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Abstract
Background  Excessive weight gain during childhood is a strong predictor for adult overweight, but it remains 
unknown which growth measures in infancy (0–2 years of age), besides predictors known at birth, are the strongest 
predictors for excessive weight gain between 2 and 5–7 years of age.

Methods  The Amsterdam Born Children and their Development (ABCD) study formed the derivation cohort, and 
the Groningen Expert Center for Kids with Obesity (GECKO) Drenthe study formed the validation cohort. Change 
(Δ) in body mass index (BMI) z-score between 2 and 5–7 years was the outcome of interest. The growth measures 
considered were weight, weight-for-length (WfL), and body mass index (BMI). Formats considered for each growth 
measure were values at 1, 6, 12, and 24 months, at the BMI peak, the change between aforementioned ages, and 
prepeak velocity. 10 model structures combining different variable formats and including predictors at birth were 
derived for each growth measure, resulting in 30 linear regression models. A Parsimonious Model considering all 
growth measures and a Birth Model considering none were also derived.

Results  The derivation cohort consisted of 3139 infants of which 373 (11.9%) had excessive gain in BMI z-score (> 
0.67). The validation cohort contained 2201 infants of which 592 (26.9%) had excessive gain. Across the 3 growth 
measures, 5 model structures which included measures related to the BMI peak and prepeak velocity (derivation 
cohort area under the curve [AUC] range = 0.765–0.855) achieved more accurate estimates than 3 model structures 
which included growth measure change over time (0.706–0.795). All model structures which used BMI were superior 
to those using weight or WfL. The AUC across all models was on average 0.126 lower in the validation cohort. The 
Parsimonious Model’s AUCs in the derivation and validation cohorts were 0.856 and 0.766, respectively, compared 
to 0.690 and 0.491, respectively, for the Birth Model. The respective false positive rates were 28.2% and 20.1% for the 
Parsimonious Model and 70.0% and 74.6% for the Birth Model.

Conclusion  Models’ performances varied significantly across model structures and growth measures. Developing the 
optimal model requires extensive testing of the many possibilities.
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Introduction
The proportion of children with overweight has been 
increasing world-wide for over the past half century 
[1, 2]. Being overweight during adolescence often per-
sists into adulthood and increases the lifetime risk for a 
wide range of diseases [3–7]. In turn, higher body mass 
index (BMI) percentile at the age of 6 years, rapid growth 
between the ages of 2 and 7 years, and an earlier adipos-
ity rebound are strong predictors of overweight and obe-
sity in adolescence and adulthood [8–17]. Barker et al. 
[18] described that the risk of coronary heart disease in 
adults was more strongly related to the increase of BMI 
in childhood than to the BMI attained at any particular 
age. Therefore, optimization of infant and child growth 
could lead to substantial reductions in adverse health 
outcomes in later life.

The classification of overweight and obesity are based 
on BMI z-scores above a certain threshold [19]. How-
ever, BMI is not a perfect indicator of body fatness so 
this outcome measures does not perfectly identify the 
target population [20]. Given the role of height-squared 
in calculating BMI, broader individuals are more likely 
to surpass the threshold despite having a lower fat or 
higher muscle percentage. This is why a strong predictor 
for high future BMI z-score is a high prior BMI z-score, 
though this usually indicates a stable growth trajectory 
in children. However, children who experienced catch-
up growth to compensate for intrauterine growth retar-
dation were also more vulnerable to future overweight 
and unfavourable body composition, i.e., relative greater 
increase in fat compared to lean mass [12, 14, 15, 21]. The 
same applies to children without growth retardation but 
with body weights in the lower percentiles. This means 
that children who would not be classified as overweight 
are still at risk of accumulating more body fat in the 
future if they show an acceleration in their BMI growth 
trajectory, also known as excessive gain in BMI z-score.

To be able to screen for infants who are at risk for 
future overweight, various prediction models were devel-
oped using parental, perinatal, and infant character-
istics available by the age of 2 years [22–26]. Alongside 
parental BMI and educational level, measures of infant 
growth were among the strongest predictors for future 
overweight and rapid growth [22–26]. These include 
weight, weight-for-length (WfL), BMI, their sex- and age-
adjusted z-scores, their change over time (Δ), their values 
at the infant BMI peak, and prepeak velocity. However, 
each study only considered a limited selection of growth 
measures for the derivation of their risk models. While it 
is accepted that growth measures in infancy are of added 

value, it remains unknown which growth measure or 
combination of growth measures offer the most added 
value for predicting future overweight and rapid growth 
in addition to predictors known at birth.

We investigated this by comparing the performances of 
different combinations of growth measures in infants up 
to 2 years of age for predicting ΔBMI z-score and exces-
sive gain in BMI z-score between 2 and 5–7 years of age, 
including the validation thereof in an external cohort.

Methods
Study data
Data was obtained from two Dutch population-based 
birth cohorts: the ABCD (Amsterdam Born Children 
and their Development) study and the GECKO (Gron-
ingen Expert Center for Kids with Obesity) Drenthe 
study [27, 28]. Data from both cohorts are anonymized 
and available on request from abcd@amc.nl and www.
birthcohorts.net, respectively. Ethical approval for the 
ABCD study was provided by the Central Committee in 
Research involving Human Subjects in the Netherlands, 
the Medical Ethical Committees of participating hospi-
tals, and the Registration Committee of the Municipality 
of Amsterdam. The GECKO Drenthe study was approved 
by the Medical Ethics Committee of the University Medi-
cal Center Groningen. Informed consent was obtained 
from all subjects and their legal guardian(s).

