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Abstract: Complex networks is a growing discipline aimed at understanding large interacting systems.
One of its goals is to establish a relation between the interactions of a system and the networks
structure that emerges. Taking a Lennard-Jones particle system as an example, we show that when
interactions are governed by a potential, the notion of structure given by the physical arrangement
of the interacting particles can be interpreted as a binary approximation to the interaction potential.
This approximation simplifies the calculation of the partition function of the system and allows to
study the stability of the interaction structure. We compare simulated results with those from the
approximated partition function and show how the network and system perspective complement
each other. With this, we draw a direct connection between the interactions of a molecular system and
the network structure it forms and assess the degree to which it describes the system. We conclude
by discussing the advantages and limitations of this method for weighted networks, as well as how
this concept might be extended to more general systems.

Keywords: complex networks; interacting systems; maximum entropy; statistical physics; Lennard-Jones

1. Introduction

The field of network theory is a growing branch of science aimed at representing and
understanding interacting systems. The main notion is that the system can be represented
by listing its components, known as nodes, and the connections between each pair of
components, called links [1,2]. These simple requirements allow for the description and
common study of a wide range of phenomena, generalized by studying the structural
properties defined on the nodes and links of the network representation instead of on the
system itself [3]. Structural properties range from simply the number of nodes and links to
fractal dimensions related to notions of space occupied by the network [4].

Interacting particle systems serve, in many senses, as a reference case for network
concepts [5] due to the natural representation that they enjoy as networks (in the form
of nodes that represent particles connected by edges that represent a stable equilibrium
distance) [6–8]. This representation inherently shares well-defined notions of nodes (par-
ticles) and an intrinsic relation between interactions and structure (e.g., molecular forces
mediated by physical distance) grounded on physical concepts and experimental evi-
dence. It has seen applications ranging from the study of molecule recognition [9] to
self-organization [10] and to the notion of complexity [11,12]. In the field of complex net-
works theory, it has become increasingly clear that a better understanding of the relation
between network structure and the interactions of the system would be useful to both the
application and the framework [13,14]. Additionally, network structure formation models
often draw on the notion of structure through link creation and destruction [15,16], which
is natural to molecular systems in the same sense that the network representation of the
spatial configuration is, and it provides a very intuitive view of the formation process. This
motivates a positive outlook for complex networks providing a general view on patterns
observed between interacting systems at different scales [17].
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On the other hand, within fixed scales (in particular, at the molecular scale), network
analyses of structure tend to either take data-analytic approaches [18,19] or impose external
“control parameters” [8] built on the notion of adaptive links [20]. In this context, a change
in temperature which allows certain molecular structures to emerge would be modeled
by setting an external parameter which regulates how the links are created and destroyed.
The problem with this is that the emergent phenomenon (in this case, simply stable links in
the network) is imposed instead of actually obtained from the interaction. A question that
then naturally arises is whether it is possible to construct an “environment-independent”
network model of the particle system which does not consider the links as adaptive and
still learns something about structure formation.

In this work, we study the emergence of a molecular structure in a simulated Lennard-
Jones particle system in thermodynamic equilibrium by representing it as a complex
network. In particular, we remove the standard restriction of molecular graph represen-
tations depicting only stable links and interpret these as binary approximations of the
interaction potential. The goal of this is to free the network representation of details beyond
the interaction itself, as these can change according to the environment or definitions of
stability. We study the structural properties of the resulting network in equilibrium at dif-
ferent temperatures and pressures and show how the binary approximation of the potential
allows the use of network and thermodynamic properties in combination, in particular to
detect where the studied network structure is stable in thermodynamic equilibrium.

Particle systems in thermodynamic equilibrium are subject to description by maximum
entropy. One of the main results [21] is that such systems can be described by a partition
function, which is essentially a function Z of a parameter β from which average values
(such as the average kinetic and potential energy) in equilibrium can be calculated. For a
system of particles 1 ≤ i ≤ N with kinetic energy mv2

i /2 and potential energy Vij(ri, rj).
The canonical partition function is calculated as

Z(β) =
∫

exp(−β(mv2
i /2 + ∑

i
∑
j>i

Vij(ri, rj)))ΠN
i=1dvidri . (1)

As the potential energy is independent of the velocity, the integrations over velocities
can be separated from the spatial term. The former gives the partition function of an N
classical particle system with no interactions, Zv = (

∫
exp(−βmv2/2)dv)N . Assuming

unit mass and two dimensions, this will result in a (kinetic) energy K = 1/β with β = 1/T
representing the temperature of a noninteracting gas with that amount of (kinetic) energy,
and the corresponding distribution of velocities will be Maxwell–Boltzmann. However, the
spatial part is, in general, very difficult to calculate. We show that the network representa-
tion introduced in this work simplifies this task. Finally, we remark that while maximum
entropy is well-established for thermodynamic equilibrium, the field of maximum entropy
production [22,23] is a developing counterpart for out-of-equilibrium systems through
which our approach might be extended.

