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Whether we are following an increasingly rapid story 
told by an excited friend or listening to a piece of music 
that slows down in tempo, we are experts at keeping 
up with the pace of our surroundings. For instance, 
humans rather easily comprehend speech at twofold 
increases in speech rate (Foulke & Sticht, 1969). But 
what underlies our ability to track information effi-
ciently over such a wide range of timescales? A common 
bottleneck in domains such as music and speech is 
working memory (Schulze & Koelsch, 2012). Ideally, 
information should be sufficiently encoded before the 
stimulus is no longer there, especially when interfering 
stimuli may follow. Intuitively, if we expect information 
to arrive at a fast rate, information should also be 
encoded at a faster rate.

Despite this intuitive idea that we can adapt working 
memory encoding speed to the expected stimulus dura-
tion, such adaptations have not been tested empirically. 
This lacuna is surprising for three reasons. First, adap-
tive dynamics have been demonstrated in a wide variety 
of domains, such as sensory adaptation (Fairhall et al., 
2001; Wark et  al., 2009), decision-making (Murphy 
et  al., 2021; Ossmy et  al., 2013), timing (Remington 

et al., 2018), event integration (Akyürek et al., 2008), 
speech perception (Lerner et  al., 2014), learning  
(Behrens et al., 2007; Piray & Daw, 2020), and motor 
adaptation (Gonzalez Castro et al., 2014). Overall, these 
lines of research show that the speed of cognitive (or 
neural) processes adjusts to the timescale of (or the 
rate of change within) the environment. For instance, 
the rate of evidence accumulation in decision-making 
speeds up when incoming evidence changes more fre-
quently (Glaze et al., 2015).

Second, from its very inception (e.g., Sperling, 1963), 
working memory research has had a strong focus on 
encoding speed (see also Bays et al., 2011; Bundesen, 
1990; Busey & Loftus, 1994; Gegenfurtner & Sperling, 
1993). However, although many factors have been found 
to modulate encoding speed, such as luminance/contrast 
(Loftus & Ruthruff, 1994), attention (Reinitz, 1990), and 
working memory load (Bays et al., 2011; Vogel et al., 
2006), none of these qualifies as an adaptation to the 
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temporal structure of the environment. One possible 
exception is the finding that encoding speed is modulated 
by the overall foreperiod preceding stimulus onset  
(Vangkilde et al., 2012, 2013). However, these adaptations 
occur with respect to properties that facilitate preparation 
for to-be-memorized items, not the temporal properties 
of the to-be-memorized items themselves.

Third, adaptive processing in working memory has 
been observed with regard to its capacity. State-of-the-
art computational models assume that capacity is adap-
tively allocated to memoranda (e.g., van den Berg & 
Ma, 2018). Indeed, it has been shown empirically that 
working memory capacity adapts to stimulus statistics 
(Orhan et al., 2014), can be flexibly allocated to infor-
mation that is likely to be relevant (Bays & Husain, 
2008), and can be controlled at will to match task 
demands (Machizawa et al., 2012). However, none of 
these accounts have considered that encoding speed 
may adapt to the rate at which information arrives at 
the senses.

In this research, we studied whether and how work-
ing memory encoding speed, in a similar way as capac-
ity, is adapted to the structure of the environment. 
Specifically, we hypothesized that encoding would 
speed up when the expected stimulus duration was 
brief. In a series of experiments, we leveraged distribu-
tion effects, serial dependence, and cuing to systemati-
cally manipulate expectations about stimulus duration. 
To preview our results, we found that humans encode 
information about twice as fast when they expect infor-
mation to be presented briefly, but only when these 
expectations were induced implicitly. These findings 
suggest that implicit encoding-speed adaptations may 
underlie our ability to keep up with the pace of our 
surroundings.

Open Practices Statement

All materials, data, and analysis code for Experiments 
1 to 3 have been made publicly available on OSF and 
can be accessed at https://osf.io/d5rnu/. None of the 
experiments were preregistered.

