
 

 

 University of Groningen

Visualizing Uncertainty to Promote Clinicians’ Understanding of Measurement Error
Frans, Niek; Hummelen, Benjamin; Albers, Casper J.; Paap, Muirne C. S.

Published in:
Assessment

DOI:
10.1177/10731911221147042

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Frans, N., Hummelen, B., Albers, C. J., & Paap, M. C. S. (2023). Visualizing Uncertainty to Promote
Clinicians’ Understanding of Measurement Error. Assessment, 30(8), 2449-2460.
https://doi.org/10.1177/10731911221147042

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://doi.org/10.1177/10731911221147042
https://research.rug.nl/en/publications/cdb629a6-07b6-4a06-8a28-9c7c27fc743b
https://doi.org/10.1177/10731911221147042


https://doi.org/10.1177/10731911221147042

Assessment
2023, Vol. 30(8) 2449–2460
© The Author(s) 2022

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/10731911221147042
journals.sagepub.com/home/asm

Original Research Article

Psychological measurement plays an important supporting 
role in clinical decision making, by informing clinicians’ 
decisions regarding treatment options, effectiveness, and 
duration (Jensen-Doss, 2015). While psychometrically 
sound standardized tests provide an estimate of the con-
struct we are trying to measure, this estimate has a degree of 
uncertainty which differs widely across instruments and 
possibly populations, which needs to be taken into consid-
eration to make an informed decision (Charter, 2003). Test 
manuals usually report reliability estimates that express the 
degree of uncertainty associated with test scores (Charter & 
Feldt, 2001b; Gregory, 2015), and generally supplement 
this information with standard errors that can be used to 
calculate an uncertainty interval around an individual test 
score (Charter & Feldt, 2001a). Examples include the 
Wechsler’s Intelligence Scale for Children (Wechsler, 
2014), the Wechsler’s Adult Intelligence Scale (Wechsler, 
2008), the Minnesota Multiphasic Personality Inventory 
(Ben-Porath & Tellegen, 2008), and the Child Behavior 
Checklist (Achenbach, 1991). Several studies show that 
such abstract metrics can be difficult to interpret (Charter & 
Feldt, 2002; Hildon et al., 2012; McManus, 2012; Plebani 
et al., 2018; Simpkin & Armstrong, 2019), even for people 
who have received rigorous training (Belia et  al., 2005; 
Kalinowski et  al., 2018). Consequently, information on 
measurement uncertainty is often not considered when 

interpreting test scores (Hambleton & Zenisky, 2013; 
Plebani et al., 2018), which may create a false sense of cer-
tainty and diminish trust in test outcomes, when repeated 
score estimates do not align (Simpkin & Armstrong, 2019). 
Moreover, insight regarding measurement accuracy may 
have practical implications for decision making (Hopster-
den Otter et al., 2019). For example, if an important cutoff 
score lies within the uncertainty interval, an observant clini-
cian may rightfully decide that the outcome does not pro-
vide sufficient evidence to support a treatment decision and 
that more information is needed. As such, it is important to 
consider score report formats that clearly and intuitively 
incorporate the accuracy of a test score.

A growing body of literature points to the potential posi-
tive effects of visualization on uncertainty understanding. 
For example, a systematic review by Garcia-Retamero and 
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Cokely (2017) on risk communication in health care showed 
that the use of visual aids is strikingly beneficial for a 
diverse audience of test users, including patients, physi-
cians, and highly educated individuals. A recent review by 
Heltne et al. (2023) similarly found that visualizing uncer-
tainty can improve participants’ understanding compared 
with commonly used numerical formats (e.g., confidence 
intervals). Particularly, visualizations that helped to indicate 
the shape of the uncertainty distribution, such as histograms 
and violin plots (see Figure 1C), successfully ameliorated 
important misconceptions about the likelihood of measure-
ment errors. However, some of the most commonly used 
formats to visualize measurement accuracy (i.e., error bars) 
are frequently associated with a wide range of interpretation 
errors, including reinforcing categorical reasoning about 
probabilities (Helske et  al., 2021; Levontin et  al., 2020; 
Padilla et al., 2022), and misinterpreting the probability of 
values within the error bar (Levontin et al., 2020; Newman 
& Scholl, 2012). The inherent interpretation problems with 
error bars have led researchers to consider a variety of alter-
native uncertainty visualizations. It is difficult, however, to 
determine an “ideal” format for clinical test scores based on 
current literature, as the vast majority of studies use student 
samples or nonspecific samples to evaluate the viability of 
different uncertainty visualizations (Levontin et al., 2020; 
Meloncon & Warner, 2017), while hardly any studies 
include clinical practitioners (Heltne et al., 2023).

Padilla et  al. (2022) make a broad distinction between 
two types of uncertainty visualization techniques: (a) graph-
ical annotations that show properties of a distribution 
directly, including error bars, boxplots, and violin plots; and 
(b) mapping probability to visual encoding channels, such as 
color, blur, position, or transparency. Visualizations of the 
first type depict moments of a probability distribution and 
can give a representation of the uncertainty distribution of a 
score. Graphics of the second type have the advantage that 
they adjust a mark that is already in place, and as such do not 
require an additional spatial dimension. In one of the few 
studies concerning visualization of measurement error, 
Hopster-den Otter et al. (2019) showed that teachers partici-
pating in their study mostly found the visual encoding for-
mats used in their study (i.e., blur and color value) confusing. 
Consequently, these formats either did not impact their deci-
sion process, or adversely affected their interpretation of test 
score uncertainty. Based on their findings, the authors rec-
ommended exploring other visualizations that incorporate a 
more direct representation of the probability distribution.