2. Methods and Experiments
2.1. Lennard-Jones Potential

The Lennard-Jones potential is a useful, well-studied idealization of the interactions
between two atoms at a molecular scale. In this work, the potential is written as

V(r) = Vo

[( ro

r

)12
− 2
( ro

r

)6
]

⇒ ~F(r) = −~∇V(r) = 12
Vo

ro

[( ro

r

)13
−
( ro

r

)7
]

r̂ .
(2)

For two particles, a short distance r < ro between them produces an enormous
repulsive force. At long distances r > ro, it is very weakly attractive, and in the middle
lies the equilibrium point r = ro , as shown in Figure 1. This allows for particles with low
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kinetic energy (below Vo) to “bind” together. If the kinetic energy is much larger than Vo, the
energy decrease close to ro is practically unnoticed, but a minimum distance is eventually
reached at which the repulsion forces win over and the particles bounce back away from
each other. These two limits represent low and high temperature, respectively, and between
them lie a diversity of possibilities which give rise to different network structures.

Figure 1. Potential energy as a function of distance in the Lennard-Jones potential in Equation (2). For
kinetic energies below the minimum value Vo, particles will remain at a distance of approximately ro.

For the particle simulation, we took the Lennard-Jones potential parameters to be
Vo = 1 and ro = 1. N = 900 particles of mass 1 were set on a uniform 2-dimensional grid
with cells of side d with random velocities, uniformly distributed between −VM and VM.
The total force on each particle due to its interactions with others allows for the numerical
integration of the equations of motion of each particle using a leap-frog algorithm [24].
Initial conditions varied were d (between 1 and 4), in order to control initial potential
energy through particle separation, and VM (between 0.1 and 5), in order to control initial
kinetic energy. The size of time steps and total simulation time were chosen in order to
ensure energy conservation and at least 3/4 of simulation time in equilibrium (constant
proportions of kinetic and potential energy). Additionally, a set of “cooled” conditions were
obtained, continuing the evolution of the last step of simulations started with V = 0.1 after
multiplying their velocities at this step by 0.5 (effectively cooling the system). Once these
reached equilibrium and stayed there for at least 3/4 of the simulation time, the process
was repeated with the last step of the new simulation. This was performed four times for
each initial separation.

2.2. Network Construction and Stability

As discussed in the introduction, we aim to construct a network representation that
captures the interactions between the particles, without relying on the particular notion
of equilibrium (which in this case is thermodynamic). For this, we first consider an
approximation of the interaction potential as a step function of unspecified heights Va
and Vb, with the step ∆V = Va − Vb at a separation radius rT , that is, V(|ri − rj|) ≈
VaΘ(rT − |ri − rj|) + VbΘ(|ri − rj| − rT). One might protest that this is not a suitable
representation, as it does not allow for repulsive potentials. However, we argue that one
can imagine that a real collision is replaced by a virtual information exchange, where the
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particles exchange their properties, as shown in Figure 2. This replacement is valid for the
regions far away from the interaction range (i.e., it is valid where the particle trajectories
are approximately straight lines, which in a two-level potential would be the outer range
|ri − rj| > rT), while for the short range, it is equivalent to projecting the particle velocities
onto their initial unitized velocity vectors.

Figure 2. A repulsive interaction between two particles as shown in (a), can be replaced by an
information exchange where each particle acquires the properties of the other, following straight
trajectories, as shown in (b). We set a “name” (1 and 2) in order to track the particles in both scenarios,
but the name is not a property as it is not exchanged.

With the approximation, the inner radius is then considered as the “active” region of
the interaction between different particles i and j, defining a binary undirected network

Aij = (1− δij)Θ(rT − |ri − rj|) . (3)

From it, we study the degree ki, which (in the two-level approximation of the potential)
represents the number of particles with which i is interacting with

ki := ∑
j

Aij , (4)

assortativity a, the correlation between the number of neighbors of a randomly selected
pair of connected nodes,

L = ∑
i

ki

α = ∑
i

k2
i /L

a : =
∑i ki ∑j Aijk j/L− α2

∑i k3
i /L− α2

(5)

and clustering coefficient ci, for the tendency of pairs of links to form triangles,

ci = A3
ii/(ki(ki − 1)) (6)

as they represent the first three orders of network structure description (i.e., first, second
and third neighbors).