The ABCD study was used as the derivation cohort. 
Between January 2003 and March 2004, all pregnant 
women were asked to participate at their first visit to 
an obstetric care provider. 8266 pregnant women in 
Amsterdam who filled out the pregnancy questionnaire 
(including sociodemographic characteristics, medical 
history, and lifestyle), of which 7050 (85%) consented to 
be followed-up. After birth, the mothers were asked to 
fill out a questionnaire about their infant’s health, feed-
ing patterns, and behavior. Two weeks after each child’s 
fifth birthday, the mothers were approached with a fol-
low-up questionnaire and invitation for a health check 
(anthropometric measurements). The children’s height 
and weight measurements from the municipality’s Youth 
Health Care (Jeugdgezondheidszorg) database were com-
bined with data gathered from the health check [29].

The GECKO Drenthe study was used for external vali-
dation. Of the 5326 infants born in Drenthe between 
April 2006 and April 2007, 2997 (56%) of their moth-
ers consented to participate and 2842 (53%) actively 
participated in the study. Midwives, general practitio-
ners, and gynecologists collected data on the mother 
during the third trimester of pregnancy and at birth. 

Keywords  Risk, Prediction, Model, Body mass index, Overweight, Infant, Child, Growth, Body-weight trajectory, Mass 
screening

http://www.birthcohorts.net
http://www.birthcohorts.net
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Anthropometric data after birth was collected dur-
ing regular check-up visits to the Well Baby Clinics and 
Youth Health Care, who also distributed the question-
naires for infant’s health, feeding patterns, and behavior.

Variables
Outcomes
Growth measure z-scores were determined according 
to the World Health Organization Child Growth Stan-
dards [30], adjusted for age and sex. The primary out-
come of this study was ΔBMI z-score, calculated as the 
BMI z-score between ages 5 and 7 years minus the BMI 
z-score at 24 months. Positive values represent positive 
deviations from the growth curve as set at 24 months 
of age, and negative values represent children grow-
ing towards lower growth curves. Excessive gain in BMI 
z-score was defined as a ΔBMI z-score > 0.67 standard 
deviations which corresponds to a quartile increase, a 
method that has been previously reported [17]. Over-
weight, including obesity, was defined as a BMI z-score 
> 1.310 for boys and > 1.244 for girls based on Cole 2012 
[19].

Growth measures
The measures of growth considered for prediction were 
weight (kilograms), weight-for-length (weight in kilo-
grams divided by height in centimeters), BMI (weight in 
kilograms divided by height in meters squared), and their 
age- and sex-dependent z-scores [30]. Specifically, the 
values of each growth measure at 1, 6, 12, and 24 months 
of age were used, as well as Δ between the ages 1–6, 6–24, 
1–12, 12–24, and 1–24 months. Growth measures at the 
BMI peak – the point at which BMI reaches a maximum 
value between birth and 2 years of age – were also con-
sidered [26]. This included the age at BMI peak (ranging 
from 1 to 730 days) and prepeak velocity (growth mea-
sure at BMI peak minus growth measure at 30 days of 
age, divided by the age at the BMI peak in months minus 
1). A value of zero was assigned to prepeak velocity if the 
BMI peak occurred before 31 days of age.

Predictors at birth
Based on the availability of variables across both cohorts 
and possibility to harmonize them [27, 28], the following 
perinatal variables were included as potential predictors 
known at birth: Birthweight, preterm birth (gestational 
age < 37 weeks), sex (male vs. female), parity, c-section 
birth (yes vs. no), Western ethnicity (migration back-
ground from Europe [excluding Turkey], North Amer-
ica, Oceania, Indonesia, and Japan vs. non-Western), 
maternal educational level (low vs. medium vs. high 
International Standard Classification of Education [31]), 
maternal age, maternal pre-pregnancy BMI, mother 
diagnosed with diabetes (gestational or pre-existing vs. 

no), smoking during pregnancy (yes vs. no), and average 
income in neighbourhood of residence (≤ 20th vs. 20th 
-80th vs. >80th percentiles).

Data set preparation
Infants were excluded from the analysis if the outcome 
measure was unavailable or if there were fewer than 
three measurement waves after birth in which the growth 
measures were available. Measurement waves up to 30 
months of age were used for deriving trajectories. Miss-
ing predictors at birth data were handled using multiple 
imputations with 10 iterations, performed separately for 
each cohort [32]. Only one imputed dataset was created 
as there were no missing values among the outcomes and 
growth measures.

Trajectories of weight and height were derived using 
linear regression of all data points available to each child, 
considering fractional polynomial transformations of 
age up to the fourth degree (selected if the fit was sig-
nificantly improved [p < 0.05]) [33, 34]. WfL and BMI 
were derived from weight and height at each age of inter-
est. This enabled us to estimate the growth measures at 
the prespecified ages and at the BMI peak. Infants were 
excluded from the study if their weight and height tra-
jectories resulted in values less than or equal to zero for 
weight, WfL, BMI, Δweight change, or ΔWfL (Fig. 1).

Statistical analysis
All data preparation and analysis were performed in sta-
tistical program R version 4.2.0 [35]. Descriptive statis-
tics were reported as means and standard deviations for 
continuous variables, and frequencies and percentages 
for categorical variables. All risk prediction models were 
derived using linear regression considering fractional 
polynomial transformations of all continuous variables 
up to the fourth degree (selected if the fit was signifi-
cantly improved [p < 0.01]).