While studies generally demonstrate a positive influence 
of visualizations on the user’s interpretation of uncertainty, 
the literature on uncertainty communication so far shows 
that what “works” is highly dependent on (a) the type of 
uncertainty being depicted; (b) the type of judgment users 
need to make; and (c) characteristics of the user (Hullman 
et al., 2015; Levontin et al., 2020). Regarding the type of 

uncertainty, the systematic review by Heltne et al. (2023) 
shows that the number of studies that specifically evaluate 
the visualization of test score uncertainty can be counted on 
one hand. The same review indicates that different types of 
tasks require different types of visualizations. Generally, 
visualizations work best if the information that is needed to 
complete the task can be inferred directly from the visual-
ization (Heltne et al., 2023). Furthermore, studies included 
in the review by Heltne et al. (2023) suggest that partici-
pants are sensitive to information overload and often made 
more optimal decisions when presented with simple, less 
detailed, visualizations. Notably, these studies generally 
presented participants with unfamiliar decision-making 
scenarios, which may have contributed to this conclusion. 
Presumably, clinicians’ expertise and training in score inter-
pretation may reduce the risk of being overwhelmed by 
visualizations that are more complex, and allow clinicians 
to benefit from having more detailed information (Heltne 
et al., 2023). In this respect, visualizations that place less 
emphasis on confidence range limits might better represent 
the continuous nature of measurement uncertainty, and may 
help reduce categorical reasoning about uncertainty in 
users, while increasing accuracy (Correll & Gleicher, 2014; 
Helske et al., 2021). Many plot types (e.g., probability den-
sity function, boxplots, histograms, violin plots) use the sur-
face area of a plot to represent uncertainty on a continuous 
scale. However, some researchers (e.g., Krider et al., 2001) 
suggest that estimating the surface area of a figure may be 
challenging for most people. Dividing the surface area into 
smaller meaningful areas or small countable quantities may 
aid the user’s interpretation (e.g., Kay et al., 2016).

Considering how characteristics such as education, graph 
reading ability (i.e., graph literacy), and statistical training 
have been shown to impact uncertainty understanding 
(Hopster-den Otter et al., 2019; Shah & Hoeffner, 2002; van 
der Bles et al., 2019; Zapata-Rivera et al., 2016), it is impor-
tant to examine how to best communicate measurement 
accuracy in a population of clinical practitioners. This topic is 

Figure 1.  Five Formats Used in This Study: Text, Error Bar, 
Violin Plot, Diamond Plot, Quantile Dot Plot.
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particularly relevant, given that the abstract notions of stan-
dard errors and associated uncertainty intervals are repeat-
edly associated with interpretation problems in this population 
(McManus, 2012). Several studies suggest that there is ample 
room for improvement regarding the understanding of 
abstract statistical concepts by medical students and medical 
professionals (Hoffrage et al., 2000; Rutledge et al., 2004). 
Due to their vital role in test score interpretation, it is particu-
larly important to explore formats that more accurately con-
vey measurement accuracy in this population.

This study explores how different visualizations of 
uncertainty are related to clinicians’ understanding of mea-
surement accuracy. We aim to provide specific recommen-
dations for visualizing measurement uncertainty around test 
score estimates, to improve clinical professionals’ under-
standing. The results of this study may inform the develop-
ment of score reports that present measurement accuracy in 
a user-friendly format.

Method

Design

A cross-sectional repeated measures design was used to 
compare different visual representations (see Figure 1) of 
measurement accuracy. Both traditional error bars (Figure 
1B), representing the boundaries of a 95% confidence inter-
val, and textual representations that report the limits of this 
interval (Figure 1A) were included as baseline conditions. 
Three additional visualizations were included based on rec-
ommendations by Padilla et  al. (2022) and Heltne et  al. 
(2023): a violin plot (Figure 1C), a diamond plot (Figure 
1D) representing the familiar 68% and 95% confidence 
intervals, and a quantile dot plot (Figure 1E) with 20 dots 
sampled proportional to the quantiles of the distribution, so 
that each dot represents a 5% probability. Each visualiza-
tion was designed to facilitate probability judgments in 
relation to a cutoff score, with the expectation that partici-
pants would (a) consider this probability when making a 
decision; and (b) relate their confidence about a decision to 
this probability. Uncertainty information was conveyed by 
the shape of the figures. Additional attributes (color, satura-
tion, size, blur, etc.) were not manipulated, thus ensuring 
that observed differences in the results of this study were 
related only to differences in the composition of the visual-
izations. All visualizations included a visual representation 
of the estimated score.

Population and Sample

The target population of this study consists of practitioners 
who are certified mental health providers in the fields of 
medical and behavioral sciences who deal with standardized 
test scores on a regular basis. A selective sample composed 

of Dutch and Norwegian psychiatrists, psychologists, reme-
dial educationalists,1 and other professionals that are part of 
the target population was used in this study. Initially, partici-
pants were recruited from the authors’ professional network, 
after which snowball sampling was used by asking partici-
pants to extend the invitation to participate to others in their 
professional network that fit the target population. In addi-
tion, we approached several professional associations with 
the request to extend an invitation to their members. Both 
the Association of Educationalists in the Netherlands and the 
Norwegian Psychological Association cordially granted our 
request. Additional inclusion criteria were (a) working as a 
clinician in either Norway or the Netherlands; and (b) hav-
ing current or past experiences with standardized score rap-
ports. Based on a simulation study on sufficient sample sizes 
for multilevel modeling by Maas and Hox (2005), the target 
sample size was set at 100 participants from both countries. 
Sampling was terminated after 2 months, due to practical 
considerations, or sooner, if target sample size was met.