Note that the links are not only independent of the particular notion of equilibrium
but also of Va and Vb. Instead of fixing these values into the network model, they are
inferred from a combination of network and system data (in our case, the simulations).
This will allow the same binary representation of the interactions to replicate physical
system properties as temperature changes and, fundamentally, the differentiation of stable
(Va < Vb) and unstable (Va > Vb) regimes of the network structure. The value of rT , on the
other hand, must be chosen somewhat arbitrarily. We take the value rT = ro = 1 as it is the
minimum of the potential. Consider that, otherwise, a particle starting with arbitrarily low
energy will produce a “discontinuity” in the representation if the energy of the system is
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increased enough for it to cross the value of the potential energy at some other rT which
does not correspond to the minimum. This may be an interesting property in some contexts
but not for the purpose of this study.

We show two different ways we can calculate Va and Vb. In the first, we study the
high-temperature limit by assuming that “free” pairs of particles (those at a distance greater
than rT) have interaction potential Vb = 0 and calculating Va from the average potential
energy measured from the simulations. In the second, we do not impose either Va or Vb,
obtaining both from the potential and number of links measured in the network. The goal
of these two approaches is to show the flexibility and limitations of the method to physical
assumptions we may make. In both cases, the relation between the calculated properties
and the ones measured from the system are obtained by using the partition function of the
approximated potential, which is obtained in Appendix A. In Appendix B, we discuss how
this method can be extended to other potentials and weighted networks.

3. Results and Discussion

As the gas is not initially in equilibrium (its velocities are distributed uniformly),
the simulations show a dynamic phase before reaching it. This means that initial kinetic
and potential energies do not correspond to equilibrium ones. In Figure 3, we show the
(absolute value of) equilibrium proportions of potential to kinetic energy as a function of
the initial velocity for the different initial cell sides used. The ratios range from around 10
times as much potential to kinetic energy to the inverse of that, showing that a wide variety
of conditions are covered.

Figure 3. Ratio of equilibrium kinetic to potential energy as a function of initial velocity distribution
boundaries.

All the results presented in this work are in equilibrium conditions. As simulation
parameters were chosen in order to obtain at least 3/4 of the simulation time in equilibrium,
we use the final half of the simulation (instead of 3/4, as the transition from dynamics to
equilibrium is not a sudden event) when we refer to this regime.

3.1. Temperature and Density

As discussed in the introduction (and in much more detail by Kardar [21]), the distribu-
tion of particle speeds v = |~v| in equilibrium is the same as that of a noninteracting particle
system with the same kinetic energy; so, it can be used to determine the temperature T
by fitting the two-dimensional Maxwell–Boltzmann distribution. In two dimensions, this
temperature is also equal to the average kinetic energy, which gives us a way to verify the
fitted temperature and whether the simulation has reached equilibrium.

ρ(v) =
v
T

exp(− v2

2T
) (7)
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On the left hand side of Figure 4, we show the temperatures as a function of the initial
velocities for the different initial particle separations, obtained from adjusting the tempera-
ture T in Equation (7) to the velocity distribution measured from the simulations. On the
right hand side, we show the agreement between the inverse of the temperature with the
kinetic energy.

Figure 4. On the left: fitted temperature in equilibrium as a function of the initial velocity range VM

for different initial separations. On the right: agreement between fitted temperature and the average
kinetic energy.

As for the spatial distribution, the average separation of two particles is given by the
average of the average distance from each particle to others,

D2 :=
1
N ∑

i

1
2(N − 1) ∑

j>i
~r2

ij =
N

N − 1

(
〈~r2〉 − 〈~r〉2

)
. (8)

This average interparticle distance (squared) defines a cell of equal sides s whose area
is the inverse of the particle density. Knowing that D2 = 2s2, the particle density is
ρ = 2/D2. Its equilibrium value is shown as a function of the initial velocity in Figure 5.
The error bars represent density fluctuations in the average distances of individual particles,
∆ρ = 2/(D2)2∆D2 = 2/(D2)2var

(
D2)1/2. The values of D2 present a mostly constant

density for high temperatures but an increasing trend below a certain temperature. The size
of density fluctuations increases with density, suggesting that the spatial distribution is
composed of dispersed clusters of tightly packed particles, and increasingly so the lower
the temperature.