A Birth Model (predictors at birth only) was derived as 
a reference for model performance of predicting ΔBMI 
z-score at the time of birth (i.e., no infant growth mea-
sures available besides birth weight). 10 models were 
derived for each of the three growth measures (weight, 
WfL, and BMI) with the following structures. Model 1: 
measures at 6, 12, and 24 months. Model 2: Δmeasures 
at 1–6 months and 6–24 months. Model 3: Δmeasures 
at 1–12 months and 12–24 months. Model 4: Δmeasures 
at 1–24 months. Model 5: age and measure at the BMI 
peak. Model 6: measures at 6, 12, and 24 months + age 
and measures at the BMI peak. Model 7: Δmeasures at 
1–6 months and 6–24 months + age and measures at 
the BMI peak. Model 8: Δmeasures at 1–12 months and 
12–24 months + age and measures at the BMI peak. 
Model 9: Δmeasures at 1–24 months + age and measures 
at the BMI peak. Model 10: Δmeasures at 1 month to 
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BMI peak and BMI peak to 24 months + age and mea-
sures at the BMI peak.

Finally, two Parsimonious Models were derived with 
the goal of achieving the best predictive performance 
using all variables available from conception up to 2- 
and 1-year(s) of age; these are referred to as the 2-year 
Parsimonious Model and 1-year Parsimonious Model, 
respectively. All growth measures and predictors at birth 
were considered, but variables which did not significantly 
contribute to the model (p > 0.05 or residual standard 
deviation [RSD] reduction < 0.005) were removed using 
backward stepwise regression.

Model performances were reported as RSD (i.e., stan-
dard deviation of the difference between the true and 
predicted ΔBMI z-scores, where a higher value indicates 
a poorer estimate) and area under the receiver operating 
characteristic curve (AUC) for predicting excessive gain 
in BMI z-score (where a higher value indicates a better 
discriminatory performance). AUC confidence inter-
vals were calculated using the DeLong method [36]. Test 
characteristics (i.e., true positives, false positives, true 

negatives, false negatives, sensitivity, specificity, positive 
predictive value, and negative predictive value) for pre-
dicting excessive gain in BMI z-score were reported at a 
fixed sensitivity value of 0.275 (i.e., using different ΔBMI 
z-score thresholds per model). Additionally, the mod-
els’ Akaike Information Criterion and adjusted R2 were 
reported (Tables S4,S5).

Validation was performed by taking each model’s coef-
ficients (i.e., derived from the derivation cohort) to calcu-
late the risk score of each participant from the validation 
cohort. Calibration of each model was performed using 
linear regression – with the validation cohort’s risk scores 
as the sole predictor for BMI z-score – and applying the 
newly derived intercept and coefficient to the risk scores.

The described statistical methods were also used to 
derive models for predicting BMI z-score and overweight 
at 5–7 years, for which the results are reported in Tables 
S4-S10.

Fig. 1  Participant inclusion flowchart
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Results
The derivation cohort consisted of 3139 infants from the 
ABCD study, and the external validation cohort of 2201 
infants from the GECKO study (Fig.  1). Both ABCD 
and GECKO infants had an average of 9 measurement 
waves by 30 months of age which were used to derive 
height and weight trajectories. The descriptive statistics 
for each cohort before and after imputations are given 
in Tables S1 and 1, respectively. Compared to the deri-
vation cohort, infants in the validation cohort were more 
likely to be overweight at 5–7 years (ABCD = 13.0% vs. 
GECKO = 22.9%), have an excessive gain in BMI z-score 
between 2 and 5–7 years (11.9% vs. 26.9%), be both over-
weight and have an excessive gain in BMI z-score (3.2% 
vs. 8.4%), and be delivered via c-Sect.  (12.0% vs. 15.7%); 
their mothers were more likely to be of Western ethnicity 

(66.9% vs. 97.6%), be less educated (17.6% vs. 35.8%), and 
have smoked during pregnancy (7.9% vs. 14.9%).

Table 1 summarizes the performance across all models 
in the derivation and external validation cohorts. Over-
all, a lower RSD for estimating the ΔBMI z-score corre-
sponded with a higher AUC for discriminating between 
infants (indicating better accuracy and discriminatory 
performance, respectively).

In the derivation cohort, the performance parameters 
of the Birth Model were RSD = 0.902 and AUC = 0.690). 
The performance was increased when growth measure 
differences between time points excluding measures 
at the BMI peak (Models 2–4) were considered (RSD 
range = 0.800-0.885, AUC range = 0.706–0.795). Com-
bining growth measures with measures at the BMI peak 
(Models 6–10) achieved better performances overall 
(RSD range = 0.722–0.834, AUC range = 0.765–0.855). 

Table 1  Performance of models at predicting ΔBMI z-score and excessive gain in BMI z-score between 2 and 5–7 years of age for each 
infant growth measure
Cohort Model ΔBMI z-score residual standard deviation AUC (95% CI) for predicting excessive gain in BMI z-score

Weight, kg WfL, kg/cm BMI, 
kg/m2

Weight, kg WfL, kg/cm BMI, kg/m2

ABCD 
(deriva-
tion 
cohort)

Birth Model 0.902 0.690 (0.662–0.717)
Model 1 0.867 0.856 0.724 0.734 (0.707–0.760) 0.662 (0.634–0.689) 0.855 