Method

Participants

Participants were first-year psychology students (mean 
age = 20.9 years; 63% female) at the University of Gron-
ingen who obtained partial course credit for participat-
ing. The experiment was approved by the ethical 
committee of the Department of Psychology. Informed 
consent was obtained before the experiment started. 
Participants with an average capacity estimate of higher 

than 50 rad–1 (see Analysis) were excluded from further 
analysis (four in Experiment 1, one in Experiment 2, 
four in Experiment 3). Indeed, their average capacity 
far exceeded the criterion for outlier detection (Quartile 
3 + 3 × interquartile range), which was 8.0 (Experiment 
1), 9.3 (Experiment 2), and 10.9 (Experiment 3). Using 
this stricter exclusion criterion did not change our inter-
pretation of the results. For experiments with bootstrap-
ping (Experiments 1 and 3), our original exclusion 
criterion (capacity > 50 rad–1) was applied to each boot-
strap. As a result, we discarded a participant within a 
bootstrap 5% and 15% of the time in Experiment 1 and 
Experiment 3, respectively.

Apparatus and stimuli

The experiment was programmed in OpenSesame 
(Mathôt et al., 2012). Stimuli were presented on a 19-in. 
CRT screen running at 100 Hz with a resolution of  
1,280 × 1,024 pixels. Participants were seated in a 
sound-attenuated room with dimmed lights approxi-
mately 60 cm from the screen. A gray background was 
maintained during the entire experiment. Memory items 
were Gabor patches with a Gaussian envelope (spatial 
frequency: 0.05 cycles/degree, standard deviation of 
the envelope: 12 pixels, phase: 0) presented at fixation. 
The orientation of the Gabor patches was picked from 
a uniform distribution spanning 0° to 180°. Memory 
items were masked with 50 overlapping Gabor patches 
with random orientations (spatial frequency: 0.05 
cycles/degree, standard deviation of the envelope: 10 
pixels, phase: 0), and their centers were scattered in a 
40 × 40 pixel square.

Statement of Relevance

Humans can store information very quickly. For 
instance, when we hear someone speak twice as 
fast as normally, we can still follow quite well. 
How is this possible? We hypothesized that when 
humans expect that there will be limited time to 
store a piece of information (e.g., when listening 
to a sped-up podcast), they would ideally store 
that information more quickly before it is gone. 
Indeed, we found that young adults encoded 
more information per second when they implicitly 
expected that they would have little time to do 
so. However, they were unable to use explicit 
cues about how much time they had. It seems that 
young adults can, at least implicitly, tune the pace 
at which they store information.

https://osf.io/d5rnu/
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Procedure

Participants performed several practice trials in a delayed 
estimation task (Wilken & Ma, 2004). A trial proceeded 
as follows. A fixation dot was shown for 500 to 1,000 ms 
(uniformly sampled), after which the memory item was 
presented at fixation. The presentation time (i.e., how 
long the memory item was physically on the screen) was 
50, 200, or 400 ms. To control the time available for 
encoding, we attempted to eliminate any retinal or corti-
cal afterimage by presenting a pattern mask for 100 ms 
immediately after memory item offset. Participants had 
to retain the memory item over the next 1,000 ms, after 
which a wheel probe was presented. This was a Gabor 
patch that participants could turn to the remembered 
orientation by moving their mouse and then clicking to 
record their response. Participants received trial-to-trial 
feedback only in practice trials. In the real experiment, 
only block-wise feedback (total number of points per 
block) was presented. Apart from the counterbalancing 
of presentation times, trials per block, and the inclusion 
of a cue at the start of each trial (Experiment 3), the 
procedure was identical across experiments.