Figure 5. Density ρ = 2/D2 calculated from the particle separation D in equilibrium and fluctuations
as a function of the initial velocity range VM for different initial separations.
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3.2. Network Properties

In Figure 6, we show the average degree of the network: on the left as a function of
the temperature, while on the right as the potential energy with inverted sign. The degree
of each node (particle) is calculated for each time step in equilibrium, and the average is
taken over all time steps and nodes. All densities seem to present a two-phase behavior
of average degree first decreasing with temperature (as the stable structure dissolves up
to the phase transition) and then increasing once again (through random fluctuations of
unstable interactions). As we see in Figure 5, particle separations are roughly constant
at high temperatures, meaning that the increase in degree can only be attributed to the
change in kinetic energy. This implies that slowly moving particles will reach others faster
(increasing link formation), but due to the relatively low velocity, these will not be able
to bounce off as easily (meaning that the corresponding increase in broken links is not as
large). It is also interesting to note that in the high-potential (or low-temperature) regime,
the degree becomes independent of the separation.

Figure 6. Average degree of nodes in equilibrium as a function of temperature for different densities,
with error bars representing the spread of the degree values among nodes at any given time.

The distribution of degrees of different nodes is shown on the left-hand side of Figure 7.
We see that it resembles a Gaussian distribution, suggesting that the degree is simply the re-
sult of identically distributed independent random variables. However, as the distribution
is cut off at only six links (this is because the minimum potential energy is achieved in a
uniform hexagonal grid), many concave functions will produce reasonable approximations.
On the right-hand side, the average spectral density of a node’s degree over time is shown.
The spectral density represents the “intensity” of fluctuations in different frequencies of
a signal. This means that a slowly changing signal will have high spectral density at
low frequencies (and low spectral density at high frequencies), while a rapidly changing
one will have high spectral density at high frequencies and low spectral density at low
frequencies. In this case, the signal is taken to be the degree of a single node as it varies
over time in the simulation (for the equilibrium range), and the result shown in Figure 7 is
the average of the resulting spectral densities over all nodes in the network.

In Figure 8, we show the assortativity of the network as a function of temperature.
Assortativity represents the tendency of nodes to connect to those with a different or similar
degree to themselves (between −1 and 1, respectively). The fact that assortativity is a
global measure that we cannot average over nodes produces an image with considerably
more noise than the other measures. However, we can still make out that assortativity
is positive. This represents the fact that structure (as in connected particles) is always
relatively similar throughout the system (it is unlikely to find dense agglomerations of
particles with long chains extending from them, for example). Starting at low temperature,
the particles form a hexagonal grid, so every node is identical (except for the boundaries).
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As temperature increases, some of the particles are freed from the grid and travel around,
adding asymmetry to the grid and thus decreasing the assortativity. After a certain point,
the free particles become the dominant property of the system (structure becomes unstable)
and whatever is left of the grid is now the exception; so, as it is dissolved, nodes become
more and more similar and assortativity increases again. This suggests a connection
between assortativity minimum and the stability of a structure when there is a transition
from repulsive to attractive behavior. It is then also interesting that the minimum of the
degree happens simultaneously with assortativity, as can be seen in the degree–assortativity
curves on the right of Figure 8.

Figure 7. (Left) Degree distribution for different densities and temperatures. (Right) Average over
nodes of degree spectral density.

Figure 8. Assortativity (tendency of nodes to connect to others of similar degree) as a function of
temperature (left) and degree (right). The figure has considerably more noise than the others, as
assortativity is a global property, as opposed to the degree which we can average over nodes for
each instant.

In Figure 9, we show the clustering of the network as a function of the temperature
and degree. The clustering coefficient represents the tendency of a link with two neighbors
to form a closed cycle of three links. This is a useful structural property, as it measures
how often pairs of connections “close”; so, the fact that it scales to the average degree
independently of the density makes it interesting for models of structure formation.
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Figure 9. Clustering coefficient (tendency of pairs of connections to form triangles).