(0.835–0.876)
Model 2 0.872 0.872 0.800 0.720 (0.693–0.748) 0.743 (0.717–0.770) 0.795 (0.771–0.819)
Model 3 0.873 0.872 0.802 0.720 (0.693–0.748) 0.716 (0.689–0.743) 0.795 (0.771–0.819)
Model 4 0.885 0.876 0.874 0.706 (0.678–0.733) 0.715 (0.688–0.742) 0.728 (0.702–0.755)
Model 5 0.818 0.821 0.765 0.787 (0.763–0.812) 0.709 (0.682–0.737) 0.827 (0.805–0.849)
Model 6 0.808 0.799 0.722 0.796 (0.773–0.820) 0.787 (0.762–0.811) 0.855 

(0.834–0.876)
Model 7 0.810 0.803 0.729 0.793 (0.769–0.817) 0.802 (0.779–0.825) 0.851 (0.830–0.872)
Model 8 0.810 0.806 0.731 0.793 (0.769–0.817) 0.799 (0.775–0.822) 0.852 (0.832–0.873)
Model 9 0.813 0.810 0.743 0.789 (0.765–0.813) 0.796 (0.772–0.819) 0.844 (0.823–0.865)
Model 10 0.834 0.833 0.731 0.765 (0.741–0.789) 0.791 (0.768–0.815) 0.855 

(0.835–0.876)
GECKO 
(external 
validation 
cohort)

Birth Model 0.935 0.491 (0.464–0.518)
Model 1 0.906 0.907 0.740 0.563 (0.535–0.591) 0.572 (0.544-0.600) 0.774 (0.751–0.798)
Model 2 0.916 0.931 0.824 0.558 (0.529–0.586) 0.538 (0.510–0.566) 0.694 (0.668–0.719)
Model 3 0.919 0.931 0.830 0.552 (0.524–0.581) 0.536 (0.508–0.564) 0.692 (0.667–0.718)
Model 4 0.940 0.938 0.916 0.517 (0.489–0.545) 0.534 (0.506–0.562) 0.555 (0.528–0.583)
Model 5 0.823 0.840 0.787 0.669 (0.644–0.695) 0.649 (0.623–0.675) 0.729 (0.704–0.753)
Model 6 0.814 0.821 0.738 0.681 (0.656–0.706) 0.676 (0.651–0.701) 0.776 

(0.753–0.799)
Model 7 0.820 0.854 0.760 0.676 (0.650–0.701) 0.666 (0.641–0.692) 0.763 (0.739–0.787)
Model 8 0.819 0.837 0.747 0.677 (0.652–0.703) 0.666 (0.640–0.691) 0.769 (0.745–0.792)
Model 9 0.827 0.850 0.762 0.666 (0.640–0.691) 0.649 (0.624–0.675) 0.756 (0.732–0.780)
Model 10 0.867 0.868 0.739 0.623 (0.597–0.649) 0.621 (0.595–0.647) 0.774 (0.751–0.797)

Model 1: Absolute measures at 6, 12, and 24 months. Model 2: Difference between measures at 1–6 months and 6–24 months. Model 3: Difference between measures 
at 1–12 months and 12–24 months. Model 4: Difference between measures at 1–24 months. Model 5: age and measure at the BMI peak. Model 6: Absolute measures 
at 6, 12, and 24 months + age and measures at the BMI peak. Model 7: Difference between measures at 1–6 months and 6–24 months + age and measures at the 
BMI peak. Model 8: Difference between measures at 1–12 months and 12–24 months + age and measures at the BMI peak. Model 9: Difference between measures at 
1–24 months + age and measures at the BMI peak. Model 10: Difference between measures at 1 month to BMI peak and BMI peak to 24 months + age and measures 
at the BMI peak

The best performancein each column and cohort is boldfaced (multiple in the case of a tie)

CI, confidence intervals; AUC, area under the receiver operating characteristic curve; BMI, body mass index, WfL, weight-for-length
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Considering measures at predefined ages (Model 1) and 
exclusively measures at the BMI peak (Model 5) achieved 
relatively poor performances when using measures of 
weight and WfL (RSD range = 0.818–0.867, AUC range = 
0.662–0.787), but a better performance when using BMI 
(RSD range = 0.724–0.765, AUC = 0.827–0.855).

The overall performance in the external validation 
cohort was worse than in the derivation cohort. On aver-
age, the RSD was 0.031 higher and the AUC was 0.126 
lower in the validation cohort. Otherwise, the perfor-
mance between models within the validation cohort 
showed similar trends as in the derivation cohort. Model 

calibration on the validation cohort resulted in a mean 
RSD reduction of 0.036 (Table S3).

When comparing the 3 growth measures across 
cohorts, models using BMI performed best for pre-
dicting both ΔBMI z-score and excessive gain in BMI 
z-score. The performance between models using weight 
and WfL were comparable, as well as between weight and 
weight z-score models, and BMI and BMI z-score mod-
els (Table 1,S2). However, WfL z-score models performed 
better than WfL models based on both metrics.