Experiment 1: blocked presentation time

In our first experiment (N = 57), we tested whether a 
higher overall presentation time increases encoding 
speed in working memory. To this end, each block 
either had a predominantly short presentation time (50 
ms: 70% of trials, 200 ms: 15%, 400 ms: 15%) or pre-
dominantly long presentation time (50 ms: 15% of trials, 
200 ms: 15%, 400 ms: 70%). Each presentation time 
regularity lasted for four blocks of 40 trials each (i.e., 
160 trials in total), after which participants switched 
(from brief to long presentation time or vice versa). 
Participants completed a total of 640 trials and nine 
practice trials at the start of the experiment. Participants 
were not informed about overall presentation time 
within a block or switches in overall presentation time 
between blocks. Because the size of encoding-speed 
adaptations is unknown, we could not base our sample 
size on formal power calculations. Instead, we sampled 
batches of participants until we obtained strong evi-
dence for or against our hypothesis with our Bayes 
factor (BF; i.e., BF10 > 10 or BF10 < 0.1). We further 
ensured that each condition contained enough trials to 
have reliable estimates of the circular standard devia-
tion of responses (see Bays et al., 2011).

Experiment 2: sequential presentation time

In this experiment (N = 24), we assessed whether 
encoding speed would also adapt to recent, sequential 
changes in presentation time. We counterbalanced the 

order of presentation times with a de Bruijn sequence, 
using the software described by Aguirre et al. (2011). 
A de Bruijn sequence perfectly counterbalances the 
order of its elements up to a certain degree using the 
smallest sequence length. We designed the sequence 
such that each possible order of three presentation 
times (e.g., 50 ms, 50 ms, 400 ms) would occur with 
equal frequency within each block. This allowed us to 
fit an encoding curve for each n – 1 and n – 2 presen-
tation using an equal number of trials for each presen-
tation time on trial n. Participants performed a total of 
675 trials and nine practice trials at the start of the 
experiment. Sample size was determined in the same 
way as in Experiment 1.

Experiment 3: cued presentation time

In our final experiment (N = 19), we explored whether 
adaptations in encoding speed could be induced with 
explicit cues that are highly informative. At the start of 
each trial, we presented either the word “FAST” in red or 
“SLOW” in blue for 400 ms. These cues were 80% valid. 
“Fast” cues predicted 50-ms presentation times 80% of 
the time (with 10% for both 200 and 400 ms), and “slow” 
cues predicted 400-ms presentation times 80% of the time 
(with 10% for both 50 and 200 ms). Participants were 
informed that the cues were informative and encouraged 
to make use of them. They completed a total of 500 trials 
and 20 practice trials at the start of the experiment. Sam-
ple size was determined in the same way as in Experi-
ment 1. However, contrary to our expectations, results 
showed that “fast” cues decreased encoding speed after 
we collected data from the first batch of participants. This 
constituted evidence against our one-sided hypothesis 
(i.e., that “fast” cues increase encoding speed), but our 
BF tested the presence of an effect, not its direction. 
Therefore, to see whether we had justification to stop 
data collection, we estimated the one-sided BF (BF >) 
using the approximation in Morey and Wagenmakers 
(2014) and obtained strong evidence against our hypoth-
esis that cues increase encoding speed (BF10 > = 0.098).

Analysis

All data analyses were performed in R (Version 3.5.1; 
R Core Team, 2018). Error angles were computed as the 
reproduced angle minus the actual angle of the memory 
item multiplied by 2 (because Gabor patches have a 
rotational symmetry of 180° instead of 360°), such that 
errors spanned –180° to 180°. We quantified memory 
precision as the inverse of the circular standard devia-
tion (σ–1) of the error angles at each presentation time, 
t. We subtracted the memory precision that would be 
expected for that sample size, which was computed by 
taking the inverse of the mean of 1,000 circular standard 
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deviation estimates from circular uniform distributions 
with sample size N.

To quantify encoding speed and capacity in working 
memory, we fitted exponential encoding curves (e.g., 
Bays et al., 2011; Busey & Loftus, 1994) for each par-
ticipant in each condition with two parameters: maxi-
mum capacity (c) and encoding speed.