3.3. Structural Stability

We now turn to calculating the parameters Va and Vb. Following Appendix A, we find
that we can write the spatial term of the partition function

Zr =
(

L2 exp−βVb
)N

exp

(
−
(N − 1)πr2

T
2L2 (1− exp−β∆V)

)N

(9)

where the first term corresponds to the contribution of “free” particle states with energy
Vb (which are beyond a distance rT to any other), while the second corresponds to the
contributions from active interactions where the pair has energy Va = Vb + ∆V. The central
assumption for this result to hold is that the interaction radii rT are small enough (with
respect to the box size L) to assume that overlapping disks do so in pairs. The bad
news is that this approach will likely fail for long-range potentials (nevertheless, long-
range potentials are a problem in statistical physics), but the good news is that this is
independent of the particular shape of the potential, as discussed in Appendix B. It is not
clear how to modify the calculation in order to impose the cutoff at six links observed in
Figure 7. In this form, there is a clear relation to the individual particle contribution z1,
just as for the partition function of the velocity. Since the order of integration in both the
spatial and momentum space is subject to the same particle-renaming symmetry, which
produces the Gibbs paradox if not accounted for [21], Equation (9) is technically missing
a 1/N! factor. However, as we consider only fixed particle number cases, this is not
expected to give us any problems. The interesting thing, however, is that any network
representation will be subject to the same symmetry, which amounts to the row/column
renaming of a network’s adjacency matrix. Studying entropy during the mixing of two
initially independent networks in order to determine whether the Gibbs paradox also
occurs is an interesting future line of research.

According to Equation (9), the average potential energy of the system is

〈V〉 = −∂β ln(Z) = NVb +
N(N − 1)πr2

T
2L2 exp−β∆V ∆V (10)

which must match the potential energy measured from the simulations to relate our network
and physical model. The value of β is known, as it is given by the temperature (kinetic
energy), but Vb and ∆V are both free parameters. One of them will be determined by
Equation (10), but the other is still unknown.

As a first approach, we simply assume the high-temperature limit in which the inter-
actions beyond the strong repulsive force at short distances is negligible. In this case, the
hard-shell approximation should hold, so we can set Vb = 0. This leaves only Va = ∆V to be
determined numerically from Equation (10). Then, considering that all the potential energy
is stored in links of energy ∆V, the number of links should be 〈V〉/∆V. In Figure 10, we
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show, on the left-hand side, the height Va = ∆V of the high-temperature limit (Vb = 0) of
the two-level potential. In the middle, the agreement between the measured and resulting
potential energy shows that Va correctly recovers this value. On the right-hand side, we
compare the number of links measured in the simulations with that expected from 〈V〉,
using only data from simulations with T > 1 to show the validity of the approximation
beyond imposed values. It should be noted that the number of links varies much more
in the low-temperature regime, making this value seem practically constant. Also, as the
potential energy of the system is negative, so is ∆V, which seems to suggest that these links
are stable. We interpret this as a failure of this approximation to provide results on the
stability of structure due to the imposed value Vb = 0.

Figure 10. (Left) Potential Va = ∆V determined from Equation (10) in the high-temperature limit
Vb = 0. (Middle) Agreement between measured and calculated potential. (Right) Number of links
measured from the simulations in comparison with the number of links expected from 〈V〉/∆V for
temperatures T > 1.

For the second case, we do not impose either Va or Vb. We require an additional
equation to obtain one of them. For this, we recall that a macrocanonical partition function
ZM (where the average energy and number of components are fixed by the temperature β
and the chemical potential µ) obeys

− ∂β ln(ZM(β, µ)) = 〈E〉 − µ〈N〉 (11)

where 〈N〉 is the average value of a fluctuating number of components. We then propose
that Equation (10) takes this form so that ∆V = −µ represents the chemical potential and
〈N〉 = N〈k〉/2 = N(N − 1)πr2

T expβµ /2L2 is the average number of links observed in
the simulation. Note that µ tells us about the stability of the structure (µ > 0 is stable
while µ < 0 is unstable) because of its definition from ∆V, which aligns with the notion of
chemical potentials in statistical physics. In Figure 11, we show the values obtained for Va
and Vb in this approximation. We see that the structure becomes stable (µ < 0 → µ > 0)
below T = 1. In Figure 12, we show the agreement between the number of links and the
measured and calculated potential.