The coefficients for the 2-year and 1-year Parsimonious 
Models are reported in Table  2, and their performance 

Table 2  Coefficients of two Parsimonious Models for predicting ΔBMI z-score between 2 and 5–7 years of age
2-year Parsimonious Model 1-year Parsimonious Model

Variable Coefficient 99% CI Coefficient 99% CI
Intercept -18.006 -20.523 to 

-15.489
2.324 1.048, 3.599

(Birthweight/10,000)−2, g -0.068 -0.095 to -0.042 -0.107 -0.138, -0.076

(Birthweight/10,000)−2 × ln (Birthweight/10,000), g -0.028 -0.040 to -0.017 -0.043 -0.056, -0.030

Male sex, yes 0.467 0.415 to 0.519 0.434 0.377, 0.490
Parity, count -0.057 -0.086 to -0.027 -0.059 -0.090, -0.029
Middle maternal educational level, yes -0.097 -0.185 to -0.010 -0.112 -0.203, -0.022
High maternal educational level, yes -0.150 -0.242 to -0.059 -0.153 -0.248, -0.058
Western ethnicity, yes -0.115 -0.186 to -0.044 -0.121 -0.194, -0.047
(Pre-pregnancy maternal BMI/10)3, kg/m2 0.069 0.054 to 0.085 -0.031 -0.043, -0.020

(Pre-pregnancy maternal BMI /10)3 × ln (Pre-pregnancy maternal BMI /10), kg/m2 -0.040 -0.050 to -0.030 - -

(Pre-pregnancy maternal BMI/10)2, kg/m2 - - 0.191 0.139, 0.243
Mother diagnosed with diabetes, yes 0.158 -0.026 to 0.341 0.158 -0.026, 0.342
Smoking during pregnancy, yes 0.153 0.048 to 0.257 0.148 0.040, 0.256
(Weight at 24 months/10,000)−1, grams 2.589 0.816 to 4.363 - -
(Weight at 24 months /10,000)3, grams 0.405 0.276 to 0.535 - -

ln (WfL at 24 months/0.1), kg/cm 9.183 6.152 to 12.214 - -

ln (WfL at 24 months/0.1)2, kg/cm -11.034 -13.959 to -8.109 - -

BMI at 12 months/10, kg/m2 2.131 1.757 to 2.505 - -
(BMI at 24 months/10)−1, kg/m2 14.926 13.985 to 15.867 - -
Weight at 6 months/1000, kg - - -1.359 -1.706, -1.011
Weight at 12 months/1000, kg - - 1.375 1.114, 1.636
WfL at 6 months/0.1, kg/cm - - 4.416 1.678, 7.153
WfL at 12 months/0.1, kg/cm - - -8.320 -10.560, 

-6.081
BMI at 6 months, kg/m2 - - 1.094 0.961, 1.228
BMI at 12 months, kg/m2 - - -1.111 -1.251, -0.971
BMI at BMI peak/10, kg/m2 - - -0.898 -1.246, -0.549
((Prepeak velocity + 0.1)/0.1)−1, kg/m2/month - - -0.664 -0.891, -0.438

(Prepeak velocity + 0.1)/0.1)−1 × ln ((Prepeak velocity + 0.1)/0.1), kg/m2/month - - -3.582 -4.530, -2.635

(Age at BMI peak/100)−0.5, days - - -1.750 -2.364, -1.137

(Age at BMI peak/100)−0.5 × ln (Age at BMI peak), days - - -0.432 -0.573, -0.291

Age at BMI peak between 2 and 365 days, yes -0.115 -0.223 to -0.007 4.532 3.095, 5.969
Age at BMI peak > 365 days, yes -0.445 -0.869 to -0.020 4.522 3.091, 5.953

Standard errors are heteroskedasticity robust. The equation for estimating an infant’s ΔBMI z-score between 2 and 5–7 years of age is β0 + β1x1 + β2x2 + . . . βnxn
, where β0  is the intercept’s coefficient, β1  to βn  are the coefficients for each variable in the model (where n  is the total number of variables), and x1  to xn  
are the infant’s values for each variable (for continuous variables, insert the corresponding value in the correct units; for categorical variables, insert 1 if the factor 
is present and 0 if not)

BMI, body mass index; CI, confidence interval, WfL, weight-for-length
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measures in Table 3. For both models, the best predictors 
at birth for ΔBMI z-score were birthweight, sex, parity, 
educational level, ethnicity, pre-pregnancy BMI, diabetes 
diagnosis, and smoking during pregnancy. In the 2-year 
Parsimonious Model, the included growth measures were 
24-month weight, 24-month WfL, 24-month BMI, and 
12-month BMI. In the 1-year Parsimonious Model, these 
were weight, WfL, and BMI at 6 and 12 months, BMI 
at the BMI peak, and the prepeak velocity. Both models 
included age at BMI peak.

The 2-year Parsimonious Model was minimally supe-
rior to the 1-year Parsimonious Model for estimating 
ΔBMI z-score (Table 3). At a fixed sensitivity, both Par-
simonious Models achieved higher specificities, positive 
predictive values, and negative predictive values than the 
Birth Model for predicting excessive gain in BMI z-score. 
Given a positive test result (i.e., excessive gain in BMI 
z-score predicted), the proportion of false positives for 
the 2-year Parsimonious Model, 1-year Parsimonious 
Model, and Birth Model were 28.2%, 39.2%, and 70.0%, 
respectively, in the derivation cohort and 20.1%, 28.2%, 
and 74.6%, respectively, in the validation cohort. The 
respective percentages of false negative predictions out 
of all negative results were 9.0%, 9.1%, and 11.8% in the 
derivation cohort and 21.5%, 21.7%, and 27.5% in the val-
idation cohort. Decision curve analyses for the Parsimo-
nious Models and Birth Model in the external validation 
cohort are portrayed in Figure S1, including how it can 
aid clinical decision making [37, 38].