	 (τ–1): σ–1(t) = c(1 – e–t/τ)	 (1)

These parameters map onto the asymptotic memory 
precision for very long presentation times (c; see Fig. 
1) and encoding speed (i.e., the speed at which preci-
sion reaches that asymptote (τ–1; see Fig. 1). Effects on 
maximum capacity (c) become most apparent for long 
presentation times because stimuli are remembered bet-
ter (or worse) even when they have been presented for 
a very long time. In contrast, effects on encoding speed 
are most apparent for brief durations because two 
encoding curves may reach the same asymptote but at 
different speeds. To illustrate, a fast encoding curve will 
reach a high precision early on, compared with a slow 
encoding curve (see Fig. 1, bottom right). Nevertheless, 
the slow encoding curve eventually catches up with the 
fast encoding curve, reaching the same asymptote. 
These different behavioral signatures of capacity and 
encoding-speed effects allow us to reliably separate 
them when fitting encoding curves. It is important to 
note that all types of trials in Experiment 1 and Experi-
ment 3 (including invalidly cued and block-inconsistent 
trials) were used to fit encoding curves because it is 
impossible to estimate capacity and encoding speed 
using only a single presentation time. Encoding curves 
were fitted with the nls.multstart package (Version 
1.2.0; Padfield & Matheson, 2020), which initializes mul-
tiple starting values for each parameter when one is 
fitting the encoding curve and selects the set of param-
eters with the lowest Akaike information criterion (in 
our case, the highest likelihood, because the number 
of parameters remained constant). We normalized the 
parameters by dividing estimates by the mean estimate 
for each participant, which allowed us to assess changes 
in capacity or encoding speed as induced by our exper-
imental manipulations.

We assessed the effect of expected presentation time 
on normalized encoding speed by fitting a linear regres-
sion model. The null model predicted normalized 
encoding speed with only normalized capacity as a 
predictor. The alternative model added the manipula-
tion of expected presentation time. The same rationale 
was followed when testing for effects on normalized 
capacity: The null model contained only normalized 
encoding speed, and the alternative model included 
expected presentation time. For Experiment 1, blocked 
presentation time was dummy coded (1 = short block, 

0 = long block). For Experiment 2, n – 1 and n – 2 
presentation time were added as continuous predictors. 
For Experiment 3, cued presentation time was dummy 
coded (1 = short cue, 0 = long cue). To quantify evi-
dence for a modulation of encoding speed by expected 
presentation time, we compared models using an 
approximation to BFs (Wagenmakers, 2007):

	 BF10 = e(BIC0 – BIC1)/2,	 (2)

where BIC0 is the Bayesian information criterion (BIC) 
for the null model containing only normalized capacity 
as a predictor, and BIC1 is the BIC for the model that 
also includes expected presentation time. High values 
for BF10 reflect evidence against the null model and 
therefore suggest an effect of expected presentation 
time on encoding speed.

Because of the nature of the experimental manipula-
tion, Experiments 1 and 3 were not balanced. That is, 
to induce expectations about presentation time, some 
presentation times contained more observations than 
others in certain conditions. Estimates of circular stan-
dard deviation are biased substantially at low sample 
sizes, especially at high standard deviation (see Fig. S4 
in the Supplemental Material). Such bias could have a 
complex impact on the estimated capacity and encoding 
speed. Therefore, we bootstrapped the entire analysis 
for those experiments by subsampling (without replace-
ment) for each participant and each condition to the 
lowest number of observations minus 1. We sampled 
without replacement because estimates of circular stan-
dard deviation have higher bias and variance when 
duplicates can be sampled (see Fig. S5 in the Supple-
mental Material). We report the median of all test sta-
tistics (regression coefficients, t values, p values, BFs, 
and differences in BICs). For plotting, we computed the 
standard error of the bootstrap by dividing the estimated 
standard deviation by √n for each condition.

