates 4-diphosphocytidyl-2-C-methyl-d-erythritol-2-phosphate 

(CDP-ME2P). In the following step, the IspF catalyzed the removal of the cytidyl moiety of 

CDP-MEP2P and its cyclization, which results in methyl erythritol cyclic diphosphate 

(MEcDP)100. The last reductive steps rely on by IspG and IspH. These two enzymes convert 

the MEcDP to 4-hydroxy-3-methylbut-2-enyl-diphosphate (HMBDP) and 

dihydroxylation/isomerization of HMBDP to either isopentenyl pyrophosphate (IPP) or 

dimethylallyl Diphosphate (DMAPP), respectively101. Therefore, numerous terpenoids 

including those for medical purposes can be produced in B. subtilis by building a downstream 

biosynthesis pathway. 

As indicated above, in recent years scientists have made remarkable progress in terpenoid 

synthesis in B. subtilis, such as isoprene, amorphadiene, taxadiene, squalene, menaquinone-7 
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and carotenoids87,88,102–105. However, only a few studies have addressed the biosynthesis of 

polycyclic triterpenoids, and none of them discusses methods to improve their final 

production levels, which leaves us with an interesting challenge.  

Animal models 

Whereas herbs and bacteria have compounds with interesting pharmaceutical properties, 

before they can be used in practice they should be tested in disease models. Animals are most 

often used to establish disease models in medical areas. For example, in the current novel 

coronavirus disease (COVID-19) outbreak, as early as in 2020, the World Health 

Organization (WHO) has already assembled an international panel to develop animal models 

for COVID-19 and has developed models in more than 11 animal species to accelerate the 

testing of vaccines and therapeutic agents106. The importance of these animal models is 

apparent. In contrast to this speed and abundance in establishing models for acute diseases, 

for chronic diseases the choice is much more limited. Therefore, much effort has to be 

dedicated to developing chronic disease animal models. 

A classic example is obesity and diabetes mellitus. As it is well known, more than one-third 

of the global population is overweight and hence at risk of developing type 2 diabetes mellitus 

(T2DM). This situation has caused the need to use and improve animal models to discover, 

optimize and validate novel therapeutics for more effective and safe use in humans. 

According to Matthias’s research107, people have already developed obesity and diabetes 

animal models in more than 13 species (including more than 50 models), which has greatly 

benefited the discovery and development of safer and more potent therapeutics for obesity and 

T2DM pandemics. However, for some other chronic medical complications, the development 

of predictive animal models has turned out more difficult. Among these complications, 

non-alcoholic fatty liver disease (NAFLD) caused liver fibrosis and cirrhosis is a typical case. 

Fibrosis and cirrhosis are severe stages of liver dysfunction. They are the third and fourth 

stages of the natural history of NAFLD, and usually take decades to form clinical symptoms. 

The long disease progress is difficult to imitate in animal models. This issue seriously 

hindered drug development and research on disease prevention. To better mimic the 

pathological process of NAFLD-caused cirrhosis, researchers have developed two types of 

animal models, one is the genetic model, and the other one is a drug and/or diet-induced 

model. The genetic models normally relate to lipid metabolism genes, such as db/db mouse, 

ob/ob mouse, PPARα-/- mouse, PNPLA3 transgenic mouse, and (fa/fa) Zucker rats. On the 
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other hand, the drug and/or diet-induced models are more often used including methionine 

choline-deficient (MCD) diet108,109, high-carbohydrate diet (HCD), and high-fat diet (HFD, 

including high-fat and high-fat, high-cholesterol diets)110. However, each of these animal 

models has deficiencies that cannot be ignored. Firstly, monogenic models cannot represent 

the real pathological changes of human diseases. Secondly, the drug and/or diet-induced 

models can rarely reach the “stable” fibrosis stage, not to mention cirrhosis111,112. 

Therefore, the Mongolian gerbil (Meriones unguiculatus) appears to attract researcher’s 

attention, since it is not only a fat-sensitive animal113–118, but also a species that is more 

suitable for carotenoid conversion and metabolism, metabolic disease, and cardiovascular 

disease studies119. Compared to humans, it was indicated that the gerbil’s lipemic responses to 

dietary fat and cholesterol were more sensitive, and the responses can be detected in gerbils 

even without feeding dietary cholesterol113–118,120,121. Moreover, the gerbil also tends to 

acquire diabetes spontaneously122, and has clearly reached the fibrosis stage of the 

nonalcoholic steatohepatitis (NASH) after diet-induction123,124, which makes it into an ideal 

potential model for NAFLD-caused cirrhosis.   

Scope of this thesis 

The aim of this thesis contains three main aspects. The first part involves the comprehensive 

utilization of the pomace of an herb, perilla seed, for extracting its phenolic compounds. The 

second part focuses on the biosynthesis of terpenoids in the GRAS (generally regarded as safe) 

bacterium, B. subtilis. The third part employed the gerbil and established a nonalcoholic fatty 

liver disease cirrhosis model to be used for drug discovery and testing of natural products. 