Finally, we must verify that this way of analyzing the stability of the structure agrees
with the simulations. For this, consider that when the structure is unstable, links will
form randomly throughout the nodes of the network. When the structure is stable, the
links are persistently associated with a pair of nodes. In order to capture this, we first
measure the average over time (in equilibrium) of the adjacency matrix of the network
Aij = ∑τ

t=0 Aij(t)/τ. If the links are unstable, the whole matrix will have roughly the same
value, while if they are stable, some pairs will have a high value and others a low one.
The relative fluctuations around the mean value var

(
Aij
)
/〈Aij〉2 (where both var(·) and

〈·〉 are taken over links i, j) capture this effect, simultaneously correcting for the specific
link density. In Figure 13, we compare this quantity (rescaled by a factor of 20 to be visible)
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to the chemical potential shown in Figure 11, showing that the latter predicts a transition
from unstable to stable slightly before (when the temperature is being lowered) what is
shown by the relative fluctuations.

Figure 11. Partition function parameters calculated from the measured average potential energy and
average number of links in the system.

Figure 12. Agreement between simulated and calculated values of the potential energy and the
number of links.

Figure 13. Relative fluctuations measured from simulations (in full lines) and chemical potential
calculated from the corresponding data. The chemical potential predicts a transition from stable to
unstable structure at a slightly higher temperature than observed.

4. Conclusions and Further Work

A Lennard-Jones particle system in thermodynamic equilibrium was mapped to a
binary undirected network by using a two-level approximation for the interaction potential
according to the distance between the particles. This was motivated by constructing a
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“environment-blind” (in reference only to the interactions, without resorting to emergent
properties like the temperature) network model for particle interactions, which allowed
us to simplify the calculation of the system partition function. Said partition function was
shown to be able to reproduce the system energy and number of connections exactly, and its
parameters were used to determine the stability of the interaction structure. The partition
function can also be interpreted as a macrocanonical partition function with a varying
number of links, defining a chemical potential which captures the same notion of structural
stability. This supports the point of view of treating links in the network as the effective
fluctuating “particles” presented in statistical mechanics of networks [25,26].

The specific network structural properties studied were the degree, assortativity and
clustering coefficient, taken as representative of the first three orders of interaction in a
network. All three properties exhibit a minimum as a function of the temperature and,
in particular, clustering was found to have the same relation to degree across different
densities. These minima are aligned with the change from a stable to unstable structure
(middle- to high-temperature), suggesting the two are related. Indeed, as the binary
network is essentially a partition into physically distinct regions of the interaction potential,
with the physical properties of the system determined through the partition function of
the approximation, then phase transitions that render certain structures stable correspond
to changes in the “average behavior” of the system in each region. In our case, this is the
transition from weak, short-range attractive forces in low temperature to strong repulsive
(yet also short-range) interactions at high temperature. This suggests that under such
changes in the structural properties, it may be better to increase the “resolution” of the
network approximation, using a weighted network, which has not been tested and is
interesting for future development in order to see if the method can improve accuracy.
Another suggested way to perform this is to relate interaction terms beyond pairwise ones
in the partition function to network properties, such as the degree distribution to estimate
what order the interactions should be accounted for.

If we were to add a further approximation to the potential, for example, three ranges of
distance instead of two, we would attain a better model of the potential but also a network
with three possible connection values. It would require further conditions on the relation be-
tween these three values (beyond the potential energy and the number of links). Assuming
that this is possible, increasing the number of values to a countable infinity would produce
a weighted network with integer-valued levels, and finally, the continuous limit continuous
weights that match the potential. This suggests that the “natural” network representation
of a system that interacts through a potential is the potential itself. However, it comes at
high analytical and computational difficulty, suggesting that other representations might
be more convenient.

Independently of the most convenient representation, this draws a relation between
a network link and the interaction energy contained in the region of space it represents.
By checking whether these links are stable, we can tell if the energy is physically contained
in a structure. In this case, the network (on average) resembles the traditional representation
of particles at their stable distance. This method then allows to tell when energy is contained
in structure, which could be a useful tool for a more systematic study of energy density
across scales [27]. For this (and other applications beyond potential-mediated interacting
particle systems), the reliance on maximum entropy is particularly convenient, as the
conservation of energy, which puts kinetic and potential energy in the integrand of the
partition function, can be replaced by a constraint on average values of arbitrary pairwise
system states, which does not require the physical notion of an interaction potential. Any
specific average value that is known to reproduce properties of a system through maximum
entropy (for example, ∑i,j(ln(si) − ln(sj))

2/N2) then takes the place of the interaction
potential, and the link represents the measure of this function (replacing the energy)
contained in the states (replacing positions) corresponding to a link.
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Appendix A. System Partition Function