Procedure

Ethical approval for this study was provided by the 
University of Groningen Pedagogical and Educational 
Sciences Ethical Committee. All visualizations were made 
with R version 4.1.1 (R Core Team, 2021) in the R package 
ggplot2 (version 3.3.2; Wickham, 2016) and presented in 
the same width and height ratio (4:3). All plot designs were 
pretested by two Dutch clinicians to ascertain whether the 
figures and textual explanations were understandable. 
Based on their feedback, a small adaptation was made to 
allow participants to go back and forth to the task explana-
tion before viewing the graphs. Data were collected between 
March and May 2021.

Participants were informed about the goal of the study 
beforehand, and informed consent was obtained from each 
participant before starting the task. Each participant was 
shown five estimated scores with corresponding accuracy. 
Each score was randomly selected from the pairs shown in 
Table 1. These scores were presented once in each of the 
four visualization formats, and once in the textual format 
shown in Figure 1. Each visualization format included a 
cutoff score of 60 represented by a horizontal dotted line. 
The formats were presented in a random order, but always 
started or ended with the textual format to prevent partici-
pants from being forced to oscillate between visual and tex-
tual stimuli, which could be potentially confusing to them.

The combinations of three observed scores and standard 
errors shown in Table 1 were chosen to ensure that (a) 
scores beyond the plot range (0–100) had a near-zero likeli-
hood of occurring; (b) scores above the cutoff of 60 had 
varying probabilities ranging from almost zero (#1) to sub-
stantial (#9); (c) several combinations had probabilities 
near the visible boundaries of the visual formats (#1, #2, #3, 
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#5, #7); and (d) some combinations had the same probabil-
ity of overlap (#3, #5, #7).

Participants received a written instruction stating that 
each format showed the result of a screening test to measure 
the level of personality dysfunction (PD) of a patient. We 
chose to focus on PD due to its prevalence in clinical prac-
tice and the wide range of available standardized instru-
ments (Tyrer et al., 2015). Their task was to refer this patient 
to a specialized department for personality disorders 
(Department PD) or a general outpatient clinic (Department 
G), based on the result of the screening test. It was recom-
mended to refer patients with suspected true scores above 
the threshold score of 60 to Department PD. Participants 
were also provided a brief, one-sentence explanation of the 
features of each format (see Online Supplement).

After reading the task description and viewing the uncer-
tainty format, participants were asked to make a probability 
assessment, by moving a slider between 0% and 100% to 
answer the question “What do you think is the probability 
that the patient’s actual score is above the cutoff point (i.e., 
higher than 60 as indicated by the dotted line)?2” Next, each 
participant was given a decision problem to either refer the 
patient to Department PD or Department G. Participants 
were told that the patient would be put on a waiting list and 
re-assessed after the waiting period. To increase generaliz-
ability of the results and avoid basing conclusions on one 
specific and somewhat arbitrary cost scenario, participants 
were randomly assigned to one of three scenarios, where 
the waiting time for Department PD (waitPD) was 5, 10, or 
15 weeks, and the waiting time for Department G (waitG) 
was 30, 30, or 15 weeks, respectively. An incorrect initial 
referral would result in a combined waiting time for the 
patient. Table 1 shows the expected waiting time for both 
referral decisions in the 18 score and cost scenarios formed 
by the nine score and uncertainty combinations and the 
three different waiting times. Finally, participants were 

asked to rate their confidence in this decision on a 0 to 100 
sliding scale, and to rank the five formats from most to least 
understandable.

Measures

All measures were presented using an online Qualtrics 
questionnaire (qualtrics.com). Participants could choose 
between a Dutch or Norwegian version before starting the 
questionnaire.

Participant Characteristics.  To differentiate among work 
contexts, participants were asked to indicate their profes-
sion and country of employment. Other participant charac-
teristics, such as age and gender, were collected to acquire a 
more accurate sample description. Furthermore, partici-
pants’ research experience was assessed by asking whether 
they held a PhD, were a PhD candidate, or (co-)authored 
one or more published scientific articles. Extensive research 
experience may influence participants’ familiarity with 
standard errors, confidence intervals, and certain visualiza-
tions, which in turn may influence their performance (Shah 
& Hoeffner, 2002). Finally, since the size of the visualiza-
tion may impact participants’ performance, the screen reso-
lution for each participant was logged automatically.

Graph Literacy.  The Subjective Graph Literacy scale (SGL; 
Garcia-Retamero et al., 2016) was administered to measure 
the participant’s graph literacy skills. This 10-item self-
report questionnaire has shown high reliability in highly 
educated samples (α: .70–.89), and acceptable construct 
validity was suggested by high item-total correlations, and 
moderate correlations with other tests of graph literacy 
(Garcia-Retamero et al., 2016). In addition, the instrument 
has shown adequate predictive validity for interpreting 
graphical health risk information (Garcia-Retamero et al., 

Table 1.  Score and Cost Scenarios Used in This Study.