Results

Encoding speed adapts to overall 
presentation time

In our first experiment, we tested whether humans 
could increase their encoding speed when the overall 
presentation time was short. Humans are sensitive to 
the overall distribution of temporal intervals that they 
perceive (e.g., Jazayeri & Shadlen, 2010). Therefore, if 
participants tune their expectations to the overall stimu-
lus duration, they should also tune their expectations 
about overall presentation time and adapt their encod-
ing speed accordingly. To test this hypothesis, we varied 
the overall presentation time between blocks. Partici-
pants alternated between blocks of 160 trials in which 
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presentation time was either short (50 ms) or long (400 
ms) on 70% of the trials. We hypothesized that if humans 
adapt to overall presentation time, they should have a 
higher encoding rate in the blocks with brief presenta-
tion times compared with those with long presentation 
times. In line with our hypothesis, results showed that 
encoding speed was systematically faster in blocks with 
predominantly brief presentation times (β = 0.149, t = 
3.76, p < .001, BF10 = 89.82, ΔBIC = 9.00; Fig. 2). We also 
found that blocks with brief presentation times increased 
capacity (β = 0.09, t = 3.29, p = .001, BF10 = 19.11, ΔBIC = 
5.90). Note that adaptations in encoding speed were 
independent from increases in capacity because we con-
trolled for normalized capacity in our analysis. These 
results suggest that our participants did adapt their 
encoding rate to the overall presentation time.

Encoding speed adapts to recent 
presentation time

In our second experiment, we tested how quickly 
humans can adapt their encoding rate on a trial-to-trial 

basis. To this end, we leveraged serial dependence 
observed in the perception of durations. Humans can 
optimally track stimulus duration on a trial-to-trial basis 
(de Jong et al., 2021; Glasauer & Shi, 2021). For instance, 
when a previous stimulus has been presented briefly, 
the next stimulus is also expected to be relatively brief. 
Therefore, if the previous presentation time is brief, 
participants should increase their encoding speed in 
anticipation of the next brief stimulus. In line with our 
hypothesis, results showed that the shorter the presen-
tation time on the previous trial, the faster the encoding 
speed on the current trial (β = −0.00053, t = −2.68, p = 
.009, BF10 = 4.21, ΔBIC = 2.88; Fig. 3). This finding sug-
gests that humans speed up encoding when they expect 
that they have relatively little time for doing so. In 
contrast, we found evidence against an effect of the 
previous presentation time on capacity (β = −0.00006, 
t = −0.616, p = .54, BF10 = 0.14, ΔBIC = −3.88), suggest-
ing that participants specifically tuned their encoding 
speed to expected presentation time, not capacity. In 
line with continued adaptation, our results showed that 
encoding was faster when the previous two stimuli had 
the same presentation time (β = −0.00178, t = −5.08, p < 
.001, BF10 > 10,000, ΔBIC = 18.49; Fig. 4), but again 
there was no effect for capacity (β = −0.00029, t = 
−0.897, p = .373, BF10 = 0.18, ΔBIC = −3.45). Notably, a 
comparison of the regression coefficients (Clogg et al., 
1995) showed that the effect of the previous two stimuli 
on encoding speed was stronger than the effect of the 
most recent stimulus alone (Z = −4.686, p < .001).

Our hypothesis predicted that encoding speed would 
specifically adapt to expected presentation time and not 
temporal variables that are unrelated to the memory 
items. Indeed, we found evidence that adaptation was 
specific to presentation time of the stimulus, not the rate 
at which the task proceeds after a response. The previ-
ous interval between fixation onset and stimulus onset 
did not significantly modulate encoding speed (β = 
−0.095, t = −1.37, p = .175, BF10 = 0.23, ΔBIC = −2.98; 
see Fig. S1 in the Supplemental Material available online) 
or interact with the effect of previous presentation time 
(β = −0.001, t = −0.29, p = .774, BF10 = 0.09, ΔBIC = 
−4.80). In the same linear regression model, the effect 
of previous presentation time was relatively consistent 
(β = −0.0006, t = −2.542, p = .012, BF10 = 2.24, ΔBIC = 
1.61). This finding may seem at odds with reports in the 
literature that encoding speed in visual detection is mod-
ulated by expected foreperiod (Vangkilde et al., 2012, 
2013) However, unlike these studies, ours did not manip-
ulate foreperiod in a block-wise manner and not over a 
broad temporal scale (0.3–10 s). Hence, although 
expected foreperiod could have some effect on encoding 
speed, it is unable to account for encoding-speed adapta-
tions specific to presentation time. Overall, our findings 
suggest that humans specifically track presentation time 
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on a trial-to-trial basis and adapt their encoding speed 
accordingly.