In Chapter 1, we describe the sketch and the main object of this thesis. Specifically, the role 

of natural products in drug discovery is discussed with an emphasis on functional phenolic 

compounds and terpenoids from herbs. Subsequently, we discuss the sustainable utilization of 

herbal resources and the improvements in nature products' biosynthesis, e.g. the terpenoid 

biosynthesis methods, and the pathways in B. subtilis. Subsequently, this thesis explores the 

utilization of animal models as a valuable tool for drug evaluation, with specific emphasis 

placed on the nonalcoholic fatty liver disease (NAFLD) cirrhosis model. The inclusion of the 

NAFLD model is justified due to perilla seeds' lipid-lowering and anti-inflammatory effects, 

as well as the critical role played by squalene as an essential step within the cholesterol 

biosynthesis pathway.  
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In Chapter 2, we identify and quantify the phenolic compounds from the seed and pomace of 

Perilla frutescens using HPLC/PDA and HPLC-ESI/QTOF/MS/MS. The purpose of the study 

is to investigate major phenolic compounds in perilla seeds and pomaces, to check if the 

pomace could be an alternative resource to the seed for nutritional and medical purposes. In 

this investigation, herb markers selected by principal components analysis (PCA) are then 

quantified in both seeds and pomaces. Moreover, fingerprinting approach and multiple 

discriminant analysis are applied to screen the phenolic markers in 22 batches of samples. Ten 

phenols are tentatively identified, among which four (rosmarinic acid, luteolin, apigenin, and 

rosmarinic acid-3-O-glucoside) are selected as herb markers. Perilla seeds and pomaces have 

shown similar phenol profiles, however, the pomaces contained almost two times more of the 

four herb markers compared to the seeds, which indicates perilla pomace is a promising 

alternative source of phenolic compounds. 

In Chapter 3, we discuss the metabolic engineering of B. subtilis for terpenoid production 

and the encountered challenges. Firstly, the inherent terpenoid biosynthetic pathways of B. 

subtilis are summarised, including the inherent terpenoid biosynthesis enzymes of B. subtilis. 

Secondly, we describe the research progress of genetic engineering of MEP pathway enzymes 

in B. subtilis. Thirdly, the detection and metabolomics methods for engineering terpenoid 

pathways are also outlined, as these are important for setting up assays to evaluate 

biosynthetic efficiency. We focus especially on reported metabolites and the inherent 

terpenoid pathway intermediates in B. subtilis. 

In Chapter 4, we employ B. subtilis to produce squalene, the common precursor of 

triterpenoids, by introducing multiples squalene synthases (SQSs) from bacteria, fungi, and 

plants into B. subtilis. Furthermore, the expression vector, cultivation temperature, and 

rate-limiting enzymes within the MEP pathway were systematically studied to enhance 

squalene production. Finally, a 29-fold increase in squalene titer is achieved by 

overexpressing SQS from Bacillus megaterium (BmSQS) and MEP pathway enzymes 

compared with the original strain. This represents the first trial of squalene synthesis and 

improvement in B. subtilis. 

In Chapter 5, based on an HPLC-Q-Orbitrap-MS/MS study, we investigated the expression 

of dehydrosqualene synthase (CrtM) in Bacillus subtilis 168. The results have shown that 

crtM from Staphylococcus aureus can not only produce dehydrosqualene but also squalene 

and phytoene. More interestingly, compared to squalene synthase from Bacillus megaterium 
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expressed in B. subtilis, the CrtM from S. aureus can produce up to 2.4 times the amount of 

squalene. Besides, by adjusting the medium to a nutrition-rich medium or inserting dxs to 

upregulate the upstream donors, the CrtM was able to greatly increase the yield of squalene, 

which provides evidence for its potential in squalene biosynthesis. Moreover, these three 

products were also observed in B. subtilis strains that only contain SQS, indicating the 

promiscuity of the squalene synthase-like (SSL) enzymes. Looking into the sterostructures of 

presqualene diphosphate in CrtM and SQS enzymes highlights the resilience of their active 

sites and lends additional support to our hypothesis that the squalene synthase-like enzymes 

are promiscuous and the CrtM could be further remolded to produce more squalene. 

In Chapter 6, we focus on developing a NAFLD-caused cirrhosis model in gerbil, to mimic 

the chronic progress characteristics of NAFLD. The dynamic relationship between hepatic 

lipid metabolism and cirrhosis was examined. The model’s pathological process, lipid 

metabolism, oxidative stress, liver collagen deposition, and presence of relevant cytokines 

were tested and evaluated during the full-time frame of disease onset. The gerbil model can 

start non-alcoholic steatohepatitis within 9 weeks and can develop cirrhosis after 21 weeks of 

induction. The model’s lipids metabolism disorder is accompanied by liver damage 

development. During the NAFLD progression, triglycerides (TG) and free fatty acids (FFA) 

have shown a distinct rise and fall tendency, and the turning points are at the fibrosis stage. 

Besides that, the ratios of total cholesterol (CHO) to high-density lipoprotein cholesterol 

(HDL-C) exhibited constant growth tendency, and have a good linear relationship with 

hepatic stellate cells (HSC) (R2 = 0.802, P < 0.001). The model possesses a positive 

correlation between lipids metabolism and cirrhosis. The compelling rise and fall tendency of 

TG and FFA indicated that the fibrosis progression could lead to impairment in lipoprotein 

synthesis and engender decreased TG levels. CHO/HDL-C ratios can indicate fibrosis 

progress and be used as a blood indicator for disease prediction and prevention. 

Chapter 7, summarizes the investigations in this thesis, and describes some future 

perspectives.  
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