# Score (SE) P (score > 60)

Expected weeks waiting time for both departments

PD (5) G (30) PD (10) G (30) PD (15) G (15)

1 48 (4) .001 35 30 40 30 30 15
2 52 (4) .023 34 30 39 30 30 15
3 56 (4) .159 30 31 35 32 28 17
4 48 (8) .067 33 30 38 31 29 16
5 52 (8) .159 30 31 35 32 28 17
6 56 (8) .309 26 32 31 33 25 20
7 48 (12) .159 30 31 35 32 28 17
8 52 (12) .252 27 31 32 33 26 19
9 56 (12) .369 24 32 29 34 24 21

Note. Three observed scores and standard errors form nine score + SE combinations shown in the rows. The expected waiting time of three cost 
scenarios are shown in the last six columns. The correct decision (i.e., with the lowest expected waiting time) is printed in bold for each score and 
cost combination. PD = personality dysfunction.
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2016). Each item can be answered on a 6-point Likert-type 
scale, where higher scores indicate higher self-reported 
graph literacy. With permission of the SGL authors, all 
items were translated from English into Dutch and Norwe-
gian by professional translators. A first translation from 
English into Dutch or Norwegian was done by a Dutch and 
a Norwegian native speaker, respectively, who were fluent 
in English. These translations were then back-translated 
into English by two different translators with similar profi-
ciency to evaluate translation accuracy. Any deviations 
from the original translations were discussed with the first 
two translators, and corrections were made in the transla-
tions if required. The translated instruments showed good 
reliability (λ2 = .86), and exploratory and confirmatory 
Mokken scale analyses (Mokken, 1971) indicated that the 
items formed a unidimensional scale with adequate scal-
ability (H = .42). Consequently, the total score was used to 
represent graph literacy skills which ranged from 10 to 60. 
There were only small differences in terms of psychometric 
properties between the Norwegian (λ2 = .90, H = .51) and 
Dutch (λ2  = .85, H = .38) translations.

Outcome Measures.  The outcome measures of this study 
were (a) inaccuracy of probability assessments; (b) decision 
quality; (c) subjective confidence in decision; and (d) sub-
jective understanding. The inaccuracy of participants’ prob-
ability assessments was defined as the difference P Pij i

 −  
between the probability Pij  specified by participant j on 
item i and the actual probability Pi of a score higher than 60 
for the particular item i shown in Table 1. A positive inac-
curacy indicates the degree of overestimation, while a nega-
tive inaccuracy indicates the degree of underestimation.

Decision quality was evaluated in terms of the expected 
waiting time for the fictional patient, by comparing the 
expected waiting time for the decision made by the partici-
pant, to the expected waiting time for the alternative. The 
expected waiting time was calculated from the probability 
of a score higher than 60 Pi and the waiting times for depart-
ment PD waitPD and department G waitG . For department 
PD, the expected waiting time was defined as 
P Pi PD i PD G× ×+ − +wait wait wait( ) ( )1 . For department G, 
the expected waiting time was defined as 
( ) ( )1− × + × +P Pi G i PD Gwait wait wait . A decision was 
marked as “correct” if the expected waiting time (shown in 
Table 1) for the selected department was lower than the 
expected waiting time for the alternative.

Subjective confidence and understanding were retrieved 
directly from the confidence indicated by the participant on 
a range of 0 to 100 and the understandability ranking 
assigned to each of the five formats. In addition, partici-
pants were asked to motivate their ranking in an open-ended 
question. These qualitative statements were included to 
obtain a better idea of specific visualization features that 
aided or hindered participants’ understanding.

Analyses

All analyses were performed in R v4.1.3 (R Core Team, 
2022). After a descriptive analysis of the sample character-
istics, inaccuracy of probability assessments, and decision 
quality, mixed-effect beta regression models (Brooks et al., 
2017; Ferrari & Cribari-Neto, 2004) were used to predict 
absolute assessment inaccuracy I P Pij ij i= −| |  across differ-
ent formats. Beta regression is a flexible method that can 
handle bounded dependent variables in the interval (0,1) 
with non-normal distributions. Unlike alternative 
approaches (e.g., transforming the dependent variable), 
model parameters can be easily interpreted in terms of the 
original response. Due to these advantages, beta regression 
is commonly used for modeling outcomes such as propor-
tions and rates (Ferrari & Cribari-Neto, 2004). Since these 
models assume an outcome that is larger than 0 and smaller 
than 1, absolute inaccuracy was compressed slightly using a 
transformation by Smithson and Verkuilen (2006): 
I P P N Nij ij i
’ (| ( ) . ) /|= − − + 1 0 5 , where N indicates the 

sample size. A logit link function was used, which facili-
tates interpretation of regression parameters as an odds ratio 
(Ferrari & Cribari-Neto, 2004). All models were estimated 
using the glmmTMB package (Brooks et al., 2017) and take 
the following form:

logit I format characteristics Rij j ij j ij
’

, , ...~( ) + + +…β β β0 1 4

β γ0 00 0j jU~ .+

Here, U j0  described interindividual differences (i.e., 
random effects) in respect to the overall inaccuracy γ00  of 
the probability assessments by participant j. The model 
assumes that these individual deviations can be expressed 
by a normal distribution with mean 0 and variance τ0

2 . The 
other β coefficients indicate the overall (fixed) effect of 
visualization formats on probability assessment inaccuracy 
as well as the effect of participant characteristics (i.e., graph 
literacy skills, profession, experience, and country of resi-
dence). Finally, unexplained intraindividual differences are 
represented by the error term Rij .

Addition of fixed and random effects to the model was 
based on descriptive findings of the relation with probabil-
ity assessment inaccuracy and improvement to model fit as 
assessed by the Akaike information criterion (AIC). 
Participant characteristics were retained in the model if they 
reduced the AIC of the model. Since decision quality was 
defined as a dichotomous correct/incorrect variable, we 
used a generalized multilevel model with decision quality 
as the dependent variable to analyze this outcome. Fixed 
and random effects were included in this model in the same 
manner as the inaccuracy model.