An alternative explanation for our adaptive encoding 
findings is that participants adjusted their encoding 
speed to correct for errors on previous trials (similarly to 
post-error improvements of performance; Danielmeier 
& Ullsperger, 2011). When large errors were made on 
previous trials, participants may have tried to compen-
sate by increasing their encoding speed. Hence, this 
account would predict a faster encoding speed follow-
ing trials with large errors. However, when we did a 
median split on the magnitude of the errors, error mag-
nitude on previous trials did not modulate encoding 
speed on current trials. When participants made large 
errors on previous trials, their encoding speed on sub-
sequent trials was the same, or if anything slightly lower 
(β = −0.121, t = −1.69, p = .094, BF10 = 0.374, ΔBIC = 
−1.98; see Fig. S2 in the Supplemental Material). In sum, 
it seems that adaptations in encoding speed cannot be 
explained by error-related corrections.

Encoding speed is insensitive to 
explicit cues about presentation time

So far, we have shown that encoding speed is adapted 
to expectations about presentation time induced by 
distribution- and sequential-like effects. However, it is 
unclear whether these expectations can also be induced 
explicitly, like with spatial cuing (e.g., Jonides, 1981). 
We ran an experiment in which, at the start of each 
trial, participants were cued (“FAST” or “SLOW”) 
whether the upcoming stimulus would be brief (50 ms) 
or long (400 ms) with 80% cue validity. Crucially, even 
though these cues were objectively more informative 
than our previous sequential and block-wise manipula-
tions, they did not modulate encoding speed. If any-
thing, “fast” cues resulted in a decrease in encoding 
speed (β = −0.064, t = −0.77, p = .321, BF10 = 0.306, 
ΔBIC = −2.36; Fig. 5). Indeed, a one-sided BF (Morey 
& Wagenmakers, 2014) suggests that “fast” cues do not 
increase encoding speed (BF10 > = 0.098). We also found 
no effect of cue on capacity (β = 0.052, t = 0.957, p = 
.19, BF10 = 0.47, ΔBIC = −1.52). These findings are in 
line with several reports in the literature showing that 
explicit cues are relatively ineffective in guiding expec-
tations about temporal features (Los et al., 2021; Maaß 
et al., 2019). Indeed, some have shown that temporal 
expectations are efficiently triggered by implicit asso-
ciative cues (Salet et al., 2022). In sum, the ineffective-
ness of highly informative cues suggests that adaptation 
to presentation time is more easily triggered by implicit 
processes than by explicit cues.

Exploring a “post-encoding” explanation

An alternative explanation for our effects shifts their 
locus to processes that take place after encoding. For 
instance, when a brief presentation time is expected, 
participants could more effectively suppress the ensu-
ing mask when it appears early in time. Similarly, when 
a long presentation time is expected, participants could 
more easily suppress the mask when it appears later in 
time. In other words, performance is best when the 
expected presentation time matches the actual presen-
tation time. This account successfully explains why 
performance is mainly enhanced at brief presentation 
times when they are expected. Unlike our theory, how-
ever, it also predicts a relative benefit for long presenta-
tion times whenever they are expected. Another unique 
prediction is that when intermediate presentation times 
are expected, performance should be best at those pre-
sentation times.