In order to calculate the partition function of the system in the two-level potential
approximation, we start by recalling that an ideal gas has uniformly distributed particle
positions. This implies that if we set links between particles when there distance is smaller
than some threshold, the probability pn that a test node (particle) has n links is the probabil-
ity that there are exactly n (randomly placed) particles within a radius of rT . This is given
by Equation (A1), and the expected degree of a single node is Equation (A2). The expected
total number of links is N〈k〉/2, ultimately leading to a link density equal to πr2

T/L2 in the
infinite temperature limit.

pn =

(
N − 1

n

)(
πr2

T
L2

)n(
1−

πr2
T

L2

)N−1−n

(A1)

〈k〉 = ∑
n

npn = n
(

N − 1
n

)(
πr2

T
L2

)n(
1−

πr2
T

L2

)N−1−n

= (N − 1)
πr2

T
L2 (A2)

We now improve this estimation to the first order in the interactions with the partition
function

Z(β) =
∫ ∫

...
∫

ΠN
i=1 exp(−β ∑

j>i
V(rij))dri (A3)

and, introducing the two-step potential approximation, we can visualize the first integration
of the partition function z1 =

∫
exp(−β ∑j>1 V(r1j))dr1 as the particle 1 “sweeping” over

the whole area L2 and measuring the height exp−β ∑j>1 V(r1j) at each point. This height is
given by a surface of height exp−βVb, on top of which a series of N − 1 columns of radius
rT reach a total height exp−βVa , where the columns’ bases do not overlap with each other
and have a height of exp−βnVa wherever n columns overlap. Note that only the regions
that overlap have a height of exp−βnVa , as shown in Figure A1.

A first approximation of the integral would be L2 exp−βVb (disregarding the areas
with at least one column). A second, better approximation would be L2 exp−βVb +nπr2

T
(exp−βVa − exp−βVb) (disregarding the areas of two or more intersecting columns). In gen-
eral, an approximation to n intersections is improved by introducing the area where n + 1
or more disks overlap, correcting the overcounted area and undercounted height, which is
the difference between the previous height approximation and the current estimate. For
the second order, we can write
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z1(β) :=
∫

exp(−β ∑
j>1

V(r1j))dr1

≈L2 exp−βVb +
[
(N − 1)πr2 − A2(rj>2)

]
(exp(−βVa)− exp(−βVb))

+ A2(rj>1)[exp(−β2Va)− exp(−βVb)]

=L2 exp−βVb +(N − 1)πr2(exp(−βVa)− exp(−βVb))

+ A2(rj>1)[exp(−β2Va) + exp(−βVb)− 2 exp(−βVa)]

(A4)

where A2(rj>1) represents the area where at least two circles j 6= j′ (both indices greater
than 1) intersect for the fixed configuration (rj)j>1. This is also the only term dependent
on r2, which is the next in line to integrate. This means that if the approximation of
A2 ≈ 0 stays small throughout the integration over different particles i to obtain Z , then
the integration over the previous particle i− 1 will appear constant to each term. In order
for the approximation to hold as we integrate the different particles, we need to make
sure that the perturbation A2 stays small. Decomposing it into the contributions from
intersections with j = 2 and j > 2, we write A2(rj>2) = A2(r2, rj>2) + A2(rj>2). This way,
z1(β) = aN−1 + b(r2) + c(rj>2), which means that the integration over r2 will only interact
with b(r2), while a and c(rj>2) are constants. For these, integration over r2 will go just
as for z1, but since the first particle has already been integrated, there are N − 2 columns
instead of N − 1 (also note that the sum in the exponent is ∑j>2 for this term).

z2(β) =
∫

z1(β) exp(−β ∑
j>2

V(r2j))dr2

=(aN−1 + c(rj>2))
∫

exp(−β ∑
j>2

V(r2j))dr2

+
∫

b(r2) exp(−β ∑
j>2

V(r2j)dr2

=(aN−1 + c(rj>2))(aN−2 + b(r3) + c(rj>3))

+
∫

b(r2) exp(−β ∑
j>2

V(r2j)dr2

(A5)

In order to integrate the second term, consider that A2(r2, rj>2) = b(r2)/(e−β2Va + e−βVb −
2e−βVa) > 0 only if r2 is within a distance rT of some rj>2. As r2 is moved around, the area
varies between 0 (where there are no particles j > 2 within a distance rT of r2) and πr2

T
(which corresponds to r2 coinciding with the center of another disk j > 2). The value of
the energy exponential will take on discrete values exp−βnVb , just as shown in Figure A1.
So, a first approximation makes the height that r2 sees constant exp−βVb (note that the
two or more intersections must include r2; so, there is actually 1 or more connection for
the particles j > 2, which is the height that r2 sees). The first correction occurs where
there are intersections of 2 or more rj>2; so, we can set a bound to the first order of∫