To explore whether participants expressed more confi-
dence in their decision, when the difference in expected wait-
ing time between the chosen optimal outcome and the 
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alternative was larger, we took the difference in expected 
waiting time between the chosen outcome and the alterna-
tive, so that larger negative scores represent decisions that are 
more incorrect, and larger positive scores reflect decisions 
that are more correct. This outcome was correlated with the 
amount of confidence for each visualization format.

Finally, we explored differences in subjective under-
standability by evaluating the average participant rankings 
for different formats. A qualitative content analysis (Forman 
& Damschroder, 2008) was also conducted on participants’ 
textual statements concerning features that influenced 
understandability. All participants’ statements about under-
standability were open-coded in Excel by the first author 
(for the Dutch subsample) and a graduate student who is 
fluent in Norwegian (for the Norwegian sample). To explore 
format-specific features that aid or hinder understanding, 
participants’ statements were grouped by visualization for-
mat. Coded statements were reported when they were men-
tioned by at least two participants.

Results

Non-Response and Missing Data

Of the 335 participants who opened the questionnaire, 304 
gave informed consent and continued to the questions. Only 
participants who viewed at least one uncertainty format (n = 
239, 78.6%) were retained in the data set. The 65 participants 
who dropped out before this point did not differ markedly in 
regard to any of the included demographic characteristics; 
except that a more sizable proportion of these 65 participants 
(6.2%) never worked with standardized tests compared with 
participants who did view the visualizations (1.3%).

An additional number of participants were removed from 
the data set, because they worked in a country other than 
Norway or the Netherlands (n = 2), or worked in a non-
clinical profession (n = 7). The final sample consisted of 
230 participants. Most of these participants (n = 200, 86.9%) 
responded to all uncertainty formats. Of the 30 participants 
who dropped out before viewing all visualizations, 22 par-
ticipants only viewed one format. More often than expected, 
dropout occurred after participants had viewed only the tex-
tual format or the error bar; the other formats were all under-
represented within the group that dropped out.

Sample Demographics

Table 2 shows the sample demographics of the 230 partici-
pants split by country. The majority of participants (66.1%) 
worked in the Netherlands. Dutch participants were mostly 
women who worked as remedial educationalists. The 
Norwegian sample was slightly more evenly distributed 
regarding gender, and the majority worked as clinical psy-
chologists. In both countries, the largest age group was 

between 30 and 39 years. However, Norwegian participants 
were generally older and worked with standardized assess-
ment on a more regular basis. A large proportion of the 
sample consisted of participants who had a PhD degree or 
had (co-)authored a scientific study, and in that capacity had 
acquired some research experience. The Norwegian sam-
ple, especially, included a large number of participants with 
research experience.

Inaccuracy of Participants’ Probability Assessments

When looking at the untransformed difference between par-
ticipants’ probability assessments and the true probability 
underlying each score, inaccuracy of probability assessments 
was positively skewed with a median of .06 (median absolute 
deviation [MAD] = .10). When aggregating over participants, 
most participants tended to overestimate the probability of 

Table 2.  Sample Characteristics (%), Split by Country.

Variable
Netherlands

n = 152
Norway
n = 78

Total
N = 230

Gender  
  Female 92.8 61.5 82.2
  Male 7.2 38.5 17.8
Profession  
  Psychologist 28.3 92.3 50.0
  Remedial educationalist 69.7 0.0 46.1
  Psychiatrist 2.0 5.1 3.0
  Psychiatric nurse 0.0 2.6 0.9
Age  
  20–29 30.3 15.4 25.2
  30–39 40.8 33.3 38.3
  40–49 18.4 23.1 20.0
  50–59 6.6 21.8 11.7
  >60 3.9 6.4 4.8
Work with standardized tests  
  Daily 11.2 21.8 14.8
  Weekly 46.7 57.7 50.4
  Monthly 30.9 12.8 24.8
  Biannually 9.9 5.1 8.3
  Annually 0.7 0.0 0.4
  Never 0.7 2.6 1.3
PhD  
  Yes 5.9 17.9 10.0
  Not yet 2.6 17.9 7.8
  No 91.4 64.1 82.2
Published author  
  First author 9.2 34.6 17.8
  Co-author only 3.9 20.5 9.6
  Never 86.8 44.9 72.6
SGL scorea  
  Mean (SD) 38.3 (6.4) 40.0 (7.8) 38.8 (6.9)

aSubjective Graph Literacy scale (Garcia-Retamero et al., 2016).
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scoring above the cutoff, with a median average error of .08 
(MAD = .09). Nine outliers could be identified. Seven par-
ticipants made average overestimations between .41 to .74, 
and two underestimated by an average of –.19 and –.32. 
Although, these participants could not be distinguished by 
any specific characteristics, four of the nine outliers 
belonged to participants who did not finish the question-
naire. In fact, median average inaccuracy for participants 
who did not view all formats (n = 30, Mdn = .16) was 
more than twice as high compared with participants who 
did view all formats (n = 200, Mdn = .07). However, this 
difference was not significant (W = 2304.5, p = .13). 
There was no reason to assume that these outliers were 
invalid observations; they were therefore retained in fur-
ther analyses.

Figure 2 shows the distribution of participants’ probabil-
ity assessment inaccuracy for each of the five formats. The 
vast majority overestimated the probability Pi  with a median 
overestimation of .06, regardless of the presentation format. 
Quantile dot plots led to the smallest median overestimation 
(Mdn =.01, MAD = .08). Error bars and violin plots per-
formed second best (Mdn = .07, MAD = .09), followed by 
diamond plots and text (Mdn = .08, MAD = .12). The 
interindividual variation for probability assessments in the 
last two formats (diamond and text) seemed to be somewhat 
higher than the interindividual variation in the other three 
formats.