Figures  2 and 3 summarize a hypothetical scenario 
where children in the derivation and validation cohorts, 
respectively, with a risk score above the 80% percentile 
would be categorized as high risk. The figures show the 
flowchart of high and low risk categorization across 3 
measurement timepoints: at birth, 1 year of age, and 2 

years of age. In the derivation cohort, 66.1% of children 
who did not experience excessive gain in BMI z-score 
were consistently categorized as low risk, while 17.7% 
with excessive gain in BMI z-score were consistently cat-
egorized as high risk. The respective proportions in the 
validation cohort were 65.1% and 6.1%. Using this strat-
egy, 96.1% ( 1828

1828+75) of infants consistently at low risk 
would not encounter excessive gain in BMI z-score in the 
derivation cohort; the proportion in the validation cohort 
is 81.6% ( 1047

1047+236). Conversely, 44.3% ( 66
83+66) and 50.7% 

( 36
35+36) of infants consistently at high risk would later 

experience excessive gain in BMI z-score in the deriva-
tion and validation cohorts, respectively.

Similar trends and performances were found for the 
risk models for predicting BMI z-score and overweight at 
5–7 years of age (Tables S4-S10).

Discussion
The motivation for our study was to criticize published 
risk models for predicting growth and weight in chil-
dren, and how their selection of growth measures and 
model structures do not appear to have been sufficiently 
explored in search of optimal performance. We hereby 
compared different growth measures up to 2 years of 
age – namely weight, WfL, and BMI – and their ability to 
predict ΔBMI z-score and excessive gain in BMI z-score 
between the ages of 2 and 5–7 years. Ten model struc-
tures were assessed for each growth measure, varying in 
the use of absolute measures, the difference in measures 
between two timepoints, and measures related to the 
BMI peak.

We found that predictors at birth – related to the 
mother, pregnancy, and delivery – have a weak predic-
tive power, and that the addition of any growth measures 
improves model performance. As the predictors at birth 

Table 3  Performance of the two Parsimonious Models and the Birth Model for predicting excessive gain in BMI z-score between 2 and 
5–7 years of age at a fixed sensitivity threshold of at 0.275

2-year Parsimonious Model 1-year Parsimonious Model Birth Model
Performance measure ABCD GECKO ABCD GECKO ABCD GECKO
Residual standard deviation 0.714 0.741 0.735 0.739 0.902 0.935
AUC (95% CI) 0.856 

(0.835–0.876)
0.766 
(0.743–0.790)

0.846 
(0.825–0.867)

0.759 
(0.735–0.783)

0.690 
(0.662–0.717)

0.491 
(0.464–
0.518)

ΔBMI z-score threshold 0.69 0.55 0.56 0.51 0.67 -0.15
True positives (%) 102 (71.8) 163 (79.9) 104 (60.8) 163 (71.8) 123 (30.0) 162 (25.4)
True negatives (%) 2726 (91.0) 1568 (78.5) 2699 (90.9) 1545 (78.3) 2406 (88.2) 1134 

(72.5)
False positives (%) 40 (28.2) 41 (20.1) 67 (39.2) 64 (28.2) 287 (70.0) 475 (74.6)
False negatives (%) 271 (9.0) 429 (21.5) 269 (9.1) 429 (21.7) 323 (11.8) 430 (27.5)
Sensitivity 0.273 0.275 0.279 0.275 0.276 0.274
Specificity 0.986 0.975 0.976 0.960 0.893 0.705
Positive predictive value 0.718 0.799 0.608 0.718 0.300 0.254
Negative predictive value 0.910 0.785 0.909 0.783 0.882 0.725
AUC, area under the receiver operating characteristic curve; BMI, body mass index; CI, confidence interval
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Fig. 3  Categorization flowchart of children in the validation cohort as high (> 80th risk percentile, given in red boxes) vs. low risk (≤ 80th risk percentile, 
given in blue boxes) at birth, 1 year of age, and 2 years of age using the Birth Model, 1-year Parsimonious Model, and 2-year Parsimonious Model, respec-
tively, stratified by excessive gain in BMI z-score (> 0.67) between 2 and 5–7 years of age or not. BMI, body mass index

 

Fig. 2  Categorization flowchart of children in the derivation cohort as high (> 80th risk percentile, given in red boxes) vs. low risk (≤ 80th risk percentile, 
given in blue boxes) at birth, 1 year of age, and 2 years of age using the Birth Model, 1-year Parsimonious Model, and 2-year Parsimonious Model, respec-
tively, stratified by excessive gain in BMI z-score (> 0.67) between 2 and 5–7 years of age or not. BMI, body mass index
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remained constant across the models, this means that 
risk groups could be identified at birth and updated at 
later timepoints with the addition of growth measures. 
Using BMI as a growth measure led to better ΔBMI 
z-score estimates and better discrimination between 
children with and without excessive gain in BMI z-score. 
Despite both cohorts being based in Dutch cities, most 
models performed less well in the validation cohort. 
This is likely a consequence of having used data-driven 
variable selection methods without regard for causality. 
Models whose purpose are to translate well to external 
datasets should hereby consider relationships and depen-
dencies between variables and actively prevent overfit-
ting and multicollinearity.

When all growth measures were considered for the 
Parsimonious Models, 3 growth measures included in 
the 2-year Parsimonious Model were weight, WfL, and 
BMI at 24 months. This indicates that information on 
body size available from the latest measurement wave is 
likely to best predict future body size [16, 25]. However, 
the growth trajectory is likely still to be of some added 
value given that BMI at 12 months was also included in 
the model. The growth measures included in the 1-year 
Parsimonious Model were weight, WfL, and BMI at 6 and 
12 months. This suggests that the growth trajectory offers 
a greater role as a predictor for ΔBMI z-score in infants 
younger than 2 years.