We systematically tested the post-encoding explana-
tion across all our experiments and found that it cap-
tures some features of the data that are not easily 
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explained by our adaptive encoding speed theory (see 
Figs. S6–S9 in the Supplemental Material). For instance, 
in Experiment 2, we observed some relative costs for 
long durations when brief ones were expected, whereas 
our theory predicts no differences (see Figs. S7 and S8 
in the Supplemental Material). Nevertheless, the alter-
native explanation is unable to account for a lack of 
costs at longer presentation times (Experiment 1; see 
Fig. S6), and its unique prediction for intermediate 
presentation times could not be confirmed (see Figs. 
S7 and S8). Also, the alternative explanation did not 
reproduce the asymmetry in our findings, namely that 
effects of expected presentation time were largest at 
brief presentation times and gradually tapered off. 
Even though these behavioral analyses suggest a lim-
ited role for post-encoding processes, it would be 
worthwhile to track both encoding and post-encoding 
processes as they unfold in real time (e.g., through 
electrophysiological recordings). In sum, these analy-
ses suggest that post-encoding processes cannot solely 
account for our data but, rather, that adaptations to 

presentation time—at least partly—manifest during 
working memory encoding.

Discussion

How do we keep up with the rate at which information 
reaches our senses? We hypothesized that a fundamen-
tal underlying mechanism may be the adaptation of 
working memory encoding speed to expected presenta-
tion time. Indeed, we found that encoding speed was 
adapted to overall presentation time. Moreover, encod-
ing speed continually and specifically adapted to recent 
presentation time on a trial-to-trial basis. We further 
showed that encoding-speed adaptations could not be 
induced by highly informative cues, suggesting that 
these adaptations may be largely implicit. Overall, our 
findings suggest that the speed of working memory 
encoding is optimally adapted to the timescale of 
incoming information.

Our hypothesis was partly inspired by adaptive 
dynamics that are found in a wide range of perceptual, 
cognitive, and motor domains. Indeed, we demon-
strated that encoding speed in working memory may 
show similar adaptation to the timescale of incoming 
information. But what is the underlying logic behind 
adapting the speed of cognitive processes to match the 
timescale of the environment? State-of-the-art theories 
of adaptive dynamics assume that task-relevant vari-
ables are tracked in an optimal way. These models 
propose that in addition to tracking the mean value of 
some task-relevant variable, humans also track how 
quickly that variable is changing (Glaze et  al., 2015; 
Ossmy et  al., 2013; Piray & Daw, 2020; Wark et  al., 
2009). As an example (see Ossmy et al., 2013), when 
trying to spot a faint signal in the distance, we take into 
account not only its luminance but also its duration. In 
other words, we keep track of how quickly luminance 
is changing. If we expect a brief signal, we quickly 
accumulate evidence before the signal is absent. How-
ever, this comes at the expense of accumulating noise. 
Therefore, if we expect a long signal, we accumulate 
evidence at a slower rate to prevent false alarms. 
Indeed, in a decision-making task, Ossmy et al. (2013) 
found that the rate of evidence accumulation is adapted 
to the overall duration of the to-be-detected signal. We 
have shown an analogous encoding-speed adaptation 
in working memory. Given these commonalities, it 
seems that these formal models of adaptive dynamics 
(e.g., Glaze et al., 2015) could be a powerful way to 
conceptualize encoding-speed adaptations in working 
memory.

Another possible idea is that although increments in 
encoding speed may improve performance, they incur 
a commensurate increase in some behavioral or neural 
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cost (for a similar resource-rational account of working 
memory capacity, see van den Berg & Ma, 2018). What-
ever form these costs may take, a natural assumption 
is that humans attempt to maximize their net gain (i.e., 
performance minus encoding costs). The second 
assumption is that participants weigh performance at 
certain presentation times by their subjective probabil-
ity. That is, if participants believe that very brief pre-
sentation times are more likely (e.g., when the previous 
duration is short or in the short blocks), they put more 
weight on performance at brief presentation times. 
These simple assumptions would naturally predict that 
increasing the rate of encoding is beneficial when brief 
presentation times are expected.