Table 3 shows the absolute inaccuracy of participants’ 
probability assessments for three different models: one 
model without explanatory variables (the empty model), 
one with only format as an explanatory variable, and finally 
the most complete model with all explanatory variables that 
improved model fit. The first model shows that average par-
ticipants’ probability assessments significantly deviated 
from a perfectly accurate assessment of the probability of 
PD (p < .001). The Level 2 variance component shows that 
probability assessment inaccuracy varied considerably 
across participants. The assessments of participants whose 
inaccuracy was estimated as one standard deviation above 
average were estimated to be nearly twice as inaccurate as 
the assessment of the average participant. Inaccuracy of 
probability assessments across formats were moderately 
correlated within individual participants (ICC = .41).

While none of the formats completely eliminated bias in 
participants’ probability assessments, the second model 
shows that both diamond plots (OR = 0.84, p = .043) and 
quantile dot plots (OR = 0.65, p < .001) significantly 
improved assessment accuracy compared with textual for-
mats. Post hoc comparisons further showed that the quantile 
dot plot led to significantly more accurate probability 

Figure 2.  Inaccuracy of Probability Assessments I P Pij ij i= −  by 
Format.
Note. The horizontal line indicates a perfectly accurate probability 
assessment by the participant (i.e., P Pij i

 = ).

Table 3.  Parameter Estimates of a Multilevel Beta Regression With Absolute Inaccuracy of Participant Probability Assessments I’ij  
as the Dependent Variable.

Variable Empty model Format Format + characteristics

  Estimate (SE) Estimate (SE) OR Estimate (SE) OR

Intercept (text) −1.96 (0.054)* −1.81 (0.075)* −1.72 (0.080)*  
Format  
  Error bar −0.15 (0.086) 0.86 −0.15 (0.086) 0.86
  Diamond plot −0.17 (0.086)* 0.84 −0.17 (0.086)* 0.84
  Quantile dot plot −0.43 (0.087)* 0.65 −0.43 (0.087)* 0.65
  Violin plot −0.09 (0.085) 0.92 −0.09 (0.085) 0.92
(Co)-Author −0.32 (0.113)* 0.73
Level 2 variance τ2 0.389 0.399 0.380  
Precision parameter φ 7.10 7.37 7.37  
AIC −2293.3 −2312.4 −2318.3  

Note. A value of 0 indicates perfect accuracy. All models were estimated on 1,039 responses of 228 participants. AIC = Akaike information criterion.
*p < .05.
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assessments than all of the other formats, with assessments 
that were 1.4 times more accurate compared with assess-
ments based on violin plots (p <.001), and 1.3 times more 
accurate compared with diamond plots (p = .004) and error 
bars (p = .002).

The last model shows that participants with experience 
as a (co-)author were significantly more accurate overall 
compared with participants without authorship experience 
(OR = 1.4, p = .005). After accounting for authorship, 
none of the other characteristics (i.e., experience with stan-
dardized tests, having a PhD, subjective graph literacy, age, 
gender, profession, or country) were significantly related to 
difference in participants’ probability assessment inaccu-
racy. For that reason, coefficients for these characteristics 
were not included in the last model. Removal of partici-
pants with large standardized residuals or large random 
effects had no noticeable effect on the results; that is, none 
of the regression coefficients changed from being signifi-
cant to not being significant or vice versa. The largest 
change in coefficient size was seen in the violin plot, which 
decreased by 0.016 when removing four observations with 
large residuals (>1.5), and by −0.05 when removing four 
participants with large random effects (>1.5).

Decision Quality and Confidence

The majority of participants’ referral decisions (72.2%) 
were correct decisions, resulting in the lowest expected 
waiting time for the fictional patient. In accordance with 
participants overestimating the probability of PD, patients 
were referred to Department PD slightly more often than 
necessary (i.e., even when the expected waiting time was 
longer for this department; see Table 1). Around three quar-
ters (73.1%) of the time, participants chose to refer to 
Department G; the majority of these decisions (77.3%) 
were correct. Of the remaining 26.9% referrals to 
Department PD, a large proportion (41.7%) was made 
despite the longer expected waiting time for this depart-
ment. A sizable proportion of referrals to Department PD 
(31.9%) was made, even when the expected waiting time 
for the patient was more than a month longer compared 
with referring the same patient to Department G.

Decision quality was moderately correlated with abso-
lute inaccuracy (r = –.27). As expected, more accurate 
assessments of probability tended to be associated with 
higher quality decisions. However, as Figure 3 shows, there 
was no relation between format and decision quality. 
Counterintuitively, the quantile dot plot that was associated 
with more accurate probability assessments appeared to 
lead to worse decisions somewhat more frequently. 
However, these differences were small and non-significant. 
After accounting for differences in inaccuracy, there were 
no participant characteristics that significantly predicted 
decision quality. Results for the empty model, model 

inaccuracy, and format as independent variables can be 
found in the online supplement (Supplemental Table S1).

As expected, subjective confidence ratings were higher 
when the decision was easier; that is, when the difference in 
a chosen optimal outcome and the alternative expected out-
come was larger (r = .22). However, there was no signifi-
cant or relevant difference in the strength of this relation for 
different formats, or in the overall confidence level for dif-
ferent formats.