It is noteworthy that the prevalence of overweight and 
excessive gain in BMI z-score between 2 and 5–7 years 
of age in the validation cohort was approximately dou-
ble that of the derivation cohort, while the distribution 
of growth measures between birth and 24 months was 
equivalent between the cohorts (Table  4). This means 
that growth measures beyond 24 months of age dis-
criminate future weight status better than growth mea-
sures up to 24 months [16], and the growth pattern in 
infancy is predictive of future growth rate [9, 14, 15]. This 
is supported by the fact that both Parsimonious Models 
included measures from multiple measurement waves.

Another consideration for the application of risk pre-
diction models in practice are the benefits of correctly 
predicting excessive gain in BMI z-score (true positives) 
and the drawbacks of misprediction (false positives). 
Based on the performance of the 2-year Parsimonious 
Model at the 0.275 sensitivity threshold in the valida-
tion cohort, only 2.5% of infants who will not experience 
excessive gain in BMI z-score would receive a positive 
test (1-specificity) and 79.9% of infants with a positive 
test would later experience an excessive gain in BMI 
z-score (positive predictive value). However, there is 
considerable variability in growth pattern across infants. 
Using a multi-timepoint risk assessment strategy similar 
to the categorization flowcharts may provide a guideline 
to personalize monitoring among infants [25, 39]. Given 

that most children will not experience excessive gain in 
BMI z-score and that it is easier to correctly predict this 
outcome, an efficient strategy might be increasing the 
monitoring among high-risk infants and reduce monitor-
ing among those at lower risk.

Other models have attempted to predict overweight 
or obesity at approximately 2 years of age [40, 41]. Given 
the rapid growth and inaccurate height measurement 
before the age of 2 years, small changes in reported val-
ues can lead to large differences in BMI compared to 
weight or WfL (height is squared in the BMI equation). 
BMI in infancy was therefore considered to be unreliable 
and weakly associated with adolescent and adult obesity 
[42, 43]. However, these models only incorporated three 
or four measurement waves. We included an average of 
9 measurement waves to derive our trajectories, which 
resulted in the finding that BMI was usually the best 
growth measure for predicting future BMI z-score. This 
implies that non-linear BMI trajectories are only unreli-
able when few measurement waves are available, whereas 
a larger number of measurements result in growth mea-
sures with stronger predictive abilities.

Though not the focus of our study, we found that 
using the weight z-score and BMI z-score as predictors 
achieved similar model performances to using weight and 
BMI as predictors, respectively. An exception was that 
the WfL z-score resulted in consistently superior mod-
els compared to using WfL. Additionally, we also derived 
models to predict BMI z-score at 5–7 years (Tables S4-
S10). Similar trends were found between the respective 
models for predicting BMI z-score (and overweight) vs. 
ΔBMI z-score (and excessive gain in BMI z-score). Note 
that there is only moderate overlap between children 
with overweight and children with excessive gain in 
BMI z-score. This suggests that the association of rapid 
growth towards overweight is either not always apparent 
between 2 and 5–7 years of age and depends on whether 
a child follows a high or low growth trajectory. Given that 
early rapid growth has a stronger association with nega-
tive health outcomes later in life [7–18], screening should 
likely focus on ΔBMI z-score.

Zhang et al. [44] also derived various risk models for 
predicting overweight in children based on multiple 
growth measures up to the age of 2 years (i.e., height 
z-score, weight z-score, Δweight z-score, BMI, and BMI 
z-score). Their focus was to compare different data min-
ing methods, so all growth measures were included in 
each risk model. Their conclusion was that Bayesian 
algorithms and support vector machines achieved the 
best performing models and logistic regression mod-
els were among the worst performing. However, AUC 
was not reported and thresholds were selected based on 
Youden’s index. The results are uninformative because, 
firstly, sensitivity and specificity are inversely related; one 
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Table 4  Descriptive statistics after imputations
Variables ABCD cohort, n = 3139 GECKO 

cohort, n 
= 2201

BMI z-score at 5–7 years (SD) -0.04 (0.96) 0.43 (0.92)
Overweight at 5–7 years (%) 264 (8.4) 330 (15.0)
ΔBMI z-score 2 to 5–7 years (SD) -0.39 (0.95) 0.19 (0.94)
Excessive gain in BMI z-score 2 to 5–7 years (%) 373 (11.9) 592 (26.9)
Weight at 1 month, kg (SD)* 5.3 (0.9) 5.1 (0.9)
Weight at 6 months, kg (SD)* 7.4 (0.8) 7.5 (0.8)
Weight at 12 months, kg (SD* 9.5 (1.1) 9.7 (1.1)
Weight at 24 months, kg (SD)* 13.6 (1.9) 13.8 (2.1)
Weight-for-length at 1 month, kg/cm (SD)* 0.09 (0.01) 0.09 (0.01)
Weight-for-length at 6 months, kg/cm (SD)* 0.11 (0.01) 0.11 (0.01)
Weight-for-length at 12 months, kg/cm (SD)* 0.13 (0.01) 0.13 (0.01)
Weight-for-length at 24 months, kg/cm (SD)* 0.16 (0.02) 0.16 (0.02)
BMI at 1 month, kg/m2 (SD)* 15.7 (1.9) 15.5 (2.1)
BMI at 6 months, kg/m2 (SD)* 17.0 (1.3) 17.0 (1.3)
BMI at 12 months (k, m2 (SD)* 17.2 (1.3) 17.1 (1.3)
BMI at 24 months, kg/m2 (SD)* 16.4 (1.4) 16.3 (1.4)
Age at BMI peak, months (SD)* 10.4 (5.0) 9.3 (4.9)
Weight at BMI peak, kg (SD)* 5.4 (0.9) 5.3 (1.0)
Weight-for-length at BMI peak, kg/cm (SD)* 0.09 (0.01) 0.09 (0.01)
BMI at BMI peak, kg/m2 (SD)* 17.6 (1.7) 17.7 (1.9)
Prepeak velocity, kg/m2/month (SD)* 0.2 (0.3) 0.2 (0.4)
Birthweight, kg (SD) 3.5 (0.5) 3.5 (0.6)
Preterm birth, (%) 150 (4.8) 110 (5.0)
Female sex (%) 1587 (50.6) 1099 