A2(r2, rj>2) exp−β ∑j>2 V(r2j) dr2 to (N − 2)πr2
T(exp−βVa − exp−βVb). A better estimation

would be to replace πr2
T by the average area of the intersection of two circles, keeping one

fixed and moving the other over the interior of the first, which is smaller than πr2
T , as the

area (the random variable) is bounded by πr2
T . One can already see that this term is much

smaller than an so long as rT � L (the interaction regions cover a small area of the box).
The second-order term is the average area of intersection of one circle with two others fixed
inside the region where they both intersect. This is even smaller than the first-order term
because, if the intersection of the circles is small, the intersection of the three will be given
by the intersection of the fixed ones. If the intersection is large, it will still be less than the
case where the fixed circles overlap perfectly, which gives the same result as the first-order
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term. All of this means that we can place a weak upper bound (in the sense that it is likely
far from the true value) on the term to integrate in Equation (A5), and this upper bound
remains below the leading order, thus conserving the order of the approximation. Moreover,
when this term is integrated to obtain the partition function of the third particle (note that
it depends on r3, taking it to be fixed when r2 is integrated), it will only vary depending on
whether r2 and r3 intersect, which happens in an area πr2

T (which we discussed should be
small compared with L2). Thus, it is constant for almost all the integration range and will
practically remain the same when r3 is integrated. The remaining term proportional to b(r3)
in Equation (9) will become analogous to the term just discussed; so, the same arguments
hold. Therefore, the perturbation stays bounded for successive integrations, and we can
calculate the partition function to the first order keeping only the independent terms

zn = L2 exp−βVb +(N − n)πr2
T

(
exp−βVa − exp−βVb

)
(A6)

to leading order in πr2
T/L2. Therefore, the partition function is

Z(β) = ΠN
n=1zn =

(
L2 exp−βVb

)N
ΠN−1

n=0

(
1− n

πr2

L2 (1− exp(−β(Va −Vb))

)
. (A7)

Figure A1. Representation of the total height of the surface integrated in the first integrand of
Equation (A3). This is also the two-level approximation of the potential “seen” by particle 1 with a
fixed configuration of the other particles.

Finally, we discussed that rT � L; so, we can write

ΠN−1
n=0

(
1− n

πr2

L2 (1− exp(−β(Va −Vb))

)
=

exp
(

∑ ln
(

1− n
πr2

L2 (1− exp(−β(Va −Vb))

))
≈

exp
(
−∑ n

πr2

L2 (1− exp(−β(Va −Vb))

)
=

exp
(

N(N − 1)
2

πr2

L2 (1− exp(−β(Va −Vb))

)
(A8)

which is equivalent to Equation (9) if we write ∆V = Va −Vb and expxN = exp xN .

Appendix B. Beyond the Lennard-Jones Potential and Binary Networks

Two things should be highlighted about this method. First, the central assumption is
that overlaps of more than two particle disks can be disregarded, which means that the
interaction radii must be small. The second is that, since the partition function counts states
with the same energy uniformly, our two-level approximation of the real potential between
two particles can have as many steps as we want, while taking only values Va and Vb
(i.e., assuming the network is binary). These are all “accumulated” by the partition function
into a single radius rT spanning the total lengths of the steps, as shown in Figure A2. Of
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course, the steps should be used close to the particle in order for the short-range hypothesis
to hold, but this depends on the potential, not the approximation.

Figure A2. Arbitrary two-level approximations of a potential are “measured” by the partition function
as a single radius of the total length of the steps, meaning that we can place steps however we like as
long as they obey the short-range approximation, and this will always amount to an effective radius rT.

One can also choose (just as the high-temperature limit is chosen in Section 3.3) to
relax the approximation of both steps on the left side of Figure A2, which have the same
potential, and then obtain a weighted network with three different values, mapping to Vb,
Va and a new Va′ . This adds a variable that can be calculated by measuring thermodynamic
variables beyond the potential energy, such as the entropy of the distribution (which can
also be calculated from the partition function). It is not clear how other network properties
might be involved in this process, but it may be that the restriction of first-order interactions
may be too strong for this purpose. On the other hand, this approximation could perhaps
be corrected by using network properties. In particular, the degree, which represents the
number of connections a particle has, could improve the approximation that interactions
occur mostly in pairs.
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