Subjective Understandability

Participants in both countries were similar regarding their 
ratings of understandability. Table 4 shows the distribution 
and mean rank for each format. The classical formats (text 
and error bar) were rated as most understandable by 61% of 
participants, while diamond plots and violin plots received 
the lowest ranking. Although the quantile dot plot was 
deemed only slightly more understandable than diamond 
and violin plots, when looking at the mean rank, partici-
pants were more divided on this plot type compared with 
the other formats. One fifth of participants preferred the 
quantile dot plot over all other formats, but one in four rated 
this plot as least understandable. Unsurprisingly, partici-
pants who rated the textual format as most understandable 
scored significantly lower on subjective graph literacy, F(4, 
188) = 8.0, p < .001. No other characteristics were related 
to perceived understandability.

Coding of the qualitative responses showed that famil-
iarity played a major role in participants’ ranking of under-
standability. Participants frequently mentioned this reason 
for finding text (n = 14) and error bars (n = 22) 

Figure 3.  Difference in Expected Waiting Time for Decisions 
(Y-Axis) Plotted Against Different Formats.
Note. Y-values lower than 0 indicate an incorrect decision.
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understandable, and other formats less understandable (n = 
16). Textual intervals were often seen as more concrete (n 
= 18), exact, and objective (n = 14). Although some par-
ticipants indicated a preference for a textual format (n = 5), 
the lack of visual support (n = 18) and, in particular, a prob-
ability distribution (n = 6) were also frequently mentioned 
as downsides of the textual format. The fact that the proba-
bility distribution was not provided was similarly men-
tioned as a downside of the error bar format (n = 18). 
Moreover, two participants mentioned that the distribution 
was misrepresented by error bars. On the other hand, the 
concise format of the error bar (n = 6) was considered to 
provide a quick and understandable overview (n = 26).

By design, the violin plot, diamond plot, and quantile dot 
plot include more information than the textual or error bar 
formats, as they provide a more detailed graphical representa-
tion of the underlying probability distribution. Some partici-
pants were of the opinion that the three visualization formats 
more clearly showed the distribution (n = 20), while others 
deemed these formats to be too complicated (n = 12) or 
crowded (n = 19). Although participants indicated that the 
violin plot clearly showed the distribution (n = 18), some 
found it difficult to assess a probability (n = 8), interpret the 
width (n = 3), or make accurate probability assessments (n = 
2) using this format. The width of the diamond plot was simi-
larly mentioned as unclear (n = 2). Although some partici-
pants had a positive opinion about the multiple intervals 
provided in the diamond plot (n = 15), others found them 
difficult to interpret (n = 21). A particular downside men-
tioned for the quantile dot plot was that dots could fall directly 
on top of the cutoff line (n = 4), which occurred in all but one 
of the visualizations shown in this study, making interpreta-
tion more difficult. Participants in general were positive about 
the clearly visible percentage (n = 16) in the quantile dot plot 
that was made easy by counting (n = 4) and provided a clear 
representation of the probability above the cutoff (n = 9).

Discussion

This study explored how different visualizations of uncer-
tainty are related to clinicians’ understanding of measure-
ment uncertainty. We evaluated Dutch and Norwegian 
clinicians’ task performance on inaccuracy of probability 

assessments, decision quality, and subjective understanding 
for five different score formats. Overall, clinicians in both 
countries were reasonably able to interpret the different for-
mats presented in this study, when provided with a patient’s 
observed score, the cutoff score, and a representation of 
measurement uncertainty. Although most clinicians overes-
timated the probability of having a threshold score of PD, 
average probability assessments were close to the true prob-
ability. In addition, the vast majority of decisions based on 
these score reports were correct. However, we should note 
that the large inter- and intraindividual differences found in 
this study indicate that interpreting measurement accuracy 
can be a challenging task for some clinicians. The quantile 
dot plot used in this study showed potential for reducing 
inaccuracies in probability assessments with minimal 
instruction. Although the average reduction of inaccuracy 
was modest, our results indicate that the responses were 
closely and evenly spread around the true probability. In 
addition, this increased accuracy was achieved with very 
minimal instruction on the use of a format that was unfamil-
iar to participants.

Kale et al. (2021) similarly found that quantile dot plots 
reduce inaccuracies in participants’ probability assess-
ments relative to error bars. They conclude that frequency-
based visualizations like quantile dot plots facilitate 
statistical reasoning by representing probabilities by dis-
crete countable quantities (e.g., dots). Contrary to Kale 
et al., our findings did show a significant relation between 
inaccuracy and decision making. The difference between 
the findings of the two studies may be related to task famil-
iarity: The study by Kale et  al. presented a sample of a 
general population with a novel task, while the task in our 
study was designed to present a realistic and familiar sce-
nario to participants. However, we did not find any differ-
ences in decision quality across formats. This may have 
been due to a relatively small difference in inaccuracy 
across formats, combined with the vast majority of partici-
pants correctly referring (fictional) patients to Department 
G. It would be interesting to explore this in future studies, 
by creating scenarios that favor both decisions an equal 
number of times.

Similar to the findings of studies by de Bruin et al. (2013) 
and Levontin et  al. (2020), subjective understanding was 

Table 4.  Proportion of Participants (n = 194) That Ranked Each Format From Most Understandable (1) to Least Understandable (5).