Given that humans can speed up working memory 
encoding, how might the brain achieve such a speedup? 
The analysis of our behavioral data provides a natural 
clue: The encoding curve we fitted to our data (Equa-
tion 1) describes the behavior of a leaky integrator that 
is given a step-like input. Here, the amplitude of the 
input corresponds to the maximum capacity, whereas 

the speed of integration relates to encoding speed. 
Given that we observed independent modulations in 
encoding speed, the speed of neural integration would 
be responsible for our effects. However, a plausible 
alternative is that amplified inputs do not just result in 
a higher measured capacity, but if capacity has a limit, 
some of these effects also show up in the encoding 
rate. To put it simply, a stronger input will drive mem-
ory precision to the limit at a faster rate without result-
ing in much change in that limit. Then, we would 
expect that increases in encoding speed would be 
accompanied by little to no increase in capacity. How-
ever, we found the opposite: Normalized encoding 
speed generally had a negative effect on normalized 
capacity (see Fig. S3 in the Supplemental Material). That 
is, when encoding speed increases, capacity generally 
decreases. Indeed, this suggests that our results may be 
explained by a speedup in how quickly populations of 
neurons change their overall firing pattern (Sohn et al., 
2019) or perhaps a speedup in biophysical processes 
in individual neurons (Durstewitz, 2003), not necessar-
ily changes in input amplitude.

A related question pertains to the locus of encoding-
speed adaptations. Can our findings be explained by 
faster temporal summation in the visual system (Loftus 
& Ruthruff, 1994) as opposed to adaptations in working 
memory per se? For instance, one might wonder 
whether our results could be explained by contrast 
adaptation: If the previous stimulus is presented for 
only 50 ms, its contrast could be perceived as lower 
because temporal summation is not finished yet. Then, 
on the next trial, adaptation to this lower contrast 
speeds up temporal summation in the visual system. 
However, adaptation to low contrast often entails 
slower changes in firing rates in the visual system, not 
faster changes (Lesica et al., 2007). Similarly, if temporal 
summation is completed around 100 ms (Gorea, 2015), 
we might still be able to observe differences in encod-
ing when comparing n – 1 and n – 2 for 200 and 400 
ms. However, we did not observe significant adaptation 
around this longer timescale (t = 1.42, p = .17). It may 
nevertheless still be possible that the timescale of adap-
tation is related to overall encoding speed. When 
encoding speed is relatively fast to begin with, any 
increase in encoding speed mainly affects performance 
at brief presentation times. Therefore, manipulating 
overall encoding speed (e.g., through contrast or atten-
tion) may uncover encoding-speed adaptations beyond 
timescales typically associated with temporal summa-
tion in the visual system.

This work is a first demonstration that working mem-
ory encoding speed adapts to the rate of incoming 
information. However, it remains to be seen whether 
these results will generalize to more complex features, 
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different modalities, or alternative working memory 
tasks. Similarly, future work needs to establish whether 
our results generalize to populations other than the one 
sampled here, such as children, older adults, or nonhu-
man animals. Also, although we have argued that the 
locus of these adaptations is to be found in speedups 
of neural processes, these claims should be tested using 
neurophysiological measures with high temporal reso-
lution (e.g., electroencephalography or magnetoen-
cephalography). Last, although we believe that 
encoding-speed adaptations are more easily elicited by 
implicit cues, it remains to be seen whether participants 
can explicitly report on the presentation time and 
whether this explains individual differences in adapta-
tion magnitude.

In conclusion, humans implicitly speed up encoding 
in working memory when they expect information to be 
briefly available. These adaptations may be understood 
in terms of optimally tracking changes in the environ-
ment by adapting the speed at which those changes  
are encoded. Further, additional analyses suggest that 
encoding-speed adaptations are probably not due to 
amplified visual inputs but may instead constitute actual 
speedups in neural processes themselves. We believe that 
encoding-speed adaptations in working memory are 
critical for optimal performance in environments where 
the pace may change suddenly and substantially.
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