(49.9)
Parity (%) 0.7 (0.9) 0.8 (0.8)
C-section delivery (%) 377 (12.0) 346 (15.7)
Western ethnicity (%) 2099 (66.9) 2149 

(97.6)
Mother’s educational level Reference Reference
Low (%) 552 (17.6) 787 (35.8)
Medium (%) 1024 (32.6) 649 (29.5)
High (%) 1563 (49.8) 765 (34.8)
Mother’s age, years (SD) 31.2 (5.3) 31.3 (4.4)
Mother’s pre-pregnancy BMI (%) 23.3 (4.2) 24.8 (4.9)
Mother diagnosed with diabetes (%) 88 (2.8) 79 (3.6)
Smoking during pregnancy (%) 247 (7.9) 329 (14.9)
Neighbourhood income percentile Reference Reference
≤ 20th percentile (%) 627 (20.0) 437 (19.9)
20th-80th percentile (%) 1866 (59.4) 1312 

(59.6)
> 80th percentile (%) 646 (20.6) 452 (20.5)
Continuous variables are given in means with standard deviations in brackets; categorical variables are given in frequencies with percentages in brackets. In the 
ABCD cohort, the number of missing values imputed were: preterm birth = 5, c-section delivery = 350, Western ethnicity = 6, mother’s educational level = 28, smoking 
during pregnancy = 92. In the GECKO cohort, this was: preterm birth = 14, parity = 9, c-section delivery = 196, Western ethnicity = 119, mother’s educational level = 
122, mother’s age = 4, mother’s pre-pregnancy BMI 149, mother diagnosed with diabetes = 12, smoking during pregnancy = 8, neighbourhood income percentile 
= 204

BMI, body mass index; SD, standard deviation

*Based on modelled height and weight trajectories
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must be fixed to be able to use the other as a performance 
measure. Secondly, accuracy is biased towards the most 
prevalent outcome (i.e., not overweight participants), so 
relatively small decreases in accuracy and specificity cor-
respond to larger increases in sensitivity.

Strengths and limitations
The main strengths of our study were the availability of 
many measurement waves within the first 2.5 years of age 
– which enabled more accurate individual growth tra-
jectory estimations – and the use of an external cohort 
with different demographics for validation. Additionally, 
we included multiple growth measures and reported the 
results from total of 126 models for predicting ΔBMI 
z-score between 2 and 5–7 years and BMI z-score at 5–7 
years across 6 growth measures.

A limitation is that the measures of infant growth were 
independently extracted from individual’s modelled 
weight and height trajectories. Although this was neces-
sary to estimate growth measures at specific ages for the 
models, the accuracy of the trajectories is difficult to vali-
date. 38/3177 (1%) infants from the derivation cohort and 
40/2241 (2%) from the validation cohort were excluded 
due to implausible estimates. It is likely that the measures 
at the trajectory tails (i.e., at 1 and 24 months of age) are 
less accurate, especially for participants who may lack 
measurement waves near the tails. To compensate, we 
included measurement timepoints up to 30 months in the 
trajectory models to improve the estimates at 24 months. 
The fact that 9 measurement waves were available on 
average greatly improves the trajectory reliability com-
pared to the minimum requirement of 3 measurements.

We acknowledge that the model structures considered 
can be considered arbitrary as many other possibili-
ties exist. However, we attempted to be thorough while 
avoiding an overwhelming number of models. We also 
note that all growth measures are highly correlated with 
each other, meaning that different measures may have 
been included into the Parsimonious Models with minor 
methodological alterations. Within the confines of this 
study, we acknowledge that our attempt to causally inter-
pret the growth measures selected for the Parsimonious 
Models are mostly speculative.

Conclusion
It is possible, with moderate accuracy, to predict ΔBMI 
z-score and excessive gain in BMI z-score between 2 
and 5–7 years of age based on growth measures within 
the first 2 years of age. There is a clear improvement in 
predictive power when growth trajectories are included 
as predictors in addition to predictors at birth. Growth 
measures at the most recently available measurement 
wave (i.e., 2 years) seem to best predict ΔBMI z-score, 
with a greater added value of the past growth trajectories 

for predictions at an earlier age (i.e., 1 year). BMI was an 
overall better predictor compared to weight or WfL.

The pros and cons of using risk prediction models to 
guide public health interventions should be carefully 
assessed before their implementation in practice. Regard-
less, our study endorses the monitoring of growth tra-
jectories from infancy, with the identification of rapid 
growth to be considered as a risk factor for future over-
weight and related cardiometabolic diseases. We have 
demonstrated that many risk models can be derived for 
such predictions, and that the performance across mod-
els can differ significantly. The process of developing an 
optimal model for widespread applications hereby neces-
sitates extensive internal and external testing of the many 
possibilities.
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