Understandable Textual Error bar Diamond plot Quantile dot plot Violin plot

1 (Most) .30 .31 .09 .20 .10
2 .22 .28 .18 .12 .20
3 .16 .16 .23 .25 .19
4 .12 .18 .26 .17 .27
5 (Least) .19 .07 .24 .26 .24
Mean rank 2.7 2.4 3.4 3.2 3.3
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not associated with inaccuracy or decision quality, in our 
study. Neither the SGL nor the participants’ own ranking of 
most understandable plots showed any relation with other 
outcome variables, except with each other. A main factor 
related to subjective understanding, as indicated by the par-
ticipants’ open-ended responses, seemed to be familiarity: 
participants rated familiar textual and error bar formats as 
more understandable, despite their probability assessments 
being less accurate with these formats. In addition, partici-
pants reported that they associated textual formats with 
objectivity and accuracy, and error bars with quick and easy 
overviews. Since the boundaries set for any confidence 
interval can be arbitrarily selected, and any fixed boundary 
is subject to uncertainty itself, the idea that such intervals 
provide an objective overview is essentially false. While the 
additional information on the underlying distribution pro-
vided by the other formats was sometimes rated as helpful, 
designers of score reports should avoid overwhelming clini-
cians with information. As for the quantile dot plot, the 
number of black dots was mentioned by a few participants 
as particularly complex and crowding. Reducing the num-
ber of dots might make this plot seem less congested, but 
would also reduce the precision of the visualization.

We consider the use of a specific sample consisting of cli-
nicians recruited from various clinical contexts as being a 
major strength of our study. Moreover, the sample size pro-
vided sufficient power to distinguish small differences in inac-
curacy of probability assessments for the different formats. 
This being said, we suspect that the selective sampling may 
have impacted the representativeness of the study sample with 
respect to several characteristics: The young age group and 
proportion of remedial educationalists were overrepresented 
in the Dutch sample, which may have been the result of sam-
pling from the professional network of the first author and the 
Association of Educationalists in the Netherlands, while the 
Norwegian sample contained a large number of psychologists 
with research experience and/or a PhD degree, which may 
have resulted from sampling from the second author’s profes-
sional network and the Norwegian Psychological Association. 
Although we recruited participants who were trained as men-
tal health care practitioners, it is unknown whether all partici-
pants currently work in a mental health context. We did not 
suspect there would be any major influences on the conclu-
sions, since we controlled for differences in research experi-
ence, and none of the other sample characteristics were found 
to significantly affect the study outcome. Likewise, although 
there were minor indications of selective dropout that might 
influence sample representativeness, differences between par-
ticipants who dropped out and participants who did not were 
small and non-significant.

One final potential limitation is the fact that viewing 
conditions were not standardized. This meant that screen 
sizes varied from ø 6.8-inch to ø 38.8-inch monitors, and, 
consequently, that images were smaller for some 

participants than for others. We did check the influence of 
screen size (data not shown) and found no significant rela-
tions with both inaccuracy and decision quality. There were 
no other indications that screen size influenced the 
outcome.

By creating a realistic albeit simplified scenario for par-
ticipants, we were able to operationalize the effects of dif-
ferent uncertainty visualizations on clinicians’ 
interpretations and decision quality. Although clinicians 
will likely consider various factors in applied settings, and 
not base their decision solely on a single cutoff score and 
expected waiting time, visualizations like the ones used in 
this study can provide a flexible and simple overview of test 
scores and their associated accuracy. The results of our 
study show that most clinicians were able to accurately 
interpret uncertainty information in different formats and 
base their decisions on this information. However, the same 
results show large interindividual differences in the way cli-
nicians interpret the information provided in these score 
reports, which at times resulted in decisions that increased 
expected waiting time for (fictional) patients by more than 
a month. This study showed that plot formats such as the 
quantile dot plot can successfully reduce errors in interpre-
tation and understanding, with minimal instruction.

The evidence provided in our study is sufficiently com-
pelling to warrant wider implementation of quantile dot 
plots in score reports for use by trained mental health pro-
viders such as psychiatrists, psychologists, and remedial 
educationalists. Our research results suggest that this visu-
alization method may have benefits in terms of facilitating 
correct interpretation of test scores and their associated 
uncertainty. Training in the interpretation of measurement 
accuracy and the use of quantile dot plots may help reduce 
the large interindividual variation in performance found in 
this study. Zapata-Rivera et al. (2016) showed that a brief 
online tutorial for teachers containing causes, definitions, 
illustrations, and interoperations of measurement error can 
improve teachers’ understanding of the method and prac-
tice. Such a tutorial may be adapted to a training program 
for clinical practitioners. A greater understanding of the 
needs and pitfalls in clinical practice may be facilitated by 
actively involving practitioners in the design of such a 
program.

As this study is one of only a handful of empirical studies 
on test inaccuracy reporting, and, to our knowledge, one of the 
first with a sample of clinical professionals, there still remain 
many areas worth exploring. Interesting areas for further 
examination include the impact of more elaborate instruction 
and other visualization features, such as the use of color and 
the use of visualizations in applied clinical contexts. In addi-
tion, there is some evidence that links clinical orientation to 
attitudes toward use of standardized assessment (Jensen-Doss 
& Hawley, 2010). Hence, clinical orientation might be a rele-
vant user characteristic to include in further studies. 
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Meanwhile, our results provide hopeful signs that visualiza-
tions can aid the understanding and consideration of measure-
ment accuracy in clinical decision making. This offers an 
exciting new avenue for research and the development of 
clinical score reports and their interpretation.
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Notes

1.	 A remedial educationalist [Dutch: orthopedagoog] is a 
behavioral scientist, who focuses on learning and behavioral 
disorders in children in education, youth care, and mental 
health care, and requires training comparable to a master’s 
degree in developmental psychology.

2.	 While the actual meaning in a frequentist framework is more 
nuanced (Charter & Feldt, 2001a), we chose this simple 
phrasing for the sake of easy communication.
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